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ABSTRACT
Static analysis is a proven technique for catching bugs during soft-
ware development. However, analysis tooling must approximate,
both theoretically and in the interest of practicality. False positives
are a pervading manifestation of such approximations—tool con-
figuration and customization is therefore crucial for usability and
directing analysis behavior. To suppress false positives, develop-
ers readily disable bug checks or insert comments that suppress
spurious bug reports. Existing work shows that these mechanisms
fall short of developer needs and present a significant pain point
for using or adopting analyses. We draw on the insight that an
analysis user always has one notable ability to influence analysis
behavior regardless of analyzer options and implementation: modi-
fying their program. We present a new technique for automated,
generic, and temporary code changes that tailor to suppress spuri-
ous analysis errors. We adopt a rule-based approach where simple,
declarative templates describe general syntactic changes for code
patterns that are known to be problematic for the analyzer. Our
technique promotes program transformation as a general primitive
for improving the fidelity of analysis reports (we treat any given
analyzer as a black box). We evaluate using five different static
analyzers supporting three different languages (C, Java, and PHP)
on large, real world programs (up to 800KLOC). We show that our
approach is effective in sidestepping long-standing and complex
issues in analysis implementations.
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1 INTRODUCTION
Writing and maintaining high-quality, bug-free software remains a
largely manual and expensive process. Static analysis has proven
indispensable in software quality assurance for automatically catch-
ing bugs early in the development process [31]. A number of open
challenges underlie successful adoption and integration of static
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analyses in practice. Analyses must approximate, both theoreti-
cally [22, 25] and in the interest of practicality [9, 11]. Developers
are sensitive to whether tools integrate seamlessly into their exist-
ing workflows [21]; at minimum analyses must be fast, surface few
false positives, and provide mechanisms to suppress warnings [10].
The problem is that the choices that tools make toward these ends
are broadly generic, and the divergence between tool assumptions
and program reality (i.e., language features or quality concerns)
can lead to unhelpful, overwhelming, or incorrect output [20].

Tool configuration and customization is crucial for usability and
directing analysis behavior. The inability to easily and selectively
disable analysis checks and suppress warnings presents a significant
pain point for analysis users [10]. Common existing mechanisms
include analysis options for turning off entire bug classes (gen-
erally too coarse [21]) or adding comment-like annotations that
suppress spurious warnings at particular lines (a predominantly
manual exercise that leads to code smells and is insufficiently gran-
ular [10, 21]). It is notably the analysis author, not the user, who has
agency over the shape of these analysis knobs: which configuration
options are available and how to suppress errors. It follows that it
is infeasible for analysis writers to foresee and accommodate indi-
vidual user preferences or analysis corner cases through a myriad
of configuration options or suppression mechanisms.

An analysis user always has one notable ability to influence anal-
ysis behavior and output: modifying their program. For example,
developers may slightly modify existing code in a way that sup-
presses false positives or undesired warnings. A concrete example
is the following change, which was made in rsyslog1 to suppress a
Clang Static Analyzer warning:▷ �

- if(strcmp(rectype, "END")) {
+ // clang static analyzer work-around
+ const char *const const_END = "END";
+ if(strcmp(rectype, const_END)) {⊴ ◁

The analyzer warns that a potential out-of-bounds access occurs
when comparing two strings using strcmp. However, the warning
only surfaces when complex macro expansions take place (in this
case, macro expansion activates for strcmp because the second ar-
gument is a string literal). One contributor notes that under normal
circumstances these warnings are suppressed for macros, but can
surface if macro preprocessing is done manually.2 The workaround
in this case extracts the string literal out of the strcmp call so that
no macro expansion takes place. After the change, the analyzer
sees strcmp as a C library function and no longer emits a warning.
1https://github.com/rsyslog/rsyslog/commit/ea7497
2https://bugs.llvm.org/show_bug.cgi?id=20144
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In practice, modifying programs to avoid analyzer issues are exer-
cised as manual, one-off changes. Changes like the one above can
have the undesirable side-effect of persisting in the code solely to
suppress unwanted analysis warnings. Despite these shortcomings,
modification of the analysis target (the program) does, however, al-
low a primitive for analysis users to draw on their particular domain
knowledge of their code to positively influence analysis behavior.
For example, a developer may recognize that a particular API call
is the cause of a false positive resource leak and modify or model
the call differently to suppress a false positive.3 Our technique in
particular affords agency to analysis users to change and suppress
analysis behavior when no recourse is available in tool support (e.g.,
when analysis maintainers delay fixing analysis issues, or limit tool
configuration options). Our insight is that the same flavor of one-
off, manual code changes like the one above can apply generally
and automatically to remedy analysis shortcomings. Additionally,
workaround changes need not have the undesirable trait of per-
sisting in production code, and are applied only temporarily while
performing analysis.

We propose a rule-based approach where simple, declarative
templates describe general syntactic changes for known problem-
atic code patterns. Undesired warnings and false positives are thus
removed during analysis by rewriting code fragments. Our ap-
proach can be seen as a preprocessing step that tailors programs
for analysis using lightweight syntactic changes. It operates on
the basis of temporary suppression (a desirable trait in configuring
analyses [21]) and also enables catching false positives before they
happen by rewriting problematic patterns. Since patterns can occur
across projects, codifying transformations as reusable templates
amortizes developer effort for suppressing false positives.

The notion that syntactic transformations abstract semantic
transformations [13] underpins our intuition that manipulating
syntax can achieve desirable changes in the analysis domain and
implementation. Work on semantic properties of transformations
emphasize the potential for improving analysis precision [26, 28],
and recent work suggests that automatic bug-fixing transformations
can improve analysis results in popular real-world programs [33].
Despite anecdotal and theoretical appeal for tailoring analyses via
transformation, there is currently little demonstrated applicability
or benefit in practice.

A key objective of our work is to demonstrate the broad feasibil-
ity, applicability, and effectiveness of these ideas for the first time in
practice. To this end we evaluate on large, real-world programs writ-
ten in a variety of popular languages. A significant challenge lies in
recognizing and transforming syntactically-diverse languages for
such an approach to work. Recent techniques in declarative syntax
transformation help to address this challenge [34] and forms the
basis for operationalizing our approach. We address analysis is-
sues broadly by considering (a) user-reported false positives across
multiple active analyzers and (b) historic user commits for sup-
pressing analysis warnings. We develop transformations that tailor
programs to address shortcomings in analysis implementation and
reasoning. Our contributions are as follows:

• We operationalize the process of tailoring programs for static
analysis using declarative syntax rewriting.

3https://github.com/facebook/infer/issues/781.

� ⊵
1 function test(): void {
2 if (($file = @fopen('file', 'wb+')) === false) {
3 return;
4 }
5
6 // analyzer complains that $file may be false
7 if (\ fputcsv($file , [1,2,3]) === false) {
8 \fclose($file);
9 return;

10 }
11 ...
12 \fclose($file);
13 }� �
(a) Assigning the result of fopen to $file in Line 2 confuses the ana-
lyzer. It doesn’t track the effect that $file is not false on Line 7, and
emits a false positive warning that $filemay be false when passed
to $putcsv.� ⊵
1 function test(): void {
2 $file = @fopen('file', 'wb+');
3 if ($file === false) {
4 return;
5 }
6 ...
7 }� �

(b) An analysis user proposed this workaround: extract the assign-
ment out of the conditional. This allows the analyzer to correctly
track the assignment effect and does not emit a false positive. Unfor-
tunately this approach is hard to blanket-apply automatically and
diverges from developer preferences who prefer the former style
for readability.

Figure 2: Variable assignment inside if-statements can cause
a false positive report in PHPStan. A workaround is to put the
assignment outside of the if conditional.

• We show that our approach is effective in improving existing
static analyses and resolves real (including yet-unresolved)
false positive issues affecting analysis users.

• We show that our approach is efficient: transformation typi-
cally takes one to three seconds (compared to analyses that
typically take in the order of minutes)

• We present empirical results of our approach on 15 real-
world projects (including large ones, >100KLOC) across
three languages (PHP, Java, and C) and develop 9 transfor-
mation templates for improving the analysis output of five
modern and active analyzers (Clang, Infer, PHPStan, SpotBugs,
and Codesonar).

2 MOTIVATION
Fig. 2a illustrates a past issue in PHPStan, a popular PHP analyzer.
A file is opened in line 2, and assigned to a handle $file inside the
if-condition on line 2. If opening the file fails, $file is assigned
the value false; the condition evaluates to true and the function
immediately returns (line 3). On the other hand, if execution passes
the check then $file is guaranteed to be valid (i.e., not false). The
problem is that PHPStan would not track the effect of assignments
in if-conditions, and reports an error saying that $file may be
false when passed as an argument to fputcsv on line 7.

https://github.com/facebook/infer/issues/781
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The issue for this false positive stayed open and unresolved
for over a year on GitHub, and is cross-referenced in 13 related
user-reported issues.4 One project member responded that the is-
sue is important and will be fixed in the future, but that “no one
has yet figured out how to implement it without rewriting major
part of the (analysis) core”. The fix imposed significant effort on
analysis authors which delayed a resolution for months. Although
some analysis authors were in favor of code that avoided assign-
ments in conditionals, others found the style improves readability.
Multiple users noted that the false positive can be avoided by a
code change that extracts the assignment out of the conditional
(Fig. 2b).5 However, one user also noted that this workaround was
“a bit annoying” because it introduced redundancy. The proposed
workaround also imposes a burden on the user to identify and refac-
tor all affected instances. Our approach introduces a new way to
address these tensions. The intuition is that workarounds via code
changes, as in Fig. 2b, can generalize to cater for individual user
preferences and overcome long-standing analysis issues. The high
level idea is to write simple, declarative syntactic templates that
can blanket-apply automatically over an entire code base. Although
the code changes could be persisted in the code, they need not
be: our approach foremost promotes code changes as a temporary
suppression mechanism with respect to a particular analysis. In our
approach, a match template specifies a pattern that is syntactically
close to the problematic pattern in Fig. 2a:� ⊵
if ((:[v] = :[fn](:[args])) === false)� �
A rewrite template replaces all instances of the match template,

extracting the assignment out of the if-condition. The rewrite
template is syntactically close to the pattern suggested by the user
in Fig. 2b:� ⊵
:[v] = :[fn](:[args]);
if (:[v] === false)� �
The match template matches on the syntactic pattern where

variable v is assigned the return value of calling a function fn with
arguments args (the :[identifier] notation binds matching syntax
to a variable identifier). All other syntax is matched concretely;
whitespace in the template matches all contiguous whitespace in
the source code. For illustration we use this template to match on
function call syntax because the analysis particularly tracks values
for modeled functions like fopen. The rewrite template references
variables in the match template, which are substituted with their
corresponding matched syntax.

Using the above patterns we identified and rewrote 27 instances
of the if-assign pattern in the WordPress and PHPExcel projects
and removed 82 false positives due to issue #647 in PHPStan. Our
approach has the positive effect of removing more false positives
than matches, because the issue has a cascading effect of reporting
false positives along multiple execution paths (we elaborate in
Section 4).

Writing these declarative patterns is comparatively easy to im-
plementing additional analysis reasoning and sufficiently general
4https://github.com/phpstan/phpstan/issues/647.
5https://github.com/phpstan/phpstan/issues/1739

for overcoming analysis shortcomings. The format of syntactic tem-
plates is accessible to developers; indeed templates can be written
in a format that is syntactically close to user-identified and user-
implemented workaround transformations (as in Fig. 2b). In our
experience, complex changes to an analysis implementation can
have a correspondingly easy resolution via code transformation
patterns; templates can be developed in minutes for issues that take
days to months to resolve in an analysis implementation (or even
issues that don’t have any proposed solution whatsoever).6

Match and rewrite templates appear simple, but express nontriv-
ial syntactic properties that go beyond the capabilities of regular
expression search-and-replace. We use recent work in syntax trans-
formation to enable this approach for multiple languages and apply
it broadly toward our objective.

3 APPROACH
This section explains the overall process of our program tailoring
approach. We introduce background on the rewrite technique in
Section 3.1. Section 3.2 explains how we integrate program trans-
formation for improving the quality of analyzer bug reports and
the principles behind our approach.

3.1 Preliminaries: Lightweight Syntax
Transformation

To rewrite syntax declaratively in the fashion shown, we use comby,7
a tool for declaratively rewriting syntax with templates. We give a
brief overview of template syntax and matching behavior:

• The :[hole] syntax binds matched source code to an identi-
fier hole. Holes match all characters (including whitespace)
lazily up to its suffix (analogous to .*? in regex), but only
within its level of balanced delimiters. For example, {:[hole]}
will match all characters inside balanced braces. Parentheses
and square brackets are also treated as balanced delimiters.

• :[[hole]] matches only alphanumeric characters in source
code, analogous to \w+ in regex.

• Using the same identifier hole multiple times in a match
template adds the constraint that matched values be equal.

• All non-whitespace characters are matched verbatim.
• Any contiguous whitespace (spaces, newlines, tabs) in a
match template matches any contiguous whitespace in the
source code. Match templates are thus sensitive to the pres-
ence of whitespace, but not the exact layout (the number of
spaces do not need to correspond exactly between match
template and source code).

• Matching is insensitive to comments in the source code;
comments are treated like whitespace when matching non-
hole syntax in the match template.

We additionally use rules to refine match and rewrite conditions.
Rules place constraints on matched syntax; we explain rules as
needed in the rest of the paper. The match template, rewrite tem-
plate, and rule comprise the full input for a single transformation.
Each part is passed on the command-line.

6See, e.g., https://github.com/spotbugs/spotbugs/issues/493
7https://comby.dev

https://github.com/phpstan/phpstan/issues/647
https://github.com/phpstan/phpstan/issues/1739
https://github.com/spotbugs/spotbugs/issues/493


ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Rijnard van Tonder and Claire Le Goues

3.2 Tailoring Programs for Analysis
This section explains our approach to tailoring programs for analy-
sis. Fig. 3 illustrates the main phases in our approach; we use it to
characterize the process in detail.

Who writes templates? Our approach starts with a manual step
where users 1 write transformation templates. A key principle
of our approach is to allow particularly analysis users to influ-
ence static analyses via program transformation. The simplicity
of declarative templates make syntax transformation accessible
so that user observations and workarounds (as in Fig. 2b) can be
straightforwardly implemented. This primitive is not exclusive to
analysis users, but also accessible to analysis writers and external
contributors. For example, analysis writers can create and distrib-
ute transformation templates for issues on an interim basis (such
as for Fig. 2a). Users can then apply these templates as a tempo-
rary workaround before analyzing their projects. In this paper,
we (the authors) develop and evaluate transformations as external
contributors—we treat analyses as a black box (as a user would)
and develop transformations for extant issues in popular analyzers
(as an analysis writer might).

What properties do templates have?Writing rewrite templates
2 is a one-off exercise per transformation. Templates are gener-
ally short (we develop templates that are between 3 and 15 lines
long). Our results show that there is typically a one-to-one corre-
spondence of rewrite template to analysis issue, where an analysis
issue can entail a general problem in analysis implementation, code
generation, or function modeling. Formulating rewrite templates re-
quires competitively low effort compared to implementing complex
changes analysis-side.

Templates are customizable. For example, we can refine the tem-
plate if ((:[v] = :[fn](:[args])) === false) to match on a
particular concrete function, such as fopen, instead of :[fn]. Rudi-
mentary mechanisms (e.g., C macros, comments, or assertions [16],
and bug auto-patching [4]) have been used and recommended for
suppressing false positives in existing analyzers [3, 6]. These mech-
anisms suffer from relying on language-specific features, are brittle
and coarse, and built into the tool or hardcoded in the program. Our
template-based mechanism is broadly accessible (it is easy to write
templates), customizable, and generic across languages for manipu-
lating syntax. It operates independent of language toolchains and
does not presume the availability of language-specific features (e.g.,
macros) and does not prescribe any configuration for external analy-
sis tools or compilers. Templates currently express purely syntactic
properties (e.g., we do not draw on type information to inform
manipulation). However, future work may incorporate richer static
information.

A set of templates form a catalog of transformations that can be
reused across projects using analyses. A catalog is the starting point
for an automated pipeline, driving the remaining phases in Fig. 3.
In this paper we present a catalog of human-written templates that
directly targets known analysis issues.

What are the principles behind automated code changes tai-
lored to analysis? The rewriter tool 3 takes as input the set of
rewrite templates and a program. It rewrites matched syntax in
the original program to produce a modified program that will be

analyzed. The modified program is intended to be a temporary rep-
resentation of the original program that is discarded after analysis.
In practice users can identify transformational workarounds to
issues (as in Section 2), but do not want to persists those changes
in their code.8 Our solution provides the ability where users only
temporarily change their code under analysis. We implement tem-
porary program modification by running the rewriter on a version
controlled project (we use git). After running the analysis and cap-
turing the bug reports, the project is reverted to its original state.
As a practical concern, program tailoring could be integrated into
testing and continuous integration pipelines or local development
workflows. We envision that the approach is better suited to con-
tinuous integration pipelines that typically integrate long-running
analyses.

In this paper we consider transformations primarily as a tar-
geted suppression mechanism for analysis false positives. However,
we observe that transformations can also be tailored to surface
additional bugs (we elaborate in Section 4).

The rewriter can be seen as a preprocessor for analyses. One
principle of running our approach prelude to analysis is that we can
dually use templates to search for and detect (but not necessarily
rewrite) problematic syntactic patterns. This mechanism provides
an early smoke signal that may trip particular analyzers even before
the analysis runs. We notably reuse our templates to detect false
positive-inducing patterns across projects in our evaluation. Large
scale efforts can similarly detect the extent of possibly affected
projects when adopting a new analyzer; analysis writers may use it
to prioritize analysis fixes. These capabilities are notable in contrast-
ing our approach to existing mechanisms: syntactic templates are
valuable in explicitly codifying sensitivities of analysis behavior as
it relates to program structure, whereas suppression-by-comments
and configuration options provide an escape hatch in anticipation
of problematic analysis interactions where program structure is
readily ignored.
What are the conditions for analyzing a modified program?

Automated program transformation is a powerful primitive, and
applying incorrect templates can produce malformed programs.
When developing templates, it is helpful to impose validation cri-
teria for running the analysis on the modified program. Analyses
generally accept only well-formed programs (in the respective lan-
guage), and typically rely on building artifacts or instrumenting
compiler output to perform analysis. Language allowing, we impose
a validation step that all modified programs must compile 5 when
performing analysis, which provides additional assurance that the
analysis will not terminate early due to malformed programs. For
PHP, we rely on a valid parse of target files as the validation step.
Applying transformations may violate style checkers (e.g., linters)
integrated into a build manifest, or cause spurious compiler warn-
ings (e.g., unused variables), but still allow the program to compile
successfully. We allow such violations or warnings; in our results
these do not directly affect the fidelity of the analysis with respect
to the issue targeted by transformation. Another possibility of in-
terference is that transformations addressing one bug class may

8For example, one user user experience identifies that a certain change removes a
false positive report, but they do not want to permanently change their code https:
//github.com/Microsoft/CodeContracts/issues/255.
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Figure 3: Overview of the program tailoring process.

lead to additional reports for a different bug class. This undesirable
behavior depends on the analysis checks, its configuration, and
template formulation. We qualify such cases in our experiments
(Section 4).

In the final step we capture analyzer output for the modified
program 6 . The goal of our approach is that this output provides
a higher quality bug report than that obtained from running the
analyzer on the original program.

4 EVALUATION
This section describes our results tailoring programs for analysis.
Our evaluation emphasizes real-world applicability on large and
popular programs for modern analyzers. The goal of our evalu-
ation is to show that programs can be tailored generically and
declaratively to improve analysis output. We focus on breadth of
applicability across languages and analyzers for real-world issues.
Thus, our research questions are:
RQ. 1 Can tailoring programs improve the fidelity of static

analysis reports? Specifically: Does the approach remove
false positive reports without otherwise adversely affecting
the analysis results?

RQ. 2 Does the program tailoring approach generalize? We
specifically evaluate generality with respect to multiple lan-
guages and analyzers, and pattern reuse across projects.

Section 4.1 describes our experimental setup. Section 4.2 de-
scribes our results applying 9 rewrite templates to 15 projects across
five analyzers.

4.1 Experimental Setup
We consider five popular analyzers: PHPStan [7] for PHP, SpotBugs [8]
for Java, Clang Static Analyzer [1] and CodeSonar [2] for C, and
Infer [5] for both Java and C. All analyzers aremature, actively used,
and incorporate state-of-the-art techniques. All analyzers are open
source, except for CodeSonar which is a commercial analyzer.9 For
each analyzer we were interested in current or long-standing issues
that cause spurious warnings or false positives, and particularly
issues that could not be easily addressed by analysis configuration
or suppression mechanisms:

9We used CodeSonar under a free academic license.

(1) We searched the PHPStan, SpotBugs, and Infer issue trackers
on GitHub for reports or comments containing the words
“false positive”.

(2) We found related issues for the Clang Static Analyzer (which
does not have a GitHub issue tracker), by searching for
GitHub commits containing the words “clang static analyzer
false positive”.

(3) CodeSonar does not have a public issue tracker, nor did we
find public commits referencing false positives. We manually
inspected warnings for false positives.

The above methods influenced project selection. For (1) we iden-
tified problematic syntax patterns and user-affected projects from
user reports. For (2) we identified committed code changes in an
existing project and used this to develop a generic template. For
(3) we selected popular C projects as representative real world
projects (since we did not have sources indicating false positives in
CodeSonar a priori).

Templates developed from the initial set of issues were reused to
search for additional projects containing potentially false positive-
inducing patterns. We searched over the top 100 most popular10
projects for each language. However, to apply our approach gener-
ally, we require that a project (a) compiles (or parses) successfully
and (b) is configured for analysis. Many of the projects identified by
large-scale search presented significant manual burden to compile
(e.g., due to various dependencies and platform-specific require-
ments like like Android, iOS, or Visual Studio) and consequently
configure for analysis. We note that this burden is amplified for ex-
ternal users (such as ourselves) who have limited access to various
platforms and who are unfamiliar with specific build configurations.
We generally expect the burden to be less of an impediment for
using our approach among project maintainers, who are familiar
with the complexities of their own projects.

In aggregate, we evaluate our approach on 15 projects. Our se-
lection represents a convenience sample of real world issues to
substantiate our claims about tailoring programs to overcome an-
alyzer limitations. The selection includes real issues that affect
developers of large, popular codebases. We show that our approach
is efficient and scales to these concerns, and that it presents reuse
potential across projects.

10Ranked by the number of user favorites (GitHub stars).
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Analyzer Lang Pattern Project KLOC Time Reports #R RefAnlyz Rewr Bef Cls ∆ FP

PHPStan PHP

if-assign-resources WordPress 5.7 2.5s 0.3s 112 44 -44 16 647PHPExcel 5.1 0.7s 0.1s 113 42 -42 11

substr-model

dompdf 3.9 0.5s 0.2s 34 1 -1 1

1215matomo 0.3 0.2s 0.1s 21 1 -1 1
PHP_CodeSniffer 1.6 1.1s 0.1s 123 3 -3 3
neonizer 0.1 0.1s 0.1s 1 1 -1 1

Infer

C free-model OpenSSL 402.9 17m29s 1.6s 462 22 -6 3,735 120

Java create-socket Drift 50.7 2m47s 1.0s 62 1 -1 1 781Presto 813.0 39m20s 3.3s 822 106 -1 1
wrapped-resources hazelcast-jet 103.8 5m24s 1.3s 29 7 -2 16 999

SpotBugs Java null-on-resources hazelcast-jet 103.8 1m48s 2.0s 1 1 -1 45 756Santulator 11.1 44s 0.5s 2 2 -2 8
Clang SA C const-strcmp rsyslog 145.0 16m20s 2.9s 3 3 -3 10 ea74

CodeSonar C strncpy-null swoole-src 96.8 6m40s 0.6s 117 1 -1 1 —snprintf-null ioping 1.2 0m14s 0.2s 12 2 -2 2
Table 1: Main results of our approach. Each row represents an application of a transformation Pattern on a project. Reports, Bef is the total
analyzer warnings before transformation. Cls is subset of total analyzer warnings in the bug class that the transformation targets. (∆ FP) is
the number of warnings removed by the transformation for the targeted bug class. Ref is the external GitHub issue or commit reference (cf.
Table 3. Time, Anlyz is the time to run the analyzer on each project (given in thousands of lines of code, KLOC). Rewr is the time to process
and rewrite each matching pattern across KLOC. We remove 111 false positives (∆ FP) in total, with a median of 2 per project.

We ran our large-scale search experiments on an Ubuntu 16.04
LTS server, with 20 Xeon E5-2699 CPU cores and 20GB of RAM. We
evaluated analysis improvement on this same hardware for large
projects (>100KLOC) and the CodeSonar analyzer. All other analysis
improvement experiments were run on an Ubuntu 16.04 VM with
two 2.2 GHz i7 CPU cores and 4GB RAM. We make our tooling and
data available online.11

4.2 Experimental Results
4.2.1 Overview. Table 1 shows our results for each analyzer. We
develop transformations for 9 syntactic Patterns across PHP, Java,
and C projects. We discuss the patterns in detail in Section 4.2.5. The
Issues column shows the total number of warnings across all bug
classes in the Before column (each analyzer is run with its default
checks). We ran each analyzer on the entire project (warnings are
thus for the entire project) except for PHPStan where the number
of warnings is reported for a single file. PHPStan can operate at
the file level, and using targeted transformation we demonstrate
that our approach can isolate issues in individual files without
incurring a project-wide analysis. The Cls column is the subset of
all bugs that fall into the bug Class that the pattern targets. The
∆ FP column is the number of false positives removed for that bug
class by transformation. The #R column is the number of rewritten
instances in the source code for each pattern. There may be more or
fewer rewritten instances compared to removed false positives due
to the effect of transformations on analyses (cf. pattern free-model
and if-assign-resources); we elaborate in Section 4.2.5. The time

11https://doi.org/10.5281/zenodo.3629098.

to transform the program (Time Rewr) is negligible compared to
analysis runtime (TimeAnlyz). In aggregate these transformations
remove 111 false positives (∆ FP), with a median of 2 per project.

4.2.2 Effects of transformations on analysis behavior. Providing a
primitive for arbitrarily modifying programs means that our ap-
proach can hypothetically introduce adverse effects which do not
exist in the original program. The negative possibilities are that
a change either removes true positives in the original program,
introduces more false positives in the modified program, or both.
We evaluated whether our patterns cause such adverse effects by
manually inspecting bug reports before and after applying a trans-
formation for every analysis run. From our inspection, no true
positives are removed for any project. No additional bug reports are
introduced for any project, except OpenSSL and Presto. Infer non-
deterministically reports different numbers of bugs for large Java
projects in the case of Presto, irrespective of whether we perform a
change. We confirmed that our change removes the false positive
on five independent runs; nondeterminism for large numbers of
bug reports (>800) make it difficult to conclude whether our change
has any meaningful effect on other reports.

We observed that Infer reports an additional 6 potential null
dereferences after applying the free-model pattern. This is in-
teresting because the free-model pattern targets memory leak
false positives, not null dereference reports. Interestingly, Infer
analyzes and reports bugs in functions after transforming the pro-
gram, whereas it previously short-circuits analysis and reporting for
functions containing free-wrapper functions. We inspected these

https://github.com/phpstan/phpstan/issues/647
https://github.com/phpstan/phpstan/issues/1215
https://github.com/facebook/infer/issues/120
https://github.com/facebook/infer/issues/781
https://github.com/facebook/infer/issues/999
https://github.com/spotbugs/spotbugs/issues/756
https://github.com/rsyslog/rsyslog/commit/ea74974bb117505028693cd03ccc614a9e3c191c
https://doi.org/10.5281/zenodo.3629098
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Lang MLOC Pattern #M Time

PHP 8.9 if-assign-resources 42 18s
substr-model 6 20s

Java 16.2
create-socket 1 56s
wrapped-resources 254 30s
null-on-resources 8,453 56s

C 29.4

free-model 52,461 7m
const-strcmp 91 48s
strncpy-null 1 48s
snprintf-null 13,763 50s

Table 2: Large-scale search results over the top 100 most popular
PHP, Java, and C repositories on GitHub. MLOC is the millions of
lines of code searched; #M is the number of matching instances
across all projects. Search is fast and scales to millions of lines of
code for rich patterns.

reports and could not obviously discern whether they were false
positive or true positive reports.

In summary: Our approach removes false positives without ad-
versely effecting the analysis in the majority of cases (13 out of
15 projects), while two projects are inconclusive. In general, pro-
gram tailoring is effective because transformations perform small,
local changes that affect only the reasoning of the analysis for that
instance or bug class (as detailed in Section 4.2.5). It follows that
changes which are closely semantics-preserving of the original
program ought not make an analysis less precise, and our results
affirm this intuition.

4.2.3 Amortizing human effort for codifying and detecting patterns.
Pattern reuse is an especially appealing property of tailoring pro-
grams. We developed four patterns from user-reported issues in an
initial project12 which we then used to detect and fix multiple false
positive issues in six additional independent projects. These results
show that patterns may generalize to benefit multiple projects, and
imply that the cost and human effort of writing broadly applicable
templates can be amortized across software stakeholders (i.e., both
analysis users and analysis writers develop, distribute, and benefit
from patterns). In contrast, existing mechanisms using comment
suppression or command line options cannot likewise generalize,
and consequently induce recurring developer effort.

We performed a large-scale search using each pattern to identify
the additional projects above, and to quantify overall efficiency.13
Table 2 shows our results running each pattern on the top 100 most
popular GitHub repositories for PHP, Java, and C. In general search
is fast and can identify potential false-positive inducing patterns
before an analysis even runs.

4.2.4 Issue duration and resolution for analysis end users. Table 3
characterizes six open source issues that our patterns address.14
Interestingly, issues are long-standing (unresolved for over a year,
on average), and all but one remain unresolved at the time of writing.

12if-assign-resources, substr-model, create-socket, and null-on-resources
13Note that the patterns identified projects which failed to run under the analysis or
compile, and hence are not included in our final Table 1.
14The three remaining patterns, rsyslog, and those for CodeSonar, do not have open
source issues.

Fixed? Issue Duration Reported # Refs

✓ phpstan/647 1 yr. 3 mos. 11-2017 16
✗ phpstan/1215 1 yr. 1 mo. 07-2018 1
✗ infer/120 4 yrs. 1 mo. 06-2018 4
✗ infer/781 1 yr. 9 mos. 10-2017 0
✗ infer/999 10 mos. 09-2018 0
✗ spotbugs/756 11 mos. 09-2018 41

Table 3: Summary of false positive issues in active analyzers that
we address. The ✗ in the Fixed? colum indicates that the issue is
still unresolved at the time of writing. Only one of the issues is cur-
rently resolved (✓). On average, issues stay unresolved for 1 year
and 7 months (aggregated over Duration, as of the date the issue
was Reported). # Refs indicates the number of additionally cross-
referenced issues for a report (including, e.g., duplicate user reports
or external tools affected by this issue).

These issues generally reveal that analysis end users are subject to
long delays and lack of support, having little recourse for resolving
false positives using existingmechanisms. On the one hand, analysis
writers may not have the time to support user- or project-specific
needs, and may deprioritize less pressing requests (e.g., infer/781 is
an individual user request with no cross-references to other issues).
On the other hand, an issue may affect many users (as shown by
multiple cross-referenced issues for phpstan/647, spotbugs/756), but
very complex to solve for analysis maintainers.

Our approach handles these issues via program transformation,
and give agency to end users for implementing workarounds. Fur-
thermore, user-reported errors can be significantlymore severe than
other analysis reports as they may break existing software work-
flows. For example, even a single false positive report in SpotBugs

due to null-on-resources breaks the continuous integration (CI)
build of cross-referenced projects, and caused users to disable the
check wholesale for their projects across all versions of Java. Be-
cause of this profound effect, bug severity and build integration
must be weighed into analysis configuration mechanisms. More-
over, although the relative size of false positive reduction is small
for some reports in Table 1, the correspondence to real-world is-
sues and extended impact on end users and software workflows
make the false positives we handle more significant than others.
Our results show that our approach can uniquely address such
complexities.

4.2.5 Rewrite patterns. We now discuss analyzer issues in greater
detail, explain what our template transformation does to resolve
the issue, and why it induces a positive change in analysis be-
havior. There is generally a one-to-one correspondence of tem-
plate to pattern. The exception is patterns if-assign-resources

and null-on-resources where we implemented two templates to
account for syntactic variants in function call names and optional
catch blocks.
Pattern: if-assign-resources. This pattern addresses the issue of
variable assignment in if-conditionals (as introduced in Section 2).
At the original time of writing PHPStan did not accurately track the
effects of such assignments, and it took over a year to fix in the anal-
ysis implementation. False positives particularly manifest for cases
where states of resources (like files) are opened. Because PHPStan
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Match template� ⊵
if ((:[v] = @fopen(:[a])) == 0)� �

Rewrite template� ⊵
:[v] = @fopen(:[a]);
if (:[v] === false)� �

Figure 4: The if-assign-resources pattern extracts a variable assign-
ment out of an if-condition (in this case for fopen calls).

Match template� ⊵
$:[[v]] = substr(:[a]);
if ($:[[v]] === false)� �

Rewrite template� ⊵
$:[[v]] = substr(:[a]) || isset($maybe_false);
if ($:[[v]] === false)� �

Figure 5: The substr-model pattern informs PHPStan that a call to
substr may return false.

does not track that the variable assigned cannot be false, it reports
an error when the variable is passed to a function such as fwrite or
fclose, saying “Parameter #1 of function fclose expects resource,
resource|false given”. The transformation pulls the assignment
out of the if-condition, which allows PHPStan to accurately track
the effect (Fig. 4). An interesting result is that rewriting this pattern
can remove many false positive reports because multiple functions
may use a file resource along multiple paths, and each use raises
an error. For example, rewriting 16 cases in WordPress removes 44
false positives.
Pattern: substr-model. The substr function in PHP performs a
substring operation. PHPStanmodels return value types of functions
like substr. However, PHPStan did not track the fact that substrmay
return false if the length of the string is shorter than the requested
substring range. PHPStan, thinking the value can only ever be a
string, thus emits a false positive when a user’s code checks whether
the return value of substr is false, saying “comparison using ===

between string and false will always evaluate to false”.
It took eight months as of the first user report for maintainers

to implement the solution properly. It is particularly interesting
that the maintainers were unwilling to make a simple change to
the function model to reflect that substr can return false, because
it would propagate spurious warnings when used as an argument
in other contexts. However, users primarily had issues with the
model when they checked return values, not when the value was
used as an argument. Our transformation in Fig. 5 matches prob-
lematic cases that users experienced while avoiding the difficulty
of changing the substr model wholesale. We introduce the expres-
sion isset($maybe_false)which lets PHPStan reason that the return
value of an unset variable may be false. Statements that assign the
result of substr before an if check are changed with an or-clause,
which effectively remodels the substr call to possibly return a false
value. Note that the use of :[[v]] in the assignment statement
(line 1) and conditional expression (line 2) of the match template
introduce a constraint that both matching instances must be syn-
tactically equal for the rewrite rule to fire. This pattern removes six
false positive reports in four PHP projects.

Match template and rule� ⊵
:[[f]](:[args])� �� ⊵
where match :[args] {
| ":[_],:[_]" -> false
| ":[_]" -> true
}� �

Rewrite template and rule� ⊵
:[[f]](:[args])� �� ⊵
where rewrite :[f] {
":[_]free:[_]" -> "free"
}� �

Figure 6: The free-model pattern renames custom XXX_free func-
tions to just free. It first matches all function calls, then filters calls
that have only one argument using the where match rule. It then
matches and rewrites satisfying calls that contain the letters free
using the rewrite rule.

Match template� ⊵
:[[sock]] = :[_].createSocket(:[sock], :[_], :[_], true);� �

Rewrite template� ⊵
:[[sock]].close();
:[[sock]] = new Socket ();� �

Figure 7: The create-socket pattern removes an unmodeled
createSocket constructor that wraps a socket, and replaces it with
an explicit, modeled sequence where the socket is closed and cre-
ated again. The last argument in thematch template (which implies
the socket will be closed automatically) must be true in the original
source for this rule to fire.

Pattern: free-model. Infer may timeout when analyzing func-
tions and fail to summarize their effect. Infer reports false positive
memory leaks when it fails to realize that a function frees memory—
this happens particularly when the C library free call is wrapped
inside custom free functions. The OpenSSL project follows the con-
vention of wrapping free calls in functions like OPENSSL_free, which
Infer fails to analyze. As an approximation of these custom free func-
tions, our transformation (Fig. 6) rewrites the wrapping functions
to call the plain C library free version. Due to syntactic ambigu-
ity, the pattern may match and rewrite function declarations as
well. We found that prepending a semicolon can sufficiently dis-
ambiguate candidate free statements from function declarations.
OpenSSL compiles successfully despite transforming more than
three thousand calls, and removes 6 false positives because Infer
can then track the effect of free on memory for rewritten calls.
Pattern: create-socket. The createSocket(socket, ..) call is typ-
ically used in conjunction with the Java SSL library. It returns a
server socket that wraps an existing socket in the first argument.
The last argument, when true, tells the call that the underlying
socket should be closed when the returned socket is closed. Infer
fails to model the createSocket call, and a false positive report states
that the underlying socket is leaked. The boolean toggle in the last
argument makes this function difficult to model generically.

Interestingly, a user reports a false positive for a particular case
where the last argument is always true. Our transformation (Fig. 7)
addresses the issue by simulating the close operation early, and
simply returning a fresh socket for Infer to track. Note that we
would never persist this change in practice as it loses the implemen-
tation details of createSocket; however, it is sufficient for making
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Match template� ⊵
try (:[[o]] :[[v]] = new :[[c1]](new :[[c2]](:[args])))� �

Rewrite template� ⊵
:[c2] wrapped = new :[c2](:[args]);
try {

wrapped.close();
} catch (IOException e) {}
try (:[o] :[v] = new :[c1](wrapped))� �

Figure 8: The wrapped-resources rewrites the Java try-with-
resources patternwhere constructors wrap a file descriptor. The pat-
tern closes the inner resource so that Infer stops tracking it (and
stops it from reporting a leak.

Match template and rule� ⊵
try (:[x] :[[v]] = :[expr]) {

:[body]
}:[rest]� �� ⊵
where match :[rest] with
| " catch" -> false
| " finally" -> false
| ":[_]" -> true� �

Rewrite template� ⊵
:[x] :[v] = :[expr];
try {

:[body]
} finally {

if (:[v] != null) {
:[v].close();

}
}
:[rest]� �

Figure 9: The null-on-resources rewrites a Java try-with-resource
statement to a more traditional try-with statement. This avoids a
redundant null-check injected by the compiler in Java versions 11
and 12, which leads to an analyzer warning. Thematch rule ensures
that matches pass only if there does not already exist a catch or
finally clause after a try-with-resources statement.

the analysis more precise. This pattern removes two false positive
reports in two Java projects; no resolution has yet been proposed
in the Infer issue tracker.
Pattern: wrapped-resources. Java 7 introduced the try-with re-
sources statement which automatically closes a resource after the
block executes, preventing a leak. Infer reports a false positive leak
when a resource constructor is nested inside another resource con-
structor within a try-with-resources statement (this happens, e.g.,
when passing a FileInputStream to an InputStreamReader). The un-
derlying problem is similar to pattern create-socket: Infer fails to
track that the wrapped resource will be closed. We use a concep-
tually similar transformation as in create-socket, but account for
the syntactic variation introduced by try-with blocks (Fig. 8).
Pattern: null-on-resources. SpotBugs reports a redundant null
check on resources inside try-with-resources statements (i.e., a
resource is null checked after being previously dereferenced).15
However, the error is only reported for code compiled with Java 11
and 12, and not Java 10. The reason is pernicious: the Java compiler
in later versions inserts a null check in the bytecode which does ap-
pear to be indeed redundant. From the user’s perspective, however,
the report is a false positive—no null check is visible in the source
code. The issue is cross-referenced by a large number of projects,
and remains unresolved for over a year. Various projects have added
annotations or disabled the check completely. No official solution

15Note this bug is orthogonal to wrapped-resources.

Match template� ⊵
if(strcmp(:[1],":[2]"))� �

Rewrite template� ⊵
const char *const t1 = ":[2]";
if(strcmp(:[1],t1))� �

Figure 10: The cons-strcmp pattern rewrites cases of strcmp so that
constant strings in the second argument do not triggermacro expan-
sion, thereby suppressing the false positive report.

Match template� ⊵
strncpy(:[dst], :[src], :[len]);
if (:[len] :[rest]) { :[dst][:[idx]]] = 0; }� �

Rewrite template� ⊵
strncpy(:[dst], :[src], :[len] - 1);
:[dst][:[len] - 1] = '\0';
if (:[len] :[rest]) { :[dst][:[idx]] = 0; }� �

Figure 11: The pattern strncpy-null pattern. This transformation
fires when the destination buffer dst has the same name as the
buffer dst that is null-terminated subsequently, and the conditional
check using len is dependent on the length len used in the call.

has been proposed. The transformation in Fig. 9 converts a try-
with-resources statement to a traditional try-catch-finally block.
In effect, we normalize the try-with-resources syntax across Java
versions to sidestep the null-check generation that only happens
for Java versions 11 and 12. This suppresses three spurious bug
reports in two of the projects.
Pattern: const-strcmp. The Clang Static Analyzer may report
a potential out-of-bounds access when comparing strings with
strcmp. This only happens when macro-expansion (defined in glibc

headers) is triggered, in this case by the fact that a string literal is
passed in the second argument to strcmp. The transformation in
Fig. 10 extracts the string literal in the comparison to a string const,
causing the analyzer to analyze the strcmp C library function rather
than the macro expansion.
Pattern: strncpy-null The C strncpy function does not necessar-
ily null-terminate its destination buffer, which can lead to memory
corruption. CodeSonar warns about this possibility, but also notes
that if a subsequent statement definitely null-terminates the string,
then the warning can be ignored. We found that the warning was
indeed a false positive in the swoole project: a subsequent check
always null-terminates the buffer safely. However, a possible reason
why CodeSonar conservatively reported an error is that the subse-
quent statement is guarded and was not considered safe (see line 10,
Fig. 12). To avoid the false positive, our pattern checks whether a
condition on the strncpy buffer length terminates that same buffer
with a null character (Fig. 11). If so, the rewrite unconditionally null
terminates the buffer. Although this transformation is not generally
strong enough to match syntax that guarantees a null-terminated
buffer, it does provide flexibility for refining analysis warnings. For
example, we found exactly the same pattern using our template in
the PHP source code, where it appears the php_ssl_cipher... function
was borrowed from.
Pattern: snprintf-null CodeSonar reports an “Unterminated C
String” error when a possibly unterminated string is passed to
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1 static char *php_ssl_cipher_get_version(const

SSL_CIPHER *c, char *buffer , size_t max_len) {
2 const char *version = SSL_CIPHER_get_version(

c);
3 - strncpy(buffer , version , max_len);
4 + strncpy(buffer , version , max_len - 1);
5 + buffer[max_len - 1] = '\0';
6 if (max_len <= strlen(version)) {
7 buffer[max_len - 1] = 0;
8 }� �

Figure 12: A warning is emitted at line 4, where strncpy may not
necessarily null-terminate buffer. It is a false positive: the buffer
is always null-terminated in the case where max_len characters are
copied. Our transformation makes the null-termination explicit to
suppress the warning.

Match template� ⊵
snprintf(:[dst], :[len], :[rest]);� �

Rewrite template� ⊵
snprintf(:[dst], :[len], :[rest]);
if (:[len] > 0) {

:[dst][:[len]] = '\0';
} else {

:[dst] = NULL;
}� �

Figure 13:The snprintf-null patternmodels the possibility that the
snprintf destination buffer may be null if the length is zero.

a function such as strcat. The analysis believes a string may not be
null-terminated when, for example, space is allocated in the heap
but not subsequently null-terminated. We identified two false posi-
tives where heap-allocated memory for a string is null-terminated,
but only because we know that the buffer starts out with positive
length and passes through snprintf which always null-terminates.
The analysis introduces imprecision where it believes the string can
be of zero length, but does not, however, then model the possibility
that the buffer can subsequently be treated as a null pointer when
passed to snprintf. Our transformation (Fig. 13) makes this possi-
bility explicit and adds explicit null-termination, which suppresses
two unterminated string warnings.

4.2.6 Discussion. We further characterize considerations and limi-
tations of our approach.
Pattern development. We found that developing patterns can
take a few iterations to refine until they precisely match syntax
of interest. For example, we iteratively added constraints in the
null-on-resources pattern to filter out try statements that already
contained catch and finally statements (without this constraint
we would generate malformed programs). We expect users of our
approach to similarly develop patterns incrementally. While there
exists a learning curve for developing patterns, the process is anal-
ogous to existing practice at Google where analysis writers tune
checks based on results of running over the codebase [31].
Tailoring applicability andusability.Analyzers onGitHub have
numerous open issues related to “false positive” reports (at the
time of writing, Infer has 36 open issues and PHPStan has 32, and
SpotBugs has 38), and our approach can fall outside the scope of

these. For example, wemay need type information to check whether
a method or object may cause a false positive, while our approach
is purely syntactic. As a practical matter, implementing an effective
tailoring approach requires a robust and maintainable process for
changing programs. We used comby to perform language-specific
parsing and guarantee well-formedness with respect to certain
syntactic properties (e.g., balanced parentheses). However, syntac-
tic ambiguity in the target language can reduce the precision of
purely syntactic transformations. Integrating static properties, like
types, can achieve greater robustness and expressivity in transfor-
mations. We envision that leveraging existing rewrite tooling (e.g.,
Refaster [35] for Java) for program tailoring can further achieve
robust transformations for very language-specific properties.

We note the compelling case for applying our technique in
“black box” analysis settings. Users of commercial analyzers, like
CodeSonar, do not have agency over the closed-source implementa-
tion or configuration options outside those provided by the distrib-
utor. Our approach demonstrates a new way to fine-tune results
that is complementary to a black box analysis.

True positive warnings in the modified program may appear
at different lines compared to the original program. As a usability
concern, affected lines in the modified program should map to
those in the original. This is primarily an engineering concern, as
transformations keep track of precise changes in offsets so that no
information is lost.

5 RELATEDWORK
Program transformation has been used in various contexts to aug-
ment a procedure, technique, or system. Harman et al. introduce
the idea of testability transformation [18, 19] where the goal is
to transform a program to be more amenable to testing (e.g., by
altering control flow) while still satisfying a chosen test adequacy
criterion. Program transformation can improve fuzz testing cov-
erage and reveal more bugs [29] and enable new crash bucketing
strategies to accurately triage bugs [32]. Failure-oblivious comput-
ing [30] adds (for example) bounds checking that allow programs
to execute through memory errors at runtime. We similarly develop
source-to-source transformations; however, we focus on improving
analysis output fidelity. Our technique also aims to improve a static
procedure and thus must be fast enough to integrate into static
workflows. Randomized program transformation is an approach for
testing static analyzers [14] and compiler internals, and excels at
finding bugs in optimization passes [15, 36]. Our approach differs
generally from these in using tailored program transformations to
deterministically rewrite syntax.

Program transformation on intermediate representations can im-
prove analysis precision (e.g., by adding bounds on arrays [12, 23]).
Recent work formalizes the impact of program transformations on
static analysis in the abstract [28]; for example 3-address code
transformation can introduce analyzer imprecision [26]. These
works adopt a predominantly semantic view of program transfor-
mations and their influence on analysis; Cousot and Cousot develop
a language-agnostic framework for reasoning about the correspon-
dence of syntax and semantics under transformation [13]. These
ideas underlie our intuition that semantic changes can improve
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analysis. However, abstract representations are difficult for devel-
opers to manipulate. Our work promotes changing program syntax
directly as a proxy for inducing semantic changes that enhance
analysis reasoning.

Various tools exist for rewriting programs, and could implement
the program tailoring approach in this paper. Notable declarative
tools include Coccinelle for C [24] and Refaster for Java [35]). In
practice, programs are difficult to transform generically [27]. A
key aspect of our work is to make automated program tailoring
language-accessible. We therefore used our own recent work in
efficient and declarative transformation for multiple languages [34].

In practice analyzers compromise on soundness [25] and imple-
mentation tradeoffs manifest as implicit tool assumptions that are
difficult to trace and modify [11]. Existing work shows that analyzer
configuration options and suppression mechanisms fall short of
developer needs in practice [10, 21]. Recent work by Gorogiannis et
al. [17] emphasizes the value of reducing false positives over false
negatives, where the objective is to never report a false positive. In
terms of this work, we introduce a new program transformational
approach toward false positives while sidestepping the difficulties
of modifying analyzer implementations or configurations.

6 CONCLUSION
We introduced a new approach for effecting changes in static analy-
sis behavior via program transformation. Our approach uses human-
written templates that declaratively describe syntax transforma-
tions. Transformations are tailored to suppress spurious errors and
false positives that arise due to problematic patterns and limita-
tions in analyzer reasoning. We made the observation that analysis
users have little agency over the format of analysis configuration
options provided to them, but that program transformation offers
a fresh primitive for leveraging influence over analysis behavior.
To this end we showed that manipulating concrete syntax can re-
solve diverse and long-standing issues in existing analyzers, where
configuration and suppression mechanisms fall short. Our evalua-
tion presents the first study for empirically validating this program
transformational technique, which we evaluated on active analyzers
and large real world programs.
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