Building Reusable Repertoires for
Stochastic Self-* Planners

Cody Kinneer Rijnard van Tonder
School of Computer Science School of Computer Science
Carnegie Mellon University — Carnegie Mellon University
Pittsburgh, USA Pittsburgh, USA
ckinneer @cs.cmu.edu rvantond @alumni.cmu.edu

Abstract—Plan reuse is a promising approach for enabling
self-* systems to effectively adapt to unexpected changes, such
as evolving existing adaptation strategies after an unexpected
change using stochastic search. An ideal self-* planner should
be able to reuse repertoires of adaptation strategies, but this
is challenging due to the evaluation overhead. For effective
reuse, a repertoire should be both (a) likely to generalize to
future situations, and (b) cost effective to evaluate. In this
work, we present an approach inspired by chaos engineering
for generating a diverse set of adaptation strategies to reuse, and
we explore two analysis approaches based on clone detection
and syntactic transformation for constructing repertoires of
adaptation strategies that are likely to be amenable to reuse in
stochastic search self-* planners. An evaluation of the proposed
approaches on a simulated system inspired by Amazon Web
Services shows planning effectiveness improved by up to 20%
and reveals tradeoffs in planning timeliness and optimality.

Index Terms—self-*, planning, search-based, genetic program-
ming, repertoires

I. INTRODUCTION

The increasing size and complexity of software systems
motivates self-adaptation, to allow systems to operate in
environments with uncertainty. Self-* approaches have been
successful in enabling systems to grapple with changing
environments [1]-[3[]. This self-* automation often relies on a
planner, which determines the appropriate adaptation tactics
for the system to use in response to change, arranged in an
adaptation strategy or plan. Whether online [4] or offline [5]],
planners facilitate adaptation by making decisions based on the
capabilities of the system, the environment, and the system’s
quality objectives like cost and latency, including making
tradeoffs between competing objectives.

While self-* techniques can allow systems to adapt to
changes considered at design time, they often struggle to
handle unforeseen changes, those changes not considered at
design time. Such changes can violate assumptions that the
system was designed on, resulting in the system failing to
achieve its objectives. Examples of these changes include

This work is supported in part by award N00014172899 from the Office
of Naval Research. This material is based upon work supported by the
NSA under Award No. H9823018D0008. This research supported in part by
the National Science Foundation (CCF-1750116, CCF-1618220). Any views,
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views
of the sponsoring agencies.

David Garlan Claire Le Goues
School of Computer Science School of Computer Science
Carnegie Mellon University — Carnegie Mellon University
Pittsburgh, USA Pittsburgh, USA
garlan@cs.cmu.edu clegoues@cs.cmu.edu

the addition or removal of adaptation tactics, changes in the
effects of these tactics, or changes to the quality objectives.
When such changes occur, the self-* planner must replan.
This is expensive and resource-intensive, whether the plans are
human-written or automatically produced, especially as self-*
systems grow in size and complexity.

One promising solution to this problem is to leverage ex-
isting planning knowledge instead of replanning from scratch.
That is, plan reuse may allow these systems to incrementally
evolve in response to unexpected changes. We envision an
ideal self-* planner that can effectively reuse a repertoire of
existing adaptation strategies. However, while intuitive, plan
reuse is difficult [6] and must be applied thoughtfully to
result in a positive outcome [7]. Of particular concern is
the large evaluation overhead associated with evaluating the
applicability of the existing plans, which can quickly outweigh
the benefits of reuse. This means that to benefit from the
knowledge encoded in the planner’s repertoire, a repertoire of
prior knowledge must be amenable to reuse in the following
key ways: (a) the plans in the repertoire should be likely
to generalize to future situations, and (b) the plans in the
repertoire should be cost effective to evaluate.

We propose and evaluate a novel, two part approach for
constructing effective reusable repertoires. First, we take inspi-
ration from chaos engineering [8]] to explore the change space
by randomly generating change scenarios and corresponding
adaptation strategies to build a base of planning knowledge. In
the second phase, we use the insight that adaptation strategies
are similar to software programs to apply program analysis
approaches to the base of adaptation strategies, with the aim
of extracting planning components that are likely to generalize
and are cost effective to evaluate.

We evaluate the proposed approach for building reusable
repertoires by presenting a stochastic self-* planner (extended
from our prior work [7]], which could only reuse a single
strategy) that reuses a repertoire of adaptation strategies to
replan after unexpected changes. We show the resulting plan-
ner is more robust and responsive to a a broader range of
unexpected change scenarios than prior work. We evaluate the
proposed approach using an exemplar self-* system, a cloud-
based web server inspired by AWS, and show that replanning
effectiveness improved by up to 20%, as well as reveal trade

offs in planning optimality and timeliness.
The key contributions of this paper are as follows:

1) A two step approach for generating reusable repertoires
for stochastic self-* planners to more effectively replan.

2) A technique, inspired by chaos engineering, for explor-
ing the change space of self-* systems to facilitate the
construction of reusable repertoires.

3) An approach for identifying reusable plan fragments
based on software source code clone detection.

4) A rule-based approach including a collection of syntactic
transformation rules for AST based planning languages
to extract reusable planning components.

5) An empirical investigation of building reusable reper-
toires for a cloud-based web server inspired by Amazon
Web Services, over a wide range of automatically gen-
erated unexpected change scenarios.

Section [lI| provides background, and introduces our exem-
plar system. Section |lII} describes our approach for generating
reusable repertoires for self-* systems. Section describes
the results of our evaluation. Section [V] positions the paper
with respect to related work, and Section Mj concludes.

II. BACKGROUND AND EXEMPLAR

Self-* systems are software-centric systems that automati-
cally take action in response to changes in their environments
in order to continue satisfying their quality attribute require-
ments. Frequently, these systems are arranged according to
the well-known MAPE-K architecture [9]. The architecture
typically consists of two layers, a managed system, and a five-
component managing system. The managing system gathers
information on the state of the managed system and its
environment using sensors, and can take actions that affect the
managed system via actuators. The monitor component gathers
information from the sensors, which the analyze component
examines to determine when adaptation is necessary. The plan
component then decides which adaptation tactics the system
should use to adapt, and the execute component carries out
the plan using the actuators. The last component K provides a
shared store of information for the other components to use.

In this work, we focus on the planning component, and
propose a novel planning approach that effectively generates
and then reuses knowledge to help systems respond to unantic-
ipated changes. The rest of this section provides background
on planning, and the planner we extend from prior work
(Section [[I-A)); and outlines the exemplar self-* system we
use to explain and evaluate our work (Section [[I-B).

A. Planning with reuse and stochastic search

The planner is a key component in a self-* systems since it
is responsible for determining how the system should adapt.
The planner outputs an adaptation strategy or plan, which
consists of an ordered collection of tactics. There are several
approaches for planning, including online planners [4] which
generate plans at runtime, and offline planners [5] that produce
strategies offline which are then chosen at runtime; these two

(plany ::= * (° (operator))’ | * (° (tactic) *)’

(operator) := ‘F’ (int) {(plan) (For loop)
| ‘T’ (plan) (plan) {plan) (Try-catch)
| <;” (plan) (plan) (Sequence)

(tactic) = ‘startServer’ (srv) | ‘ShutdownServer’ (srv)
| ‘IncreaseTraffic’ (srv) | ‘DecreaseTraffic’ (srv)
| ‘IncreaseDimmer’ (srv) | ‘DecreaseDimmer’ (srv)

Fig. 1: Grammar for specifying plans. Servers (srv) can be
any of the 16 availability zones listed in Table [For loops
can iterate up to 10 times.

paradigms tradeoff between plan optimality, and time. Existing
planners generally struggle to handle unanticipated scenarios.

We instantiate our proposed approach for reusable
repertoires by extending a planner we proposed in our
prior work [7], which investigated plan reuse using
genetic programming. Genetic programming [10] (GP)
is a population-based stochastic search approach inspired by
evolutionary processes in biology, and is a type of genetic
algorithm [[11]. In our context, the search traverses a space of
possible plans, written in a simple domain-specific planning
language inspired by Stitch [5], and then represented as
abstract syntax trees (ASTs). The genetic program evaluates
the fitness of the candidate plans by simulation. Figure [I]
shows the grammar. Individual tactics can be composed using
sequencing (the ; operator), loops (the F operator), or a
try-catch operator (the T operator). The tactics expressed
in the language correspond to the atomic adaptation tactics
available to the self-* system, and is therefore specific to the
considered system; we describe our exemplar system next.

Our prior approach was predicated on the idea of reuse:
when an unexpected change occurs, the search-based planner
replans, using a known-good previous plan to seed the search
population. However, effective plan reuse is difficult [6],
and our previous approach required the development of
reuse-enabling techniques to support it. In this work, we
observe that plans can be treated as programs and analyzed
accordingly to help identify semantically useful components
for reuse; we therefore present a self-* planning approach that
develops and then reuses carefully-constructed repertoires of
adaptation strategies.

B. Exemplar system

Our exemplar system is a cloud-based web server running
on an infrastructure inspired by Amazon Web Services (AWS),
which has been built based on the SWIM [12]] examplar to
evaluate other planning approaches [4]], [7]. The goal of the
system is to serve content in response to user requests. The
system should perform this function in a way that maximizes
several different (and competing) quality attribute require-
ments, and the system has access to several adaptation tactics
to accomplish this.

Cost in $ Number of

Location Name per instance Availability
per month Zones

N. Viriginia us-east-1 69.12 6
Ohio us-east-2 69.12 3
Oregon us-west-2 69.12 4
Mumbai ap-south-1 72.72 3
Stockholm eu-north-1 73.44 3
Canada ca-central-1 77.04 2
Ireland eu-west-1 77.04 3
London eu-west-2 79.92 3
Paris eu-west-3 80.64 3
N. California us-west-1 80.64 2
Frankfurt eu-central-1 82.80 3
Seoul ap-northeast-2 84.96 3
Singapore ap-southeast-1 86.40 3
Sydney ap-southeast-2 86.40 3
Tokyo ap-northeast-1 89.28 3
Sao Paulo sa-east-1 110.16 3

TABLE I: Regions in exemplar system with cost and number
of availability zones. Cost data from Concurrency Labs [13]].

Architecture. The architecture of the cloud service provider
allows the system to provision virtual server instances. These
instances may be requested based on availability zones, which
provide a way to provision instances on architecturally sepa-
rate pieces of infrastructure (i.e., a failure in one availability
zone should be contained to that zone, and instances running
in other zones are expected to remain available). These avail-
ability zones are grouped based on a higher-level architectural
entity called regions, which provide additional isolation for
reliability purposes. Table [I| shows the regions available in the
exemplar system, along with the number of availability zones
in each region, and the cost of starting up a server instance
in that region. In total, there are 50 availability zones spread
across 16 regions. The considered regions and number of
availability zones per region are both based on AWS. The cost
per month information was obtained from Concurrency Labs
based on AWS’s Price List API [13]] for a c5.large instance.
For the purposes of the exemplar, we assume that the system
can only utilize this instance type.

Quality attributes. The system’s quality attributes are profit
and user-experienced latency. To generate profit, the system
can serve advertisements along with the users’ requests, but
profit is reduced by the costs of running server instances. The
system has the ability to not serve high definition images and
media content (including ads) to speed up handling of requests,
at the cost of reduced quality and ad revenue. The latency
quality attribute is the amount of time users spend waiting for
their request to be served, and can be measured as the number
of users that need to wait longer than an acceptable threshold.
Since these quality attributes are conflicting, the system must
take care to balance them appropriately.

Uncertainty. Complicating balancing these quality attribute
requirements are several sources of uncertainty that the system
must manage. One source of uncertainty is the number of users
sending requests to the system, which can change. Addition-
ally, the reliability of the underlying cloud infrastructure is

questionable, e.g., server instances can fail, or the available
server instance characteristics can change.

Adaptation tactics. To manage the uncertainty in the envi-
ronment, the system has several adaptation tactics that can
be used to respond to changes in the environment. These
tactics are to start or shutdown instances, raise or lower a
dimmer, and to adjust the proportion of requests directed to
each availability zone. The system can start or stop server
instances on a per availability zone basis. For the purposes of
the exemplar system, we will assume that a maximum of 5
instances can be running at a time at each availability zone.
The dimmer controls the proportion of requests that are served
with low-fidelity content (and without ads). A higher dimmer
value allows the system to respond to more requests in the
same amount of time, but reduces content quality and system
revenue. The dimmer can be changed in 25% intervals and
can be set on a per availability zone basis. The system can
adjust traffic allocation by changing a traffic level parameter
at each zone. This parameter can be a value between 0 — 4,
and traffic is allocated to each zone proportionally. Since there
are 50 availability zones, each with 5 settings for the dimmer
value, traffic value, and 6 settings for the number of instances,
there are 6 x 10'°® configurations.

The behavior of server instances depends on three attributes,
cost, power, and brownout ratio. The cost is the amount of
money charged by the service provider to run an instance per
unit time. The power represents how many dimmed requests
(low-fidelity content and without ads) can be served per unit
time. The brownout ratio is the ratio of dimmed requests to full
requests that can be served (e.g., an instance with a brownout
ratio of 2 could serve twice as many dimmed requests as full
requests for the same unit of time). These attributes are set
on a per availability zone basis, and by default, the costs are
set according to regions as shown in Table [} While the power
and brownout ratio are set to 1000 dimmed requests per second
and two respectively, for all availability zones.

Change scenarios. To study how self-* systems respond to
various types of unexpected changes, the exemplar system
supports the easy generation of change scenarios. A change
scenario is defined as a vector of attributes that influence
the system’s behavior and utility. There are a total of 159
attributes that can be changed. These consist of three attributes
that apply to the system as a whole, including the number
of incoming requests, and coefficients on the profit and la-
tency values (these coefficients control the weighting of these
conflicting quality attributes in the system’s utility function).
Six values determine the tactic failure rates of each of the
six tactics available to the system. The remaining attributes
are the instance cost, power, and brownout ratio, which can
be manipulated (to obtain new change scenarios, not by the
system) for each of the 50 availability zones, resulting in 159
attributes total.

Offline Initialization Runtime
Scenario i
Ger?_eﬁator Analysis
Planner Reusable N CGP
Repertoire /| Planner

Fig. 2: A high level view of the approach.

III. APPROACH

We introduce a planner that aims to effectively reuse prior
knowledge. However, as we learned in our previous work [7]],
using individual prior plans to seed a replanning effort is not
always satisfactory, almost by definition: individual plans do
not account for unanticipated changes. We therefore propose to
build repertoires of useful prior knowledge to seed replanning.

Figure[2]overviews the approach, which divides the planning
process into an offline and runtime step. During the offline
initialization phase, we construct a reusable repertoire of
adaptation strategies for the planner to incrementally evolve at
runtime. This phase is further subdivided into a two step pro-
cess: firstly exploring the space of randomly generated change
scenarios and producing adaptation strategies to address them,
and then analysing the generated adaptation strategies to
extract generalizable and cost effective components for the
repertoire. In the online phase, we extend our prior genetic
programming planner [7] by seeding it with the adaptation
strategies in the repertoire.

A key idea behind repertoire construction is that certain
“pieces” of plans are particularly informative for reuse. For
example, repeated planning components, such as starting more
instances of the most cost effective server type, are likely to
generalize. Thus, effective repertoire construction requires:

1) a diverse set of previously-produced plans, constructed
in response to a wide variety of potential system
changes, and

2) a way to consolidate and identify the most plan compo-
nents that hold the most promise for future reusability

For (1), we build on the idea of chaos engineering to explore
the space of possible changes by randomly generating change
scenarios to generate a diverse base of planning knowledge; we
explain in more detail in Section [[lI-A] For (2), we make the
observation that plans are, effectively, small programs, and our
goal in analyzing them is to identify semantically-meaningful
programs or program pieces that may be informative for future
use. We thus propose two techniques for this analysis phase,
one that adapts clone detection to this domain (Section [[TI-B)),
and another that proposes a set of rule-based plan transforms
to identify cost-effective plan pieces (Section [l1I-C).

Attribute Type Selection Rate

Utility Coefficients 13.33%
Tactic Failure Rates 23.33%
Number of Users 15.75%
Instance Cost 15.75%
Instance Power 15.75%
Instance Brownout 15.75%

TABLE II: Scenario attribute type and selection probability
during mutation.

Fig. 3: An example of a clone within a plan.

A. Generating Unexpected Changes

Our technique requires a diverse set of starting strategies
that may generalize to future situations. To obtain these strate-
gies, we explore the space of unexpected changes by generat-
ing change scenarios using a mutation-based approach inspired
by chaos engineering. Chaos engineering is an approach to
promote software quality attributes such as availability and
robustness in large complex systems [8]. It involves subjecting
the target system to chaos experiments, which should be
conditions that may result in system entering an undesirable
state, with the goal of verifying that the system appropriately
responds to the experiment. If the system does not respond
in an acceptable way, then it can be improved to be more
robust to similar situations that might be encountered in
production. An example of chaos engineering is Netflix’s
Simian Army [14].

We therefore propose an approach for building a reusable
repertoire by performing chaos experiments offline to obtain
a diverse set of adaptation strategies for later reuse. At a
high level, this approach randomly selects a scenario attribute,
and then randomly mutates it. Because the vast majority of
attributes (150 out of 159) are the availability zone specific
parameters, random attribute selection is biased to favor the
other attributes, to promote scenario diversity. Table [shows
this distribution. Attributes within the same type are chosen
uniformly at random. Since different attributes have different
sensitivity to change, the particular mutation applied depends
on the attribute selected. This mutation procedure is repeated
m times, where m is the number of desired mutations.

B. Clone detection

Our first intuition for how to improve a repertoire con-
structed from a diverse set of plans is that some planning
motifs are more likely to generalize to unexpected situations.

For example, more servers of the most efficient type (the best
performance per cost) is useful in a variety of situations, e.g.,
if the number of users increases or if the processing resources
per request increases. Of course, there are other changes where
this tactic is not helpful (such as when the quality requirements
change dramatically), but overall this applies to many change
scenarios. This motif may therefore appear in many of the
diverse plans generated in the first phase.

Thus, our first approach leverages clone detection to identify
reusable plan components that appear in many plans in the
scenario set. Clone detection analyzes software for duplicate
source code (see refs. [15], [L6] for surveys), which aids
developers in refactoring code to promote maintainability or
eliminate technical debt. Although this technique is more
commonly applied with the aim of reducing redundancy, we
observe that the idea can identify planning components that
are more likely to be generalizable. Figure [3]shows an example
of a clone within an adaptation plan. In this plan, a subplan is
repeated. Because this clone is duplicated, it possibly contains
important planning knowledge; this key knowledge may be
more likely to generalize. By extracting just the clone rather
than repeating the full plan(s) in the repertoire, the planner can
reuse this prior knowledge more cost-effectively. We therefore
apply clone detection to the generated adaptation strategies
to find those adaptation strategy components that occurred
multiple times throughout the considered change scenarios.

Implementation. Our implementation builds on the
Deckard [17] clone detection tool. Deckard performs
clone detection by encoding abstract syntax tree (AST)
subtrees as vectors, and computing the distance between these
vectors to identify similar code regions using clustering.
Note that our approach can generalize to any clone detection
mechanism. We use Deckard because it operates on generic
tree structures (and can thus be straightforwardly adapted to
our plan representation), it considers semantics, is scalable to
large AST sizes, and has a publicly-available implementation.
We must make changes to the vector generation step to
effectively adapt Deckard’s approach to our planning con-
text. Converting an AST into numerical vectors produces
a representation amenable to clustering; Deckard generates
vectors for AST subtrees based on the number and type of
child nodes. By default, Deckard does not consider variable
identifier names during vector generation. This is sensible
for analyzing large programs written in a general purpose
language like Java, where identifiers often vary between clones
and where the large number of identifiers quickly explodes
vector size. However, our planning language is simple by com-
parison. More importantly, tactic names (like StartServer
encode considerable semantically meaningful information. We
therefore developed our own vector generator step for the
planning language that tracks the occurrence of tactic names.

C. Rule-based Plan Transformation

The clone detection approach can automatically identify
reusable repeated planning components. However, human do-
main expertise, particularly in the peculiarities of the planning

language and domain, provides an important avenue for further
improvement to repertoire construction. Naive human replan-
ning is time-intensive and expensive, and so any mechanism
for incorporating expert knowledge into planning must be
sensitive to this cost.

We therefore propose a second approach to repertoire
improvement based on human-provided, rule-based source-
level transformation templates. Such templates are useful for
improving general software quality [18]], suggesting that trans-
formation templates for our program-like adaptation strategies
could usefully improve their quality, in terms of their general-
izability and reusability. For example, we can exploit a priori
knowledge of our plan grammar and operator semantics to
apply plan transformations that avoid generation of redundant
or known-expensive subplans.

We use Comby for declaratively specifying templates [[19].
Comby performs transformations on trees using declarative
templates that are syntactically close to the underlying pro-
gramming language; this is our planning language, in this
context. Such templates are therefore lightweight and relatively
easy-to-write, easing the burden of manually specifying trans-
formation templates. Comby generically supports language
syntax with little or no configuration, and is thus a suitable
tool for generalizing our template-driven approach to other
planning languages like Stitch [5] or PRISM [20].

Transformation rules for plan reuse. Table summa-
rizes the eight transformation rules we produced for plans
in our exemplar system. Each rule reduces the size of the
plan by removing subexpressions, corresponding to subplans.
To illustrate, consider the first rule provided in Table
The seg-take-first rule matches a sequence expression
(denoted by ;) and binds named identifiers 1 and 2 to its
two respective subexpressions. The :[] syntax denotes a
structural hole that binds to expressions. The transformation,
denoted by = reduces the sequence expression to only the
first subexpression, corresponding to identifier 1.

All syntax besides hole syntax refers to concrete syn-
tax in the underlying language, including operator keywords
like T or F and parentheses. Comby rules always match
balanced parentheses, which ensures that both matched and
transformed subexpressions and plans are syntactically well-
formed. Comby is thus well-suited to transforming expressions
corresponding to subtrees (like balanced parentheses), corre-
sponding to subplans. These transformations are generally not
expressible using regular expressions and would be otherwise
difficult to implement programmaticallym

Our rules are informed by the grammar in
for each nonterminal operator (i.e., Sequence,
and For loop) we wrote a rule that extracts a respec-
tive subexpression (seg-take-=*, try-take—x rules), or
reduces the number of iterations that subexpressions are
evaluated (try-unnest, for—x rules). In particular, the
seg-take—-first and seg-take-second rules pick the first

Figure [T}
Try-catch,

' Applying a rule to expressions in a plan requires a simple command-line

invocation: comby ' (T (:[1]) (:[2]1) (:[31))"' '"(:[1])"' plan.ast

seq-take-first
seg-take—-second
try-take-first
try-take-second (
try-take-third (
try—-unnest :

for-prune (
for-decrt (

— e —

]
]
]
]
]

(1
(:[2
(:[1
(:[2
(:[3
(T (:[11) (:
(

(

:02])
i:[1]

(21) (:031))

v W ——
e NN e

2 e — e e e

2
2
3
:[3
3
3
2
2

S A

e e oo oe o0 s e

F (:021))

TABLE III: Syntax transformation rules for pruning plans. Hole syntax, like : [1], binds an identifier 1 to an expression.
Each rule either replaces a nonterminal expression with a subexpression, or reduces the number of times a subexpression is
evaluated. tThe for-decr rule decrements the loop iterator matched by : [1] within the fixed integer range 3—10. For brevity,

we elide the rewrite rule that decrements these values.

(resp., second) expression from a sequence expression. The
try-take—-x rules pick one of three Try subexpressions. The
try-unnest rule prunes Try expressions that share identical
child nodes in the first and third argumentsE] The intuition
is that structurally similar subtrees can yield similar benefits,
and nested repetitions imply duplicative evaluation unlikely to
improve performance. Similarly, for-prune and for-decr
reduce the number of times a For loop executes.

Our experience is that writing programs (e.g., in Java) for
transformation rules inside the genetic planner is possible but
disadvantageous. Transformations expressed in code are less
readable, and can contribute to a planner becoming a black-
box. Declarative rules easily express lightweight transforma-
tions, and decouples the rule-based system from probabilistic
plan discovery, offering greater flexibility.

Rule application. We apply the eight rules to the initial
repertoire, selectively removing expressions, which results in
smaller plans overall. The general intuition is that smaller
plans lead to quicker evaluation times, while retaining particu-
larly valuable subplans for reuse, and thus contribute to greater
overall utility. The genetic programming planner explores
coarse-grained changes (both adding or deleting subplans),
with the overall effect of performing additive changes that
create ever-larger plans. Thus, it may miss the opportunity to
prune less useful subplans (especially those containing large
subexpressions), akin to getting stuck in local optima.

IV. RESULTS

In this section we evaluate the approach for generating and
reusing repertoires of adaptation tactics for more effective
planning in response to unexpected changes described in
Section The evaluation is based on a simulated self-*
system described in Section We evaluate the following
three research questions:

1) Does reusing a repertoire of adaptation strategies in a GP
planner result in more effective plan reuse compared to
reusing a single adaptation tactic?

2) Can clone detection identify more reusable adaptation
strategy components?

3) Can syntactic transforms improve the reuseability of
adaptation repertoires?

2When the same hole identifiers are used in a rule, the expressions must
be syntactically equal for the rule to match.

We ran experiments on an Ubuntu 16.04.6 LTS server with
OpenJDK version 1.8.0_242, an Intel Xeon CPU E5-2699 v3
with 72 cores running at 2.30GHz, and 126 GB of RAM. We
restricted experiments to 30 cores and 5 GB of memory.

A. The Repertoire

First, we ask whether a basic repertoire of adaptation
strategies generated using a chaos engineering approach results
in improved planning in response to an unexpected change.

a) Experimental Setup: We performed replanning on
the simulated system for 30 randomly generated unexpected
change scenarios. We report the utility obtained for replanning
based on using (1) the generated repertoire of adaptation
tactics, (2) a single plan (as in prior work [7]), and (3)
from scratch (no reuse). We generated the unexpected change
scenarios by creating 10 scenarios for each of 3 different
different settings for the m number of mutations parameter, 1,
5, and 10. This permits exploring how the size of the change
influences replanning effectiveness for the approaches.

The repertoire comprises 200 adaptation strategies that we
generated for 200 change scenarios. We generated the change
scenarios by applying 1-5 random mutations to the baseline
scenario (with the number of mutations selected uniformly at
random). When replanning using a single adaptation strategy
only, we selected the starting adaptation strategy for reuse
randomly from the set of 200 adaptation strategies. When
replanning from scratch, the population is initialized com-
pletely randomly. To generate the starting population from
the repertoire, 10% of the population is selected randomly
from the repertoire, and the remaining 90% is generated from
scratch; these values were taken from the prior work [7].

For all approaches, the genetic program was configured
to plan for 30 generations using a population size of 1000.
Planning was automatically terminated at 2000 seconds.

b) Results: Figure [shows the results for the first 60
seconds of planning. For space constraints, only trials with
10 mutations (the highest and most challenging setting) are
shown; the results for 1 and 5 were similar. The vertical axis
is the utility obtained by the planner, and the horizontal axis
is the planning time in seconds. The graph therefore shows
the utility that the system would obtain by executing the best
available plan produced by that planning approach at that time.
Results from replanning using a single plan are labeled single.

0 1 2 3 4) 6 7 8 9
——
4e+07-
Initial Population
3e+07+ scratch
> — == repertoire
:T; 2e+07+ deckard =
o e — ‘ == single
1e+07- r——‘ — ‘
__—l L
——
0e+00- l

0 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 60
Cumulative Evaluation Time (seconds)

Fig. 4: Results comparing planning from scratch, the repertoire, replanning from a single plan only, and replanning using
Deckard. Deckard resulted in better utility for the first 13 seconds of planning, and is then overtaken by the repertoire.

For almost all randomly generated scenarios, the repertoire
approach results in the highest planning utility. Sometimes the
improvement compared to the next best planner was small,
especially for single-mutation cases. For other scenarios the
improvement was quite large (such as trial 9 in Figure @ On
aggregate, using the repertoire resulted in an average improve-
ment of 11% to utility compared to reusing a single plan only.
Planning using a single plan tends to only outperform planning
from scratch, often slightly, reinforcing previous results [[7].
One drawback to the repertoire approach is that it takes more
time to produce the first plan (often taking around 15 seconds),
although the plan that is obtained is often high quality. This
is intuitive since effective plans are often large and expensive
to evaluate, and the repertoire approach must evaluate many
of these large and expensive plans. If planning in a domain
where waiting 15 seconds is unacceptable, then reusing a
single plan is better. Otherwise, the repertoire results in the
highest expected utility.

B. Clone Detection

Next, we ask whether initializing the population from
clones is an effective strategy for identifying reusable
planning components. To answer this question, we performed
replanning on the same randomly generated unexpected
change scenarios as in Section [[V-A] using a clone detection
approach to initialize the population. To do this, we ran
Deckard on the repertoire of 200 adaptation strategies
generated in the previous subsection to obtain a list of
clones. Clones were selected from this list using tournament
selection, selecting seven clusters randomly from the list and
returning a random clone from the largest cluster. The initial
population was initialized with these clones. The result of
this strategy is shown in Figure] labeled as deckard.

Overall, the clone detection approach results in an improve-
ment compared to planning from scratch and replanning with
a single plan only, but the maximum utility was obtained
by reusing the repertoire rather than the extracted clones.
Nevertheless, the clone detection approach yields plans more
quickly. Given enough planning time, the repertoire approach

eventually finds a