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Abstract—Fall is one of the main reasons for body injuries
among seniors. Traditional fall detection methods are mainly
achieved by wearable and non-wearable techniques, which may
cause skin discomfort or invasion of privacy to users. In this
paper, we propose an automatic fall detection method with the
assist of the mmWave radar signal to solve the aforementioned
issues. The radar devices are capable to record the reflection
from objects in both the spatial and temporal domain, which
can be used to depict the activities of users with the support
of a recurrent neural network (RNN) with long-short-term
memory (LSTM) units. First, we employ the radar low-dimension
embedding (RLDE) algorithm to preprocess the Range-angle
reflection heatmap sequence converted from the raw radar signal
for reducing the redundancy in the spatial domain. Then, the
processed sequence is split into frames for inputting LSTM units
one by one. Eventually, the output from the last LSTM unit
is fed in a Softmax layer for classifying different activities. To
validate the effectiveness of our proposed method, we construct
a radar dataset with the assist of market radar module devices,
to implement several experiments. The experimental results
demonstrate that, compared to LSTM only and the widely
used 3-D convolutional neural network (3-D CNN), combining
RLDE and LSTM can achieve the best detection results with
much less computational time consumption. In addition, we
extend the proposed method to classify multiple human activities
simultaneously and the satisfied performances are observed.

Index Terms—Fall detection, mmWave radar signal, radar
low-dimension embedding (RFLE) algorithm, long-short-term
memory (LSTM), human activities detection

I. INTRODUCTION

Fall activity is one of the leading causes of accidental

death and injury for seniors and nearly $34 billion direct

medical costs annually are caused by this [1]. Researchers

pay more attention to this issue recently while the aging of

population becomes a serious social problem. Traditional fall

detection methods can be categorized into wearable and non-

wearable techniques. For wearable methods, they are only

functional while carrying portable devices, which are easy

to cause skin discomfort or inconvenience [2]. Non-wearable

methods are mainly motivated by modern computer version

technologies, which can automatically alarm falls through

surveillance equipments [3]. Even though they can detect

fall activities accurately, high power consumption cannot be
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Fig. 1. The camera-based RGB images and corresponding range-angle
reflection heatmaps.

ignored. More importantly, the invasion of privacy [4] and the

limited Field of View (FoV) are insufferable.

In order to overcome aforementioned disadvantages, the

radar-based fall detection methods have been proposed [5] [6].

The general idea of these methods is to depict human activities

by recording the changes in the received specular signal

reflected from the human body [7]. Less visual information

compared to traditional non-wearable methods is generated

by radar devices while implementing these methods, leading

a result of reducing computational complexity and memories

consumption of chips. In addition, users’ privacy is perfectly

preserved due to the impossibility on face identification, shown

in Fig. 1. Earlier researches category radar-based fall detection

methods into two classes: Doppler signal based methods and

WiFi channel based methods. The former methods execute

through the association between Doppler frequency and mo-

tion velocity [8], while the latter methods compute the changes

of different signal in the WiFi channel [9]. Neither of them

takes the locality component into account but solely the

variations in the speed of motions.

Motivated by the method proposed in [10], we propose a fall

detection method based on the mmWave radar signal, which

considers locality and velocity components simultaneously.

Different from the existing tasks, our method is to characterize

mmWave radar reflections based on distance from the human

body along with the elevation and azimuthal angles of arrays,

which can be aggregated as spatiotemporal patterns, denoted

as the range-angle reflection heatmaps. Fig. 1 shows the

associations between reflection heatmaps and their correspond-
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Fig. 2. The framework of proposed radar-based fall detection method

ing human activities, which can be observed through related

camera-based images. Therefore, reflection heatmaps can be

utilized to estimate fall activities in the presence of other

sources of activities by neural network algorithms. Unlike

[10], we jointly apply the radar low-dimension embedding

(RLDE) algorithm and recurrent neural network (RNN) with

long-short-term memory (LSTM) units as the substitution of

3-D convolutional neural network (3-D CNN) for reduction at

the computational complexity and memory consumption.

II. PROPOSED METHOD

Essentially, human activities, e.g., fall or non-fall, can be

regarded as the changes of motion in term of range, angle

and speed. These fundamental motion attributes can be derived

through recording the variations in the signal of Receiver (RX)

and Transmitter (TX) Antennas equipped at the IWR1642

device [11], which include time interval and intensity of signal

between RX and TX. With the support of neural network

algorithms, we can easily establish the correlation between

human activities and corresponding attributes, further to design

a radar-based human activity detection method, in this case, a

fall detection method. Fig. 2 illustrates the framework of the

proposed fall detection method, which consists of two parts:

radar signal processing and neural network signal processing.

A. Radar Signal Process

In this subsection, we aim to implement the radar signal

conversion for the next processing, which consists of two

following procedures:

• Analog-Digital Convert (ADC): Modulate radar signal

from continuous format to discrete format.

• Fast Fourier Transform (FFT): Convert the discrete radar

signal from the representation from the frequency to

spatial domain.

In general, the transmitted and received mmWave radar

signal is the analog frequency format signal. For our purpose,

radar signal processing need be utilized to transform the raw

signal into the discrete spatiotemporal signal, shown in Fig. 2.

In this process, we implement FFT twice in order to achieve

the expansions in both spatial domains (range and angle

domain). Eventually, the processed data can be visualized as

a set of reflection heatmaps, which is extracted from two

separate perpendicular planes (vertical and horizontal plane)

simultaneously.

B. Neural Network Signal Processing

It is noted that human activities (fall or non-fall) are con-

sidered as continuous dynamic patterns, which are provided

by spatiotemporal dependency. The concatenation of multiple

successive reflection heatmaps can recognize both spatial

and temporal dependency, while individual reflection heatmap

merely is a representation of spatial expansion. Therefore,

with the attention to the continuity of activities, we merge

n frames of reflection heatmaps to match the average duration

of activities.
Fig. 1 visualizes several successive reflection heatmaps at a

certain time interval and their corresponding camera-based im-

ages and labeled activities. We can observe that the changes in

motion mainly concentrate on several specific regions, which

indicates the existence of spatial redundancy. It is necessary

to apply the RLDE algorithm to eliminate the redundancy.

Assume the t-th frame of reflection heatmaps at horizontal and

vertical planes as Ht ∈ R
N×M and Vt ∈ R

N×M , respectively,

where N and M are denoted as the maximal range and angle

recorded. The RLDE Algorithm can be utilized to project

reflection heatmaps to a low-dimension subspace P ∈ R
Ñ×N

as Equation (1),

H̃t = P ∗Ht, Ṽt = P ∗ Vt (1)

where Ñ represents the dimension of projected mapping. H̃t

and Ṽt are denoted as the t-th frame of projected reflection

heatmaps in R
Ñ×M . We select the principal components anal-

ysis (PCA) algorithm to derive the low-dimension subspace P

linearly from our training set due to its low computational

complexity.
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Fig. 3. The Proposed Network Architecture for Fall Detection Method

After data preprocessing, the neural network signal pro-

cessing is elaborated. The sequential structure of RNN with

LSTM units determines the advantages on applications of time

dependency [12]. So, we input preprocessed heatmaps H̃t and

Ṽt into the a LSTM network, illustrated in Fig. 3. To make

the network easier to train, we normalize the pixel values to

the range of [0, 1] and concatenate preprocessed heatmaps of

two planes as St ∈ R
Ñ×2M . Each concatenated heatmap St is

fed in each LSTM cell in sequence, undergoing three build-in

operative gates (input, forget and output). First, the input gates

are used to input St in current LSTM cell,

it = σ(Wi · [ht−1, St] + bi) (2)

where Wi and bi are weights and biases of input gates,

respectively. σ(.) is a sigmoid activation function. ht−1 is

the output of last LSTM cell. The boundary condition is

1 < t ≤ n. Second, the forget gates are to determine whether

St is discarded for the current cell,

ft = σ(Wf · [ht−1, St] + bf ) (3)

where Wf and bf are weights and biases of forget gates,

respectively. Third, the output gates are to send chosen pieces

of the message from St to the next cell,

ot = σ(Wo · [ht−1, St] + bo) (4)

where Wo and bo are weighs and biases of output gates,

respectively. These gates jointly influence the output of each

cell through t-th cell state vector Ct,

Ct = ft ∗ Ct−1 + it ∗ tanh(Wc · [ht−1, St] + bc) (5)

where Wc, bc are the weights and biases of cell state vector.

ht = ot ∗ tanh(Ct) (6)

tanh(.) is the Tanh activation function. While t = n, we

output ht as the result of LSTM layer for classifying through

a Softmax function.

The proposed network aims at learning a label Y0 from

the preprocessed heatmaps H and H through the estimated

network parameter Θ = {Wi, bi,Wf , bf ,Wo, bo,Wc, bc} with

predefined loss function,

Y = f([H,V ],Θ) (7)

which is achieved by minimizing the loss between the pre-

dicted labels Y and their corresponding ground truth Y0. The

cross-entropy function is adopt as the objective function,

L(Θ) =

m∑

i=1

[Y0i · log(Yi) + (1− Y0i) · log(1− Yi)] (8)

where, m is denoted as the number of labeled category.

Adam optimizer is utilized to minimize the loss during the

training process by updating the set of network parameter set

Θ through the initialization of random Gaussian distribution

with zero mean and standard deviation of 0.1.

III. DATASET

We utilize a pair of TI’s IWR1642 evaluation module

devices [11] to produce FMCW mmWave radar signal. The

values of related parameters are listed in Table I. Nearly 30%

TABLE I
FOUNDATIONAL PARAMETERS OF RADAR SIGNAL DEVICE

Parameters Values Parameters Values

Maximum Detectable Range 10 m Wave Technology FMCW
Range Resolution 4 cm Frequency Range 77-81 GHz

Number of RX Antennas 8 Number of TX Antennas 4
Field of View 120

◦ Angular Resolution 15
◦

Maximum Velocity 6.5 m/s Maximum Bandwidth 3750 MHz
Velocity Resolution 0.2 m/s ADC samples 256

Wavelength 3.9 mm Frame Rate 25 f/s

reductions on Rx and Tx antennas, compared to previous task

[10], provide a wider-range of practical applications. 4,126

samples (2.56 seconds for each sample) consist of 128 frames

of reflection heatmaps before concatenation for each. Except

for 711 fall activities, we also collect various non-fall activities

as the purpose of increasing the sample diversity, e.g., walking,

pickup, standup, boxing, sitting and jogging.

IV. EXPERIMENT

In this section, we design a series of experiments to evaluate

the performance of our proposed fall detection method com-

pared to the state-of-the-art. Two labeled categories (falls and

non-falls) dataset is established and split into 80%, 10% and

10% as the training, validation and testing set. The proposed

method executes with 1e−4 of the learning rate, 100 epochs

and 12 for each batch on Tensorflow.

TABLE II
THE COMPARISON BETWEEN BASELINE AND PROPOSED METHOD WITH

AND WITHOUT RLDE IMPLEMENTATION

Methods Precision Recall F1score Training Time(s)

3-D CNN 95.3% 96.6% 96.0% 181.21
LSTM 100.0% 93.6% 96.7% 94.29

LSTM64 100.0% 97.9% 98.9% 56.83
LSTM32 100.0% 95.8% 97.8% 37.22
LSTM16 100.0% 97.7% 98.9% 22.21
LSTM8 97.9% 100.0% 98.9% 20.33
LSTM4 100.0% 97.7% 98.9% 17.08
LSTM2 97.5% 88.6% 92.9% 15.12
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To validate the performance in the case of the unbalanced

dataset, we introduce the evaluated metrics of Precision,

Recall and F1score as the accurate measurement. In addition,

the average training times on each epoch are recorded to show

the benefits of computational simplification in Table II.
First, the performance of LSTM4 and 3-D CNN can be

observed. LSTM4 represents a method of combining RLDE

and LSTM, preserving four dimensions projected mapping in

spatial domain. Nearly 3% increasing on F1score demonstrates

the effectiveness of LSTM4 compared to 3-D CNN. Mean-

while, 4.7% and 1.1% improve on Precision and Recall,

respectively. More important, LSTM4 only need less than

10% training time compared to the 3-D CNN that proves the

low consumption on LSTM4, which is critical for real-time

applications.
Second, we evaluate the benefits of LSTM network in-

dividually. The comparison of the LSTM without RLDE

implementation and the 3-D CNN shows an increase of less

than 1% on F1score. Still, the efficiency of training processing

develops approximate 50% that the same performance can be

achieved with merely half time consumption.
Third, the performance also demonstrates the effectiveness

of RLDE in Table II. The peak performance is occurred at

LSTM4 with 2.2% increases on F1score and 20% training time

demand compared to the LSTM only. It is noticeable that an

obvious drop on evaluated results and approaching saturation

on the reduction of training time at LSTM2, which explains

the threshold of preserved dimensions.
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Fig. 4. Confusion Matrix of Multiple Activities Detection

Besides, we achieve an application of multiple activity de-

tection with the proposed method. The samples are re-labeled

into seven categories of activities, shown in Fig. 4. The result

shows overall 80% accuracy on activities detection through the

confusion matrix. Understandably, a degraded precision occurs

at this detailed classification compared to the two categories

classification. We can investigate that the proposed method

has shortcomings in identifying human activities with similar

motion attributes. Therefore, a more effective method will

be considered in future work for more efficiently preserving

temporal information from the mmWave radar signal.

V. CONCLUSION

This paper proposes a privacy-preserving radar-based fall

detection method, which utilizes an RNN with LSTM units

architecture to learn human activities through spatiotemporal

patterns extracted from the reflection heatmaps caught by

radar devices. The experimental results show that our proposed

RLDE+LSTM method outperforms the state-of-the-art in 3%

increases on F1score with barely 10% training time needed.

Our method highly reduces the number of network neurons

and memory consumption, which makes real-time detection

achievable. Besides, we extend the application of the proposed

method on multiple activities detection that proves the latent

capacity of more complexity detection.
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