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Abstract—Fall is one of the main reasons for body injuries
among seniors. Traditional fall detection methods are mainly
achieved by wearable and non-wearable techniques, which may
cause skin discomfort or invasion of privacy to users. In this
paper, we propose an automatic fall detection method with the
assist of the mmWave radar signal to solve the aforementioned
issues. The radar devices are capable to record the reflection
from objects in both the spatial and temporal domain, which
can be used to depict the activities of users with the support
of a recurrent neural network (RNN) with long-short-term
memory (LSTM) units. First, we employ the radar low-dimension
embedding (RLDE) algorithm to preprocess the Range-angle
reflection heatmap sequence converted from the raw radar signal
for reducing the redundancy in the spatial domain. Then, the
processed sequence is split into frames for inputting LSTM units
one by one. Eventually, the output from the last LSTM unit
is fed in a Softmax layer for classifying different activities. To
validate the effectiveness of our proposed method, we construct
a radar dataset with the assist of market radar module devices,
to implement several experiments. The experimental results
demonstrate that, compared to LSTM only and the widely
used 3-D convolutional neural network (3-D CNN), combining
RLDE and LSTM can achieve the best detection results with
much less computational time consumption. In addition, we
extend the proposed method to classify multiple human activities
simultaneously and the satisfied performances are observed.

Index Terms—TFall detection, mmWave radar signal, radar
low-dimension embedding (RFLE) algorithm, long-short-term
memory (LSTM), human activities detection

I. INTRODUCTION

Fall activity is one of the leading causes of accidental
death and injury for seniors and nearly $34 billion direct
medical costs annually are caused by this [1]. Researchers
pay more attention to this issue recently while the aging of
population becomes a serious social problem. Traditional fall
detection methods can be categorized into wearable and non-
wearable techniques. For wearable methods, they are only
functional while carrying portable devices, which are easy
to cause skin discomfort or inconvenience [2]. Non-wearable
methods are mainly motivated by modern computer version
technologies, which can automatically alarm falls through
surveillance equipments [3]. Even though they can detect
fall activities accurately, high power consumption cannot be
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Fig. 1.  The camera-based RGB images and corresponding range-angle

reflection heatmaps.

ignored. More importantly, the invasion of privacy [4] and the
limited Field of View (FoV) are insufferable.

In order to overcome aforementioned disadvantages, the
radar-based fall detection methods have been proposed [5] [6].
The general idea of these methods is to depict human activities
by recording the changes in the received specular signal
reflected from the human body [7]. Less visual information
compared to traditional non-wearable methods is generated
by radar devices while implementing these methods, leading
a result of reducing computational complexity and memories
consumption of chips. In addition, users’ privacy is perfectly
preserved due to the impossibility on face identification, shown
in Fig. 1. Earlier researches category radar-based fall detection
methods into two classes: Doppler signal based methods and
WiFi channel based methods. The former methods execute
through the association between Doppler frequency and mo-
tion velocity [8], while the latter methods compute the changes
of different signal in the WiFi channel [9]. Neither of them
takes the locality component into account but solely the
variations in the speed of motions.

Motivated by the method proposed in [10], we propose a fall
detection method based on the mmWave radar signal, which
considers locality and velocity components simultaneously.
Different from the existing tasks, our method is to characterize
mmWave radar reflections based on distance from the human
body along with the elevation and azimuthal angles of arrays,
which can be aggregated as spatiotemporal patterns, denoted
as the range-angle reflection heatmaps. Fig. 1 shows the
associations between reflection heatmaps and their correspond-
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Fig. 2. The framework of proposed radar-based fall detection method

ing human activities, which can be observed through related
camera-based images. Therefore, reflection heatmaps can be
utilized to estimate fall activities in the presence of other
sources of activities by neural network algorithms. Unlike
[10], we jointly apply the radar low-dimension embedding
(RLDE) algorithm and recurrent neural network (RNN) with
long-short-term memory (LSTM) units as the substitution of
3-D convolutional neural network (3-D CNN) for reduction at
the computational complexity and memory consumption.

II. PROPOSED METHOD

Essentially, human activities, e.g., fall or non-fall, can be
regarded as the changes of motion in term of range, angle
and speed. These fundamental motion attributes can be derived
through recording the variations in the signal of Receiver (RX)
and Transmitter (TX) Antennas equipped at the IWR1642
device [11], which include time interval and intensity of signal
between RX and TX. With the support of neural network
algorithms, we can easily establish the correlation between
human activities and corresponding attributes, further to design
a radar-based human activity detection method, in this case, a
fall detection method. Fig. 2 illustrates the framework of the
proposed fall detection method, which consists of two parts:
radar signal processing and neural network signal processing.

A. Radar Signal Process

In this subsection, we aim to implement the radar signal
conversion for the next processing, which consists of two
following procedures:

o Analog-Digital Convert (ADC): Modulate radar signal
from continuous format to discrete format.

o Fast Fourier Transform (FFT): Convert the discrete radar
signal from the representation from the frequency to
spatial domain.

In general, the transmitted and received mmWave radar

signal is the analog frequency format signal. For our purpose,
radar signal processing need be utilized to transform the raw

signal into the discrete spatiotemporal signal, shown in Fig. 2.
In this process, we implement FFT twice in order to achieve
the expansions in both spatial domains (range and angle
domain). Eventually, the processed data can be visualized as
a set of reflection heatmaps, which is extracted from two
separate perpendicular planes (vertical and horizontal plane)
simultaneously.

B. Neural Network Signal Processing

It is noted that human activities (fall or non-fall) are con-
sidered as continuous dynamic patterns, which are provided
by spatiotemporal dependency. The concatenation of multiple
successive reflection heatmaps can recognize both spatial
and temporal dependency, while individual reflection heatmap
merely is a representation of spatial expansion. Therefore,
with the attention to the continuity of activities, we merge
n frames of reflection heatmaps to match the average duration
of activities.

Fig. 1 visualizes several successive reflection heatmaps at a
certain time interval and their corresponding camera-based im-
ages and labeled activities. We can observe that the changes in
motion mainly concentrate on several specific regions, which
indicates the existence of spatial redundancy. It is necessary
to apply the RLDE algorithm to eliminate the redundancy.
Assume the ¢-th frame of reflection heatmaps at horizontal and
vertical planes as H; € RV*M and V; € RV*M respectively,
where NV and M are denoted as the maximal range and angle
recorded. The RLDE Algorithm can be utilized to project
reflection heatmaps to a low-dimension subspace P € RV*¥
as Equation (1),

H,=PxH;, Vi=PxV, (1)

where N represents the dimension of projected mapping. E
and V; are denoted as the ¢-th frame of projected reflection
heatmaps in RV *M_ We select the principal components anal-
ysis (PCA) algorithm to derive the low-dimension subspace P
linearly from our training set due to its low computational
complexity.
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Fig. 3.

The Proposed Network Architecture for Fall Detection Method

After data preprocessing, the neural network signal pro-
cessing is elaborated. The sequential structure of RNN with
LSTM units determines the advantages on applications of time
dependency [12]. So, we input preprocessed heatmaps H; and
V; into the a LSTM network, illustrated in Fig. 3. To make
the network easier to train, we normalize the pixel values to
the range of [0, 1] and concatenate preprocessed heatmaps of
two planes as S; € RV*2M_ Each concatenated heatmap S; is
fed in each LSTM cell in sequence, undergoing three build-in
operative gates (input, forget and output). First, the input gates
are used to input S; in current LSTM cell,

i = o(W; - [he—1, St] + b;) )

where W; and b, are weights and biases of input gates,
respectively. o(.) is a sigmoid activation function. h;_; is
the output of last LSTM cell. The boundary condition is
1 <t < n. Second, the forget gates are to determine whether
S; is discarded for the current cell,

Je =Wy - [hi—1,5] + by) 3)

where Wy and by are weights and biases of forget gates,
respectively. Third, the output gates are to send chosen pieces
of the message from S; to the next cell,

or = (Wo - [he—1,S¢] + bo) €]

where W, and b, are weighs and biases of output gates,
respectively. These gates jointly influence the output of each
cell through ¢-th cell state vector C,

Ct = ft * thl =+ it * tanh(Wc . [htfl, St] + bc) (5)
where W, b. are the weights and biases of cell state vector.
ht = o¢ x tanh(Cy) (6)

tanh(.) is the Tanh activation function. While ¢t = n, we
output h; as the result of LSTM layer for classifying through
a Softmax function.

The proposed network aims at learning a label Y; from
the preprocessed heatmaps H and H through the estimated
network parameter © = {W,, b;, Wi, bp, Wo,bo, We, be} with
predefined loss function,

Y = f([H,V],0) )

which is achieved by minimizing the loss between the pre-

dicted labels Y and their corresponding ground truth Yj. The

cross-entropy function is adopt as the objective function,
L(©) = > [Yoi - log(Y;) + (1 — Yo;) - log(1 — V7))

i=1

®)

where, m is denoted as the number of labeled category.
Adam optimizer is utilized to minimize the loss during the
training process by updating the set of network parameter set
O through the initialization of random Gaussian distribution
with zero mean and standard deviation of 0.1.

III. DATASET

We utilize a pair of TI’'s IWR1642 evaluation module
devices [11] to produce FMCW mmWave radar signal. The
values of related parameters are listed in Table I. Nearly 30%

TABLE 1
FOUNDATIONAL PARAMETERS OF RADAR SIGNAL DEVICE
Parameters | Values || Parameters | Values
Maximum Detectable Range | 10 m Wave Technology FMCW
Range Resolution 4 cm Frequency Range 77-81 GHz

Number of RX Antennas 8 Number of TX Antennas 4

Field of View 120° Angular Resolution 15°
Maximum Velocity 6.5 m/s Maximum Bandwidth | 3750 MHz
Velocity Resolution 0.2 m/s ADC samples 256

Wavelength 3.9 mm Frame Rate 25 /s

reductions on Rx and Tx antennas, compared to previous task
[10], provide a wider-range of practical applications. 4,126
samples (2.56 seconds for each sample) consist of 128 frames
of reflection heatmaps before concatenation for each. Except
for 711 fall activities, we also collect various non-fall activities
as the purpose of increasing the sample diversity, e.g., walking,
pickup, standup, boxing, sitting and jogging.

IV. EXPERIMENT

In this section, we design a series of experiments to evaluate
the performance of our proposed fall detection method com-
pared to the state-of-the-art. Two labeled categories (falls and
non-falls) dataset is established and split into 80%, 10% and
10% as the training, validation and testing set. The proposed
method executes with 1e~* of the learning rate, 100 epochs
and 12 for each batch on Tensorflow.

TABLE 11
THE COMPARISON BETWEEN BASELINE AND PROPOSED METHOD WITH
AND WITHOUT RLDE IMPLEMENTATION

Methods ‘ Precision Recall Flscore Training Time(s)
3-D CNN 95.3% 96.6% 96.0% 181.21
LSTM 100.0% 93.6% 96.7% 94.29
LSTM64 100.0% 97.9% 98.9% 56.83
LSTM32 100.0% 95.8% 97.8% 37.22
LSTM16 100.0% 97.7% 98.9% 2221
LSTM® 97.9% 100.0% 98.9% 20.33
LSTM* 100.0% 97.7% 98.9% 17.08
LSTM? 97.5% 88.6% 92.9% 15.12
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To validate the performance in the case of the unbalanced
dataset, we introduce the evaluated metrics of Precision,
Recall and F'l4..,. as the accurate measurement. In addition,
the average training times on each epoch are recorded to show
the benefits of computational simplification in Table II.

First, the performance of LSTM* and 3-D CNN can be
observed. LSTM* represents a method of combining RLDE
and LSTM, preserving four dimensions projected mapping in
spatial domain. Nearly 3% increasing on F'l,.,.. demonstrates
the effectiveness of LSTM* compared to 3-D CNN. Mean-
while, 4.7% and 1.1% improve on Precision and Recall,
respectively. More important, LSTM* only need less than
10% training time compared to the 3-D CNN that proves the
low consumption on LSTM?*, which is critical for real-time
applications.

Second, we evaluate the benefits of LSTM network in-
dividually. The comparison of the LSTM without RLDE
implementation and the 3-D CNN shows an increase of less
than 1% on F'14.,¢. Still, the efficiency of training processing
develops approximate 50% that the same performance can be
achieved with merely half time consumption.

Third, the performance also demonstrates the effectiveness
of RLDE in Table II. The peak performance is occurred at
LSTM* with 2.2% increases on F'1,.or. and 20% training time
demand compared to the LSTM only. It is noticeable that an
obvious drop on evaluated results and approaching saturation
on the reduction of training time at LSTM?, which explains
the threshold of preserved dimensions.
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Fig. 4. Confusion Matrix of Multiple Activities Detection

Besides, we achieve an application of multiple activity de-
tection with the proposed method. The samples are re-labeled
into seven categories of activities, shown in Fig. 4. The result
shows overall 80% accuracy on activities detection through the
confusion matrix. Understandably, a degraded precision occurs
at this detailed classification compared to the two categories
classification. We can investigate that the proposed method
has shortcomings in identifying human activities with similar
motion attributes. Therefore, a more effective method will

be considered in future work for more efficiently preserving
temporal information from the mmWave radar signal.

V. CONCLUSION

This paper proposes a privacy-preserving radar-based fall
detection method, which utilizes an RNN with LSTM units
architecture to learn human activities through spatiotemporal
patterns extracted from the reflection heatmaps caught by
radar devices. The experimental results show that our proposed
RLDE+LSTM method outperforms the state-of-the-art in 3%
increases on F'ls.op. With barely 10% training time needed.
Our method highly reduces the number of network neurons
and memory consumption, which makes real-time detection
achievable. Besides, we extend the application of the proposed
method on multiple activities detection that proves the latent
capacity of more complexity detection.
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