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Classification of Hyperspectral and LiDAR Data
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Abstract—1In this article, we propose an efficient and effective
framework to fuse hyperspectral and light detection and ranging
(LiDAR) data using two coupled convolutional neural networks
(CNNs). One CNN is designed to learn spectral-spatial features
from hyperspectral data, and the other one is used to capture the
elevation information from LiDAR data. Both of them consist of
three convolutional layers, and the last two convolutional layers
are coupled together via a parameter-sharing strategy. In the
fusion phase, feature-level and decision-level fusion methods are
simultaneously used to integrate these heterogeneous features
sufficiently. For the feature-level fusion, three different fusion
strategies are evaluated, including the concatenation strategy,
the maximization strategy, and the summation strategy. For the
decision-level fusion, a weighted summation strategy is adopted,
where the weights are determined by the classification accuracy
of each output. The proposed model is evaluated on an urban
data set acquired over Houston, USA, and a rural one captured
over Trento, Italy. On the Houston data, our model can achieve a
new record overall accuracy (OA) of 96.03%. On the Trento data,
it achieves an OA of 99.12%. These results sufficiently certify the
effectiveness of our proposed model.

Index Terms— Convolutional neural networks (CNNs), decision
fusion, feature fusion, hyperspectral data, light detection and
ranging (LiDAR) data, parameter sharing.
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I. INTRODUCTION

CCURATE land-use and land-cover classification plays

an important role in many applications such as urban
planning and change detection. In the past few years, hyper-
spectral data have been widely explored for this task [1]-[3].
Compared to multispectral data, hyperspectral data have more
rich spectral information, ranging from the visible spectrum
to the infrared spectrum [4]. Such information, combined with
some spatial information in hyperspectral data, can generally
acquire satisfying classification results [5], [6]. However, for
urban and rural areas, there often exist many complex objects
that are difficult to discriminate because they have similar
spectral responses. Thanks to the development of remote
sensing technologies, nowadays, it is possible to measure
different aspects of the same object on the Earth’s surface
[7]. Different from hyperspectral data, light detection and
ranging (LiDAR) data can record the elevation information
of objects, thus providing complementary information for
the hyperspectral data. For instance, if both the building
roof and the road are made up of concrete, it is very
difficult to distinguish them using only hyperspectral data
since their spectral responses are similar. However, LiDAR
data can accurately classify those two classes as they have
different heights. On the contrary, LiDAR data cannot dif-
ferentiate between two different roads, which are made up
of different materials (e.g., asphalt and concrete), having
the same height. Therefore, fusing hyperspectral and LiDAR
data is a promising scheme whose performance has already
been validated in the literature for land-cover and land-use
classification [7], [8].

In order to take advantage of the complementary infor-
mation between hyperspectral and LiDAR data, a lot of
works have been proposed. One widely used class of meth-
ods is based on feature-level fusion. In [9], morphological
extended attribute profiles (EAPs) were applied to hyperspec-
tral and LiDAR data. These profiles and the original spectral
information of hyperspectral data were stacked together for
classification. However, the direct stacking of these high-
dimensional features inevitably results in the well-known
Hughes phenomenon, especially when only a relatively small
number of training samples is available. To address this issue,
principal component analysis (PCA) was employed to reduce
the dimensionality. Similar to this article, many subspace-
related models can be designed to fuse the extracted spectral,
spatial, and elevation features [10]-[14]. For example, a graph
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embedding framework was proposed by Liao et al. [I11]; a
low-rank component analysis model was proposed by Rasti
et al. [12]. Different from them, Gu et al. [16] attempted to
use multiple-kernel learning [15] to combine heterogeneous
features. They constructed a kernel for each feature and then
combined these kernels together in a weighted summation
manner. Different weights can represent the importance of
different features for classification.

Besides the feature-level fusion, decision-level fusion is
another popularly adopted method. In [17], spectral features,
spatial features, elevation features, and their fused features
were fed into the support vector machine (SVM) individu-
ally to generate four classifiers, and the final classification
result was determined by them. In [18], two different fusion
strategies named hard decision fusion and soft decision fusion
were used to integrate the classification results from a different
data source. Their fusion weights were uniformly distributed.
In [19], three different classifiers, including the maximum
likelihood classifier, SVM, and the multinomial logistic regres-
sion, were used to classify the extracted features. The fusion
weights for these classifiers were adaptively optimized by a
differential evolution algorithm. Recently, a novel ensemble
classifier using random forest was proposed, in which a major-
ity voting method was used to produce the final classification
result [20]. In summary, the difference between feature-level
fusion and decision-level fusion methods lies in the phase
where the fusion process happens, but both of them require
powerful representations of hyperspectral and LiDAR data.
To achieve this goal, one needs to spend a lot of time designing
appropriate feature extraction and feature selection methods.
These handcrafted features often require domain expertise and
prior knowledge.

In recent years, deep learning has attracted more and more
attention in the field of remote sensing [21], [22]. In contrast
to the handcrafted features, deep learning can learn high-level
semantic features from data itself in an end-to-end manner
[23]. Among various deep learning models, convolutional
neural networks (CNNs) gain the most attention and have been
explored in various tasks. For example, in [24], CNN was
applied to object detection in remote sensing images. In [25],
three CNN frameworks were proposed for hyperspectral image
classification. Liu er al. [26] used CNNs to learn multiscale
deep features for remote sensing image scene classification.
Due to its powerful feature learning ability, some researchers
attempted to use CNN for hyperspectral and LiDAR data
fusion recently. An early attempt appears in [27]. It directly
considered LiDAR data as another spectral band of hyperspec-
tral data, and then fed the concatenated data into CNN to learn
features and perform classification. Ghamisi et al. [28] tried
to combine the traditional feature extraction method and CNN
together. They fed the fused features to CNN for learning a
higher-level representation and getting a classification result.
Similarly, Li et al. [29] constructed three CNNs to learn spec-
tral, spatial, and elevation features, respectively, and then used
a composite kernel method to fuse them. Different from them,
an end-to-end CNN fusion model was designed in [30], which
embedded feature extraction, feature fusion, and classification
into one framework. Specifically, the hyperspectral and LiDAR
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data were directly fed into their corresponding CNNs to extract
features, and then these features were concatenated together,
followed by a fully connected layer to further fuse them. Based
on this two-branch framework, Xu et al. [31] also proposed
a spectral-spatial CNN for hyperspectral data analysis and
another spatial CNN for LiDAR data analysis.

It is well-known that the performance of CNN-based models
heavily depends on the number of available samples. However,
in the field of hyperspectral and LiDAR data fusion, there
often exists a small number of training samples. To address
this issue, an unsupervised CNN model was proposed in
[32] based on the famous encoder—decoder architecture [33].
Specifically, it first mapped the hyperspectral data into a
hidden space via an encoding path, and then reconstructed
the LiDAR data with a decoding path. After that, the hidden
representation in the encoding path can be considered as fused
features of hyperspectral and LiDAR data. Nevertheless, there
still exist some issues. For example, the loss of supervised
information from labeled samples will lead to a suboptimal
feature representation; it also needs to design another network
to classify the learned representation, which will increase
the computation complexity. In this article, we propose a
supervised model to fuse hyperspectral and LiDAR data by
designing an efficient and effective CNN framework. Similar
to [30], we also use two CNNs but with a more efficient
representation. We use three convolutional layers with small
kernels (i.e., 3 x 3), and two of them share parameters. Besides
the output layer, we do not use any fully connected layers. The
major contributions of this article are summarized as follows.

1) In order to sufficiently fuse hyperspectral and LiDAR
data, two coupled CNNs are designed. Compared to
the existing CNN-based fusion models, our model is
more efficient and effective. The coupled convolution
layers can reduce the number of parameters, and more
importantly, guide the two CNNs learn from each other,
thus facilitating the following feature fusion process.

2) In the fusion phase, we simultaneously use feature-level
and decision-level fusion strategies. For the feature-level
fusion, we propose summation and maximization fusion
methods in addition to the widely adopted concatena-
tion method. To enhance the discriminative ability of
learned features, we add two output layers to the CNNs,
respectively. These three output results are finally com-
bined together via a weighted summation method, whose
weights are determined by the classification accuracy of
each output on the training data.

3) We test the effectiveness of the proposed model on two
data sets using standard training and test sets. On the
Houston data, we can achieve an overall accuracy (OA)
of 96.03%, which is the best result ever reported in the
literature. On the Trento data, we can also obtain very
high performance (i.e., an OA of 99.12%).

The rest of this article is organized as follows. Section II
describes the details of the proposed model, including the
coupled CNN framework, the data fusion model, and the
network training and testing methods. The descriptions of data
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Fig. 1. Flowchart of the proposed model.

sets and experimental results are given in Section III. Finally,
Section IV concludes this article.

II. METHODOLOGY
A. Framework of the Proposed Model

As shown in Fig. 1, our proposed model mainly consists
of two networks: an HS network for spectral-spatial feature
learning and a LiDAR network for elevation feature learning.
Each of them includes an input module, a feature learning
module, and a fusion module. For the HS network, PCA
is firstly used to reduce the redundant information of the
original hyperspectral data, and then a small cube is extracted
surrounding the given pixel. For the LiDAR network, we can
directly extract an image patch at the same spatial position
as the hyperspectral data. In the feature learning module,
we use three convolutional layers, and the last two of them
share parameters. In the fusion module, we construct three
classifiers. Each CNN has an output layer, and their fused
features are also fed into an output layer.

B. Feature Learning via Coupled CNNs

Given a hyperspectral image X;, € R"*"*? and a corre-
sponding LiDAR image X; € R""*" covering the same area
on the Earth’s surface. Here, m and n represent the height
and width, respectively, of the two images, and b refers to
the number of spectral bands of the hyperspectral image. Our
goal is to sufficiently fuse the information from X; and X;
to improve the classification performance. As with any other
classification tasks, feature representation is a critical step
here. Due to the effects of multipath scattering and the hetero-
geneity of subpixel constituents, X often exhibits nonlinear
relationships between the captured spectral information and
the corresponding material. This nonlinear characteristic will
be magnified when dealing with X; [7]. It has been proved
that CNNs are capable of extracting high-level features, which
are usually invariant to the nonlinearities of hyperspectral
[34]-[36] and LiDAR data [30], [37]. Inspired from them,

Feature learning module
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Fig. 2. Architecture of the coupled CNNs.

we design a coupled CNN framework to learn features from
X, and X; efficiently.

The detailed architecture of the coupled CNNs is demon-
strated in Fig. 2. First of all, PCA is used to extract the first k
principle components of Xj, to reduce the redundant spectral
information. Then, for each pixel, a small cube x}, € RP > Pk
and a small patch x; € RP*P centered at it are chosen
from X; and X;, respectively. According to [30] and [32],
the neighboring size p can be empirically set to 11. After
that, x, and x; are fed into three convolutional layers to
learn features. For the first convolutional layer, we adopt two
different convolution operators (the blue box and the orange
box) to obtain an initial representation of x; and x;, respec-
tively. This convolutional layer is sequentially followed by a
batch normalization (BN) layer to regularize and accelerate
the training process, a rectified linear unit (ReLU) to learn a
nonlinear representation, and a max-pooling layer to reduce
the data variance and the computation complexity.

For the second convolutional layer, we let the HS network
and the LiDAR network share parameters. Such a coupling
strategy has at least two benefits. First, it can significantly
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Fig. 3. Structure of the fusion module.

reduce the number of parameters twice, which is very useful
with a small number of training samples. Second, it can
make these two networks learn from each other. Without
weight sharing, the training parameters in each network will be
optimized independently using their own loss functions. After
adopting the coupling strategy, the backpropagated gradients to
this layer will be determined by the loss functions of both net-
works, which means that the information in one network will
directly affect the other one. For the third convolutional layer,
we also use the coupling strategy, which can further improve
the discriminative ability of the learned representation from
the second convolutional layer. Again, these two convolutional
layers are followed by BN, ReLLU, and max-pooling operators.
The sizes (i.e., 3 x 3) and the number of kernels (i.e., 32, 64,
and 128 sequentially) of each convolutional layer are shown
at the left side under each data. Similarly, the output size (e.g.,
11 x 11 x 32) of each operator is shown at the right side. It
is worth noting that all the convolutional layers have padding
operators to make the output size the same as the input size.

C. Hyperspectral and LiDAR Data Fusion

After getting the feature representations of x;, and x;, how to
combine them becomes another important issue. Most of the
existing deep learning models [30]-[32] choose to stack them
together and use a few fully connected layers to fuse them.
However, fully connected layers often contain a large number
of parameters, which will increase the training difficulty when
there exists only a small number of training samples. To this
end, we propose a novel combination strategy based on
feature-level and decision-level fusions. Assume R;, € 1128x1
and R; € R!2>! denote the learned features for xj, and x;,
respectively. As shown in Fig. 3, we first combine R; and
R; to generate a new feature representation. Then, we input
these three features into output layers separately. Finally, all
the output layers are integrated together to produce a final
result. The whole fusion process can be formulated as

O = D[ fi(Rp; W), L(R;; W2), 3(FRp, Ry); W3); Ul
(D

where O € RC*! where C is the number of classes to
discriminate, represents the final output of the fusion module;
D and F are decision-level and feature-level fusions, respec-
tively; f1, f2, and f3 are three output layers connected to
Ry, Ry, and F(Ry, R)), respectively; Wy € REX128 W, e
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REX128 Wi e MEXIZ8 denote the connection weights for
f1, f, and f3, respectively; U € REx3 corresponds to the
fusion weight for D.

For the feature-level fusion F, we use summation and maxi-
mization methods in addition to the widely used concatenation
method. The summation fusion aims to compute the sum of
the two representations

FRp,R) =R, +R;. )

Similarly, the maximization fusion aims at performing an
element-wise maximization

F(Ry, Ry) = max(Rp, Ry). (3)

Obviously, the performance of F depends on its inputs Ry
and R;. Therefore, we add two output layers fi, and f> to
supervise their learning processes. In the output phase, they

can also help make decisions. The output value of f; can be
derived as follows:
= f1(Rp; Wy) = softmax(WiRy) “)

where softmax represents the softmax function. Similar to
(4), we can also derive the output values ¥, and y3 for f, and
f3, respectively. For the decision-level fusion D, we adopt a
weighted summation method

O0=D@F1.92.y3U0)=w1 01 + w05 +us O §3 (5)

where © is an element-wise product operator, uj, up and u3
are three column vectors of U, and the ith element of u;, j €
{1, 2, 3} depends on the ith class accuracy acquired by the jth
output layer on the training data.

D. Network Training and Testing

The whole network in Fig. 1 is trained in an end-to-
@ @) y(i))|l- —

end manner using a given training set {(x;’,x,

1,2,---, N}, where N represents the number of training
samples, and y) is the groundtruth for the ith sample. After
a feed-forward process, we are able to obtain three outputs for
each sample. Their loss values can be computed by a cross-
entropy loss function. For instance, the loss value between the
first output y; and the groundtruth y can be formulated as

N

1 . N7
L=~ S [oogs) 1 -

i=1

yNlog(1-51")]. ©
Similarly, we can also derive L, and L3 for the other two
outputs. L3 is designed to supervise the learning process of the
fused feature between hyperspectral and LiDAR data, whereas
Ly and L, are responsible for the hyperspectral and LiDAR
features, respectively. The final loss value L is represented as
the combination of L{, Ly, and L3

L=/21L1+ 2L+ L3 @)

where 11 and A, represent the weight parameters for L
and Lj, respectively. In the experiments, we empirically set
them to 0.01 because it can achieve satisfactory performance.
The effects of them on the classification performance will be
analyzed in Section III-D.
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TABLE I

NUMBERS OF TRAINING AND TEST SAMPLES IN EACH CLASS
FOR THE HOUSTON DATA

Class No. Class Name Training  Test
1 Healthy grass 198 1053
2 Stressed grass 190 1064
3 Synthetic grass 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking lot 1 192 1041
13 Parking lot 2 184 285
14 Tennis court 181 247
15 Running track 187 473
- Total 2832 12197
TABLE 11

NUMBERS OF TRAINING AND TEST SAMPLES IN EACH CLASS
FOR THE TRENTO DATA

Class No. Class Name Training  Test

1 Apple trees 129 3905
2 Buildings 125 2778
3 Ground 105 374
4 Wood 154 8969
5 Vineyard 184 10317
6 Roads 122 3252
- Total 819 29595

The same as most CNN models, L can be optimized using
a backpropagation algorithm. Note that L and L; can also be
considered as regularization terms for L3, thus reducing the
overfitting risk during the network training process.

Once the network is trained, we can use it to predict the
label of each test sample. First, u;, j € {1,2, 3} is computed
on the training set. Its ith element u;; can be derived as

Z?/:l 2y 0= 1(5’55) =y")
Sl 1O =)
.. =5
- aj; +10 - 8)
aj; +ay; +az + 10

where aj; is the ith class accuracy of the jth output, and I
is an indicator function, the value of which equals 1 when
the condition exists and O otherwise. Second, for the rth test
sample, we are able to obtain three output values yﬁ’), yg’), and
yg” via a feed-forward propagation. Finally, the output value
can be derived by using (5).

ji =

III. EXPERIMENTS
A. Data Description

We test the effectiveness of our proposed model on two
hyperspectral and LiDAR fusion data sets.

1) Houston Data: The first data were acquired over the
University of Houston campus and the neighboring urban
area in June 2012 [8]. It consists of a hyperspectral image
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(d)

. Healthy grass | Stressed grass . Synthetic grass . Tree Soil
Water Residential . Commercial . Road . Highway
. Railway . Parking lot 1 . Parking lot 2 Tennis court . Running track

Fig. 4. Visualization of the Houston data. (a) Pseudo-color image for the
hyperspectral data using 64, 43, and 22 as R, G, B, respectively. (b) Grayscale
image for the LiDAR data, (c) Training data map. (d) Test data map.

(d)
.Apple trees Buildings . Ground
. Wood Vineyard Roads

Fig. 5. Visualization of the Trento data. (a) Pseudo-color image for the
hyperspectral data using 40, 20, and 10 as R, G, B, respectively. (b) Grayscale
image for the LiDAR data. (c) Training data map. (d) Test data map.

and LiDAR data, both of which contain 349 x 1905 pixels
with a spatial resolution of 2.5 m. The number of spectral
bands for the hyperspectral data is 144. Fig. 4 demonstrates a
pseudocolor image of the hyperspectral data, a grayscale image
of the LiDAR data, and groundtruth maps of the training and
test samples. As shown in the figure, there exist 15 different
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classes. The detailed numbers of samples for each class are
reported in Table I. It is worth noting that we use the standard
sets of training and test samples which makes our results fully
comparable with several works such as [7] and [8].

2) Trento Data: The second data were captured over a
rural area in the south of Trento, Italy. The LiDAR data
was acquired by the Optech ALTM 3100EA sensor, and the
hyperspectral data was acquired by the AISA Eagle sensor
with 63 spectral bands. The size of these two data is 166 x 600
pixels, and the spatial resolution is 1 m. Fig. 5 visualizes this
data, and Table II lists the number of samples in six different
classes. Again, we also use the standard sets of training and
test samples to construct experiments.

B. Experimental Setup

In order to validate the effectiveness of our proposed
models, we comprehensively compare it with several different
models. Specifically, we first select the HS network (i.e., CNN-
HS) and the LiDAR network (i.e., CNN-LiDAR) in Fig. 1 as
two baselines and compare different fusion methods on both
Houston and Trento data. Then, we focus on the Houston data
and compare our model with numerous state-of-the-art models.

All of the deep learning models are implemented in the
PyTorch framework. To optimize them, we use the Adam
algorithm. The batch size, the learning rate, and the number of
training epochs are set to 64, 0.001, and 200, respectively. The
experiments are implemented on a personal computer with an
Intel core 17-4790, 3.60-GHz processor, 32-GB RAM, and a
GTX TITAN X graphic card.

The classification performance of each model is evaluated
by the OA, the average accuracy (AA), the per-class accuracy,
and the Kappa coefficient. OA defines the ratio between the
number of correctly classified pixels to the total number of
pixels in the test set, AA refers to the average of accuracies in
all classes, and Kappa is the percentage of agreement corrected
by the number of agreements that would be expected purely
by chance.

C. Experimental Results

1) Comparison With Different Fusion Models: In addition
to two single-source models (i.e., CNN-HS and CNN-LiDAR),
we also test the effectiveness of feature-level fusion models,
i.e., using f3 only. The three feature-level fusion methods
CNN-F-C, CNN-F-M, and CNN-F-S stand for the concate-
nation method, the maximization method, and the summa-
tion method, respectively. Similarly, the three decision-level
and feature-level fusion methods in Fig. 3 are abbreviated
as CNN-DF-C, CNN-DF-M, and CNN-DF-S, respectively.
Table III shows the detailed classification results of eight
models on the Houston data. Several conclusions can be
observed from it. First, for the single-source models, CNN-
HS achieves significantly better results than CNN-LiDAR in
each class. It indicates that the spectral-spatial information
in the hyperspectral data is more discriminative than the
elevation information in the LiDAR data. Second, all of the
three feature-level fusion models (i.e., CNN-F-C, CNN-F-M,
and CNN-F-S) obtain higher accuracies than the CNN-HS
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model in most classes. This can be explained by the fact that
LiDAR data can provide complementary information for the
hyperspectral data, and by combining them together in a proper
way, the classification performance can be improved. Third,
based on the feature-level fusion models, if we further use
the decision-level fusion (i.e., CNN-DF-C, CNN-DF-M, and
CNN-DF-S), the performance is improved again. Taking the
summation fusion method as an example, by the simultaneous
use of feature-level and decision-level fusions, the OA is
increased from 94.49% to 96.03%, which is the best result
ever reported in the literature. Last but not the least, compared
to the widely used concatenation method, our proposed max-
imization and summation fusion methods can achieve better
OA, AA, and Kappa values. Besides the quantitative results,
we also qualitatively analyze the performance of different
models. Fig. 6 demonstrates the classification maps of different
models. In this figure, different colors represent different
classes of objects. From Fig. 6(b), we can see that the CNN-
LiDAR model generates many outliers, and misclassifies a lot
of objects. In comparison with it, other models obtain more
homogeneous classification maps. However, some objects are
a little over-smoothed because all of the models use the small
patches and cubes as inputs.

Similar to the Houston data, Table IV and Fig. 7 show the
quantitative and qualitative results, respectively, on the Trento
data. The data have larger and more homogeneous objects
to discriminate than the Houston data, so all of the models
can achieve relatively high performance (e.g., the OA values
are larger than 90%). Specifically, CNN-HS is better than
CNN-LiDAR, and the feature-level fusion method can improve
the performance of CNN-HS. More importantly, simultaneous
feature-level and decision-level fusion is more effective than
using feature-level fusion only. The best results appear when
adopting the maximization fusion method.

2) Comparison With State-of-the-Art Models: In the exist-
ing hyperspectral and LiDAR data fusion works, most of the
models tested their performance on the Houston data. To high-
light the superiority of our proposed models, we also compared
them with state-of-the-art models, including seven traditional
models and five CNN-related models, using standard training
and test sets. These traditional models include the multiple
feature learning model MLRg,p in [38], the generalized graph-
based fusion model GGF in [11], the sparse and low-rank
component analysis model SLRCA in [12], the total variation
component analysis model OTVCA in [13], the adaptive
differential evolution-based fusion model ODF-ADE in [19],
the unsupervised graph fusion model E-UGF in [20], and the
composite kernel extreme learning machine model HyMCKs
in [39]. The CNN-related models include the deep fusion
model DF in [30], the CNN model combined with graph-
based feature fusion method CNNGBEFF in [28], the three-
stream CNN-based composite kernel model CNNCK in [29],
the two-branch CNN model TCNN in [31], and the patch-to-
patch CNN model PToPCNN in [32].

Table V reports the detailed comparison results of different
models in terms of OA, AA, and Kappa coefficients. Note that
all the results are directly cited from their original articles
because we are not able to reproduce them due to missing
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TABLE III

CLASSIFICATION ACCURACIES (%) AND KAPPA COEFFICIENTS OF DIFFERENT MODELS ON THE HOUSTON DATA. THE BEST ACCURACIES
ARE SHOWN WITH THE BOLD TYPE FACE

Class No. CNN-HS CNN-LiDAR CNN-F-C CNN-F-M CNN-F-S CNN-DF-C CNN-DF-M CNN-DF-S
1 82.91 60.30 82.91 81.86 89.93 82.81 83.00 85.57
2 99.91 24.34 99.81 99.44 98.21 100 99.81 99.81
3 91.29 66.53 97.43 97.03 98.61 96.44 97.62 97.62
4 95.93 88.73 99.43 99.05 99.05 98.96 99.91 99.43
5 100 24.81 100 98.86 99.72 100 99.91 100
6 93.71 25.87 96.50 100 100 100 100 95.80
7 91.60 61.19 87.41 96.74 91.98 91.32 90.39 95.24
8 87.18 84.33 91.17 92.69 96.30 92.40 95.54 96.39
9 86.87 40.32 87.25 92.92 92.92 89.33 93.86 93.20
10 97.59 53.86 98.75 84.94 88.51 99.71 96.04 98.84
11 89.56 80.46 97.15 97.34 96.49 99.43 98.39 96.77
12 91.16 29.30 96.25 92.22 86.65 92.51 93.18 92.60
13 88.77 81.05 92.98 92.63 89.82 89.82 92.98 92.98
14 89.07 52.63 93.52 100 99.60 88.26 95.95 99.19
15 90.91 29.81 100 92.81 99.58 100 98.73 100
OA 92.05 54.52 94.37 93.92 94.49 94.74 95.29 96.03
AA 91.76 53.57 94.70 94.57 95.16 94.73 95.69 96.23
Kappa 0.9136 0.5082 0.9389 0.9340 0.9402 0.9429 0.9488 0.9569

Fig. 6.
(f) CNN-DF-C. (g) CNN-DF-M. (h) CNN-DF-S.

parameters or the availability of codes. For the traditional mod-
els, the best OA, AA, and Kappa values are 95.11%, 94.57%,
and 0.9447, respectively, achieved by a recent work named E-
UGF [20]. For the CNN-related models, CNNCK [29] obtains
the best OA and Kappa values, while PToOPCNN [32] acquires
the best AA. Compared to the E-UGF model, both CNNCK
and PToPCNN models obtain inferior performance, which
indicate that the existing CNN-related fusion models still have
some potentials to explore. Similar to DF [30] and TCNN [31]
models, our proposed models (i.e., CNN-DF-M and CNN-
DF-S) can also be considered as a two-branch CNN model.

Classification maps of the Houston data using different models. (a) CNN-HS. (b) CNN-LiDAR. (c) CNN-F-C. (d) CNN-F-M. (e) CNN-F-S.

However, the proposed models can obtain significantly better
results than them, even than E-UGF, which sufficiently certify
the effectiveness of the proposed model.

D. Analysis on the Proposed Model

1) Analysis on the Reduced Dimensionality: For the pro-
posed model, we have two hyperparameters to predefine.
The first one is the number of reduced dimensionality k& of
hyperspectral data using PCA, and the second one is the
neighboring size p x p extracted from hyperspectral and
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TABLE IV

CLASSIFICATION ACCURACIES (%) AND KAPPA COEFFICIENTS OF DIFFERENT MODELS ON THE TRENTO DATA. THE BEST ACCURACIES
ARE SHOWN WITH THE BOLD TYPE FACE

Class No. CNN-HS CNN-LiDAR CNN-F-C CNN-F-M CNN-F-S CNN-DF-C CNN-DF-M CNN-DF-S
1 99.85 99.92 98.49 96.72 99.15 98.44 99.69 99.64
94.67 93.16 97.01 97.05 96.36 97.73 98.81 97.66
3 82.09 60.43 92.51 95.99 93.05 88.50 94.39 92.25
4 98.73 99.12 99.11 100 100 100 99.88 99.96
5 99.73 95.63 100 100 99.96 100 100 99.90
6 76.31 50.59 90.53 92.69 89.71 93.64 94.00 92.40
OA 96.31 91.91 98.17 98.48 98.37 98.77 99.12 98.80
AA 91.90 83.14 96.28 97.08 96.37 96.39 97.80 96.97
Kappa 0.9505 0.8917 0.9754 0.9796 0.9782 0.9835 0.9881 0.9839

IR

(g)

e

(h)

Fig. 7. Classification maps of the Trento data using different models. (a) CNN-HS. (b) CNN-LiDAR. (c) CNN-F-C. (d) CNN-F-M. (e) CNN-F-S. (f) CNN-

DF-C. (g) CNN-DF-M. (h) CNN-DF-S.

LiDAR data. To evaluate the effect of k, we fix p and select
k from a candidate set {I,5, 10, 15,20, 25, 30}. Since the
fusion models have the same hyperparameter values as single
models (i.e., CNN-HS and LiDAR-HS), we only demonstrate
the results of single models here. Fig. 8 shows the performance
(i.e., OA) of CNN-HS on the Houston (the blue line) and
Trento (the red line) data. From this figure, we can observe
that as k increases, OA firstly increases and then tends to
a stable state. Considering the computation complexity and
classification performance, k can be set to 20 for both data.

2) Analysis on the Neighboring Size: Similar to the analysis
of k, we can also fix k and choose p from a candidate set
{9,11,13,15,17,19} to evaluate the effect of p. Table VI
reports the changes in OA values at different sizes. When the

size increases from 9 to 11 on the Houston data, the improve-
ments of OA acquired by CNN-HS and CNN-LiDAR are more
than 1%. But for the other sizes, these two models do not
change significantly. For the Trento data, CNN-HS is relatively
stable when the size changes, but CNN-LiDAR will increase
more than 1% from 9 to 11, and decrease from 11 to 13. Based
on the above analysis, 11 is a reasonable choice for CNN-HS
and CNN-LiDAR on both data. This choice is consistent with
the works in [30] and [32].

3) Analysis on the Coupling Strategy: Benefiting from the
coupling strategy, the number of parameters in the second
and the third convolutional layers is reduced by two times.
Taking CNN-DF-M and CNN-DF-S models as examples,
on the Houston data, the total number of parameters to train is
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TABLE V
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART MODELS ON THE HOUSTON DATA

Traditional models

Model MLRg,; GGF SLRCA OTVCA ODF-ADE E-UGF HyMCKs
OA 92.05 94.00 91.30 92.45 93.50 95.11 90.33
AA 92.87 93.79 91.95 92.68 - 94.57 91.14
Kappa  0.9137 0.9350 0.9056 0.9181 0.9299 0.9447 0.8949
CNN-related models
Model DF CNNGBFF CNNCK TCNN PToPCNN CNN-DE-M CNN-DE-S
OA 91.32 91.02 92.57 87.98 92.48 95.29 96.03
AA 91.96 91.82 92.48 90.11 93.55 95.69 96.23
Kappa 0.9057 0.9033 0.9193 0.8698 0.9187 0.9488 0.9569
100 TABLE VIII
COMPUTATION TIME (SECONDS) OF DIFFERENT MODELS ON THE TRENTO
DATA
90 / 1
Time CNN-HS CNN-LiDAR CNN-F-C CNN-F-M
3 g0t | Train 32.11 21.84 49.99 49.53
: Test 1.33 1.24 1.44 1.37
o Time CNN-F-S CNN-DF-C CNN-DF-M  CNN-DF-S
70+ B Train 49.62 118.65 116.43 117.29
Test 1.43 1.66 1.62 1.65
60 m— Trento
. . . . Houston 965 Il Without Coupling o Il Without Coupling
1 5 10 15 20 25 30 I With Coupling 9.5 I With Coupling

Reduced dimensionality

Fig. 8. Effect of the reduced dimensionality on the OA (%) achieved by the
CNN-HS model.

TABLE VI

EFFECT OF THE NEIGHBORING SIZE ON THE OA (%) ACQUIRED BY THE
CNN-HS AND CNN-LIDAR MODELS

Houston Data

Size 9 11 13 15 17 19
CNN-HS 90.88 92.05 9149 9141 91.87 92.06
CNN-LiDAR 5245 54.52 5444 5459 5429 5451
Trento Data
Size 9 11 13 15 17 19
CNN-HS 96.02 96.43 96.39 96.17 9597 95.53
CNN-LiDAR 90.80 9191 90.29 90.70 91.40 90.57
TABLE VII
COMPUTATION TIME (SECONDS) OF DIFFERENT MODELS ON THE HOUS-
TON DATA
Time CNN-HS CNN-LiDAR CNN-F-C CNN-F-M
Train 43.68 38.04 71.57 70.85
Test 1.24 1.18 1.30 1.27
Time CNN-F-S CNN-DF-C CNN-DF-M  CNN-DF-S
Train 70.90 185.71 182.54 184.43
Test 1.28 1.38 1.33 1.37

196 128 without weight sharing, while this number is reduced
to 103968 after adopting the coupling strategy; on the Trento
data, the trainable parameters are 192672 and 100512 without
and with weight sharing, respectively. In summary, the para-
meter numbers in CNN-DF-M and CNN-DF-S models are
reduced by about 47% on both data when the coupling strategy

95.5

OA (%)
®
&

OA (%)

93.5

92.5

CNN-DF-C

CNN-DF-M CNN-DF-S

CNN-DF-C

CNN-DF-M CNN-DF-S

Fig. 9. Comparisons before and after adopting the coupling strategy on two
data. (From left to right) Houston data and the Trento data.

is employed. Besides, we also test the effects of the coupling
strategy on the classification performance. Fig. 9 illustrates the
changes of OA before and after adopting the coupling strategy
on the Houston data (left one) and the Trento data (right one).
This indicates that the performance of CNN-DF-C, CNN-DF-
M, and CNN-DF-S in terms of OA is slightly improved after
adopting the coupling strategy.

4) Analysis on the Computation Cost: To quantitatively
analyze the computation cost of different models, Tables VII
and VIII report their computation time on the Houston and
Trento data, respectively. From these two tables, we can
observe that CNN-HS and CNN-LiDAR models take less
training time than the other fusion models because they only
need to process single-source data, without any interactions
between different sources. On the contrary, the proposed
decision-level and feature-level fusion models cost much more
training time than the single-source and the feature-level fusion
models. Nevertheless, once the networks are trained, their test
efficiency is very high. In particular, it takes not more than
2 s to finish the test process, which is close to the time costs
of the other models.

5) Analysis on the Weight Parameters: The loss function
of the proposed model in (7) contains two hyper-parameters
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Fig. 10.  Effects of weight parameters A; and A on the classification

performance achieved by the CNN-DF-S model on two data. (From left to
right) Houston data and the Trento data.

(i.e., A1 and A»). In order to test their effects on the classifica-
tion performance, we firstly fix A; and change A, from a can-
didate set {0.001, 0.01, 0.1, 1}. Then, we set 1, to the optimal
value and change A; from the same set {0.001,0.01,0.1, 1}.
Fig. 10 shows the OAs obtained by the proposed CNN-DF-S
model on the Houston and Trento data with different A, and
Az values. In this figure, the pink and the blue lines repre-
sent the CNN-DF-S model with different 1; and A, values,
respectively. It is shown that as 1, increases, the OA will
firstly increase and then decrease on both data. The highest
OA value appears when A, = 0.01. Similar conclusions can
be observed for A1. Therefore, the optimal values for A1 and
Ao are 0.01.

IV. CONCLUSION

This article proposed a coupled CNN framework for hyper-
spectral and LiDAR data fusion. Small convolution kernels and
parameter sharing layers were designed to make the model
more efficient and effective. In the fusion phase, we used
feature-level and decision-level fusion strategies simultane-
ously. For the feature-level fusion, we proposed summation
and maximization methods in addition to the widely used con-
catenation method. For the decision-level fusion, we proposed
a weighted summation method, whose weights depend on the
performance of each output layer. To validate the effectiveness
of the proposed model, we constructed several experiments on
two data sets. The experimental results show that the proposed
model can achieve the best performance on the Houston data
and very high performance on the Trento data. Additionally,
we also thoroughly evaluated the effects of different hyper-
parameters on the classification performance, including the
reduced dimensionality and the neighboring size. In the future,
more powerful neighboring extraction methods need to be
explored, because the current classification maps still exist
over-smoothing problems.
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