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Abstract—Wireless Charging Highways (WCHs) have been
introduced by industry and academia to enable charging-while-
driving for electric vehicles (EVs) and to combat range anxiety.
While detailed planning and performance evaluation of such
systems are crucial due to high cost and long life expectancy, most
existing works assume a perfect communication environment. In
this paper, we introduce a joint capacity model that takes into
account both power and communication resources for WCH
construction planning, and optimal day-to-day operation. The
vehicle-to-infrastructure (V2I) communication and grid power
capacities, along with the EV’s average service rate are for-
mulated following technology requirements, EV speed-density
characteristics, and the EV’s energy needs and consumption. In
addition, a two-dimension Markov chain-based model is designed
to capture the WCH power and connectivity dynamics. The
proposed model can be used to calculate the system’s Quality
of Service (QoS) and profit, provide design insights, and assess
the impact of speed regulation, or admission control on the WCH
lane. Finally, the performance of the proposed model is evaluated
using real US highway data with the results demonstrating its
ability to accurately capture the service provision dynamics, and
to identify trade-offs between system parameters.

Index Terms—dynamic wireless charging, electric vehicles,
wireless charging highway, V2X, capacity planning

I. INTRODUCTION

Range anxiety is a key factor for the deceleration of the
broad adoption of Electric Vehicles (EVs), and the main
motivator behind EV charging research [1]. Until now most
of the commercially adopted solutions, namely destination
charging (e.g., parking lots), and fast-charging stations are
often considered inconvenient [2]. Specifically, the fact that
(a) EV charging takes more time than traditional fuelling, (b)
EV drivers are compelled to make more frequent stops per
trip, and (c) they may not find available charging stations upon
arrival, significantly increases the time penalty per trip.

In light of the above, dynamic wireless charging (DWC)
has emerged as a prominent alternative. The main advantages
include the charge-while-driving flexibility that eliminates
stops in long-distance trips, along with the opportunity to
reduce battery sizes and costs. Thus, if the technology is
adopted for use on existing highway systems, the EVs’ range
can be increased, even be limitless. Naturally, many industry
vendors and research teams are working on on-road wireless
charging projects. Cases in point include the FABRIC [3]
project that was concluded with the development of two e-road

charging solutions, the new EU commission INCIT-EV project
[4] which is coordinated by Renault and aims to investigate
DWC in urban areas, and for long distances, and finally, the
Smartroad Gotland project [5] in Sweden aiming to charge
electric buses and trucks while driving on a 1.6 km e-road.

However, the broad integration of the wireless charging
highway (WCH) technology into existing roads involves sev-
eral challenges that pertain to infrastructure planning. The cost
of integrating on-road charging is substantial as it includes
reconstruction and additional resource provisioning for power
and communication capacity. The latter is crucial to support
control operations, additional data exchange, and charging
coordination. In addition, since the newly deployed WCH’s life
expectancy should span over decades, the installation planning
should account for the dynamic road parameters, namely EV
speed, incoming traffic conditions, the segment’s length, along
with local environmental characteristics.

A. Related Work

Numerous research works have examined some of the afore-
mentioned challenges. In [6], the authors solve a mixed-integer
optimization problem to find an e-road system’s optimal pa-
rameters including the number of chargers, power level, battery
capacity, and track length. The authors in [7] estimate the EV
wireless charging load using the distribution of traffic, and
introduce a pricing mechanism to ensure the whole electricity
market’s social welfare. The work in [8] analyses the steady-
state performance of the WCH by modeling the system as
an M/M/s/s state-dependent loss queue. The authors take
into account the EV power consumption, the power system’s
capacity, and the transportation system’s conditions. Finally,
in [9], the authors model the WCH as an M/M/s loss queue
accounting for the EV’s energy demand with the assumption
that the speed is controlled centrally.

B. Contributions and Outline

Though all the aforementioned research efforts model the
WCH performance and aid the planning of the power demand
components, none of them account for service losses or under-
performance due to delayed or non-existing EV-infrastructure
communications. Specifically, to the best of our knowledge,
the related literature assumes already established [8], or perfect
communication without congestion [9]. However, due to the
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dynamicity of the setting, and the safety-critical nature of
the application, vehicle-to-infrastructure (V2I) communica-
tions should be carefully planned during the design phase.
Our paper aims exactly at filling this gap and proposes
joint capacity modeling of both communication and power
resources for WCHs that also account for the specific road
segment conditions. This type of modeling is important for
both the infrastructure planning phase and the optimization of
the system’s day-to-day operation. The main contributions of
this work are summarized below:

a) The importance of V2I communications for the WCH
operation is described, and the system’s communication and
power capacities are extracted according to the latest technol-
ogy requirements, road conditions, and physical limitations.

b) The average service rate of EV charging is derived as
a function of the EV’s average speed, the speed limit, traffic
density, and each EV’ energy demand, and consumption.

c) The joint capacity modeling is based on a finite-state
continuous Markov chain of two-dimensions that captures the
power and V2I capacities, incoming traffic conditions, the
wireless communication environment, and the EVs’ service
rate. Our model can estimate the WCH service’s outage
probability and the related profit and Quality of Service (QoS).

d) A detailed numerical evaluation is carried out involv-
ing a case study of a US highway segment demonstrating
the model’s ability to predict the WCH performance under
different traffic conditions, and parameter settings.

The rest of this work is organized as follows. The V2I-
enabled WCH architecture is discussed in Section II. Section
III presents the derivation of communication and power ca-
pacities along with the stochastic WCH joint capacity model.
Finally, Section IV presents a detailed numerical evaluation,
while Section V concludes this paper.

II. V2I-ENABLED WCH ARCHITECTURE

In this section, we describe the basic architecture of the
Wireless Charging Highway, along with the related dynamic
wireless charging, and V2I communication technologies.

We consider a lumped inductive power transfer (IPT) high-
way (Fig. 1) where Double-D (DD) IPT power pads are placed
under the road while each EV is equipped with a secondary
coil pad placed under its chassis [10]. The highway’s primary
pads are sequentially and separately energized following the
movement of the EV along the WCH lane. When the primary
pads are energized the created magnetic field allows the power
transfer between the highway-EV air-gap. We assume that
multiple EVs can be charged simultaneously, while for optimal
charging we will assume that when the EV is between two
primary pads, they are both energized (see Fig. 1) as studied
in [11]. Specific design considerations and values regarding
the orientation of the primary/secondary pads, dimensions, and
installation distance will not be taken into account as they are
out of the scope of this work, and an active researcher topic.

The dynamic nature of the WCH infrastructure demands
hard real-time constrains for all the control and communication
processes. First, the WCH should be able to detect and
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Fig. 1. Wireless Charging Highway Architecture

energize the appropriate primary pads as the EV travels on the
highway with minimum delay and given that the variable EV
speed. Note that for a high speed of 100 km/h and a primary
pad of 500 mm, the pad should detect the EV and be energized
in less than 18 ms. In addition, to ensure the pad’s steady-
state operation the EV should be detected 2.5 ms before
the optimum charging zone [11]. As far as the IPT system
control is concerned the dynamic nature of the WCH requires a
combination of controllers where the secondary pad controller
on the EV regulates the power, while the primary controller
on the WCH sets the primary pad current for the appropriate
EV power demand [12]. Moreover, there may be cases where
the charging rates are dynamically defined by each EV based
on their needs (e.g., travel time, initial state-of-charge (SoC),
road conditions) and other contextual information. Apart from
that, an excessive amount of data (GPS coordinates, MEMS
sensor readings, 3D dead reckoning information, EV pric-
ing/charging preferences, EV camera feed, etc.) should also
be exchanged between the EV and the control infrastructure
to enable accurate EV authentication, dynamic billing, and
ensure coordinated wireless charging (location & timing).

Regarding the vehicular communication technology, we
consider a cellular vehicle-to-infrastructure (C-V2I) architec-
ture. The second phase of such LTE-based cellular standards
was completed by 3GPP as Release 15 [13] in June 2018 of-
fering minimum latency bounds of 10 ms which is acceptable
considering the needs of our WCH application scenario [14].
Also, latency bounds will be further reduced (< 3ms) as the
standardization process of next-generation 5G-based NR-V2X
system progresses (e.g., 3GPP Release 17 is expected in June
2021) [15]. In this work, we will follow 3GPP Releases 15/16,
and will refer collectively to the technology as C-V2X [13],
[16]. Each EV is equipped with an On-Board Unit (OBU), and
is able to transmit data to Road Side Units (RSUs) through
the “PC5” interface that operates in ITS bands (5.9 GHz).

III. SYSTEM MODEL

In this section, we present the components of the WCH in
detail. For our analysis, we will consider that a large scale
WCH lane is divided into autonomous segments of length L
and will model V2I-assisted EV charging on a single one.

A. Speed–Density Relationship Model

Intelligent transportation systems often rely on traffic flow
theory to extract real-world relationships. In what follows, to
account for road conditions in our WCH we will use a speed-
density relationship model. According to the general model,
the average speed of EVs on the highway is a non-increasing
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function of the EV density on the road as smaller EV distances
require lower speeds. A variety of speed density models have
been proposed, both single and multi-regime. In this work, we
will use a model based on the energy conservation between
physiological potential and the kinetic energy of an EV as
discussed in [17]. If c denotes the number of EVs on the WCH
lane of length L then we define the EV density as ρ = c

L , and
the speed-density model u(ρ) as:

u
( c
L

)
=


√
u2
f − (uf − α( 1

c/L
− 1

ρj
))2, if

α·ρj
uf ·ρj+a

< c
L
< ρj

uf , if 0 < c
L
<

α·ρj
uf ·ρj+a

(1)
where u(·) is the average EV speed, uf denotes the free-flow
speed, ρj is the jam density, i.e., the EV density when the
speed equals to zero, and α is a calibration parameter that
expresses the intensity of interaction between EVs [17].

B. V2I Communication System Capacity

The EV capacity of the V2I system depends on channel
availability and reliability guarantees. We will assume that
multiple RSUs (C-V2X access points) are installed across
the WCH sector under study. Also, all RSUs have the same
effective communication range ref (i.e., the minimum required
TX/RX communication distance to ensure reliability). There-
fore, the number of RSUs across the WCH segment is

⌈
L
ref

⌉
.

Regarding the channel availability for each charging EV, the
C-V2X NR specification (i.e., Release 15 [13] and onward)
defines two possible carrier frequencies (one in the sub 7
GHz space, and one between 24-53 GHz). We will assume
that a frequency space Btot is allocated for use in the WCH
segment studied as the total system’s bandwidth. In addition,
the specification allows for a flexible frame structure with
various sub-carrier spacings leading to a variety of supported
bandwidth lengths for the V2I channels. We will consider a
vehicular network of EVs performing V2I connections over
mutually orthogonal spectrum bands. Each EV occupies a
channel of bandwidth Bchannel, and the maximum number
of EV cellular users supported is Vbandwidth =

⌊
Btot

Bchannel

⌋
.

Moreover, to account for reliability and EV speed under the
dynamic nature of the V2I communications we define similar
to [18] a maximum number of effective users as:

Veffective =

⌊
2 · ref · nlanes

umax · TTC + evlength

⌋
(2)

where ref is the effective range of the RSU, nlanes is the total
number of highway lanes, umax is the maximum speed limit
of the highway segment, TTC is the time-to-collision between
EVs, and evlength is the average EV length. Thus, the total
number of channels V available to the EV cellular users (i.e.,
communication system capacity) is decided as follows:

V =

{
Veffective, if Veffective < Vbandwidth
Vbandwidth, otherwise

(3)

Note that the communication system’s capacity corresponds
to the highway as a whole (i.e., all available lanes). Also,
the RSU’s effective range ref , along with the bandwidth

lengths Btot, and Bchannel can be design parameters of the
V2I system chosen during the communication infrastructure
planning phase.

C. Wireless Charging Highway Capacity

Evidently, the WCH is able to simultaneously accommodate
only an upper-bounded number of EVs, which we will define
as power capacity C. This parameter is decided by the WCH
control center and depends (a) on the available power supply
to the WCH segment and (b) on the segment’s traffic capacity.

Assuming that each EV is provided with a charging rate p
from the WCH, and that the maximum power capacity is Ptot
then the capacity due to power constrains is Cpower =

⌊
Ptot

p

⌋
.

The maximum power capacity Ptot is a design parameter of the
whole WCH lane influenced by power grid needs, and can be
adjusted by the WCH control unit under different conditions.

To capture the traffic capacity dynamics of the specific
highway section under study we will use the speed-density
model discussed in Section III-A (i.e., Equation 1). Thus, by
fitting the model on realistic traffic data the WCH controller
can decide on the traffic capacity with Ctraffic = bρj · Lc,
where ρj is the jam density (see Section III-A). Finally, the
capacity C of the WCH segment under modelling is given by:

C =

{
Cpower, if Cpower < Ctraffic
Ctraffic, otherwise

(4)

D. Average Service Rate

Next, we derive the average EV service rate of the
WCH system. We assume that (a) the initial state-of-charge
(SoCinit) of the EVs entering the WCH follows a normal
distribution, (b) all EVs have the same battery capacity, and
(c) the objective of all EVs is to fully charge, and therefore a
they aim for a full SoC (i.e., SoC = 1). Given the above, upon
entering the WCH system, the EVs have an energy demand
Denergy that also follows a normal distribution. In addition,
we define the effective charging rate as Peffective = ηef · p
where ηef is the parameter for the WCH’s wireless charging
efficiency, and p is the constant charging rate for each EV.
Also, motion resistance and the related EV speed are the
main factors for the EV’s energy consumption while on
the highway [9]. Therefore, the power consumption can be

written as Pconsume =
γ·u
(

c
L

)
ηdrive

+Pauxiliary , where Pauxiliary
denotes the auxiliary power consumption component, γ is the
resistance to motion, u

(
c
L

)
is the EV’s speed as a function

of lane traffic density, and ηdrive denotes the efficiency of
driveline dynamics. Finally, by also factoring in the cases
where the EV’s driving time on the WCH (i.e., L

u(c/L) ) is not
enough to meet its service demand, then the charging time of
an EV entering the WCH lane under study is:

t(u) =

{
L

u( c
L
)
, if L

u( c
L
)
<

Denergy

Peffective−Pconsume
Denergy

Peffective−Pconsume
, otherwise

(5)

Recall that we model EV speed as a function of lane density.
The piece-wise nature of the charging time expression has
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the following physical interpretation: As EV speeds remain
low (high density case) the second piece of the service time
function (≡ charging time) is dominant since the EV remains
on the WCH long enough to reach his energy demand target.
This service time increases as the EV speed increases (higher
speeds force longer WCH stays for the same target SoC) but
up to the point where the charging time equals the EV’s
driving time on the segment of length L. After this point,
service time is dominated by the driving time and naturally
decreases as the EV speeds converge to the uflow value or
the highway’s maximum speed limit. The same logic applies
to the average service rate that, given the above, is defined as
µ(u) = 1/E

[
t(u)

]
.

E. Markov Chain-based Stochastic Model

The aforementioned speed-density modeling and the dis-
cussed specifications provide the upper limit for the power and
communication capacity of our stochastic model. Specifically,
the V2I communication system of the highway segment of
length L (all lanes) can accommodate V cellular EV users,
while the charging infrastructure and the WCH lane consist of
C slots for EVs. An EV, before entering the WCH segment,
submits a charging request demanding a spot on the WCH
lane and a dedicated communication channel. EVs that do not
require charging are provided with a V2I channel and are not
allowed to enter the WCH in the middle of the segment of
length L (i.e., they are allowed to request charging at the next
WCH segment). Arriving EVs that have requested charging,
but do not find either a channel or a WCH lane spot are
considered blocked and are not allowed to enter the charging
lane. Finally, we will assume that the number of available
channels is greater than the number of charging slots: V > C.

We will assume that EV arrivals to the WCH lane follows
a Poisson distribution with an average rate λ. The assumption
is supported by real-world measurements as seen in [8], [19]
where the inter-arrival time of vehicles entering a specific
highway segment follows an exponential distribution. We
will further assume that the service times of the EVs are
exponentially distributed with service rate µ (Section III-D).
Regarding the V2I users, we will also consider that they
request channels according to a Poisson process of rate ε,
while their service times are exponentially distributed with
service rate κ (channel availability rate). Note that these
V2I user behavior assumptions are directly linked to the EV
Poisson arrival process scaled for all highway lanes. Also, the
rates ε, κ can be easily adjusted for different communication
environments including modeling dynamics when the WCH
is designed for rural or urban settings with varying channel
availability rate characteristics.

Given the above, the WCH dynamics can be modeled by a
continuous-time Markov chain with a finite state space of two
dimensions [20], [21]. Fig. 2 shows the chain’s state space and
the related transmission rates. A generic state of the chain is
expressed by the (c, v) pair where c is the number of EVs on
the WCH lane, and ν is the number of EVs occupying V2I
channels in all highway lanes. The horizontal dimension of
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Fig. 2. Continuous-time Markov Chain for WCH Joint Capacity Modeling

the proposed MC is equal to the WCH’s capacity C, while
the vertical dimension equals the capacity of the V2I system
V . The total number of the MC’s states S is given by:

S = (C +1)2 −
C∑

i=1

i+(V −C) · (C +1) = (C +1) · (V −
C

2
+1) (6)

For the proposed MC, the S×S transition rate matrix Q (also
known as generator matrix) is constructed as seen in Fig. 3
where the elements satisfy that qi,j ≥ 0, ∀ i �= j and qi,i =
−
∑

i�=j qi,j , ∀ i ∈ (0, S]. In order to construct the generator
matrix, each state (c, v) is associated with an identification
number as shown in Fig. 2. A state (c, v) is a blocking one if
c = C or ν = V , and we define a set Z = {..., |S|} as the set
of the blocking states’ identification numbers.

Finally, it can be easily shown that since this finite-state MC
is irreducible (i.e., all states communicate), it is also positive
recurrent, and thus there exists a unique stationary distribution

π = [π1, π2, ..., πS ] [20]. The stationary distribution 
π is
determined by solving the system of linear equations:

�π ·Q = �0 and �π ·�1 = 1 (7)

where 
1 is an S sized vector of ones.
The WCH’s blocking probability is defined as Πblocking −∑
∀s∈Z πs, and jointly captures outage events due to power

and communication constrains. Thus, it represents the system’s
QoS as blocked EV customers are considered dissatisfied due
to the lack of service. Also, we define an expected profit model
over a time interval τ for the WCH operator:

ΞProf = τ ·p·φc ·
S∑

s=1

c(s)πs−τ ·p·φg ·
S∑

s=1

c(s)πs−τ ·ψpen ·
∑
∀s∈Z

c(s)πs

(8)
where c(s) is the charging EVs for state s, φc is the service
price, φg is the grid electricity price, and ψpen is a compensa-
tion penalty fee that the WCH operator pays when the system
is in its blocking states and EVs are rejected. The proposed
model can be used to maximize the system’s revenue while
the penalty fee materializes the system’s reputation.
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Q =



−(λ+ ε) e λ 0 0 0 0 0 0 · · · 0 0 0
κ −(λ+ ε+ κ) 0 ε λ 0 0 0 0 · · · 0 0 0
0 µ −(µ+ λ+ ε) 0 ε λ 0 0 0 · · · 0 0 0
0 2κ 0 −(λ+ ε+ 2κ) 0 0 ε λ 0 · · · 0 0 0
0 0 2κ µ −(µ+ λ+ ε+ 2κ) 0 0 ε λ · · · 0 0 0
0 0 0 0 2µ −(2µ+ λ+ ε) 0 0 ε · · · 0 0 0
...

...
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 0 0 · · · −(C − 2)µ− V κ 0 0
0 0 0 0 0 0 0 0 0 · · · (C − 1)µ −(C − 1)µ− V κ 0
0 0 0 0 0 0 0 0 0 · · · 0 Cµ −Cµ


Fig. 3. Transition Rate Matrix Q

TABLE I
WCH CASE-STUDY PARAMETERS

Parameter Value Parameter Value

ref 1.5 km ηef 0.9

Btot 2000 MHz γ 0.15 KWh/km

Bchannel 20 MHz ηdrive 1

TTC 2 sec Pauxiliary 0.5 KW

evlength 4.5 m Denergy N (4, 0.8) KWh

Ptot 2000 KW φc 0.1 $/KWh

p 40 KW φg 0.08 $/KWh

nlanes 6 ψpen 0.5 $/h

IV. CASE STUDY AND NUMERICAL EVALUATION

In this section, we study how the model parameters impact
the design and optimal WCH operation. We model our system
on a real-world scenario, namely a US I-10 EAST highway
segment of length L = 8 km, and posted speed limit of
umax = 112 km/h. The speed-density modeling was based on
real data from the California’s Caltrans Performance Measure-
ment System (PeMS) [22] (Mile 20 to 30 of I-10 EAST) as
shown in Fig. 4. The resulting fitted model (uf = umax, α =
0.23, ρj = 58 EV s

km ), was used to extract the average service
rate µ as detailed in Section III-D. Table I presents the rest
WCH model parameters’ values. Arrival rates λ, and e directly
represent incoming traffic volumes on the highway segment,
and for simplicity we define e = (nlanes − 1) · λ.

First, we consider the impact of the V2I channel availability
rate that captures the general bandwidth usage behavior of the
geographical area around the WCH segment. Fig. 5 shows the
overall blocking probability of the EVs demanding to charge as
the channel service rate increases, and for V2I/power capacity
C = 50, V = 100 EVs respectively. We also evaluate different
traffic rates λ. Evidently, as κ is increased, more EVs are
allowed to charge while driving leading to a lower outage rate.
Also, for a given (C, V, λ) triplet, the performance increase is
negligible after a specific threshold κ. In what follows, we
assume that κ = 35 in all cases.

Next, we focus on how the allocation of power and com-
munication resources impacts the WCH’s QoS. Note that the
allocation of resources for the V2I system can be expressed
either as total available bandwidth, or bandwidth allocated
to each channel, while for the charging lane the same holds
for the maximum power capacity, and the charging rate. This
allocation is translated into available highway spots of V2I
channels, and for simplicity here we adjust c and V by chang-
ing Ptot, and Btot. Fig. 6-(Left) shows the impact of limited
power capacity as the incoming traffic conditions (λ) increase
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when the V2I channel number is fixed (V = 130 EVs).
Fig. 6-(Center) does the same for communication resources
when the WCH lane spots are fixed (C = 80 EVs). Results
show that limited capacity significantly increases the outage
probability for both cases (40% of EVs are blocked in some
cases) especially under heavy traffic conditions. Fig. 6-(Right)
shows how reducing both capacities reduces the system’s QoS
under moderate traffic (λ = 700), effectively acting as a sanity
check for our model. Note that in all cases, while the WCH
operator aims to keep the system’s blocking probability under
a threshold, increasing the overall capacity frantically does not
offer meaningful QoS improvement leading to resource waste.

Finally, we study the WCH’s profit as a function of the
operator’s choices. Given the WCH infrastructure, the operator
will be able to optimize the charging service’s profit and
QoS by performing dynamic speed regulation and admission
control on the charging lane. Admission control is achieved
by dynamically setting the slot number C, while speed regu-
lation adjusts the speed limit umax, and therefore impacts the
charging service rate µ. Fig. 7 shows the system’s hourly profit
(τ = 1) evaluated against various admission control and speed
limit choices for V = 130, and as the incoming traffic levels
increase with λ = 400, 700, and 1000. First, we observe that
the system under-performs in the low traffic regime due to the
lack of EV customers, as well as during heavy traffic as the low
QoS increases the system’s penalty. In addition, we observe
that for moderate and higher traffic, the operator manages to
significantly increase its profit with a loose admission policy,
and by lowering the speed limit. By doing so, the service time
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Fig. 7. Hourly Profit under Admission Control (available charging spots C) and Speed Regularization (umax) for Low, Moderate, and Heavy Incoming Traffic

of each EV is reduced as their energy demand is frequently
reached resulting in an average service rate increase. On the
other hand, when the operator is lacking available capacity,
increasing the speed limit will maximize the profit as more
customers will be admitted to the system on average.

V. CONCLUSION

This paper presents a stochastic model for electric vehicle
WCH systems that jointly captures the availability of both
power and communication resources. Our framework utilizes
speed-density modeling to account for road conditions and
defines the EV charging service rate as a function of EV
energy demands, highway speed limit, and EV road density.
A numerical evaluation demonstrates the applicability of our
model to real-world cases, and its ability to provide insights
on parameter choices during both infrastructure planning, and
day-to-day operation. Part of our future work aims for our
model’s extension to evaluate the use of power storage on the
WCH, and analyze the possible performance enhancement.
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