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ARTICLE INFO ABSTRACT

In this work, GaN nanowires have been formed on Si substrate using production standard stepper lithography
and top-down approach. Three different functionalized devices were prepared by the deposition of metal oxides-
ZnO, WO3 and SnO, by optimized RF sputtering on nanowires followed by rapid thermal annealing. The ele-
mental composition, crystallinity and surface topography of metal-oxide/GaN nanowires were fully character-
ized by EDS, XRD, AFM and SEM. The SO, gas sensing data was collected and analyzed for all three sensors. The
ZnO/GaN sensor was found to be the best candidate for precise SO, detection. To examine the real-world ap-
plicability of ZnO/GaN sensor device, its additional sensing properties, including gas sensing adsorption and
desorption rate, cross-sensitivity to interfering gases, and long-term stability at various environmental conditions
were investigated. Furthermore, principal component analysis has been performed to address the cross-sensitive
behavior of ZnO. The SO, sensing mechanism on metal-oxide/GaN under UV irradiation was discussed as well.
Results demonstrate that ZnO functionalized GaN nanowire can be employed as a high performance SO, sensor.
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1. Introduction

The US Environmental Protection Agency (US EPA) and others have
long recognized the environmental and public health significance of air
pollutants like SO, one of the six pollutants regulated under the US
National Ambient Air Quality Standards (NAAQS). The one-hour ex-
posure limit has been set 75 ppb for SO, by the standards [1]. The prime
sources of SO, include burning of fossil fuels in oil refineries, power
stations, industrial plants and motor vehicles [2]. It is also produced
during the processing of mineral ores containing sulfur, as well as from
natural sources like active volcanoes and forest fires. Excessive SO,
exposure is detrimental to the health of eyes, lungs and throat [3]. SO,
gas molecules easily dissolve in the water droplets in clouds, causing
acid rain that affects natural balance of rivers, lakes and soils, resulting
in damage to wildlife and vegetation [4]. Combining with air moisture,
it causes gradual damage to some building materials (e.g., limestone) as
well.

In comparison to gas detection techniques like optical [5], acoustic
[6], and gas chromatographic methods [7] functionalized nano-struc-
tured semiconductors have been highly effective due to the advantages
such as- low energy linear output with high resolution, lower aspect-
ratio, repeatability, ppm level detection with high accuracy, and lower
cost [8,9]. However, semiconductor-based sensors are highly sensitive
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to temperature and humidity fluctuations and have minimal shell life
[10]. Therefore, further research efforts are required to explore novel
semiconducting materials and develop robust gas sensors for reliable
SO, detection.

Over the past few years, several highly-sensitive SO, gas sensors
were reported using various nanostructured semiconducting materials
including graphene [11], MoS, [12], SnO, [13], NiO-ZnO [14], and
SrMoO, [15]. However, when it comes to robust and reliable SO, de-
tection, nanostructured GaN is an attractive semiconducting backbone
material. Having a direct large band gap of 3.4eV, GaN exhibits the
ability to operate at a wide range of temperatures, provide radiation
and environmental stability, and mechanical robustness [16].

One-dimensional (1D) nanowire-based sensors have been ex-
tensively used to detect several gas species at extremely low con-
centrations due to their large surface-to-volume ratio [17]. Though
nanowires are electrically sensitive, they exhibit poor selectivity due to
inadequate and non-specific adsorption [18,19]. It is well known that
nanowire selectivity toward analyte can be improved by catalytic
functionalization. Very few experimental chemical sensing results of
functionalized GaN nanowires have been reported previously [20,21].

In this paper, we have presented three different SO, gas sensors
based on ZnO, WO5; and SnO, functionalization of GaN nanowires
formed using top-down fabrication approach. From now on, for
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convenience, in the main body of the paper we refer the devices only
using the type of metal oxide, because GaN nanowire is the common
backbone for all sensor devices of this study. As-prepared sample
morphologies, microstructures, and compositions were fully char-
acterized via X-ray diffraction (XRD), energy dispersive spectroscopy
(EDS), scanning electron microscopy (SEM) and atomic force micro-
scopy (AFM). The room-temperature SO, sensing properties of the de-
vices were investigated, and ZnO functionalized GaN nanowire was
found to be the optimal SO, sensor among the considered metal oxide
coated sensors. For further confirmation of ZnO/GaN nanowire as an
appropriate SO, detector, its additional sensing properties, including
selectivity, repeatability, and long-term stability were evaluated.
Furthermore, the basic SO, sensing mechanism of metal oxide func-
tionalized GaN nanowire has been discussed.

2. Experimental details
2.1. Sensor materials

The GaN on silicon wafers were purchased from EpiGaN. All the
metal-oxide sputtering targets were obtained from Kurt J. Lesker
company.

2.2. Sensor fabrication

The proposed sensor devices have been fabricated using the stan-
dard fabrication technique in a class 100 cleanroom. The schematic
process flow for the sensor fabrication is illustrated in Fig. 1. After
doing standard RCA cleaning, GaN nanowires of width 300-400 nm
have been formed by stepper lithography assisted dry etching. While
performing inductively coupled plasma (ICP) etching, patterned metal
was used to protect the defined GaN nanowire. Then, ohmic contacts
were formed on nanowire ends with a deposition sequence of Ti
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(40 nm)/Al (80nm)/Ti (40nm)/Au (40nm) in a standard electron
beam evaporator. After that, SiO, layer was deposited on the device by
plasma-enhanced chemical vapor deposition (PECVD) to protect the
nanowire and metal contacts from being damaged during high tem-
perature processing and etching. Next, reactive ion etching (RIE) was
employed to create an active area on nanowire for the functionalization
by metal oxide. Three different metal oxides, such as- ZnO, WO3 and
SnO, were deposited on the exposed GaN nanowires using RF magne-
tron sputtering. These physical vapor depositions were performed in a
reactive atmosphere with O, flow at 300 °C and 280 W RF power. Then,
rapid thermal annealing (RTA) was performed in pure Ar at
600—700°C for 4-5min in order to crystallize the deposited metal
oxides and to enhance the ohmic contacts to the GaN nanowires. Later,
metal bond pads with a sequence of Ti (40 nm) and Au (150 nm) were
deposited upon ohmic metal contacts in the electron beam evaporator.
After completing the above-described steps, sensor devices were
mounted on and wire bonded to a 24-pin ceramic dual in line (DIP)
package.

2.3. Instruments and experimental set-up

The microstructures and surface morphologies of the fabricated
metal-oxide/GaN sensors were characterized by field-emission scanning
electron microscopy (FESEM). The synthesized samples were examined
in a Zeiss Ultra 60 Field Emission Scanning Electron Microscope. The
elemental components of the synthesized GaN nanowire were verified
through energy-dispersive X-ray spectroscopy (EDS). The crystallinity
and phase of the metal oxide films were examined by X-ray diffraction
(XRD) using a Rigaku Smart Lab X-ray diffraction system having Cu-Ka
radiation. The advanced surface topography and roughness of the
prepared metal-oxide/GaN sensors were studied by an Asylum Cypher
High Resolution Atomic Force Microscope.

The UV illuminated current-voltage measurements of the fabricated
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Fig. 1. Schematic process flow for the proposed sensor fabrication. (1) Standard RCA cleaning of GaN wafer before lithographic pattern transfer. (2) Implementation
of stepper lithography and ICP etching to develop GaN nanowires on Si substrate. (3) Ohmic contact formation between metal stack and GaN. (4) Deposition of metal

oxide on nanowire for surface functionalization.
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devices were performed by a National Instrument PCI DAQ system.
Light emitting diode (LED) UV light source was used having a wave-
length of 365 nm with output power was maintained at 470 mW/cm?.
The devices were placed in a custom designed gas chamber made of
stainless steel for gas sensing data collection. A mixture of SO, gas and
compressed breathing air was flowed into the sensing chamber and the
net flow (air + SO,) was maintained at 0.5 slpm. Mass flow controllers
(MFCs) independently controlled the flow rate of each component,
determining the composition of the mixed gas. The sensor currents were
measured by the National Instrument PCI DAQ system by applying a
constant 5V DC voltage. The device had been allowed to regain the
baseline current without purging the gas chamber after SO, exposure.
Sensor response is calculated as (Rgas - Rair)/Rair, Where Rg,s and Ry, are
the resistances of the sensor in the presence of the analyte-air mixture
and in the presence of air, respectively. Finally, long-term stability
study was conducted on the fabricated devices under various environ-
mental conditions in a Tenny BTRC temperature and humidity test
chamber.

3. Results and discussion
3.1. Material and device characterizations

A buffer layer of Alp25Gag,sN was formed in between GaN layer
and Si substrate to minimize the lattice mismatch. Fig. 2(a) shows EDS
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spectra of the fabricated GaN/AlGaN nanowire on Si substrate. The
existence of elemental components, such as- Ga, Al and N on the sub-
strate are clearly verified by the corresponding EDS peaks.

Since metal-oxide functionalized GaN NWs are minute in size, re-
ference samples with ZnO, WO3 and SnO, thin films on sapphire sub-
strate were prepared to detect the XRD signals. The considered metal
oxides were deposited on the substrate by RF magnetron sputtering to
form a 40 nm thin film. The deposition was followed by annealing at
600 —700 °C for 4—5 min with the supposition that an identical metal
oxide morphology has been formed on the substrate as in the metal
oxide coated GaN NW case. Fig. 2(b) presents the XRD spectrum of the
prepared ZnO thin film where diffraction peaks are indexed to ZnO with
a hexagonal wurtzite crystal structure (JCPDS: 36-1451). A strong
growth orientation along (002) plane suggests that the film growth is
perpendicular to the substrate [22]. Due to possessing least surface
energy, the (002) plane of ZnO is thermodynamically favorable [23].
The weak diffraction peaks corresponding to the (101), (102), and
(103) planes reveals the existence of few randomly oriented grains. The
XRD pattern of annealed WO3 thin film is shown in Fig. 2(c). The major
diffraction peaks are exhibited at 23.84, 33.74, 41.76, and 48.65°,
which are attributed to the planes (002), (202), (122) and (222) of
hexagonal WO3; (JCPDS: 32-1395). Fig. 2(d) shows the XRD patterns
obtained from SnO, thin film sample after annealing in a similar pro-
cess. As seen from the detected diffraction pattern of SnO,, the peaks
corresponding to (110), (101), (200), (211), (220), and (002) planes
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Fig. 2. (a) EDS spectra of the fabricated GaN/AlGaN nanowire on Si substrate. X-ray diffraction patterns of (b) ZnO thin film, (¢) WO3 thin film, and (d) SnO, thin

film on sapphire substrate.
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1.7 nm

Fig. 3. High-resolution 2D AFM images of the annealed (a) ZnO, (b) WO3, and (c) SnO, on sapphire substrate.

indicate the presence of cassiterite crystal phase with tetragonal
structure (JCPDS: 41-1445). Lack of sharpness of the peaks reveals the
polycrystalline nature of the SnO, film.

Minor dislocations in few XRD peak positions are caused by the
residual stress within the film due to a mismatch in thermal expansion
coefficients of the metal oxides and sapphire substrate. The average
crystallite size (D) was estimated using the following Debye-Scherrer
equation [24]:

094
" Bcosé (@)

where D is the crystallite size, A is the X-ray wavelength, f3 is the full
width at half maximum of the diffraction peak, and 6 is the Bragg
diffraction angle of the peaks. The average crystallite sizes were found
to be 18.51 nm, 30.80 nm and 17.45nm for the ZnO, WO; and SnO,
thin films, respectively.

The topography and roughness of the fabricated metal oxides coated
GaN nanowires are illustrated using two-dimensional Atomic force
microscopy (AFM) images as shown in Fig. 3(a-c). The root mean
square (rms) surface roughness of ZnO, WO3 and SnO, thin films are
found to be 4.21 nm, 3.95nm and 1.4 nm, respectively. The moderate
surface roughness of these deposited metal oxides contributes to a
larger sensing response than those of highly uniform surfaces towards
the analyte gas molecules. However, excessive surface roughness
hampers response and recovery rates due to decreased self-diffusivity of
analyte molecules [25].

Fig. 4(a) shows FESEM image of the fabricated GaN nanowire after
forming ohmic metal contacts on the two ends. The morphologies of the
nanowire were observed quite uniform exhibiting a height and width of
300 £ 20nm and 400 *+ 8nm, respectively. The UV illuminated
current-voltage (I-V) characteristics of the fabricated devices are pre-
sented in Fig. 4(b). It is seen that bare GaN nanowire exhibits lower
conductivity before functionalizing with metal oxide. This phenomenon
is attributed to the introduction of surface states on GaN through am-
bient oxygen adsorption [26]. All three metal-oxide functionalized GaN

devices showed linear I -V characteristics, indicating the formation of
ohmic contacts to sensor devices.

3.2. Gas sensing properties

The dynamic response-recovery curves for the three considered
metal-oxide/GaN nanowire-based sensor devices on exposure to 0.5, 1,
10, 100 and 500 ppm concentrations of SO, gas are shown in Fig. 5. In
the case of bare GaN nanowire, SO, response is very weak compared to
the metal-oxide functionalized GaN sensors even at high concentrations
(not shown). All the gas sensing data was collected in dry air under UV
light at room temperature (20 °C). Under the irradiation of UV light, the
metal-oxide nanocluster photo-desorbs water and oxygen creating sur-
face defect active sites and electron-hole pairs are generated in the GaN
backbone [27]. The target SO, molecules are chemisorbed at those
generated active sites. Then dynamic trapping and de-trapping of
charge carriers at those active sites by the adsorbed molecules causes
surface potential modification of the GaN backbone, leading to mod-
ulation of the sensor current, which is proportional to the SO, con-
centration.

The higher magnitude response-curve with steeper slope under UV
irradiation indicates the contribution of UV light to the enhancement of
the gas sensing response (Supplementary Material). Each sensor had
been allowed to obtain a stable baseline signal by flowing only dry air
for 10 min. before exposing to the analyte gas for 250 s. When SO, gas
flow was turned off, the sensor was kept for 10 min. for baseline re-
covery without any purging. It was clearly seen that ZnO sensor re-
sponded the highest in magnitude among the three sensors for all test
concentrations. The sensors with other two functionalizing metal oxides
exhibited significant gas responses as well.

The normalized responses of the three metal-oxide/GaN sensors are
plotted as a function of SO, gas concentration in Fig. 6. The fitting
equations of the sensor response Y and gas concentration X are stated as
Y =1.954 In X+ 6.260, Y =1.001 In X + 3.382 and Y = 0.483 In
X + 0.993 for ZnO, WO3 and SnO, sensor devices, respectively, and the
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Fig. 4. (a) FESEM image of the developed bare GaN nanowire. (b) I-V characteristics of the GaN nanowire devices functionalized with different metal oxides in

presence of UV light.
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Fig. 5. Resistance responses of the ZnO/GaN device, WO3/GaN device and SnO,/GaN device for varying concentrations of SO, gas in dry air under UV light at room

temperature (20 °C).

regression coefficient is 0.9812, 0.9562, and 0.9165, respectively. The
largest coefficients within the fitting equation and highest regression
coefficient of ZnO device confirms that it possesses the highest sensi-
tivity and excellent sensing linearity to our target analyte. Yamazoe et.
al. showed that the electric resistance of a semiconductor gas sensor
under exposure to a target gas is proportional to P", where P is partial
pressure of the gas and n is a constant specific to the kind of target gas
[28]. Here, in case of oxidizing SO, gas, the power law exponent has
been derived as 3.1 from response vs gas concentration data for the
ZnO/GaN device by utilizing all the standard values of the parameters

specified in that paper.

The response time is defined as the time taken by a sensor response
to reach 90 % of the total response change when exposed to the analyte.
Similarly, recovery time is the time taken by a sensor response to reach
90 % of the total response change when analyte is turned off. Fig. 7(a—c)
depicts SO, gas response/recovery process of ZnO, WOz and SnO,
sensors when exposed to 10 ppm SO, in dry air under UV light at room
temperature (20 °C). It was found that ZnO device was the fastest in SO,
response among the three considered sensors due to substantial che-
mical interaction between ZnO and SO, molecules as revealed from the

Fig. 6. Response fitting lines of the ZnO/GaN
device (black), WO3/GaN device (green) and
SnO,/GaN device (red) for varying concentra-
tions of SO, gas in dry air under UV light at
room temperature (20 °C). (For interpretation
of the references to colour in this figure legend,
the reader is referred to the web version of this
article.)
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Fig. 7. Response and recovery curves of (a) ZnO/GaN device, (b) WO3/GaN device, and.
(c) SnO,/GaN device when exposed to 10 ppm of SO, in dry air under UV light at room temperature (20 °C).

energy and DOS calculations. However, recovery for the ZnO device
was slightly slower than the other two metal oxide sensors. Recovery of
gas molecules from the sensor surface becomes sluggish when the ad-
sorption system is highly chemically stable because of possessing ex-
cessive adsorption energy. Furthermore, SnO, sensor device was found
to be the fastest in SO, gas recovery-process due to exhibiting weaker
chemical interaction, i.e., lower adsorption energy with SO, molecules.
Therefore, neither strong nor weak chemical interaction between ana-
lyte and sensing surface is favorable to attain a quick responding sensor
device.

The results from gas sensing data, response fitting lines and re-
sponse-recovery transients indicate that ZnO-based sensor can be
screened out as the optimal SO, sensor device among the three metal-
oxide/GaN sensors considered. To further examine the ZnO sensor, its
additional sensing properties, including gas sensing adsorption and
desorption rate, cross-sensitivity to interfering gases, and long-term
stability at various environmental conditions were investigated.

To study the adsorption and desorption of SO, molecules on ZnO,
absorption/desorption rate constants (tr) were obtained from curve
fitting of the first-order rate equation with experimental response data.
The first-order rate equation is given by [29]:

R=Ri+ (R, -R)e™ " (2)

where R is the instantaneous resistance, R¢ is the final resistance after
the end of an adsorption /desorption period, R, is the initial resistance
before an adsorption/desorption period, and t is the time. Fig. 8(a)
presents measured resistance decrease associated with gas desorption
and the fitted curve when the sensor had been allowed to recover after
being exposed to 10 ppm SO,. The experimental and fitted exponential
curve are quite matched with a fitting error of ~4.8 %, which reveals
the existence of a single rate constant, i.e., one charge transfer me-
chanism is mainly involved with the SO, response/recovery in ZnO
sensor.

We know, adsorption/desorption rate constant (t) indicates the
speed of the gas adsorption /desorption process. The estimated ad-
sorption and desorption rate constants at various SO, concentrations
are showed in Fig. 8(b). It is found that, rate constants keep decreasing
initially with the increase of SO, concentration and become nearly
constant at higher gas concentrations. Also, desorption rate gets slower
than the corresponding adsorption rate with the increasing SO, con-
centration.

It is well known that metal oxides are highly cross-sensitive to in-
terfering gases present in the background of the target gas. In order to
evaluate the selectivity, the ZnO sensor had been exposed to various
background gases of SO, at three different levels of concentration at
room temperature (20 °C). Fig. 8(c) demonstrates that the sensor is
highly selective against hydrogen (H,), methane (CH,4) and carbon di-
oxide (CO,) at all levels of test concentration. The sensor showed some
response toward nitrogen dioxide (NO,) which can contribute minor
cross-sensitivity to SO, response if present in the background. The
cross-sensitive feature of ZnO mainly arises from the similar charge

transfer process with SO, and NO,, which was further addressed by
applying principal component analysis (PCA) technique on the experi-
mental gas response data.

Major transient response quantities, such as response magnitude,
response time and recovery time are used as input parameters in PCA
analyses. For the two test gases (SO and NO,), we collected gas re-
sponses for 6 different concentrations (0.5, 1, 10, 50, 100 and
500 ppm), and repeated the measurements 3 times. The input PCA
dataset was a 36 X 3 matrix in which 60 % had been used as training
set and 40 % was applied as test set. The component analyses comprised
a variance threshold of 98 %. Fig. 8(d) shows the PC2 vs PC1 plot which
includes up to 96 % of the total variance. All the raw data processing
and PCA-analysis had been performed in the RapidMiner studio soft-
ware.

The long-term stability is considered as the most vital parameter of
sensors on which reliability of sensor device is dependent. The fabri-
cated ZnO sensor devices showed excellent stability at room tempera-
ture and humidity. To further verify the stability and reliability, the
fabricated devices had been stressed at harsh environmental conditions.
For a consecutive 20 days, ZnO sensor devices were kept in four ex-
treme environmental conditions such as: (1) low temperature (5 °C) and
low humidity (5% RH), (2) low temperature (5 °C) and high humidity
(90 % RH), (3) high temperature (100 °C) and low humidity (5% RH),
and (4) high temperature (100 °C) and high humidity (90 % RH). The
gas response data were collected after every 4 days with 10 ppm of SO,
exposure. It was found that normalized responses of the devices were
quite stable on applying environmental conditions (1) and (4) as plotted
in Fig. 9(a). Sensor responses had been degraded initially with condi-
tion (2) and then started to get stable in the long run. The device
showed the same trend with condition (3) but in opposite direction, i.e.,
normalized responses were increasing. From the results of all these
applied stress-conditions, it appears that the ZnO device can withstand
the extreme operating environments with a minor stability degradation.
Also, high temperature environment is favorable for enhancing sensor
response, but highly humid condition degrades response. Fig. 9(b)
shows the variation of steady state resistance and corresponding sensor
response change to 10 ppm SO, under different relative humidity con-
ditions ranging from 5 % to 80 % RH at 20 °C. It is clearly seen that
sensor response toward SO, gas is slightly susceptible (< 2%) to op-
erating humid conditions even though steady state resistance of the
device decreases gradually up to 4%.

Table 1 summarizes the comparison of SO, sensing performance of
ZnO/GaN sensor with other recently reported SO, sensors. We utilized
top-down fabrication approach comprising of optimized and well con-
trolled process steps for the development of our devices. This enhances
the scope of large-scale production of this device at low cost. Further-
more, the ZnO sensor possesses the advantages of low power con-
sumption, low working temperature, strong response, excellent se-
lectivity, stability at harsh conditions, and reproducibility which make
this device suitable for the integration in multipurpose embedded chips.
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Fig. 8. (a) Decrease of resistance associated with gas desorption and the fitted curve when ZnO/GaN sensor had been allowed to recover after being exposed to
10 ppm SO, under dry air at 20°C. (b) Rate constant (t) extracted from curve fitting vs SO, concentration in ppm. (c) Gas selectivity test for ZnO/GaN sensor toward
various background gases at test concentrations of 0.5, 10 and 500 ppm of each gas at 20°C. (d) Principal Component Analysis: PC_2 vs PC_1 plot for 6 different
concentrations of SO, and NO, gases exposed to ZnO sensor, which includes up to 96 % of the total variance.

4. Gas sensing mechanism

Under UV excitation with an energy above the bandgap energy,
electron-hole pairs are generated both in the GaN and in the metal-
oxide. Since photogenerated holes diffuse toward the GaN surface due
to the surface band bending, carrier lifetime and thus the photocurrent
increases within GaN nanowire. On the other hand, the chemisorbed
oxygen and water molecules on metal-oxide receptors receive the
photogenerated holes and get desorbed. SO, molecules are directly
adsorbed onto these freshly produced sites due to their electrophilic
property. This charge transfer between the metal-oxide and the SO,
molecules raises the depletion region width within the GaN, thus de-
creases the sensor current. In this way, the device response is modu-
lated with the depletion region alteration caused by the change in SO,
gas concentration.

Since SO, is an oxidizing gas, it makes competitive adsorption on
metal-oxides against aerial oxygen. The adsorbed aerial O, molecules
are reduced to different oxygenated anionic species (O-, O,-, 0,%, 0%)
by the extraction of free electrons from the metal-oxide surface. Some
target SO, molecules combine with these oxygenated anionic species
and oxidized to SO3 molecules, contributing a sensor current modula-
tion in opposite direction. Therefore, the overall sensor response is
slightly degraded due to the competitive adsorption of aerial oxygen.

A schematic energy-band diagram of the metal-oxide/GaN and SO,
molecule is illustrated in Fig. 10. Here, Fermi energy of the metal-
oxide/GaN starts going down toward valence band as electrons are
transferred from the metal oxide to the SO, molecule. This charge
transfer process comes to an end when an equilibrium Fermi energy
(Er o) is established in the adsorption system.

5. Conclusion

In this paper, we report the fabrication and characterization of

metal oxide functionalized GaN nanowire on Si substrate using pro-
duction standard stepper lithography for SO, gas detection. Three dif-
ferent functionalized devices, such as- ZnO/GaN, WO3/GaN and SnO,/
GaN were prepared and their composition, crystallinity, surface topo-
graphy and morphology were thoroughly examined. The gas sensing
data was obtained and analyzed for all three sensors, and ZnO/GaN was
appeared as the ideal sensor for high performance SO, sensing. The
additional sensing properties of ZnO/GaN device such as- adsorption
and desorption rate, cross-sensitivity to interfering gases, and long-term
stability at extreme environmental conditions were investigated to
confirm its implementation in field conditions. Using the energy band
diagram, SO, gas sensing mechanism on the metal-oxide/GaN was ex-
plained in detail. Results indicate that ZnO/GaN sensor is a promising
candidate for high performance SO, sensing in real-world applications.
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Fig. 9. (a) Long-term stability test of the ZnO/GaN devices at four different extreme environmental conditions stressed for 20 consecutive days. Low T = 5°C, High
T = 100°C, Low RH = 5% RH, and High RH = 90 % RH. T and RH indicate temperature and relative humidity, respectively. (b) Steady state resistance change (red)
and sensor response of ZnO device to 10 ppm SO, (black) for varying relative humidity conditions at 20°C. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Comparison of gas sensing performance of ZnO/GaN sensor with other recently reported SO, sensors.

25

Materials Structure Operating Temperature Concentration (ppm) Sensitivity/ Response Response time Recovery time (s)
(9] (s)

ZnO/GaN [This work] Nanowire RT 10 121 230 275
Ni-MoS, [12] Nanoflower RT 5 7.4 50 56
NiO-ZnO [14] Nanodisks 240 20 16.25 52 41
NiO/SnO, [15] Thin film 180 500 56 80 70
Au/ZnO [30] Thin films RT 10 1.1 20 min 50 min
Sn0,-TiO, [31] Composite (75 mol% of TiO,) 450 10 55 5 min > 5min
g- C3N4/rGO [32] 2D stacking hybrid RT 2 0.0032 ppm ! 140 130
SnO, [33] Thin films RT 1 138 - -
TiO,/rGO [34] Nanocomposite RT 1 10.08 73 128
Ru/Al,03/Zn0O [35] Nanosheets 350 25 20 60 6 min
SrMoO, [36] Nanoflowers 600 2000 —-17.2 15.6 min < 30 min
0.5 wt% Nb-WO;3 [37] Nanorod 250 500 10 6 Several mins
RGO-ZnO on 2DEG AlGaN/ Nanorods RT 120 ppb 14 120 320

GaN [38]
CoZn-NCNTs [39] Nanotube RT 0.5 8.45% 32 900
Au-PANI [40] Heterostructured thin film RT 2 300 - -
Polyaniline [41] Nanoneedles RT 10 4.2 180 <180
Polyaniline-WO3 [42] Nanocomposite RT 10 10.6 180 180
Polyaniline [43] Porous nanofibers RT 5 4.5% 185 < 200
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Fig. 10. Schematic representation of charge transfer mechanism within the energy band diagram of metal-oxide/GaN and SO, molecule. Here, ¢, Ey, Er and Eg go
represent work function of the metal oxide/GaN, energy of vacuum level, Fermi energy of the metal-oxide/GaN, and the equilibrium state of the adsorption system,
respectively. E;ymo and Eyomo indicate the orbital energies of SO, molecule.

(NSF), USA Grant: ECCS1840712. The metal-oxide/GaN NW based SO,
gas sensing devices were fabricated in the Nanofab of the NIST Center
for Nanoscale Science and Technology. Gas sensing measurements were
conducted at N5 Sensors, Inc.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the

online version, at doi:https://doi.org/10.1016/j.snb.2020.128223.
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