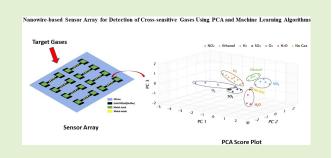


Nanowire-Based Sensor Array for Detection of Cross-Sensitive Gases Using PCA and Machine Learning Algorithms

Md Ashfaque Hossain Khan[©], Brian Thomson, Ratan Debnath, Abhishek Motayed, and Mulpuri V. Rao

Abstract—In this work, a gas sensor array has been designed and developed comprising of Pt, Cu and Ag decorated TiO₂ and ZnO functionalized GaN nanowires using industry standard top-down fabrication approach. The receptor metal/metal-oxide combinations within the array have been determined from our prior molecular simulation results using first principle calculations based on density functional theory (DFT). The gas sensing data was collected for both singular and mixture of NO₂, ethanol, SO₂ and H₂ in presence of H₂O and O₂ gases under UV light at room temperature. Each gas produced a unique response pattern across the sensors within the array by which precise identification of cross-sensitive gases is possible. After pre-processing of raw



data, unsupervised principal component analysis (PCA) technique was applied on the array response. It is found that, each analyte gas forms a separate cluster in the score plot for all the target gases and their mixtures, indicating a clear discrimination among them. Then, four supervised machine learning algorithms such as- Decision Tree, Support Vector Machine (SVM), Naive Bayes (kernel) and k-Nearest Neighbor (k-NN) were trained and optimized using their significant parameters with our array dataset for the classification of gas type. Results indicate that the optimized SVM and NB classifier models exhibited 100% classification accuracy on test dataset. Practical applicability of the considered algorithms has been discussed as well. Moreover, this array device works at room-temperature using very low power and low-cost UV light-emitting diode (LED) as compared to high power consuming commercially available metal-oxide sensors.

Index Terms—Sensor array, cross-sensitivity, gas sensor, principal component analysis (PCA), machine learning.

I. INTRODUCTION

THERE is a great need for the development of highly selective sensors for detecting various toxic gases and their mixtures in many industrial, medical, space exploration and environmental monitoring applications. Environmental gases such as SO₂, NO₂, ethanol and H₂ are harmful either to the environment and/or to living beings and their monitoring requires sensors capable of detecting ppm level of these gases

Manuscript received January 11, 2020; accepted February 4, 2020. Date of publication February 10, 2020; date of current version May 5, 2020. This work was supported in part by NSF under Grant ECCS1840712 and in part by N5 Sensors, Inc. The associate editor coordinating the review of this article and approving it for publication was Prof. Tarikul Islam. (Corresponding authors: Md Ashfaque Hossain Khan; Mulpuri V. Rao.)

Md Ashfaque Hossain Khan and Mulpuri V. Rao are with the Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030 USA (e-mail: mkhan53@gmu.edu; rmulpuri@gmu.edu).

Brian Thomson, Ratan Debnath, and Abhishek Motayed are with N5 Sensors, Inc., Rockville, MD 20850 USA.

This article has supplementary downloadable material available at http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/JSEN.2020.2972542

well below their Occupational Safety and Health Act (OSHA) permissible exposure limits [1]. Metal oxide-based sensors to detect these environmental pollutants have been the subject of intensive research for several decades [2]. However, these metal oxide sensors lack precise selectivity towards any specific gas. Their mechanism of sensing involves chemical interaction of the analyte with the oxygen chemisorbed on the surface [3]. The cross-sensitivity among different analytes is unavoidable, irrespective of their oxidizing or reducing nature. Systematic variations in the parameters such as dopants, additives, operating temperatures, bias voltage, grain size and morphology were adopted to achieve the necessary selectivity among various analytes [4]. Though the efforts had been made, the problem of cross-sensitivity for a single metal oxide-based sensor can't be fully eliminated.

With the advancement in nano fabrication and chip integration, there exists a tremendous opportunity for developing an integrated chip comprising of several nano sensors that can differentiate among the analyte types [5]. This integrated sensor chip would be able to discriminate the toxic gases which exhibit similar charge transfer process during adsorption and desorption.

1558-1748 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

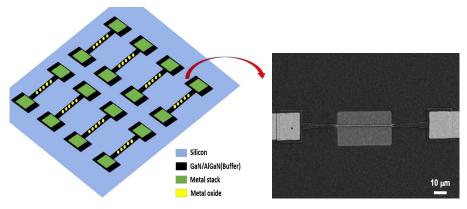


Fig. 1. (Left) Schematic of a sensor array containing eight metal/metal-oxide functionalized GaN nanowires. (Right) FESEM image of an individual nanowire sensor.

In this paper, we have presented a sensor array comprised of eight different metal/metal-oxide functionalized GaN nanowire sensors mounted on a PCB which can produce unique response pattern for each target gas. We used Pt, Cu and Ag decorated TiO₂ and ZnO on GaN surface for the detection of NO₂, ethanol, SO₂, H₂ and their mixtures in the presence of H₂O and O₂ gases at room temperature (20 °C). The sensor array data was acquired for both singular and mixture of gases which were pre-processed using RapidMiner software. Then, unsupervised principal component analysis (PCA) technique was applied on the array response for precise identification of those target gases. Furthermore, four different supervised machine learning algorithms such as- decision tree, support vector machine, naive Bayes (kernel) and k-Nearest Neighbor were optimized for our dataset. The performance of these classifiers had been studied to find out the suitable algorithm for gas classification. The proposed array device works at room-temperature using only a low power (micro-watt), and low-cost commercial UV light-emitting diode (LED) as compared to high power consuming commercially available metal-oxide sensors.

II. EXPERIMENTAL

A. Sensor Array Fabrication

The sensing elements of the sensor array are composed of metal/metal-oxide function-alized GaN nanowires (Figure 1). The nanowire-based sensors have been fabricated using the standard top-down fabrication technique in a class 100 cleanroom. Si-doped GaN nanowires having a width of 300-400 nm were formed on silicon substrate by production standard stepper lithography assisted inductively coupled plasma (ICP) etching of GaN epilayer grown on Si substrate. Ohmic metal contacts were formed on nanowire ends with a deposition sequence of Ti (40 nm)/Al (80 nm)/Ti (40 nm)/Au (40 nm) in a standard electron beam evaporator. After that, SiO₂ layer was deposited on the device by plasma-enhanced chemical vapor deposition (PECVD) to protect the nanowire and metal contacts from being damaged during high temperature processing and etching. The details of the device fabrication including the schematic process flow diagram can be found in our previous papers [6], [7]. Reactive ion etching (RIE) was employed to

create an active area on GaN nanowire for the metal/metaloxide nanoclusters functionalization. A thin layer (5-10 nm) of TiO₂ or ZnO were deposited on nanowire surface by RF magnetron sputtering in a reactive atmosphere with O₂ flow at 40 °C and 280 W RF power. Then, rapid thermal annealing (RTA) was performed in pure Ar at 600-700 °C for 4-5 mins in order to crystallize the deposited metal oxides and to enhance the ohmic contacts to the GaN nanowires. Next, receptor metals such as- Pt, Cu and Ag were added on top of metal-oxide by e-beam evaporation with a deposition rate of 1-1.5 Å/s. The typical thickness of these metals is 1-5 nm. Thus, we got a total of eight metal/metal-oxide combinations, including the bare metal-oxides on GaN nanowires. The receptor metal/metal-oxide combina- tions for the target gases have been chosen from our previous molecular simulation results using first principle calculations based on density functional theory (DFT) [8]. After the deposition of Ti/Au metal bond pads on the ohmic contacts, sensor devices were mounted on and wire bonded to leadless chip carrier (LCC) packages. Then, all these eight different metal/metal-oxide functionalized sensor devices have been mounted and integrated into a predesigned printed circuit board (PCB) to develop the final sensor array device.

B. Instruments and Experimental Set-Up

The current-voltage measurements of the fabricated devices were performed by a National Instrument (NI) PXI SMU system under a LED UV light source having a wavelength of 365 nm and output power of 470 mW/cm². The sensor array was placed in a custom designed gas chamber made of stainless steel for gas sensing data collection. A mixture of target gases and compressed breathing air was flowed into the sensing chamber and the net flow (air + analytes) was maintained at 0.5 slpm. Mass flow controllers (MFCs) independently controlled the flow rate of each component, determining the composition of the mixed gas. The sensor array currents were collected by the NI PXI SMU system at a constant 5V DC voltage. The devices have been allowed to regain the baseline current without purging the gas chamber after exposure. Sensor response was calculated as $(R_{\rm gas} - R_{\rm air})/$ $R_{\rm air}$, where $R_{\rm gas}$ and $R_{\rm air}$ are the resistances of the sensor in

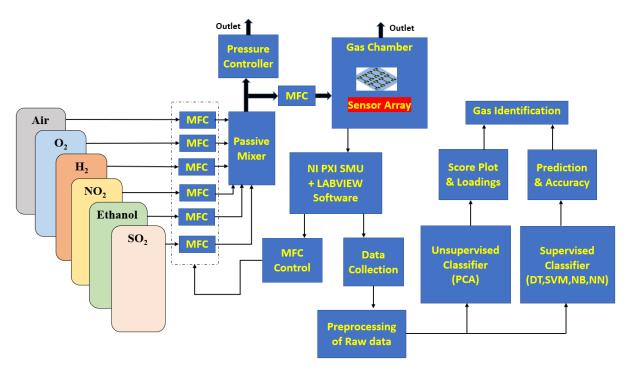


Fig. 2. The process flow for the gas sensing data collection and analysis.

the presence of the analyte–air mixture and in the presence of air, respectively. Figure 2 illustrates the process flow for the gas sensing data collection and analysis.

After the acquisition of raw data, preprocessing steps such as- noise filtering, normalization were performed on it. The gas response analysis is mainly performed here using two approaches: unsupervised and supervised classification. Principal component analysis is an unsupervised method of feature extraction and identification. The basic idea of PCA is to transform the original features into a set of new features in order of importance through a set of orthogonal vectors [9]. These new features are linear combinations of the original features and they are unrelated to each other. The features extracted from the training data utilizing PCA will be applied on test dataset for gas identification. Next, different supervised classification algorithms including decision tree, support vector machine, naive Bayes (kernel) and k-nearest neighbor were optimized using the training dataset. Herein, a 5-fold cross validation (CV) approach was utilized to avoid the overfitting in the training data. Finally, classification accuracy and overall performance of all the considered classifiers will be evaluated and compared to find out the optimal algorithm for precise gas identification.

III. RESULTS AND DISCUSSION

A. Gas Sensing Properties

All the singular gas sensing data was collected in dry air under UV light at room temperature (20 °C). Before the target gas exposure, the sensor array was kept under dry air for 10 minutes. This allowed to stabilize each sensor within the array and provided us the no gas responses of all the sensors. The sample raw data response profile is given in Figure S1 in the Supporting Information section.

Figures 3-4 show the responses and corresponding fitting lines of each sensor within the array toward all the target gases at various concentrations. Each response value plotted is the average response of three consecutive gas exposure responses at the same concentration for a certain analyte gas. The concentration axis is represented in a logarithmic scale to accommodate different target concentration ranges. The ppm ranges tested for NO₂, ethanol, SO₂, H₂ and O₂ are from 0.1 to 500, 50 to 5000, 0.1 to 500, 0.1 to 100 and 10000 to 400000, respectively. Then, the array sensors were exposed to different relative humidity levels, such as- 5%, 10%, 30%, 50%, 70% and 90% at room temperature (20 °C). The humidity responses are shown in Figure S2 and S3 in Supporting Information. It is clearly seen that all the individual TiO₂ and ZnO based sensors exhibited high sensitivity and excellent sensing linearity to almost all target gases. This reveals the well-known crosssensitive behavior of metal/metal-oxides toward environmental gases.

It was found from our previous research that GaN/TiO₂ sensor response is slightly enhanced with increasing humidity and got almost constant at high humid conditions. Also, a diminishing response increase was seen at higher operating temperatures. This trend was observed for GaN/ZnO sensor as well. It is observed that sensor baseline resistances are mainly altered due to high humidity for the fabricated sensor devices. The proposed data analysis technique is based on absolute response magnitude only, no baseline information is required here. Table 1 summarizes the fitting equations and regression coefficients from the response vs concentration plots. Also, average response/recovery times for each material and gas have been presented here.

The selectivity issue of these metal/metal-oxides can be well addressed by employing sensor array technique instead of a single sensor [10]. Each gas leaves a unique response

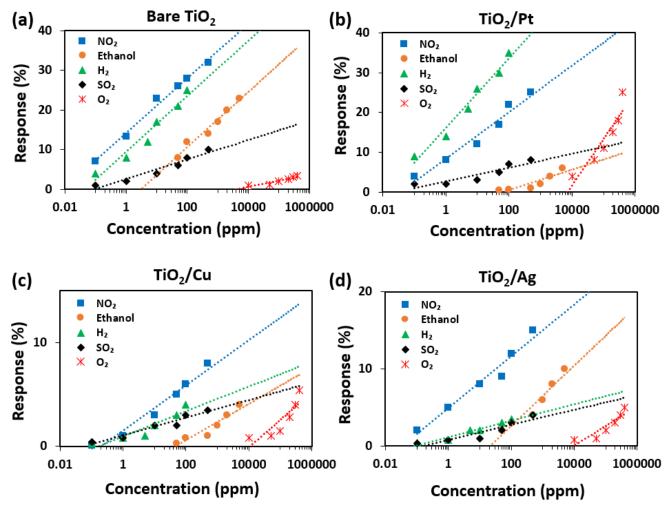


Fig. 3. Response fitting lines of (a) bare TiO₂, (b) TiO₂/Pt, (c) TiO₂/Cu, and (d) TiO₂/Ag for varying concentrations of NO₂, ethanol, SO₂, H₂ and O₂ gases in dry air under UV light at room temperature (20 °C).

footprint across the sensor array. This obtained footprint can be further analyzed by principal component analysis (PCA) and machine learning algorithms for precise identification of a target gas.

B. Principal Component Analysis on Array Response

Principal component analysis (PCA) is a mathematical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated attributes into a set of values of uncorrelated attributes called principal components [11]. In our case, all eight sensor-responses from the array were the correlated attributes which had been transformed into a set of uncorrelated principal components. Also, the redundancy of the correlated metal/metal-oxide responses from the array was resolved by smaller number of principal components that accounted for most of the variance in the observed attributes. The first principal component (PC 1) captures the maximum amount of variance possible in the original data set. On each gas exposure at a test concentration, eight response magnitudes from sensor array were used as input parameters in PCA analyses. For the target environmental gases such as- NO₂, ethanol, SO₂, H₂, O₂ and H₂O,

we collected gas responses for 6 different concentrations and repeated the measurements for three times. The input PCA dataset was a 120 x 8 matrix in which 60% had been used as training set and 40% was applied as test set. The component analyses comprised a variance threshold of 98%. Since different input features have different scale, each has been normalized with its statistical mean and standard deviation. Figure 5(a) shows resulting PCA score plot where each gas clusters together displaying clear separations among them. The relative contribution of the principal components- PC 1, PC 2 an PC 3 were obtained as 64.38%, 18.53% and 12.19%, respectively, comprising 95.1% of the total variance. Rest of the insignificant components captured the residual variance. Though 3-4 sensors are enough for separation, we have taken an array of 8 sensors for building up a strong response pattern and robust classification model to accommodate large calibration variations.

By investigating the eigenvectors (loadings) of the principal components, it is possible to find out which sensor of the sensor array is best suitable for the discrimination of the target gases. These component loadings in PCA are the correlation coefficients between the principal components and sensors within the array as shown Figure 5(b). Since the first principal

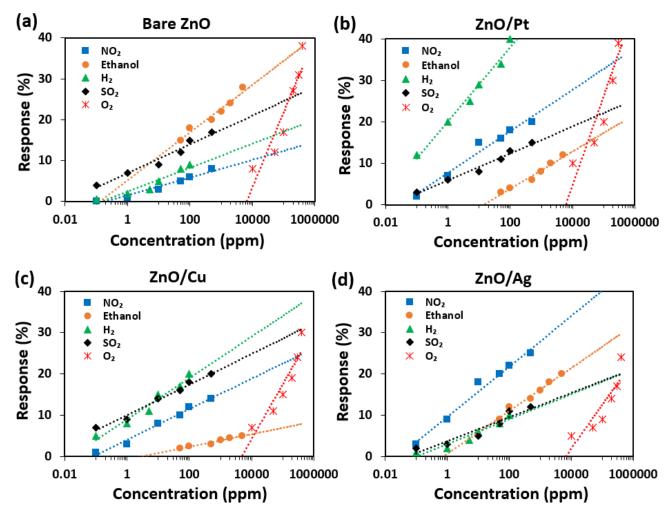


Fig. 4. Response fitting lines of (a) bare ZnO, (b) ZnO/Pt, (c) ZnO/Cu and (d) ZnO/Ag for varying concentrations of NO₂, ethanol, SO₂, H₂ and O₂ gases in dry air under UV light at room temperature (20 $^{\circ}$ C).

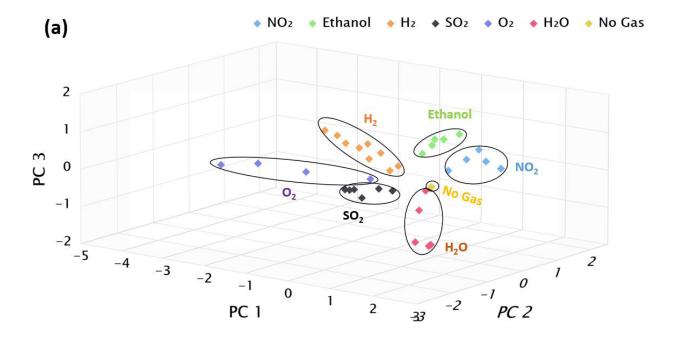
TABLE I
FITTING EQUATION PARAMETERS, REGRESSION COEFFICIENTS AND AVERAGE
RESPONSE/RECOVERY TIMES OF SENSOR RESPONSES IN THE ARRAY

Gas	Bare TiO ₂	TiO ₂ -Pt	TiO ₂ -Cu	TiO ₂ -Ag	Bare ZnO	ZnO-Pt	ZnO-Cu	ZnO-Ag
	3.0ln(x)+14	2.5ln(x)+8.4	.95ln(x)+1.5	1.4ln(x)+5	.95ln(x)+1.5	2.2ln(x)+7.6	1.6ln(x)+4	2.6ln(x)+9.6
NO_2	0.988	0.959	0.961	0.962	0.961	0.968	0.984	0.980
	140s/160s	130s/140s	160s/200s	135s/140s	140s/160s	138s/150s	140s/150s	142s/170s
	$3.0\ln(x)-3.5$	1.1ln(x)-4.7	$.76\ln(x) + 2.9$	1.7ln(x)-5.1	$2.5\ln(x)+5$	1.9ln(x)-5.1	.66ln(x)64	$2.2\ln(x)+.64$
Ethanol	0.965	0.802	0.988	0.932	0.958	0.971	0.964	0.978
	155s/180s	162s/170s	145s/180s	155s/178s	160s/180s	150s/170s	165s/190s	145s/178s
	$1.1\ln(x)+2.5$	$0.7\ln(x)+2.6$	$.37\ln(x)+1$	$.42\ln(x) + .82$	1.5ln(x)+6.9	1.4ln(x)+5.9	1.6ln(x)+10	$1.3\ln(x)+3.7$
SO_2	0.940	0.847	0.938	0.860	0.960	0.979	0.985	0.915
	180s/200s	170s/195s	205s/220s	170s/200s	185s/210s	160s/190s	190s/220s	175s/202s
	$3.0\ln(x) + 9.3$	$3.8\ln(x)+16$	$.52\ln(x) + .97$	$.46\ln(x)+1.2$	$1.3\ln(x)+2.4$	$3.9\ln(x)+20$	$2.1\ln(x) + 8.9$	$1.3\ln(x)+2.9$
H_2	0.959	0.973	0.863	0.954	0.923	0.983	0.959	0.931
	132s/150s	145s/160s	155s/180s	140s/155s	148s/163s	125s/140s	150s/170s	144s/170s
	$0.7\ln(x)-5.6$	5.1ln(x)-45	1.2ln(x)-10.7	1.1ln(x)-10	7.9ln(x)-69	9.3ln(x)-81	5.7ln(x)-48	4.6ln(x)-40
O_2	0.875	0.858	0.739	0.819	0.870	0.857	0.869	0.776
1	138s/175s	130s/160s	150s/200s	145s/185s	155s/195s	132s/187s	160s/210s	158s/192s

component carries a large part of the total variance, all the sensors equally contribute the loadings of the PC 1.

In order to evaluate the sensor array performance in a gas mixture conditions, we generated two different mixtures from our target gases which are NO₂, SO₂, O₂ and H₂O

as mixture-1 and ethanol, H_2 , O_2 and H_2O as mixture-2. Within each mixture, O_2 and H_2O concentrations were kept fixed at 20000 ppm and 50% RH, respectively, whereas other two gas concentrations had been varied as similar as the singular gas case. Therefore, we produced total 36 (6 × 6)



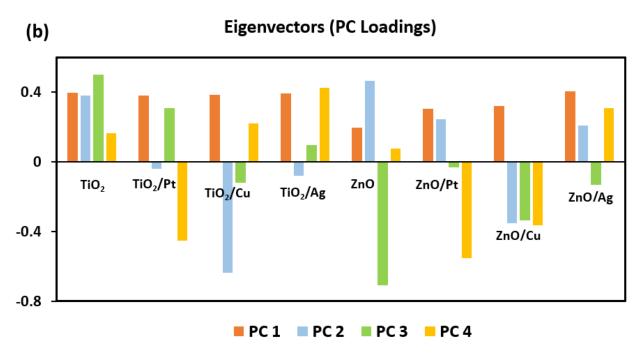


Fig. 5. (a) PCA score plot for varying concentrations of NO₂, ethanol, SO₂, H₂, O₂and H₂O, which includes up to 95.1% of the total variance. (b) Eigenvectors (loadings) of the first four principal components.

different concentration combinations for each mixture. These gas mixture responses obtained from the sensor array was used to build a new 72×8 (for two runs) training dataset. Based on this gas mixture training data, new PCA model was generated. These gas mixture PCA models were tested with our previous test dataset for singular gas case. The resulting PCA score plots are shown in Figure 6. It is seen that reference individual gases are still identified clearly based on the gas mixture model. This is a confirmation that the reference singular-gas dataset can be used to identify the target gases both in isolated and mixed condition.

C. Machine Learning Algorithms on Array Response

In recent years, supervised classification approaches had been applied in sensor array data to classify the analytes [12]. We have optimized and employed four different classifying algorithms on our sensor array dataset to screen out the optimal classifier for precise identification of the target gases in singular and mixed condition. Firstly, decision tree (DT) has been applied which is a collection of nodes intended to create a decision on values affiliated to a class. Taking the important DT parameters such as information gain, Gini index, maximal tree depth and minimal

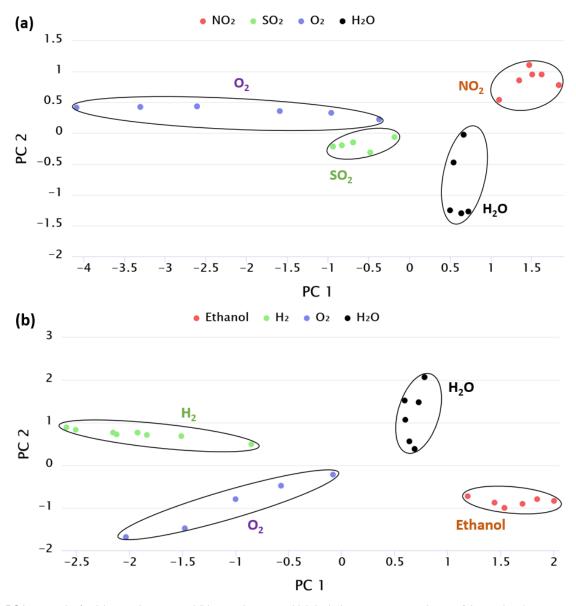


Fig. 6. PCA score plot for (a) gas mixture-1 and (b) gas mixture-2, which include up to 96.5% and 98% of the total variance, respectively.

TABLE II
SUMMARY OF THE OPTIMIZED PARAMETERS FOR THE FOUR CONSIDERED CLASSIFICATION ALGORITHMS.

Decision Tree (DT)	Support Vector Machine (SVM)	Naive Bayes (NB)	k-Nearest Neighbor (k-NN)
criterion= information gain maximal tree depth= 9 minimal leaf size= 1	kernel type= linear kernel cache= 200 C= 0.5 convergence epsilon n= 0.1	estimation mode= greedy minimum bandwidth= 0.01 number of kernels= 11	k-value= 1 kernel type= linear divergence= generalized

leaf size as variables, we found out the optimized values of these parameters for maximum classification accuracy. Next, we employed support vector machine (SVM) classifier that constructs a set of hyperplanes in a high-dimensional space for class separation. Here, parameters like kernel type, kernel cache, C and convergence epsilon were optimized.

Then, comparatively simpler Naive Bayes (kernel) algorithm was used which is a probabilistic classifier based on Bayes' theorem with strong (naive) independence assumptions. Estimation mode, minimum bandwidth and number of kernels were varied within the standard algorithm. Lastly, k-Nearest Neighbor (k-NN) algorithm was applied on our array dataset. It is based on comparing an unknown example with the

(a)	true NO2	true Ethanol	true H2	true SO ₂	true O2	true H ₂ O
pred. NO2	8	0	0	0	0	0
pred. Ethanol	0	10	0	0	0	0
pred. H2	0	0	11	0	0	0
pred. SO ₂	0	0	0	10	1	0
pred. O ₂	0	0	0	0	5	0
pred. H ₂ O	0	0	0	0	0	5

(b)	true NO2	true Ethanol	true H2	true SO2	true O2	true H ₂ O
pred. NO2	8	0	0	0	0	0
pred. Ethanol	0	10	0	0	0	0
pred. H2	0	0	11	0	0	0
pred. SO ₂	0	0	0	10	0	0
pred. O2	0	0	0	0	6	0
pred. H ₂ O	0	0	0	0	0	5

(c)	true NO2	true Ethanol	true H2	true SO ₂	true O2	true H2O
pred. NO2	8	0	0	0	0	0
pred. Ethanol	0	10	0	0	0	0
pred. H2	0	0	11	0	0	0
pred. SO ₂	0	0	0	10	0	0
pred. O ₂	0	0	0	0	6	0
pred. H ₂ O	0	0	0	0	0	5

(d)	true NO2	true Ethanol	true H2	true SO2	true O2	true H ₂ O
pred. NO2	8	0	0	0	0	0
pred. Ethanol	0	10	0	0	0	0
pred. H2	0	0	11	0	0	0
pred. SO ₂	0	0	0	9	1	0
pred. O2	0	0	0	1	5	0
pred. H₂O	0	0	0	0	0	5

Fig. 7. The confusion matrix of (a) Decision Tree classifier, (b) Support Vector Machine (SVM) classifier, (c) Naive Bayes (kernel) classifier, and (d) k-Nearest Neighbor (k-NN) classifier.

k training examples which are the nearest neighbors of the unknown example. The accuracy has been maximized here by optimizing the k-value, kernel type and divergence parameters. The array sensor responses of training data were used to model these algorithms, and then gas types from the test data were qualitatively identified by the models. In order to adapt naive Bayes and support vector machine (SVM) algorithms for multiclass discrimination problem, regression learning algorithm has been utilized in a subprocess that generates regression learner model. Here, the binary NB and SVM classifiers build multi-class classification model using the developed regression model. Table 2 summarizes the parameters optimized for building these four considered classification algorithms.

Figure 7 shows the confusion matrices for the four classifiers. The values on the diagonal are the correctly identified class of each category. Classification accuracy (η) for each classifier has been calculated which is defined by: $\eta = (\text{sum of diagonal values})$ / (total classification data). It is found that both SVM and NB exhibited 100% accuracy whereas DT

and k-NN attained an accuracy of 98% and 96%, respectively. Furthermore, DT algorithm becomes less accurate and tough to implement when number of decisions in a tree increases. The accuracy of the *k*-NN algorithm can be severely degraded by the presence of noisy or irrelevant features. On the other hand, SVM has the advantage of higher efficiency for correct classification of the future data without over-fitting. Again, NB classifier offers faster convergence and simpler implementation. Therefore, depending on the application, both SVM and NB are suggested to be the best suitable algorithms for precise identification of our target gases and their mixtures.

IV. CONCLUSION

Metal/metal-oxide based gas detection suffers from inevitable cross-sensitivity against the interferant gases. Improving the gas discrimination by using array of sensors having different characteristics has been considered as a potential solution to this problem. In this paper, we report the results of sensor array having eight different metal/metal-oxide functionalized GaN nanowires made by industry standard

top- down fabrication approach. For the detection of NO₂, ethanol, SO₂, H₂, H₂O and O₂ gases, receptor layer combinations such as- Pt, Cu and Ag decorated TiO2 and ZnO have been obtained from our prior DFT simulation study. All the gas response data were collected for single and mixture of gases under UV light at room temperature. PCA study was performed on the array response and results show that gas clusters exhibit clear separations among them. Next, machine learning algorithms such as- DT, SVM, NB (kernel) and k-NN were trained and optimized using their important parameters to screen out the optimal algorithm. Results indicate that SVM and NB classifier models exhibited full classification accuracy on our dataset. In addition, the developed array device consumes very low power because of UV assisted sensing as compared to commercially available metal-oxide sensors.

ACKNOWLEDGMENT

The sensor array was fabricated in the Nanofab of the NIST Center for Nanoscale Science and Technology. Gas sensing measurements were conducted at N5 Sensors, Inc.

CONFLICTS OF INTEREST

There are no conflicts of interest to declare.

REFERENCES

- [1] Occupational Safety and Health Administration (OSHA) (2017) Air Contaminants. Accessed: Apr. 4, 2018. [Online]. Available: https://www.osha.gov/dsg/annotated-pels/tablez-1.html
- [2] M. Khan, M. Rao, and Q. Li, "Recent advances in electrochemical sensors for detecting toxic gases: NO₂, SO₂ and H₂S," *Sensors*, vol. 19, no. 4, p. 905, Feb. 2019.
- [3] J. Ree, Y. H. Kim, and H. K. Shin, "Dynamics of gas-surface interactions: Reaction of atomic oxygen with chemisorbed hydrogen on Tungsten," J. Phys. Chem. A, vol. 101, no. 25, pp. 4523–4534, Jun. 1997.
- [4] Y.-F. Sun et al., "Metal oxide nanostructures and their gas sensing properties: A review," Sensors, vol. 12, no. 3, pp. 2610–2631, Feb. 2012.
- [5] N. Akiyama, "A sensor array based on trigonal-selenium nanowires for the detection of gas mixtures," Sens. Actuators B, Chem., vol. 223, pp. 131–137, Feb. 2016.
- [6] M. A. H. Khan, B. Thomson, R. Debnath, A. Rani, A. Motayed, and M. V. Rao, "Reliable anatase-titania nanoclusters functionalized GaN sensor devices for UV assisted NO₂ gas-sensing in ppb level," *Nanotechnology*, vol. 31, no. 15, Dec. 2019, Art. no. 155504.
- [7] M. A. H. Khan, B. Thomson, J. Yu, R. Debnath, A. Motayed, and R. V. Mulpuri, "Scalable metal oxide functionalized GaN nanowire for precise SO₂ detection: Experimental results and density functional theory modeling," Sens. Actuators B, Chem., submitted for publication.
- [8] M. A. H. Khan, B. Thomson, A. Motayed, Q. Li, and R. V. Mulpuri, "Functionalization of GaN chemical sensors with metal oxides," *IEEE Sensors J.*, submitted for publication.
- [9] S. X. Wu, H.-T. Wai, L. Li, and A. Scaglione, "A review of distributed algorithms for principal component analysis," *Proc. IEEE*, vol. 106, no. 8, pp. 1321–1340, Aug. 2018.
- [10] G. Magna et al., "Conductive photo-activated porphyrin-ZnO nanostructured gas sensor array," Sensors, vol. 17, no. 4, p. 747, Apr. 2017.
- [11] J. Lever, M. Krzywinski, and N. Altman, "Principal component analysis," *Nature Methods*, vol. 14, pp. 641–642, Jun. 2017.
- [12] S. Fan, Z. Li, K. Xia, and D. Hao, "Quantitative and qualitative analysis of multicomponent gas using sensor array," *Sensors*, vol. 19, no. 18, p. 3917, Sep. 2019.

Md Ashfaque Hossain Khan received the B.Sc. degree in electrical and electronic engineering from the Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, in 2015. He is currently pursuing the Ph.D. degree in electrical engineering with George Mason University, Fairfax, VA, USA. He has been working as a Guest Researcher with the Nanofab, NIST Center for Nanoscale Science and Technology, since 2017. His current research interests include fabrication and measurement of semiconducting nanowire based electrical devices for chemical sensing.

Brian Thomson received the bachelor's degree in chemical engineering and the master's degree in technical entrepreneurship and management from the University of Rochester in 2011 and 2012, respectively. He is currently a Senior Product Engineer with N5 Sensors, Inc. He is responsible for managing gas sensor testing, integration, and product development.

Ratan Debnath received the B.E. degree in electronics and communication from the Indian Institute of Technology Roorkee, Roorkee, India, and the Dr.-Ing. degree in electrical engineering from the Research Center Jülich, RWTH Aachen University of Technology, Germany. He has extensive experience of functionalization of nanostructures using thiols which is the essential part of the proposed research and published more than ten articles in peer-reviewed journals based on such work. His professional experience involves Postdoctoral Fellowship at the University of Toronto, Canada, where he developed Schottky and hetero-junction junction solar cells using band gap tunable quantum dots. He also worked as a NIST-ARRA Senior Fellow/Visiting Assistant Research Scientist with the National Institute of Standards and Technology, Gaithersburg, and the University of Maryland at College Park, College Park, USA, where he designed and constructed all back-contact 3D CdS/CdTe and CdSe/CdTe photovoltaic devices. Dr. Debnath is currently with N5 Sensors, Inc., has more than seven years of experience in various aspects of nitride nanoscale structures, spanning from materials to devices. He has more than 40 publications with more than 3600 citations.

Abhishek Motayed received the Ph.D. degree from the Electrical and Computer Engineering Department, University of Maryland at College Park, College Park, in 2007. During his graduate studies, he worked at the National Institute of Standards and Technology (NIST) as a Guest Scientist. Dr. Motayed continued working at NIST after graduating, with an appointment as a Research Scientist at the Institute of Research in Electronics and Applied Physics, University of Maryland. He is currently the CEO of N5 Sensors, Inc., Rockville, MD, USA. His current research expertise and interests are high-performance nanoscale electronic/optical devices with emphasis on large-scale integration, novel chemical/biological/radiation sensor systems, energy conversion/storage, and bio-medical applications of nanoscale devices.

Mulpuri V. Rao received the B.Tech. degree in electronics and communication engineering from the College of Engineering, Kakinada, India, in 1977, the M.Tech. degree in material science from the Indian Institute of Technology Bombay, Mumbai, India, in 1979, and the M.S. and Ph.D. degrees in electrical engineering from Oregon State University, Corvallis, in 1983 and 1985, respectively. From 1979 to 1981, he was a Lecturer of Electronics and Communication Engineering with the Sidhartha Engineering College, Vijayawada, India. Since August 1984, he has been with George Mason University, Fairfax, VA, USA, where he is currently a Professor with the Electrical and Computer Engineering Department. He has authored or coauthored more than 120 articles published in various journals in the areas of epitaxial growth, ion implantation, ohmic contacts, material characterization, photodetectors, microwave and high-power devices, microfluidic cells, and gas sensing.