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Abstract—In this work, a gas sensor array has been
designed and developed comprising of Pt, Cu and Ag dec-
orated TiO, and ZnO functionalized GaN nanowires using
industry standard top-down fabrication approach. The recep-
tor metal/metal-oxide combinations within the array have
been determined from our prior molecular simulation results
using first principle calculations based on density functional
theory (DFT). The gas sensing data was collected for both
singular and mixture of NO,, ethanol, SO, and H, in presence
of H,O and O, gases under UV light at room temperature.
Each gas produced a unique response pattern across the
sensors within the array by which precise identification of
cross-sensitive gases is possible. After pre-processing of raw
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data, unsupervised principal component analysis (PCA) technique was applied on the array response. It is found that,
each analyte gas forms a separate cluster in the score plot for all the target gases and their mixtures, indicating a
clear discrimination among them. Then, four supervised machine learning algorithms such as- Decision Tree, Support
Vector Machine (SVM), Naive Bayes (kernel) and k-Nearest Neighbor (k-NN) were trained and optimized using their
significant parameters with our array dataset for the classification of gas type. Results indicate that the optimized SVM
and NB classifier models exhibited 100% classification accuracy on test dataset. Practical applicability of the considered
algorithms has been discussed as well. Moreover, this array device works at room-temperature using very low power
and low-cost UV light-emitting diode (LED) as compared to high power consuming commercially available metal-oxide

sensors.

Index Terms— Sensor array, cross-sensitivity, gas sensor, principal component analysis (PCA), machine learning.

|. INTRODUCTION

HERE is a great need for the development of highly

selective sensors for detecting various toxic gases and
their mixtures in many industrial, medical, space exploration
and environmental monitoring applications. Environmental
gases such as SO;, NO3, ethanol and H; are harmful either to
the environment and/or to living beings and their monitoring
requires sensors capable of detecting ppm level of these gases
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well below their Occupational Safety and Health Act (OSHA)
permissible exposure limits [1]. Metal oxide-based sensors
to detect these environmental pollutants have been the sub-
ject of intensive research for several decades [2]. However,
these metal oxide sensors lack precise selectivity towards any
specific gas. Their mechanism of sensing involves chemical
interaction of the analyte with the oxygen chemisorbed on the
surface [3]. The cross-sensitivity among different analytes is
unavoidable, irrespective of their oxidizing or reducing nature.
Systematic variations in the parameters such as dopants,
additives, operating temperatures, bias voltage, grain size and
morphology were adopted to achieve the necessary selectivity
among various analytes [4]. Though the efforts had been made,
the problem of cross-sensitivity for a single metal oxide-based
sensor can’t be fully eliminated.

With the advancement in nano fabrication and chip inte-
gration, there exists a tremendous opportunity for developing
an integrated chip comprising of several nano sensors that
can differentiate among the analyte types [5]. This integrated
sensor chip would be able to discriminate the toxic gases
which exhibit similar charge transfer process during adsorption
and desorption.

republication/redistribution requires IEEE permission.
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Fig. 1. (Left) Schematic of a sensor array containing eight metal/metal-oxide functionalized GaN nanowires. (Right) FESEM image of an individual

nanowire sensor.

In this paper, we have presented a sensor array comprised of
eight different metal/metal-oxide functionalized GaN nanowire
sensors mounted on a PCB which can produce unique response
pattern for each target gas. We used Pt, Cu and Ag decorated
TiO; and ZnO on GaN surface for the detection of NO,,
ethanol, SOy, Hy and their mixtures in the presence of H,O
and O, gases at room temperature (20 °C). The sensor array
data was acquired for both singular and mixture of gases
which were pre-processed using RapidMiner software. Then,
unsupervised principal component analysis (PCA) technique
was applied on the array response for precise identification
of those target gases. Furthermore, four different supervised
machine learning algorithms such as- decision tree, support
vector machine, naive Bayes (kernel) and k-Nearest Neighbor
were optimized for our dataset. The performance of these
classifiers had been studied to find out the suitable algo-
rithm for gas classification. The proposed array device works
at room-temperature using only a low power (micro-watt),
and low-cost commercial UV light-emitting diode (LED) as
compared to high power consuming commercially available
metal-oxide sensors.

1. EXPERIMENTAL
A. Sensor Array Fabrication

The sensing elements of the sensor array are composed of
metal/metal-oxide function-alized GaN nanowires (Figure 1).
The nanowire-based sensors have been fabricated using the
standard top-down fabrication technique in a class 100 clean-
room. Si-doped GaN nanowires having a width of 300-400 nm
were formed on silicon substrate by production standard
stepper lithography assisted inductively coupled plasma (ICP)
etching of GaN epilayer grown on Si substrate. Ohmic metal
contacts were formed on nanowire ends with a deposition
sequence of Ti (40 nm)/Al (80 nm)/Ti (40 nm)/Au (40 nm) in a
standard electron beam evaporator. After that, SiO; layer was
deposited on the device by plasma-enhanced chemical vapor
deposition (PECVD) to protect the nanowire and metal con-
tacts from being damaged during high temperature processing
and etching. The details of the device fabrication including the
schematic process flow diagram can be found in our previous
papers [6], [7]. Reactive ion etching (RIE) was employed to

create an active area on GaN nanowire for the metal/metal-
oxide nanoclusters functionalization. A thin layer (5-10 nm)
of TiO, or ZnO were deposited on nanowire surface by
RF magnetron sputtering in a reactive atmosphere with Oy
flow at 40 °C and 280 W RF power. Then, rapid thermal
annealing (RTA) was performed in pure Ar at 600-700 °C for
4-5 mins in order to crystallize the deposited metal oxides and
to enhance the ohmic contacts to the GaN nanowires. Next,
receptor metals such as- Pt, Cu and Ag were added on top
of metal-oxide by e-beam evaporation with a deposition rate
of 1-1.5 A/s. The typical thickness of these metals is 1-5 nm.
Thus, we got a total of eight metal/metal-oxide combinations,
including the bare metal-oxides on GaN nanowires. The recep-
tor metal/metal-oxide combina- tions for the target gases have
been chosen from our previous molecular simulation results
using first principle calculations based on density functional
theory (DFT) [8]. After the deposition of Ti/Au metal bond
pads on the ohmic contacts, sensor devices were mounted
on and wire bonded to leadless chip carrier (LCC) packages.
Then, all these eight different metal/metal-oxide functionalized
sensor devices have been mounted and integrated into a pre-
designed printed circuit board (PCB) to develop the final
sensor array device.

B. Instruments and Experimental Set-Up

The current-voltage measurements of the fabricated devices
were performed by a National Instrument (NI) PXI SMU
system under a LED UV light source having a wavelength
of 365 nm and output power of 470 mW/cm?. The sensor
array was placed in a custom designed gas chamber made of
stainless steel for gas sensing data collection. A mixture of
target gases and compressed breathing air was flowed into the
sensing chamber and the net flow (air 4+ analytes) was main-
tained at 0.5 slpm. Mass flow controllers (MFCs) indepen-
dently controlled the flow rate of each component, determining
the composition of the mixed gas. The sensor array currents
were collected by the NI PXI SMU system at a constant
5V DC voltage. The devices have been allowed to regain
the baseline current without purging the gas chamber after
exposure. Sensor response was calculated as (Rgas - Rair)/
Ruir, where Rgys and Ryir are the resistances of the sensor in
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Fig. 2. The process flow for the gas sensing data collection and analysis.

the presence of the analyte—air mixture and in the presence of
air, respectively. Figure 2 illustrates the process flow for the
gas sensing data collection and analysis.

After the acquisition of raw data, preprocessing steps such
as- noise filtering, normalization were performed on it. The
gas response analysis is mainly performed here using two
approaches: unsupervised and supervised classification. Prin-
cipal component analysis is an unsupervised method of feature
extraction and identification. The basic idea of PCA is to
transform the original features into a set of new features in
order of importance through a set of orthogonal vectors [9].
These new features are linear combinations of the original
features and they are unrelated to each other. The features
extracted from the training data utilizing PCA will be applied
on test dataset for gas identification. Next, different supervised
classification algorithms including decision tree, support vec-
tor machine, naive Bayes (kernel) and k-nearest neighbor were
optimized using the training dataset. Herein, a 5-fold cross
validation (CV) approach was utilized to avoid the overfitting
in the training data. Finally, classification accuracy and overall
performance of all the considered classifiers will be evaluated
and compared to find out the optimal algorithm for precise
gas identification.

[1l. RESULTS AND DISCUSSION
A. Gas Sensing Properties

All the singular gas sensing data was collected in dry air
under UV light at room temperature (20 °C). Before the
target gas exposure, the sensor array was kept under dry
air for 10 minutes. This allowed to stabilize each sensor
within the array and provided us the no gas responses of
all the sensors. The sample raw data response profile is
given in Figure S1 in the Supporting Information section.

Figures 3-4 show the responses and corresponding fitting lines
of each sensor within the array toward all the target gases
at various concentrations. Each response value plotted is the
average response of three consecutive gas exposure responses
at the same concentration for a certain analyte gas. The
concentration axis is represented in a logarithmic scale to
accommodate different target concentration ranges. The ppm
ranges tested for NO,, ethanol, SO, H, and O» are from 0.1 to
500, 50 to 5000, 0.1 to 500, 0.1 to 100 and 10000 to 400000,
respectively. Then, the array sensors were exposed to different
relative humidity levels, such as- 5%, 10%, 30%, 50%, 70%
and 90% at room temperature (20 °C). The humidity responses
are shown in Figure S2 and S3 in Supporting Information. It is
clearly seen that all the individual TiO, and ZnO based sensors
exhibited high sensitivity and excellent sensing linearity to
almost all target gases. This reveals the well-known cross-
sensitive behavior of metal/metal-oxides toward environmental
gases.

It was found from our previous research that GaN/TiO,
sensor response is slightly enhanced with increasing humidity
and got almost constant at high humid conditions. Also,
a diminishing response increase was seen at higher operating
temperatures. This trend was observed for GaN/ZnO sensor as
well. It is observed that sensor baseline resistances are mainly
altered due to high humidity for the fabricated sensor devices.
The proposed data analysis technique is based on absolute
response magnitude only, no baseline information is required
here. Table 1 summarizes the fitting equations and regression
coefficients from the response vs concentration plots. Also,
average response/recovery times for each material and gas
have been presented here.

The selectivity issue of these metal/metal-oxides can be
well addressed by employing sensor array technique instead
of a single sensor [10]. Each gas leaves a unique response
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Fig. 3. Response fitting lines of (a) bare TiOo, (b) TiO2/Pt, (c) TiO2/Cu,
O, gases in dry air under UV light at room temperature (20 °C).

footprint across the sensor array. This obtained footprint can
be further analyzed by principal component analysis (PCA)
and machine learning algorithms for precise identification of a
target gas.

B. Principal Component Analysis on Array Response

Principal component analysis (PCA) is a mathematical
procedure that uses an orthogonal transformation to convert
a set of observations of possibly correlated attributes into
a set of values of uncorrelated attributes called principal
components [11]. In our case, all eight sensor-responses from
the array were the correlated attributes which had been trans-
formed into a set of uncorrelated principal components. Also,
the redundancy of the correlated metal/metal-oxide responses
from the array was resolved by smaller number of principal
components that accounted for most of the variance in the
observed attributes. The first principal component (PC 1)
captures the maximum amount of variance possible in the
original data set. On each gas exposure at a test concentration,
eight response magnitudes from sensor array were used as
input parameters in PCA analyses. For the target environ-
mental gases such as- NO», ethanol, SO,, H, O and H>O,

Concentration (ppm)

and (d) TiO»o/Ag for varying concentrations of NO», ethanol, SO», Ho and

we collected gas responses for 6 different concentrations and
repeated the measurements for three times. The input PCA
dataset was a 120 x 8 matrix in which 60% had been used
as training set and 40% was applied as test set. The compo-
nent analyses comprised a variance threshold of 98%. Since
different input features have different scale, each has been
normalized with its statistical mean and standard deviation.
Figure 5(a) shows resulting PCA score plot where each gas
clusters together displaying clear separations among them.
The relative contribution of the principal components- PC 1,
PC 2 an PC 3 were obtained as 64.38%, 18.53% and 12.19%,
respectively, comprising 95.1% of the total variance. Rest of
the insignificant components captured the residual variance.
Though 3-4 sensors are enough for separation, we have taken
an array of 8 sensors for building up a strong response
pattern and robust classification model to accommodate large
calibration variations.

By investigating the eigenvectors (loadings) of the principal
components, it is possible to find out which sensor of the
sensor array is best suitable for the discrimination of the target
gases. These component loadings in PCA are the correlation
coefficients between the principal components and sensors
within the array as shown Figure 5(b). Since the first principal
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Fig. 4. Response fitting lines of (a) bare ZnO, (b) ZnO/Pt, (c) ZnO/Cu and (d) ZnO/Ag for varying concentrations of NO», ethanol, SO5, Hy and O»
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gases in dry air under UV light at room temperature (20 °C).

TABLE |

1000000

Concentration (ppm)

1000000

FITTING EQUATION PARAMETERS, REGRESSION COEFFICIENTS AND AVERAGE
RESPONSE/RECOVERY TIMES OF SENSOR RESPONSES IN THE ARRAY

Gas Bare TiO2 TiO2-Pt Ti02-Cu TiO2-Ag Bare ZnO ZnO-Pt ZnO-Cu ZnO-Ag
3.0In(x)+14 2.5In(x)+8.4 95In(x)+1.5 1.4In(x)+5 95In(x)+1.5 2.2In(x)+7.6 1.6In(x)+4 2.6In(x)+9.6
NO2 0.988 0.959 0.961 0.962 0.961 0.968 0.984 0.980
140s/160s 130s/140s 160s/200s 135s/140s 140s/160s 138s/150s 140s/150s 142s/170s
3.0In(x)-3.5 1.1In(x)-4.7 76In(x)+2.9 1.7In(x)-5.1 2.5In(x)+5 1.9In(x)-5.1 .66In(x)-.64 2.2In(x)+.64
Ethanol 0.965 0.802 0.988 0.932 0.958 0.971 0.964 0.978
155s/180s 162s/170s 145s/180s 155s/178s 160s/180s 150s/170s 165s/190s 145s/178s
1.1In(x)+2.5 0.7In(x)+2.6 37In(x)+1 A2In(x)+.82 1.5In(x)+6.9 1.4In(x)+5.9 1.6In(x)+10 1.3In(x)+3.7
SO, 0.940 0.847 0.938 0.860 0.960 0.979 0.985 0.915
180s/200s 170s/195s 205s/220s 170s/200s 185s/210s 160s/190s 190s/220s 175s/202s
3.0In(x)+9.3 | 3.8In(x)+16 S52In(x)+.97 | .46ln(x)+1.2 1.3In(x)+2.4 | 3.9In(x)+20 2.1In(x)+8.9 1.3In(x)+2.9
H, 0.959 0.973 0.863 0.954 0.923 0.983 0.959 0.931
132s/150s 145s/160s 155s/180s 140s/155s 148s/163s 125s/140s 150s/170s 144s/170s
0.7In(x)-5.6 5.11In(x)-45 1.2In(x)-10.7 | 1.1ln(x)-10 7.9In(x)-69 9.3In(x)-81 5.7In(x)-48 4.6In(x)-40
0, 0.875 0.858 0.739 0.819 0.870 0.857 0.869 0.776
138s/175s 130s/160s 150s/200s 145s/185s 155s/195s 132s/187s 160s/210s 158s/192s

component carries a large part of the total variance, all the

sensors equally contribute the loadings of the PC 1.

In order to evaluate the sensor array performance in a
gas mixture conditions, we generated two different mixtures
from our target gases which are NOj;, SO,, Oy and H>O

as mixture-1 and ethanol, Hp, O, and H;O as mixture-2.

Within each mixture, O, and H»O concentrations were kept

fixed at 20000 ppm and 50% RH, respectively, whereas other
two gas concentrations had been varied as similar as the
singular gas case. Therefore, we produced total 36 (6 x 6)
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different concentration combinations for each mixture. These
gas mixture responses obtained from the sensor array was used
to build a new 72 x 8 (for two runs) training dataset. Based on
this gas mixture training data, new PCA model was generated.
These gas mixture PCA models were tested with our previous
test dataset for singular gas case. The resulting PCA score
plots are shown in Figure 6. It is seen that reference individual
gases are still identified clearly based on the gas mixture
model. This is a confirmation that the reference singular-gas
dataset can be used to identify the target gases both in isolated
and mixed condition.

(a) PCA score plot for varying concentrations of NO», ethanol, SO5, Ho, Osand H»O, which includes up to 95.1% of the total variance.

C. Machine Learning Algorithms on Array Response

In recent years, supervised classification approaches had
been applied in sensor array data to classify the analytes [12].
We have optimized and employed four different classify-
ing algorithms on our sensor array dataset to screen out
the optimal classifier for precise identification of the tar-
get gases in singular and mixed condition. Firstly, deci-
sion tree (DT) has been applied which is a collection of
nodes intended to create a decision on values affiliated to
a class. Taking the important DT parameters such as infor-
mation gain, Gini index, maximal tree depth and minimal
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Fig. 6. PCA score plot for (a) gas mixture-1 and (b) gas mixture-2, which include up to 96.5% and 98% of the total variance, respectively.

TABLE I
SUMMARY OF THE OPTIMIZED PARAMETERS FOR THE FOUR CONSIDERED CLASSIFICATION ALGORITHMS.

Decision Tree (DT) Support Vector Machine

(SVM)

Naive Bayes (NB) k-Nearest Neighbor

(k-NN)

k-value=1

criterion= information gain
maximal tree depth=9
minimal leaf size= 1

kernel type= linear
kernel cache= 200
C=0.5

estimation mode= greedy
minimum bandwidth= 0.01
number of kernels= 11

kernel type= linear
divergence= generalized

convergence epsilon
n=0.1

leaf size as variables, we found out the optimized values
of these parameters for maximum classification accuracy.
Next, we employed support vector machine (SVM) classifier
that constructs a set of hyperplanes in a high-dimensional
space for class separation. Here, parameters like ker-
nel type, kernel cache, C and convergence epsilon were
optimized.

Then, comparatively simpler Naive Bayes (kernel) algo-
rithm was used which is a probabilistic classifier based on
Bayes’ theorem with strong (naive) independence assumptions.
Estimation mode, minimum bandwidth and number of kernels
were varied within the standard algorithm. Lastly, k-Nearest
Neighbor (k-NN) algorithm was applied on our array dataset.
It is based on comparing an unknown example with the
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Fig. 7.
and (d) k-Nearest Neighbor (k-NN) classifier.

k training examples which are the nearest neighbors of the
unknown example. The accuracy has been maximized here by
optimizing the k-value, kernel type and divergence parameters.
The array sensor responses of training data were used to
model these algorithms, and then gas types from the test
data were qualitatively identified by the models. In order
to adapt naive Bayes and support vector machine (SVM)
algorithms for multiclass discrimination problem, regression
learning algorithm has been utilized in a subprocess that
generates regression learner model. Here, the binary NB
and SVM classifiers build multi-class classification model
using the developed regression model. Table 2 summarizes
the parameters optimized for building these four considered
classification algorithms.

Figure 7 shows the confusion matrices for the four classi-
fiers. The values on the diagonal are the correctly identified
class of each category. Classification accuracy (#) for each
classifier has been calculated which is defined by: # = (sum
of diagonal values) / (total classification data). It is found
that both SVM and NB exhibited 100% accuracy whereas DT

The confusion matrix of (a) Decision Tree classifier, (b) Support Vector Machine (SVM) classifier, (c) Naive Bayes (kernel) classifier,

and k-NN attained an accuracy of 98% and 96%, respectively.
Furthermore, DT algorithm becomes less accurate and tough
to implement when number of decisions in a tree increases.
The accuracy of the k-NN algorithm can be severely degraded
by the presence of noisy or irrelevant features. On the other
hand, SVM has the advantage of higher efficiency for correct
classification of the future data without over-fitting. Again,
NB classifier offers faster convergence and simpler implemen-
tation. Therefore, depending on the application, both SVM and
NB are suggested to be the best suitable algorithms for precise
identification of our target gases and their mixtures.

IV. CONCLUSION

Metal/metal-oxide based gas detection suffers from
inevitable cross-sensitivity against the interferant gases.
Improving the gas discrimination by using array of sensors
having different characteristics has been considered as a
potential solution to this problem. In this paper, we report the
results of sensor array having eight different metal/metal-oxide
functionalized GaN nanowires made by industry standard
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top- down fabrication approach. For the detection of NO»,
ethanol, SO;, H, H,O and O, gases, receptor layer combina-
tions such as- Pt, Cu and Ag decorated TiO, and ZnO have
been obtained from our prior DFT simulation study. All the
gas response data were collected for single and mixture of
gases under UV light at room temperature. PCA study was
performed on the array response and results show that gas
clusters exhibit clear separations among them. Next, machine
learning algorithms such as- DT, SVM, NB (kernel) and k-NN
were trained and optimized using their important parameters
to screen out the optimal algorithm. Results indicate that
SVM and NB classifier models exhibited full classification
accuracy on our dataset. In addition, the developed array
device consumes very low power because of UV assisted
sensing as compared to commercially available metal-oxide
Sensors.
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