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Abstract

While most visual attention studies focus on bottom-up
attention with restricted field-of-view, real-life situations
are filled with embodied vision tasks. The role of attention
is more significant in the latter due to the information over-
load, and attention to the most important regions is critical
to the success of tasks. The effects of visual attention on task
performance in this context have also been widely ignored.
This research addresses a number of challenges to bridge
this research gap, on both the data and model aspects.

Specifically, we introduce the first dataset of top-down
attention in immersive scenes. The Immersive Question-
directed Visual Attention (IQVA) dataset features visual at-
tention and corresponding task performance (i.e., answer
correctness). It consists of 975 questions and answers col-
lected from people viewing 360° videos in a head-mounted
display. Analyses of the data demonstrate a significant cor-
relation between people’s task performance and their eye
movements, suggesting the role of attention in task perfor-
mance. With that, a neural network is developed to encode
the differences of correct and incorrect attention and jointly
predict the two. The proposed attention model for the first
time takes into account answer correctness, whose outputs
naturally distinguish important regions from distractions.
This study with new data and features may enable new tasks
that leverage attention and answer correctness, and inspire
new research that reveals the process behind decision mak-
ing in performing various tasks.

1. Introduction

Visual attention provides humans and machines with the
ability to rapidly understand a scene by selectively process-
ing the incoming information. Understanding the roles of
attention is of significant importance for many applications.

*Equal contribution.

Q: Is there a clock in the room?
A: Yes.

Q: What color is the helmet?
A: Yellow.

Figure 1: Visual attention is driven by tasks. The correct
attention (row 1) provides essential information for answer-
ing the question, while the incorrect attention (row 2) helps
identify the distracting features to be avoided when design-
ing intelligent visual systems. Contours represent different
fixation densities (0.25, 0.5, and 0.75), and brighter con-
tours indicate higher fixation densities.

In the past decades, many eye-tracking datasets and atten-
tion prediction models have been developed to study atten-
tion in regular images and videos. Due to the limited field of
view (FOV) and the passive viewing (PV) paradigm, how-
ever, these studies are difficult to be transferred to solve
real-world problems. Furthermore, despite the popularity of
aggregating all human attention patterns for attention mod-
eling, the effects of different patterns on task performances
have been mostly unstudied (see Figure 1 for an example).
Such differences reveal important visual features to focus
on or to avoid, providing insights for the understanding and
modeling of attention for tasks of interest. To push forward
the research frontier of visual attention, we aim at inves-
tigating two unstudied problems in computer vision: task-
driven attention in immersive scenes, and the relationship
between attention and task performance.

In this work, we introduce Immersive Question-directed
Visual Attention (IQVA), a new dataset of eye-tracking data
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collected from humans answering questions in immersive
scenes. It consists of 975 questions on 360° video clips,
each annotated with 14 answers (either correct or incor-
rect) and the corresponding eye-tracking data. Different
from previous eye-tracking datasets, IQVA is built upon
a more general and realistic paradigm where people ac-
tively explore the immersive scenes with time limits and
answer questions. It highlights the importance of attention
to the task outcomes and enables a fine-grained compari-
son between the attention patterns associated with different
task performances. To the best of our knowledge, IQVA
is the first attention dataset that explicitly verifies the cor-
rectness of ground-truth labels and differentiates between
correct and incorrect ones. It demonstrates the significant
impacts of attention on task performance, which can bene-
fit the modeling of both human and machine vision systems.
Based on the new dataset and analyses, we further introduce
a novel attention model to predict the correct and incorrect
attention maps with an emphasis on their differences. Con-
sidering the incorrect attention as a hard negative sample,
we show that jointly predicting correct and incorrect atten-
tion can increase the accuracy of both. In sum, the main
contributions of this work are three-fold:

First, we introduce and highlight a new research prob-
lem: Immersive Question-directed Visual Attention. To
study this problem, we propose the IQVA dataset with an
emphasis on the differences between attention patterns of
correct and incorrect answers.

Second, with extensive data analyses, we demonstrate
correlations between visual attention and task performance.
People who answer correctly exhibit consistent attention
patterns, while those who answer incorrectly are affected
by diverse factors.

Finally, we propose a neural network model to jointly
predict the correct and incorrect attentions. A semantic
working memory and a fine-grained difference loss are pro-
posed to model the top-down task guidance and to learn fea-
tures that distinguish both attentions.

2. Related Work

Visual attention datasets. For decades, visual attention
has been extensively studied in the fields of computer vi-
sion [4, 5, 23, 38] and cognitive vision [1, 32, 50]. Datasets
have been built using eye-tracking [21, 48] or simulated
alternatives [20] to facilitate the development of attention
models [4, 5, 45, 50]. While much research has focused
on the bottom-up attention driven by stimulus [4, 5, 49, 50],
top-down attention driven by tasks is less studied [2, 23, 47].
Moreover, the highly controlled settings and the rectangular
limited FOV in conventional image of video viewing pre-
vent eye-tracking data from accurately representing human
attention in everyday tasks. To collect attention data in a
natural FOV, several works [10, 27, 28] use wearable eye-

trackers to record attention in daily activities (e.g., cooking),
where people can move and act freely in the environment.
Another line of research utilizes omnidirectional cameras
and head-mounted displays (HMDs) to study how people
explore virtual environments. Attention data in this type
of immersive scenes are captured by tracking people’s head
movements [18, 44] or eye movements [17, 43]. While en-
abling the tracking of more natural gaze behaviors, exist-
ing datasets either have insufficient variability in scenes, or
ignore the impact from top-down tasks. As a result, under-
standing and modeling task-driven attention remain an open
challenge. To address these issues, our dataset places an
emphasis on the variety of attention for question answering
in immersive scenes, and the correctness of answers. The
dataset enables the study of how people’s attention is driven
by tasks and subsequently determines task performance.
Human and machine attention in top-down tasks. Many
computer vision models use model attention to prioritize in-
formation in vision tasks. Despite their widespread accep-
tance and contributions to task performance, model atten-
tion does not always agree with humans in where to look at
given the same tasks [4, 8, 49]. For example, in visual ques-
tion answering (VQA) [3, 15], where attention plays an im-
portant role, analysis [12] has shown a low correlation be-
tween model and human attention. Such misalignment may
be caused by the dataset bias that directs the model attention
to certain priors [15, 31, 40], or the insufficient correctness
verification of the ground-truth annotations [22, 30]. In this
work, we study human attention under general top-down
tasks, such as counting objects, identifying object charac-
teristics, or finding inter-object relationships. To reduce the
data bias, we increase the task difficulty by asking more
challenging questions and providing broad-FOV visual in-
puts (i.e., immersive scenes). Thus, both humans and ma-
chines need to attend correctly in order to answer the ques-
tions. Furthermore, we explicitly verify the correctness of
ground-truth answers, so the proposed dataset and model
can provide insights into how correct and incorrect atten-
tions affect the task performance.

3. Data Collection

In this section, we introduce the procedure of data collec-
tion and post-processing. Featuring task-driven attention in
immersive viewing of 360° videos, our IQVA dataset con-
tains a total of 975 video clips and eye-tracking data of 14
participants each. Table 1 compares IQVA with other re-
lated datasets. Our dataset will be publicly available.

3.1. Stimuli and Annotations

Our stimuli are 360° YouTube videos. We manually se-
lect 392 videos with a wide variety of 360° scenes and rich
contexts. Most videos depict human activities such as tour-
ing, gathering, driving, and sports activities, while others
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Dataset Modality Scenes Scanpaths Task TPA
Corbillon et al. [11] Head 5 0.3k PV X
Wu et al. [46] Head 9 0.4k PV X
Lo et al. [29] Head 10 0.5k PV X
Nguyen&Yan [34] Head 24 1k PV X
David et al. [13] Eye 19 1k PV X
Sitzmann et al. [43] Head/Eye 22! 2k PV X
Zhang et al. [51] Eye 104 2k PV X
Rai et al. [39] Eye 98! 4k PV X
IQVA Eye 975 14k VQA v

Table 1: A comparison between IQVA and related immer-
sive visual attention datasets. TPA: with task performance
annotation. I: image datasets. PV: passive viewing.
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Table 2: Examples of questions and common words.

present animals or natural landscapes. All of the videos are
in 4K equirectangular format (3840x1920 pixels) with var-
ious frame rates between 24 and 60 fps.

A total of 975 clips are cropped from these videos, where
each clip is annotated with a question. The questions are
proposed by the authors and two trained graduate assistents.
All questions are reviewed by the first author to make sure
they have little to no ambiguity, and be reasonably diffi-
cult (i.e., an active observer can answer correctly given the
time limit). The level of difficulty is determined by the
time limit, complexity of the scene, number and size of re-
lated objects, efc. While the questions represent a wide va-
riety of general tasks, to better structure the data collection
and analyses, we group the questions into three categories:
query (e.g., ‘What ..’ and “‘Who ...’) , count (e.g., ‘How
many ...), and verify (e.g., ‘Is ..’ and ‘Does .. ). Many
of the questions require exhaustive search, spatial and tem-
poral reasoning, or fine-grained recognition. Depending
on their requirement of attention and reasoning skills, the
difficulty of each question is rated on a scale of 0 to 2.
Table 2 presents examples of the questions, and common
words used in questions and answers.

While the VQA datasets consider the most frequent an-
swers from annotators to be correct, this hypothesis does
not always hold true [16, 22, 30]. To differentiate correct
and incorrect attentions, we annotate each question with a
correct answer by exhaustively examining all videos with at
least two authors. If the authors do not agree on the answers
due to ambiguity, the questions are revised or deleted.

Figure 2 presents statistics of videos and questions, in-

= count query verify
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o o o

o
S
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question length
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4 5 6 7+

video length

0 1 2
difficulty

Figure 2: Distribution of data annotations regarding ques-
tion type, video length (in seconds), question length (in
words), and difficulty level.

cluding the length of video clips (4-15 seconds, 5.26+1.56),
the length of questions (3-17 words, 7.94+2.98), and the
difficulty level (0-2, 0.70+0.72). The three general question
types make up 40.78% (query), 35.76% (count) and 23.46%
(verify) of the data, respectively.

3.2. Eye Tracking

Apparatus. The 360° videos are displayed in an HMD
(HTC VIVE Pro Eye, HTC, Valve corporation). This HMD
allows sampling of scenes by approximately 110° horizon-
tal FOV (2880x1600 pixels) at 90 frames per second. An
integrated eye-tracker in the HMD samples gaze data at 120
Hz with a precision of 0.5°-1.1°. The experiment is running
on a computer with an NVIDIA GTX 2070 GPU. A custom
Unity3D (Unity Engine, CA, USA) scene is created to dis-
play the equirectangular videos in 360° and record the pixel
coordinates of the eye-fixations.

Participants. A total of 18 males and 10 females, aged 19
to 38, participate in the eye-tracking experiment under the
approval of the Institutional Review Board (IRB). All par-
ticipants receive monetary compensation. The videos and
questions are randomly grouped into 10 blocks for an one-
hour session each. On average, each participant observes
around 500 video clips and answers the corresponding ques-
tions. Each question is answered by 14 participants.
Procedure. The eye-tracker is 5-point calibrated before
each session. The order of trials and the starting longitu-
dinal position of each video are randomly initialized. Each
trial begins with a question displayed on an empty back-
ground. Having completely understood the question, the
participants push a controller button to start playing the cor-
responding video. All videos are played without sound. The
participants actively explore the scenes and search for the
correct answer. When the video ends, the question is dis-
played again. The participants either respond with their an-
swer, or say “I don’t know” to indicate a failure. The exper-
imenter records the responses in a spreadsheet. Finally, the
participants press another controller button to proceed to the
next trial. To avoid HMD hazards (e.g., dizziness, collision,
falling), the participants or the experimenter can interrupt
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Figure 3: The average fixation map of the dataset demon-
strates a skewed equator bias.

or terminate the experiment at any time.

3.3. Post-Experiment Processing

Answer verification. The authors review the responses
from the participants, and compare them with the previously
annotated answers. Since question ambiguity has been ei-
ther reduced or eliminated, all responses can be classified to
be either correct or incorrect. Cases where the participants
fail to provide an answer are also classified to be incorrect.
Fixation map computation. The experiments produce a
set of visual scanpaths for each video and question. A fix-
ation map is generated for each video frame from raw gaze
positions of all participants. The fixation map for a frame at
time ¢ is computed by accumulating gaze points in a tempo-
ral sliding window of 400 ms centered in t. The fixation
maps are further smoothed using a spherical convolution
with a Gaussian kernel (6=9°) to obtain the final fixation
maps {F;}. For computational efficiency, we compute the
maps at the reduced resolution of 256x128 following [52].

4. Data Analysis

In this section, we conduct and report statistical analyses
to gather insights from the eye-tracking data and annota-
tions. We present observations about human attention and
VQA performances in immersive scenes.

4.1. Human gaze is biased towards the equator

Similar to previous literature in eye tracking that report
different types of spatial bias [7, 35, 36, 42] in perceptive
images or 360° scenes, we observe a strong equator bias in
our data as shown in Figure 3. In terms of latitude, 95%
of the gaze points are between -43° and 18.5°, and 80% are
between -24° and 6.5°. This bias is jointly caused by the
positioning of camera (i.e., always in an upright position
with the camera facing forward), the participants’ motor
bias (i.e., turning around horizontally), as well as their view-
ing strategy (i.e., expecting interesting objects to be placed
near the ground). The downward skew is likely caused by
the camera position, as the cameras are usually mounted at
a relatively higher altitude (e.g., on top of a car or a pole,
etc.). Because of the random longitude initialization, no
significant horizontal bias is introduced by the experiment.
Further, by separating correct and incorrect attentions, we

- <20% 20%-80% >80%

o

c
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video length question length difficulty

Figure 4: Distribution of human answer accuracy over dif-
ferent video lengths, question lengths, and difficulty levels.
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Figure 5: Human answer accuracy over different question
types and difficulty levels. Error bars indicate the standard

error of the mean.

observe that their equator biases are highly similar (Pear-
son’s 1=0.95, p~0), so the equator bias does not affect the
task performance of humans.

4.2. Human answers have a broad range of accuracy

The overall accuracy of the participants’ answers is
68.45%. Due to the unique characteristics of our ques-
tions and videos, only 15.78% of the questions have all
correct answers, and 50.51% questions have an accuracy
between 20% and 80%. As shown in Figure 4, the accu-
racy of the participants’ answers decreases with increasing
video length and difficulty, while the answers become more
diverse as question length increases. Note that the video
length is correlated with the difficulty by design (i.e., more
difficult questions have longer time limit). Figure 5 shows a
decrease in accuracy with increased difficulty for different
question types. In general, it is easier to correctly answer a
query (77.03% accuracy) or verify question (69.84% accu-
racy) than a count question (57.76% accuracy). This may
be because both query and verify questions require fewer
targets to be observed, and targets tend to be provided with
additional descriptions (e.g., “woman in blue” instead of
“woman’’), which also makes the search easier.

4.3. Correct attentions are alike

To study how attention influences task performance, we
measure the spatio-temporal distance between each pair of
visual scanpaths, and classify them into three groups based
on the correctness of the two answers: both correct, both in-
correct, and between correct and incorrect. The distance is
measured with a spherical Edit Distance on Real sequence
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Figure 6: The EDR scores compared over different question
types and difficulty levels. Error bars indicate the standard
error of the mean.

(EDR) [9] with a distance threshold at 9° (i.e., half fovea
size [14]), and lower EDR scores indicate more similar
scanpaths. For robustness, this comparison only includes
questions with accuracy between 20% and 80%.
According to Figure 6, people who answer correctly
have consistently similar attention patterns, whereas the at-
tention patterns leading to incorrect answers are less similar
to each other. The between-group similarity is also lower
than that within the correct group. This holds true across
difficulty levels for all question types. Given that the dis-
tance gap is evidently smaller for count questions, we hy-
pothesize that this is because the order of counting each tar-
get can be different for participants who all count correctly.

4.4. Incorrect attentions fail with different patterns

We further analyze qualitative examples of correct and
incorrect attentions to understand why their differences lead
to different answers. In particular, Figure 7 illustrates ex-
amples of typical cases of wrong answers. While all of the
correct fixation maps highlight the important regions where
the answer is grounded, incorrect attentions differ from the
correct attentions due to diverse reasons:

Missing important cues. Figures 7a-7c show typical exam-
ples of missing task-relevant cues. Causes of such misses
can be three-fold: first, the answer can be grounded in a
less salient region and difficult to find (e.g., Figure 7a, some
people are walking under the trees); second, people’s sub-
jective bias may lead to biased attention (e.g., Figure 7b,
some people answer “car” without looking to the back of
the vehicle); third, people’s attention can be distracted by
visually or semantically similar objects (e.g., Figure 7c, the
street lamp looks like a flag pole). All these different factors
can lead to the failure of finding the correct answers.

Looking, but not seeing. Many questions require paying
close attention to the visual cues. For example, in Figure 7d
there are two pandas in front of the camera and another
one behind. The two pandas are very close to each other,
and people can easily miscount them as one if not paying
enough attention to them. In these cases, the amount of
attention or time spent on observing the visual cues can in-
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Figure 7: Examples of correct (row 1) and incorrect (row 2)
attention patterns. Fixation maps overlaid as contour maps
are averaged across all frames (column 1) and every third of
the frames (columns 2-4). Column 5 shows the local regions
of interest for answering correctly.

fluence the correctness of an answer.
Wrong timing. Timing is also a critical factor. Since the
scene is changing, looking at the right places yet missing
the key moments will lead to incorrect answers. As shown
in Figure 7e, the second person only appears at the door for
a short interval of time (see column 3). People who answer
correctly consistently look at the door at the key moment,
while those with incorrect answers are either early or late.
Our analyses suggest strong correlations between atten-
tion and task performance, as well as fine-grained differ-
ences between correct and incorrect attentions. More ex-
amples are shown in the Supplementary Materials.

5. Predicting Correct and Incorrect Attentions

Understanding correct and incorrect attention patterns
can play an essential role on distinguishing the important
visual features from the hard-negative priors and distracters.
In this section, we present a new attention prediction model
with the awareness of answer correctness, to further demon-
strate the major impacts of our dataset.

Most attention prediction models simulate the bottom-
up pathway of human vision [19, 36, 45]. Though some
can be trained with gaze data recorded in top-down tasks,
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Figure 8: Architecture of the proposed correctness-aware
attention prediction model.

few efforts have been made to explicitly model the impact
of top-down factors or characterize fine-grained differences
between correct and incorrect attention patterns. In this sec-
tion, we propose a novel correctness-aware attention predic-
tion network to addresses both issues.

As shown in Figure 8, the proposed model consists of a
Visual Encoder (attentive VGG [45]) and a Language En-
coder (Skip-Thought model [25]) to extract visual features
V; and language features v from the video and question in-
puts, and a new Gaze Prediction Network that predicts the
correct and incorrect attention maps. Different from con-
ventional models, our model simultaneously computes the
two attentions and enables knowledge sharing among them.
Moreover, the semantic working memory (SWM) takes into
account the question information and the visual semantics
attended over time, characterizing the role of top-down task
in affecting the spatial distributions as well as temporal or-
der of eye fixations. In addition to the model design, to
capture the differences between the correct and incorrect
attentions, we further propose a new fine-grained difference
(FGD) loss to better differentiate the two types of attention.

5.1. Semantic Working Memory

Previous gaze prediction networks implicitly model tem-
poral dynamics [45] or rely on short-term correlation be-
tween consecutive frames [52]. Differently, the proposed
SWM explicitly and selectively memorizes the most task-
relevant semantics attended over time. Specifically, we de-
fine the SWM at time ¢ as S; = [s1, ..., s¢] where s; € RY
is the memorized visual semantics at time ¢. In order to
simultaneously predict both the correct and incorrect atten-
tions, two SWM blocks (S:r and S; ) are used in the pro-
posed Gaze Prediction Network to memorize visual seman-
tics attended by correct and incorrect attentions.

Specifically, we first develop a selective mechanism to
recall the most relevant information o; from the previously
memorized semantics S;_1. With the language features
u € R% to incorporate the task information, and the se-
mantics attended at the previous time step s;—; to cap-
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ture the temporal dynamics, such selection is achieved via
ot = aSi_1, where

Qp = WQ(WSSt—l + WSSt—l + Wuu) (1)

is a temporal attention vector indicating the dynamic im-
portance of each historical time step . It determines what
visual semantics to recall from the memory for the compu-
tation of o;. Here, Wg, Wy and W, are all trainable weights
of the corresponding factors, and W, is trained to optimize
the temporal attention ;. The weights are shared between
the two SWM blocks to allow knowledge sharing between
both attentions.

The recalled semantics o, and o, (corresponding to
correct and incorrect attentions) are then combined with the
visual features V; € R?¥*®*" and processed with a convo-
lutional LSTM, where w and h are the width and height of
the visual features respectively. They are used to adaptively
control the gate functions of the LSTM:

Z.t = Wm‘/t + Whiht—l + Wcict—l

2

+W;ZO':F+W;_J;+I)Z' @

ft = W’Uf‘/t + thht—l + WCfCt—l (3)
+WSof + W o +bs

o = Wy Vi + Wi hi—1 + We i1 @

+Wiol +W, o7 +b,

where i;, f;, o; are the input, forget and output gates. The
h¢—1 and c;_1 are the hidden states. W,,, Wp,,, W, Wy,,

Wh e W. . Wy, , Wh, are the weights of the corresponding
factors in the gate functions, while W', W;;, Wt W,

W, W, are the weights for incorporating the recalled
semantics from the memory.

Finally, the predicted attention maps M; = [M,", M, |
are computed as M; = W,,.hy, where W, indicates the
output-layer parameters. The memories for the two atten-
tions are updated with the newly attended semantics:

&)

St = Ware (M~ 0 V3)

where W, are the learned weights to further encode the
attended semantics in the visual features V;, and o indicates
the Hadamard product.

By incorporating the SWM blocks, our model is able to
associate task information with the visual inputs, and adap-
tively aggregate important semantics over time to benefit
the attention prediction across all video frames.

5.2. Fine-Grained Difference Loss

We propose a fine-grained difference (FGD) loss to en-
courage the model to differentiate the two outputs. First, we
compute the difference between the two ground-truth fixa-
tion maps AF} F;" — [ and those between the two
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outputs AM; = M;" — M, . The FGD loss is denoted as
Lrap = ZLCC(Mt+ o |AF, M;” o |AF|)

, (6)
7Y [(AMt — AF,)?0|AF|
where Lo represents the Correlation Coefficient [33]).
The first term of the loss normalizes the attentions based
on the magnitude of differences in the ground truth, pay-
ing more attention to the positions where two ground truth
have larger differences, and then enforces the model to pre-
dict differently by minimizing their correlation. The second
term further minimizes the discrepancies between the dif-
ferences in the predicted and ground truth attentions. To
characterize the spatial distribution and accurate positions
of fixations, we follow ACLNet [45] and use both smoothed
AF; and unsmoothed fixation maps AF, in our loss. The
hyperparameter «y balances the contributions of the two loss
terms.
Our final loss is defined as a linear combination of the
FGD loss and the loss terms that independently optimize
the two outputs:

L=L"+L +pB-Lrap @)

where LT/~ are defined a combination of attention evalua-
tion metrics [45] to measure the distances between M +/=
and F+/~. The hyperparameter (3 balances the contribu-
tions of the loss terms.

6. Experiments and Results

Dataset. For our experiments, we split the dataset into 658
training samples, 96 validation samples, and 221 test sam-
ples. We train and evaluate models on the IQVA dataset
to perform two different tasks: correctness-aware attention
prediction and aggregated attention prediction regardless of
correctness. Given a video clip and a question, the goal of
the former is to predict both the correct and incorrect at-
tentions for each video frame, while the latter predicts an
aggregated fixation map. To reduce the bias caused by im-
balanced numbers of correct and incorrect answers, for the
first task we only consider samples with answer accuracy
between 20% and 80% (i.e., 50.51% of the samples). For
the second task, we use all of the available data. Follow-
ing [52], all videos are temporally downsampled by 5.

Evaluation Protocols. We use five popular attention
evaluation metrics in our experiments, including Correla-
tion Coefficient (CC) [33], Normalized Scanpath Saliency
(NSS) [37], Kullback-Leibler Divergence (KLD) [26],
Similarity (SIM) [41] and shuffled AUC [6]. The distor-
tions of equirectangular projections are corrected with a
sine weighting function following [13]. As existing state-
of-the-art models are designed only for bottom-up atten-
tion, to accommodate our dataset with top-down attention,

we slightly modify them to efficiently take into account the
question information similarly to our model. More details
are provided in the Supplementary Materials.

Training. We train our model with the proposed objec-
tive using Adam [24] optimizer with learning rate 10* and
weight decay 107, The hyperparameters 3 and -y are empir-
ically set to 0.5 and 2 respectively, based on the validation
set performance. Resolution of the visual input is set to
512x256. For the existing models, we follow their original
settings and train two independent models using correct or
incorrect data respectively. All of the models are initialized
with weights pre-trained on ImageNet classification. Batch
size 1 is used for training all models similar to [19], since
larger batch sizes require higher computational cost, and do
not result in obvious improvement. The best models are se-
lected based on their performance on the validation set.

6.1. Predicting Correct and Incorrect Attentions

We first evaluate our model on predicting correct and in-
correct attentions. Quantitatively, Table 3 shows that our
baseline model (i.e., Multi-Att) that predicts two attentions
without memory and the proposed loss significantly out-
performs the existing state-of-the-art, indicating the im-
portance of knowledge sharing in developing better under-
standing of the task. Moreover, the increased performance
achieved with the SWM (i.e., Multi-Att + SWM) demon-
strates the effectiveness of adaptively incorporating the vi-
sual semantics attended over time. Finally, our complete
model with both the SWM and the FGD loss (i.e., Multi-Att
+ SWM + FGD) achieves the best results on predicting both
attentions among all evaluation metrics.

Qualitatively, as shown in Figure 9, ground truth atten-
tions corresponding to correct and incorrect answers (the
rightmost column) show distinct differences, indicating that
attention plays a role in these cases (more details and dis-
cussions in Section 4 and the Supplementary Materials).
From the modeling aspect, while most existing models (see
columns 2-5) highlight regions of interest (i.e., people in
both examples) to some degree, they all fail to differentiate
attention patterns leading to correct and incorrect answers
(i.e., predicted attention patterns in both rows are similar).
In comparison, the proposed model (see column 6) not only
captures the regions of interest related to the question, but
also differentiates the regions crucial for correct answers
(i.e., the people skateboarding far from the camera and the
man with a mic on the right) from the others (i.e., people
not matching these descriptions). Note that predictions of
correct and incorrect attentions from existing models are
trained with the respective data. The lack of capability
in differentiating the difference demonstrates the needs in
model designs to close this gap.

Results above show the effectiveness of our model archi-
tecture, semantic memory, and loss in differentiating the at-
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Correct Incorrect
CcC NSS KLD SIM sAUC | CC NSS KLD SIM sAUC
SALICON [19] 0407 2.010 1.645 0.350 0.429 | 0.389 1914 1.689 0326 0.431
SALNet [36] 0412 2.028 1.560 0.347 0451 | 0.380 1.946 1.703 0.329 0.397
ACLNet [45] 0402 1938 1.606 0.341 0.448 | 0.378 1.900 1.717 0322 0424
Spherical U-Net [52] 0268 1.225 1.955 0.262 0.333 | 0.247 1.167 2.085 0.234 0.343
Multi-Att 0426 2293 1479 0.365 0446 | 0411 2225 1.570 0.344 0447
Multi-Att + SWM 0.439 2316 1434 0.368 0456 | 0422 2205 1.561 0.344 0455
Multi-Att + SWM + FGD | 0.441 2.375 1.429 0371 0462 | 0424 2.267 1.524 0.345 0.469

Table 3: Comparison of attention prediction performances

SALICON SALNet

(a) How many people are
skateboarding?

e
- S -

LA T

(b) How many people are
holding a mic?

ACLNet

. Best results are highlighted in bold.

Spherical U-Net Ours Humans

NEL '&«‘ "‘.. ) e

L% - g E5

Figure 9: Qualitative comparison of the predicted correct (row 1) and incorrect (row 2) fixation maps.

tentions that lead to different task performance. It opens up
a new paradigm in attention modeling by considering task
performance. In addition, the difference in output naturally
highlights regions to be fixated (e.g., visual cues relevant to
the task) or to be avoided (e.g., visual distractors), which
has direct benefits to a variety of applications.

6.2. Predicting Aggregated Attention

The proposed dataset can also be utilized for predicting
aggregated attention regardless of correctness. In this sec-
tion, we benchmark the existing models and the proposed
one for predicting the aggregated attention on our dataset.
For the proposed model, we adopt our pre-trained model in
the previous experiments and develop a Map Aggregation
module that adaptively integrates the predicted correct and
incorrect attention maps into an aggregated attention map.
As shown in Table 4, with an understanding of the correct
and incorrect attentions developed in the previous task, the
proposed model is able to consistently outperform the exist-
ing models on aggregated attention prediction. Please refer
to our Supplementary Materials for details.

7. Conclusion

We introduce a new dataset for task-driven attention in
immersive scenes. With the new paradigm featuring di-
verse immersive scenes and questions, as well as manual
annotations of answer correctness, the proposed dataset not
only serves as a new benchmark for top-down visual atten-
tion modeling, but also opens up new research opportuni-
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CC NSS KLD SIM sAUC

SALICON [19] 0.514 2.098 1.103 0.449 0.483
SALNet [36] 0.498 2.083 1.128 0.439 0.463
ACLNet [45] 0.493 2.022 1.146 0438 0.466
Spherical U-Net [52] 0.343  1.309 1.547 0.331 0.408
Ours 0.538 2.409 1.047 0.466 0.498

Table 4: Comparative results of predicting aggregated atten-
tion for 360° videos. Best results are highlighted in bold.

ties by taking into account task performance. Our analy-
ses demonstrate a strong correlation between attention and
task performance, opening a new avenue for research in
performance-aware human attention in real-life scenarios.
Furthermore, we propose a correctness-aware attention pre-
diction model together with a new loss for jointly predict-
ing the correct and incorrect attention patterns. Our model
highlights the importance of incorporating knowledge from
both types of attentions for capturing their fine-grained dif-
ferences as well as predicting the aggregated attention. Fu-
ture efforts will be made towards two research directions:
characterizing the attention patterns of individuals to un-
derstand and predict their task performances, and improv-
ing the performance and interpretability of neural networks
with improved attention mechanism.
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