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Abstract. While attention has been an increasingly popular compo-
nent in deep neural networks to both interpret and boost performance of
models, little work has examined how attention progresses to accomplish
a task and whether it is reasonable. In this work, we propose an Atten-
tion with Reasoning capability (AiR) framework that uses attention to
understand and improve the process leading to task outcomes. We first
define an evaluation metric based on a sequence of atomic reasoning oper-
ations, enabling quantitative measurement of attention that considers
the reasoning process. We then collect human eye-tracking and answer
correctness data, and analyze various machine and human attentions
on their reasoning capability and how they impact task performance.
Furthermore, we propose a supervision method to jointly and progres-
sively optimize attention, reasoning, and task performance so that mod-
els learn to look at regions of interests by following a reasoning process.
We demonstrate the effectiveness of the proposed framework in analyz-
ing and modeling attention with better reasoning capability and task
performance. The code and data are available at https://github.com/
szzexpoi/AiR.
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1 Introduction

Recent progress in deep neural networks (DNNs) has resulted in models with sig-
nificant performance gains in many tasks. Attention, as an information selection
mechanism, has been widely used in various DNN models, to improve their ability
of localizing important parts of the inputs, as well as task performances. It also
enables fine-grained analysis and understanding of the black-box DNN models,
by highlighting important information in their decision-making. Recent studies
explored different machine attentions and showed varied degrees of agreement
on where human consider important in various vision tasks, such as captioning
[15,33] and visual question answering (VQA) [7].
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Similar to humans who look and reason actively and iteratively to perform a
visual task, attention and reasoning are two intertwined mechanisms underlying
the decision-making process. As shown in Fig. 1, answering the question requires
humans or machines to make a sequence of decisions based on the relevant regions
of interest (ROIs) (i.e., to sequentially look for the jeans, the girl wearing the
jeans, and the bag to the left of the girl). Guiding attention to explicitly look for
these objects following the reasoning process has the potential to improve both
interpretability and performance of a computer vision model.

Is there a bag to the left of
the girl that is wearing jeans?

Correct Attention
(Answer: yes)

1. select
(jeans)

2. relate
(girl, wearing, jeans)

3. relate
(bag, to the left of, girl)

Incorrect Attention
(Answer: no)

Fig. 1. Attention is an essential mechanism that affects task performances in visual
question answering. Eye fixation maps of humans suggest that people who answer
correctly look at the most relevant ROIs in the reasoning process (i.e., jeans, girl, and
bag), while incorrect answers are caused by misdirected attention

To understand the roles of visual attention in the visual reasoning context,
and leverage it for model development, we propose an integrated Attention with
Reasoning capability (AiR) framework. It represents the visual reasoning process
as a sequence of atomic operations each with specific ROIs, defines a metric and
proposes a supervision method that enables the quantitative evaluation and
guidance of attentions based on the intermediate steps of the visual reasoning
process. A new eye-tracking dataset is collected to support the understanding of
human visual attention during the visual reasoning process, and is also used as
a baseline for studying machine attention. This framework is a useful toolkit for
research in visual attention and its interaction with visual reasoning.

Our work has three distinctions from previous attention evaluation [7,18,19,
26] and supervision [28,29,44] methods: (1) We go beyond the existing evalua-
tion methods that are either qualitative or focused only on the alignment with
outputs, and propose a measure that encodes the progressive attention and rea-
soning defined by a set of atomic operations. (2) We emphasize the tight correla-
tion between attention, reasoning, and task performance, conducting fine-grained
analyses of the proposed method with various types of attention, and incorpo-
rating attention with the reasoning process to enhance model interpretability
and performance. (3) Our new dataset with human eye movements and answer
correctness enables more accurate evaluation and diagnosis of attention.

To summarize, the proposed framework makes the following contributions:

1. A new quantitative evaluation metric (AiR-E) to measure attention in the
reasoning context, based on a set of constructed atomic reasoning operations.
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2. A supervision method (AiR-M) to progressively optimize attention through-
out the entire reasoning process.

3. An eye-tracking dataset (AiR-D) featuring high-quality attention and reason-
ing labels as well as ground truth answer correctness.

4. Extensive analyses of various machine and human attention with respect to
reasoning capability and task performance. Multiple factors of machine atten-
tion have been examined and discussed. Experiments show the importance of
progressive supervision on both attention and task performance.

2 Related Works

This paper is most closely related to prior studies on the evaluation of attention
in visual question answering (VQA) [7,18,19,26]. In particular, the pioneering
work by Das et al. [7] is the only one that collected human attention data on
a VQA dataset and compared them with machine attention, showing consider-
able discrepancies in the attention maps. Our proposed study highlights several
distinctions from related works: (1) Instead of only considering one-step atten-
tion and its alignment with a single ground-truth map, we propose to integrate
attention with progressive reasoning that involves a sequence of operations each
related to different objects. (2) While most VQA studies assume human answers
to be accurate, it is not always the case [38]. We collect ground truth correctness
labels to examine the effects of attention and reasoning on task performance.
(3) The only available dataset [7], with post-hoc attention annotation collected
on blurry images using a “bubble-like” paradigm and crowdsourcing, may not
accurately reflect the actual attention of the task performers [32]. Our work
addresses these limitations by using on-site eye tracking data and QA anno-
tations collected from the same participants. (4) Das et al. [7] compared only
spatial attention with human attention. Since recent studies [18,26] suggest that
attention based on object proposals are more semantically meaningful, we con-
duct the first quantitative and principled evaluation of object-based attentions.

This paper also presents a progressive supervision approach for attention,
which is related to the recent efforts on improving attention accuracy with
explicit supervision. Several studies use different sources of attention ground
truth, such as human attention [29], adversarial learning [28] and objects mined
from textual descriptions [44], to explicitly supervise the learning of attentions.
Similar to the evaluation studies introduced above, these attention supervision
studies only consider attention as a single-output mechanism and ignores the
progressive nature of the attention process or whether it is reasonable or not.
As a result, they fall short of acquiring sufficient information from intermediate
steps. Our work addresses these challenges with joint prediction of the reasoning
operations and the desired attentions along the entire decision-making process.

Our work is also related to a collection of datasets for eye-tracking and
visual reasoning. Eye tracking data is collected to study passive exploration
[1,5,10,21,24,36] as well as task-guided attention [1,9,24]. Despite the less accu-
rate and post-hoc mouse-clicking approximation [7], there has been no eye-
tracking data recorded from human participants performing the VQA tasks.
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To facilitate the analysis of human attention in VQA tasks, we construct the
first dataset of eye-tracking data collected from humans performing the VQA
tasks. A number of visual reasoning datasets [3,13,18,20,31,43] are collected
in the form of VQA. Some are annotated with human-generated questions and
answers [3,31], while others are developed with synthetic scenes and rule-based
templates to remove the subjectiveness of human answers and language biases
[13,18,20,43]. The one most closely related to this work is GQA [18], which
offers naturalistic images annotated with scene graphs and synthetic question-
answer pairs. With balanced questions and answers, it reduces the language bias
without compromising generality. Their data efforts benefit the development of
various visual reasoning models [2,8,11,16,23,27,30,35,39–42]. In this work, we
use a selection of GQA data and annotations in the development of the proposed
framework.

3 Method

Real-life vision tasks require looking and reasoning interactively. This section
presents a principled framework to study attention in the reasoning context.
It consists of three novel components: (1) a quantitative measure to evaluate
attention accuracy in the reasoning context, (2) a progressive supervision method
for models to learn where to look throughout the reasoning process, and (3) an
eye-tracking dataset featuring human eye-tracking and answer correctness data.

3.1 Attention with Reasoning Capability

To model attention as a process and examine its reasoning capability, we describe
reasoning as a sequence of atomic operations. Following the sequence, an intelli-
gent agent progressively attends to the key ROIs at each step and reasons what
to do next until eventually making a final decision. A successful decision-making
relies on accurate attention for various reasoning operations, so that the most
important information is not filtered out but passed along to the final step.

Table 1. Semantic operations of the reasoning process

Operation Semantic

Select Searching for objects from a specific category

Filter Determining the targeted objects by looking for a specific
attribute

Query Retrieving the value of a specific attribute from the ROIs

Verify Examining the targeted objects and checking if they have a
given attribute

Compare Comparing the values of an attribute between multiple objects

Relate Connecting different objects through their relationships

And/Or Serving as basic logical operations that combine the results of
the previous operation(s)
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To represent the reasoning process and obtain the corresponding ROIs, we
define a vocabulary of atomic operations emphasizing the role of attention. These
operations are grounded on the 127 types of operations of GQA [18] that com-
pletely represent all the questions. As described in Table 1, some operations
require attention to a specific object (query, verify); some require attention to
objects of the same category (select), attribute (filter), or relationship (relate);
and others require attention to any (or) or all (and, compare) ROIs from the
previous operations. The ROIs of each operation are jointly determined by the
type of operation and the scene information (i.e., object categories, attributes
and relationships). Given the operation sequence and annotated scene informa-
tion, we can traverse the reasoning process, starting with all objects in the scene,
and sequentially apply the operations to obtain the ROIs at each step. Details
of this method are described in the supplementary materials.

Is the car different in
color than the lamp?
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1. select
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2. select
(car)

3. compare
(color, lamp, car)
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 5.943  5.293  5.618 

 0.637  3.440  1.904 

Fig. 2. AiR-E scores of Correct and Incorrect human attention maps, measuring their
alignments with the bounding boxes of the ROIs

3.2 Measuring Attention Accuracy with ROIs

Decomposing the reasoning process into a sequence of operations allows us to
evaluate the quality of attention (machine and human attentions) according to
its alignment with the ROIs at each operation. Attention can be represented as
a 2D probability map where values indicate the importance of the corresponding
input pixels. To quantitatively evaluate attention accuracy in the reasoning con-
text, we propose the AiR-E metric that measures the alignment of the attention
maps with ROIs relevant to reasoning. As shown in Fig. 2, for humans, a bet-
ter attention map leading to the correct answer has higher AiR-E scores, while
the incorrect attention with lower scores fails to focus on the most important
object (i.e., car). It suggests potential correlation between the AiR-E and the
task performance. The specific definition of AiR-E is introduced as follows:
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Inspired by the Normalized Scanpath Saliency [6] (NSS), given an attention
map A(x) where each value represents the importance of a pixel x, we first
standardize the attention map into A∗(x) = (A(x) − μ) /σ, where μ and σ are
the mean and standard deviation of the attention values in A(x), respectively.
For each ROI, we compute AiR-E as the average of A∗(x) inside its bounding
box B: AiR-E(B) =

∑

x∈B

A∗(x)/|B|. Finally, we aggregate the AiR-E of all ROIs

for each reasoning step:

1. For operations with one set of ROIs (i.e., select, query, verify, and filter),
as well as or that requires attention to one of multiple sets of ROIs, an
accurate attention map should align well with at least one ROI. Therefore,
the aggregated AiR-E score is the maximum AiR-E of all ROIs.

2. For those with multiple sets of ROIs (i.e., relate, compare, and), we compute
the aggregated AiR-E for each set, and take the mean across all sets.

3.3 Reasoning-Aware Attention Supervision

For models to learn where to look along the reasoning process, we propose a
reasoning-aware attention supervision method (AiR-M) to guide models to pro-
gressively look at relevant places following each reasoning operation. Different
from previous attention supervision methods [28,29,44], the AiR-M method con-
siders the attention throughout the reasoning process and jointly supervises the
prediction of reasoning operations and ROIs across the sequence of multiple rea-
soning steps. Integrating attention with reasoning allows models to accurately
capture ROIs along the entire reasoning process for deriving the correct answers.

The proposed method has two major distinctions: (1) integrating attention
progressively throughout the entire reasoning process and (2) joint supervision
on attention, reasoning operations and answer correctness. Specifically, following
the reasoning decomposition discussed in Sect. 3.1, at the t-th reasoning step, the
proposed method predicts the reasoning operation rt, and generates an attention
map αt to predict the ROIs. With the joint prediction, models learn desirable
attentions for capturing the ROIs throughout the reasoning process and deriving
the answer. The predicted operations and the attentions are supervised together
with the prediction of answers:

L = Lans + θ
∑

t

Lαt
+ φ

∑

t

Lrt
(1)

where θ and φ are hyperparameters. We use the standard cross-entropy loss
Lans and Lrt to supervise the answer and operation prediction, and a Kullback–
Leibler divergence loss Lαt

to supervise the attention prediction. We aggregate
the loss for operation and attention predictions over all reasoning steps.

The proposed AiR-M supervision method is general, and can be applied to
various models with attention mechanisms. In the supplementary materials, we
illustrate the implementation details for integrating AiR-M with different state-
of-the-art models used in our experiments.
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3.4 Evaluation Benchmark and Human Attention Baseline

Previous attention data collected under passive image viewing [21], approxima-
tions with post-hoc mouse clicks [7], or visually grounded answers [19] may not
accurately or completely reflect human attention in the reasoning process. They
also do not explicitly verify the correctness of human answers. To demonstrate
the effectiveness of the proposed evaluation metric and supervision method, and
to provide a benchmark for attention evaluation, we construct the first eye-
tracking dataset for VQA. It, for the first time, enables the step-by-step com-
parison of how humans and machines allocate attention during visual reasoning.

Specifically, we (1) select images and questions that require humans to
actively look and reason; (2) remove ambiguous or ill-formed questions and verify
the ground truth answer to be correct and unique; (3) collect eye-tracking data
and answers from the same human participants, and evaluate their correctness
with the ground-truth answers.

Images and Questions. Our images and questions are selected from the bal-
anced validation set of GQA [18]. Since the questions of the GQA dataset are
automatically generated from a number of templates based on scene graphs [25],
the quality of these automatically generated questions may not be sufficiently
high. Some questions may be too trivial or too ambiguous. Therefore, we perform
automated and manual screenings to control the quality of the questions. First,
to avoid trivial questions, all images and questions are first screened with these
criteria: (1) image resolution is at least 320 × 320 pixels; (2) image scene graph
consists of at least 16 relationships; (3) total area of question-related objects
does not exceed 4% of the image. Next, one of the authors manually selects 987
images and 1,422 questions to ensure that the ground-truth answers are accurate
and unique. The selected questions are non-trivial and free of ambiguity, which
require paying close attention to the scene and actively searching for the answer.

Eye-Tracking Experiment. The eye-tracking data are collected from 20 paid
participants, including 16 males and 4 females from age 18 to 38. They are asked
to wear a Vive Pro Eye headset with an integrated eye-tracker to answer ques-
tions from images presented in a customized Unity interface. The questions are
randomly grouped into 18 blocks, each shown in a 20-min session. The eye-tracker
is calibrated at the beginning of each session. During each trial, a question is first
presented, and the participant is given unlimited time to read and understand
it. The participant presses a controller button to start viewing the image. The
image is presented in the center for 3 s. The image is scaled such that both the
height and width occupy 30◦ of visual angle (DVA). After that, the question is
shown again and the participant is instructed to provide an answer. The answer
is then recorded by the experimenter. The participant presses another button to
proceed to the next trial.

Human Attention Maps and Performances. Eye fixations are extracted
from the raw data using the Cluster Fix algorithm [22], and a fixation map is
computed for each question by aggregating the fixations from all participants.
The fixation maps are scaled into 256 × 256 pixels, smoothed using a Gaussian
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kernel (σ = 9 pixels, ≈1 DVA) and normalized to the range of [0,1]. The overall
accuracy of human answers is 77.64 ± 24.55% (M±SD). A total of 479 ques-
tions have consistently correct answers, and 934 have both correct and incorrect
answers. The histogram of human answer accuracy is shown in Fig. 3a. We fur-
ther separate the fixations into two groups based on answer correctness and
compute a fixation map for each group. Correct and incorrect answers have
comparable numbers of fixations per trial (10.12 vs.10.27), while the numbers
of fixations for the correct answers have a lower standard deviation across trials
(0.99 vs.1.54). Figure 3b shows the prior distributions of the two groups of fixa-
tions, and their high similarity (Pearson’s r = 0.997) suggests that the answer
correctness is independent of center bias. The correct and incorrect fixation maps
are considered as two human attention baselines to compare with machine atten-
tions, and also play a role in validating the effectiveness of the proposed AiR-E
metric. More illustration is provided in the supplementary video.
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Fig. 3. Distributions of answer accuracy and eye fixations of humans. (a) Histogram
of human answer accuracy (b) Center biases of the correct and incorrect attention

4 Experiments and Analyses

In this section, we conduct experiments and analyze various attention mech-
anisms of humans and machines. Our experiments aim to shed light on the
following questions that have yet to be answered:

1. Do machines or humans look at places relevant to the reasoning process? How
does the attention process influence task performances? (Sect. 4.1)

2. How does attention accuracy evolve over time, and what about its correlation
with the reasoning process? (Sect. 4.2)

3. Does guiding models to look at places progressively following the reasoning
process help? (Sect. 4.3)

4.1 Do Machines or Humans Look at Places Important to
Reasoning? How Does Attention Influence Task Performances?

First, we measure attention accuracy throughout the reasoning process with
the proposed AiR-E metric. Answer correctness is also compared, and its cor-
relation with the attention accuracy reveals the joint influence of attention
and reasoning operations to task performance. With these experiments, we
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Fig. 4. Example question-answer pairs (column 1), images (column 2), ROIs at each
reasoning step (columns 3–5), and attention maps (columns 6–11)

observe that humans attend more accurately than machines, and the correlation
between attention accuracy and task performance is dependent on the reasoning
operations.

We evaluate four types of attentions that are commonly used in VQA models,
including spatial soft attention (S-Soft), spatial Transformer attention (S-Trans),
object-based soft attention (O-Soft), and object-based Transformer attention
(O-Trans). Spatial and object-based attentions differ in terms of their inputs
(i.e., image features or regional features), while soft and Transformer attention
methods differ in terms of the computational methods of attention (i.e., with
convolutional layers or matrix multiplication). We use spatial features extracted
from ResNet-101 [14] and object-based features from [2] as the two types of
inputs, and follow the implementations of [2] and [12] for the soft attention [37]
and Transformer attention [34] computation, respectively. We integrate the afore-
mentioned attentions with different state-of-the-art VQA models as backbones.
Our observations are general and consistent across various backbones. In the
following sections, we use the results on UpDown [2] for illustration (results for
the other backbones are provided in the supplementary materials). For human
attentions, we denote the fixation maps associated with correct and incorrect
answers as H-Cor and H-Inc, and the aggregated fixation map regardless of cor-
rectness is denoted as H-Tot. Figure 4 presents examples of ROIs for different
reasoning operations and the compared attention maps.

Attention Accuracy and Task Performance of Humans and Models.
Table 2 quantitatively compares the AiR-E scores and VQA task performance
across humans and models with different types of attentions. The task perfor-
mance for models is the classification score of the correct answer, while the task
performance for humans is the proportion of correct answers. Three clear gaps
can be observed from the table: (1) Humans who answer correctly have sig-
nificantly higher AiR-E scores than those who answer incorrectly. (2) Humans
consistently outperform models in both attention and task performance. (3)
Object-based attentions attend much more accurately than spatial attentions.
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Table 2. Quantitative evaluation of AiR-E scores and task performance

Attention and compare filter or query relate select verify
A

iR
-E

H-Tot 2.197 2.669 2.810 2.429 3.951 3.516 2.913 3.629

H-Cor 2.258 2.717 2.925 2.529 4.169 3.581 2.954 3.580

H-Inc 1.542 1.856 1.763 1.363 2.032 2.380 1.980 2.512

O-Soft 1.334 1.204 1.518 1.857 3.241 2.243 1.586 2.091

O-Trans 1.579 1.046 1.202 1.910 3.041 1.839 1.324 2.228

S-Soft -0.001 -0.110 0.251 0.413 0.725 0.305 0.145 0.136

S-Trans 0.060 -0.172 0.243 0.343 0.718 0.370 0.173 0.101

A
cc

u
ra

cy

H-Tot 0.700 0.625 0.668 0.732 0.633 0.672 0.670 0.707

O-Soft 0.604 0.547 0.603 0.809 0.287 0.483 0.548 0.605

O-Trans 0.606 0.536 0.608 0.832 0.282 0.487 0.550 0.592

S-Soft 0.592 0.520 0.558 0.814 0.203 0.427 0.511 0.544

S-Trans 0.597 0.525 0.557 0.811 0.211 0.435 0.517 0.607

The low AiR-E of spatial attentions confirms the previous conclusion drawn
from the VQA-HAT dataset [7]. By constraining the visual inputs to a set of
semantically meaningful objects, object-based attention typically increases the
probabilities of attending to the correct ROIs. Between the two object-based
attentions, the soft attention slightly outperforms its Transformer counterpart.
Since the Transformer attentions explicitly learn the inter-object relationships,
they perform better for logical operations (i.e., and, or). However, due to the
complexity of the scenes and fewer parameters used [34], they do not perform
as well as soft attention. The ranks of different attentions are consistent with
the intuition and literature, suggesting the effectiveness of the proposed AiR-E
metric.

Attention Accuracy and Task Performance Among Different Reason-
ing Operations. Comparing the different operations, Table 2 shows that query
is the most challenging operation for models. Even with the highest attention
accuracy among all operations, the task performance is the lowest. This is prob-
ably due to the inferior recognition capability of models compared with humans.
To humans, ‘compare’ is the most challenging in terms of task performance,
largely because it often appears in complex questions that require close atten-
tion to multiple objects and thus take longer processing time. Since models can
process multiple input objects in parallel, their performance is not highly influ-
enced by the number of objects to look at.

Correlation Between Attention Accuracy and Task Performance. The
similar rankings of AiR-E and task performance suggest a correlation between
attention accuracy and task performance. To further investigate this correlation
on a sample basis, for each attention and operation, we compute the Pearson’s r
between the attention accuracy and task performance across different questions.
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Table 3. Pearson’s r between attention accuracy (AiR-E) and task performance. Bold
numbers indicate significant positive correlations (p< 0.05)

Attention And Compare Filter Or Query Relate Select Verify

H-Tot 0.205 0.329 0.051 0.176 0.282 0.210 0.134 0.270

O-Soft 0.167 0.217 −0.022 0.059 0.331 0.058 0.003 0.121

O-Trans 0.168 0.205 0.090 0.174 0.298 0.041 0.063 −0.027

S-Soft 0.177 0.237 −0.084 0.082 −0.017 −0.170 −0.084 0.066

S-Trans 0.171 0.210 −0.152 0.086 −0.024 −0.139 −0.100 0.270

As shown in Table 3, human attention accuracy and task performance are
correlated for most of the operations (up to r = 0.329). The correlation is higher
than most of the compared machine attentions, suggesting that humans’ task
performance is more consistent with their attention quality. In contrast, though
commonly referred as an interface for interpreting models’ decisions [7,19,26],
spatial attention maps do not reflect the decision-making process of models. They
typically have very low and even negative correlations (e.g., relate, select). By
limiting the visual inputs to foreground objects, object-based attentions achieve
higher attention-answer correlations.

The differences of correlations between operations are also significant. For the
questions requiring focused attention to answer (i.e., with query and compare
operations), the correlations are relatively higher than the others.

4.2 How Does Attention Accuracy Evolve Throughout
the Reasoning Process?

To complement our previous analysis on the spatial allocation of attentions, we
move forward to analyze the spatiotemporal alignment of attentions. Specifically,
we analyze the AiR-E scores according to the chronological order of reasoning
operations. We show in Fig. 5a that the AiR-E scores peak at the 3rd or 4th

steps, suggesting that human and machine attentions focus more on the ROIs
closely related to the final task outcome, instead of the earlier steps. In the rest
of this section, we focus our analysis on the spatiotemporal alignment between
multiple attention maps and the ROIs at different reasoning steps. In particular,
we study the change of human attention over time, and compare it with multi-
glimpse machine attentions. Our analysis reveals the significant spatiotemporal
discrepancy between human and machine attentions.

Do Human Attentions Follow the Reasoning Process? First, to analyze
the spatiotemporal deployment of human attention in visual reasoning, we group
the fixations into three temporal bins (0–1 s, 1–2 s and 2–3 s), and compute AiR-
E scores for each fixation map and reasoning step (see Fig. 5b–c). Humans
start exploration (0–1 s) with relatively low attention accuracy. After the initial
exploration, human attention shows improved accuracy across all reasoning steps
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(1–2 s), and particularly focuses on the early-step ROIs. In the final steps (2–
3 s), depending on the correctness of answers, human attention either shifts to
the ROIs at later stages (correct), or becomes less accurate with lowered AiR-
E scores (incorrect). Such observations suggest high spatiotemporal alignments
between human attention and the sequence of reasoning operations.

[] [] []

[] [] []

Fig. 5. Spatiotemporal accuracy of attention throughout the reasoning process. (a)
shows the AiR-E of different reasoning steps for human aggregated attentions and
single-glimpse machine attentions, (b)–(c) AiR-E scores for decomposed human atten-
tions with correct and incorrect answers, (d)–(f) AiR-E for multi-glimpse machine
attentions. For heat maps shown in (b)–(f), the x-axis denotes different reasoning steps
while the y-axis corresponds to the indices of attention maps

Do Machine Attentions Follow the Reasoning Process? Similarly, we
evaluate multi-glimpse machine attentions. We compare the stacked attention
from SAN [39], compositional attention from MAC [17] and the multi-head atten-
tion [11,42], which all adopt the object-based attention. Figure 5d–f shows that
multi-glimpse attentions do not evolve with the reasoning process. Stacked atten-
tion’s first glimpse already attends to the ROIs at the 4th step, and the other
glimpses contribute little to the attention accuracy. Compositional attention and
multi-head attention consistently align the best with the ROIs at the 3rd or 4th

step, and ignore those at the early steps.
The spatiotemporal correlations indicate that following the correct order of

reasoning operations is important for humans to attend and answer correctly.
In contrast, models tend to directly attend to the final ROIs, instead of shifting
their attentions progressively.
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Table 4. Comparative results on GQA test sets (test-dev and test-standard). We report
the single-model performance trained on the balanced training set of GQA

UpDown [2] MUTAN [4] BAN [23]

Dev Standard Dev Standard Dev Standard

w/o Supervision 51.31 52.31 50.78 51.16 50.14 50.38

PAAN [28] 48.03 48.92 46.40 47.22 n/a n/a

HAN [29] 49.96 50.58 48.76 48.99 n/a n/a

ASM [44] 52.96 53.57 51.46 52.36 n/a n/a

AiR-M 53.46 54.10 51.81 52.42 53.36 54.15

4.3 Does Progressive Attention Supervision Improve Attention
and Task Performance?

Experiments in Sect. 4.1 and Sect. 4.2 suggest that attention towards ROIs rele-
vant to the reasoning process contributes to task performance, and furthermore,
the order of attention matters. Therefore, we propose to guide models to look at
places important to reasoning in a progressive manner. Specifically, we propose
to supervise machine attention along the reasoning process by jointly optimizing
attention, reasoning operations, and task performance (AiR-M, see Sect. 3.3).
Here we investigate the effectiveness of the AiR-M supervision method on three
VQA models, i.e., UpDown [2], MUTAN [4], and BAN [23]. We compare AiR-
M with a number of state-of-the-art attention supervision methods, including
supervision from human-like attention (HAN) [29], attention supervision min-
ing (ASM) [44] and adversarial learning (PAAN) [28]. Note that while the other
compared methods are typically limited to supervision on a single attention map,
our AiR-M method is generally applicable to various VQA models with single
or multiple attention maps (e.g., BAN [23]).

According to Table 4, the proposed AiR-M supervision significantly improves
the performance of all baselines and consistently outperforms the other attention
supervision methods. Two of the compared methods, HAN and PAAN, fail to
improve the performance of object-based attention. Supervising attention with
knowledge from objects mined from language, ASM [44] is able to consistently
improve the performance of models. However, without considering the interme-
diate steps of reasoning, it is not as effective as the proposed method.

Figure 6 shows the qualitative comparison between supervision methods. The
proposed AiR-M not only directs attention to the ROIs most related to the
answers (i.e., freezer, wheel, chair, purse), but also highlights other important
ROIs mentioned in the questions (i.e., keyboard, man), thus reflecting the entire
reasoning process, while attentions in other methods fail to localize these ROIs.

Table 5 reports the AiR-E scores across operations. It shows that the AiR-M
supervision method significantly improves attention accuracy (attention aggre-
gated across different steps), especially on those typically positioned in early
steps (e.g., select, compare). In addition, the AiR-M supervision method also
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Fig. 6. Qualitative comparison between attention supervision methods, where Baseline
refers to UpDown [2]. For each row, from left to right are the questions and the correct
answers, input images, and attention maps learned by different methods. The predicted
answers associated with the attentions are shown below its respective attention map

Table 5. AiR-E scores of the supervised attentions

Attention And Compare Filter Or Query Relate Select Verify

Human 2.197 2.669 2.810 2.429 3.951 3.516 2.913 3.629

AiR-M 2.396 2.553 2.383 2.380 3.340 2.862 2.611 4.052

Baseline [2] 1.859 1.375 1.717 2.271 3.651 2.448 1.796 2.719

ASM 1.415 1.334 1.443 1.752 2.447 1.884 1.584 2.265

HAN 0.581 0.428 0.468 0.607 1.576 0.923 0.638 0.680

PAAN 1.017 0.872 1.039 1.181 2.656 1.592 1.138 1.221

Fig. 7. Alignment between the proposed attention and reasoning process

aligns the multi-glimpse attentions better according to their chronological order
in the reasoning process (see Fig. 7 and the supplementary video), showing pro-
gressive improvement of attention throughout the entire process.
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5 Conclusion

We introduce AiR, a novel framework with a quantitative evaluation metric
(AiR-E), a supervision method (AiR-M), and an eye-tracking dataset (AiR-D)
for understanding and improving attention in the reasoning context. Our analy-
ses show that accurate attention deployment can lead to improved task perfor-
mance, which is related to both the task outcome and the intermediate reasoning
steps. Our experiments also highlight the significant gap between models and
humans on the alignment of attention and reasoning process. With the proposed
attention supervision method, we further demonstrate that incorporating the
progressive reasoning process in attention can improve the task performance by
a considerable margin. We hope that this work will be helpful for future devel-
opment of visual attention and reasoning method, and inspire the analysis of
model interpretability throughout the decision-making process.
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