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Abstract

The last decades have seen great progress in saliency
prediction, with the success of deep neural networks that
are able to encode high-level semantics. Yet, while humans
have the innate capability in leveraging their knowledge to
decide where to look (e.g. people pay more attention to fa-
miliar faces such as celebrities), saliency prediction mod-
els have only been trained with large eye-tracking datasets.
This work proposes to bridge this gap by explicitly incorpo-
rating external knowledge for saliency models as humans
do. We develop networks that learn to highlight regions by
incorporating prior knowledge of semantic relationships,
be it general or domain-specific, depending on the task of
interest. At the core of the method is a new Graph Seman-
tic Saliency Network (GraSSNet) that constructs a graph
that encodes semantic relationships learned from external
knowledge. A Spatial Graph Attention Network is then de-
veloped to update saliency features based on the learned
graph. Experiments show that the proposed model learns
to predict saliency from the external knowledge and outper-
forms the state-of-the-art on four saliency benchmarks.

1. Introduction

Visual attention is the ability to select the most relevant
part of the visual input. It helps humans to rapidly process
the overwhelming amount of visual information acquired
from the environments. Saliency prediction is a computa-
tional task that models the visual attention driven by the
visual input [20], which has wide applicability in different
domains, such as image quality assessment [57], robot nav-
igation [8] and video surveillance [38], and screening neu-
rological disorders [24, 49, 51].

Where humans look is involuntarily influenced by their
prior knowledge. Such knowledge can be general common-
sense knowledge or specific ones that require prior experi-
ence or training [9, 19, 34]. It is commonly noticed that
salient objects tend to influence the saliency of similar ob-
jects. For example, as illustrated in Fig. 1, when multiple
people and objects exist, their saliency values relevant to

GraSSNet DINet
Figure 1. Examples of how semantic proximity affects saliency

maps. External semantic relationships are effective in deciding
the relative saliency of objects.

the closeness of their relationships. When one of them is
salient, their related objects also tend to be salient.

Differently, despite the success of deep neural networks
for saliency prediction [4, 18, 31], they rely on training
data and learn ‘knowledge’ only in a data-driven and im-
plicit manner. With the advancement of DNNs and the col-
lection of more data, these networks learn better seman-
tics that encode objects and maybe high-level context or
relationship; it is, however, unclear to what degree what
knowledge can be learned, and it heavily depends on the
data quantity and content. Therefore, we in this work
propose to leverage ground truth knowledge from external
sources. Such knowledge could well complement the fea-
tures learned from the neural networks to more intelligently
decide where to look. Note that attention data are not trivial
to scale [40], which makes this work more useful in prac-
tice, e.g. domain-specific knowledge could be directly used
to guide saliency prediction in a clinical application without
big attention ground truth.

To demonstrate the overarching goal, we use two exter-
nal knowledge sources (MSCOCO image captioning [36]
and WordNet [39]) that describe semantic relationships
between objects. Semantic relationship is important to
saliency prediction as objects are correlated and together
they also reflect context; it is also one of the most well-
structured and documented sources of external knowl-
edge. We introduce this knowledge into a computational
saliency model by designing a Graph Semantic Saliency
Network (GraSSNet), which explicitly analyzes the seman-
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tic relationships of objects in a scene and uses such knowl-
edge for saliency prediction. In particular, we propose a
Semantic Proximity Network (SPN) that computes the se-
mantic proximity of detected region proposals in semantic
spaces of interest. While external knowledge is explicitly
used to supervise the learning of the network, the relation-
ships to be distilled is dependent on the input image by set-
ting the distillation loss as a part of the objective. We fur-
ther propose a Spatial Graph Attention Network (sGAT) to
propagate the semantic features of region proposals based
on their semantic proximity with maintained latent spa-
tial structures, where the updated features will be used to-
gether with the multi-scale spatial feature maps to compute
saliency maps.

In sum, we propose to explicitly leverage external
knowledge for saliency prediction, as a complementary
source of information to neural network based models. Ex-
tensive experiments on four datasets with comparisons with
six models and analyses demonstrate the advantage of in-
corporating the knowledge. The main technical contribu-
tions are summarized as follows:

e We propose a new graph-based saliency prediction
model by leveraging object-level semantics and their
relationships.

e We propose a novel Semantic Proximity Network to
explicitly distill semantic proximity from multiple ex-
ternal knowledge bases for saliency prediction.

e We propose Spatial Graph Attention Network to dy-
namically propagate semantic features across objects
for the prediction of the saliency across multiple ob-
jects.

2. Related Works

In this section, we first review state-of-the-art visual
saliency models. Next, we briefly introduce how external
knowledge is utilized in other high-level computer vision
tasks (e.g. relationship detection) and how we adapt it to
predict saliency. Lastly, we review and compare graph con-
volution methods with ours.

2.1. Deep Saliency Prediction Models

The recent success of deep learning models has brought
considerable improvements in saliency prediction tasks.
One of the first work is Ensemble of Deep Networks
(eDN) [48], which combines multiple features from a few
convolution layers. Later DeepGaze I [32] leverages a
deeper structure for better feature extraction. After that,
many models [21, 29, 30, 50] follow the framework that
consists of a deep model and fully convolutional networks
(FCN) to leverage the powerful capabilities in contextual
feature extraction. These models are often pre-trained on

large datasets (e.g. SALICON [23]) and then fine-tuned
on small-scale fixation datasets. However, with the in-
creasing model depth, many downsampling operations are
performed, contributing to a lower spatial resolution and
limited performance [37]. A recent state-of-the-art model
named Dilated Inception Networks (DINet) [54] leverages
dilated convolutions to tackle the issue. Another major
strength of the deep model is its capabilities of high-level
feature extraction. Many deep neural network based method
[4, 18, 23, 31] have boosted saliency prediction perfor-
mance by implicitly encoding semantics with different ap-
proaches (e.g. subnets in different scales [18], inception
blocks [45], etc.).

However, none of the previous methods explored the
saliency patterns among different objects in a scene. Our
model differentiates itself from existing methods by lever-
aging the relationships of various semantics for saliency
prediction, using a Semantic Proximity Network and a Spa-
tial Graph Attention Network.

2.2. External Knowledge Distillation

External knowledge has gained great interest in natural
language processing [3, 17] and computer vision [1, 11, 35].
As the information extracted from training sets are always
insufficient to fully recover the real knowledge domain, pre-
vious works explicitly incorporate external knowledge to
compensate it. Generally, there are two commonly used
frameworks for knowledge distillation.

One framework is teacher-student distillation. For ex-
ample, Yu et al. [55] leverages this structure to absorb
linguistic knowledge in visual relationship detection tasks.
Apart from the teacher-student structure, more existing
works in object/relationship detection and scene graph gen-
eration adopt the graph framework. For instance, KG-
GAN [13] improves the performance of scene graph gen-
eration by effectively propagating contextual information
across the external knowledge graph. Similarly, [22] adopts
external knowledge graphs to solve the long-tail problems
in object detection tasks.

Our model also employs a graph framework to distill
external knowledge. However, unlike aforementioned ob-
ject/relationship detection tasks (e.g. [22]), where semantics
are explicitly defined and structured (e.g. objects, relation-
ships), semantics in the saliency feature maps are always
entangled, making them non-trivial to connect with external
knowledge. To tackle such problems, we not only segment
semantics by extracting region proposals, but also convert
the external knowledge to image-specific region-to-region
semantic proximity graphs.

2.3. Graph Convolution Networks

Leveraging graphs in saliency prediction has been ex-
plored at the pixel level. GBVS [15] treats every pixel as



node and diffuses its saliency information along the edges
by Markov chains. Recently, graph convolution networks
have been applied in various tasks that require informa-
tion propagation. These methods can largely be catego-
rized into spectral [5, 16, 27] and non-spectral [2, 12, 14]
approaches. One recent approach named Graph Attention
Network (GAT)[47] achieves state-of-the-art by leveraging
self-attention mechanism.

Inspired by the GAT, we develop a Spatial Graph At-
tention Network (sGAT) to process spatial feature maps as
node attributes. While SGAT assumes no spatial structure
within node attributes, our proposed sGAT encodes spatial
characteristics during feature propagation, because of their
importance in predicting the spatial distribution of attention.

3. Method

This section presents the Graph Semantic Saliency Net-
work (GraSSNet), as shown in Fig. 2. The task is formu-
lated as follows: given a 2D image [ as the input, it aims
to construct a semantic proximity graph and use it to pre-
dict a saliency map as a 2D probability distribution of eye
fixations. We will first describe our model architecture, fol-
lowed by the details of the two novel components: Semantic
Proximity Network (SPN) and Spatial Graph Attention Net-
work (sGAT). Finally, we present the objective function to
optimize our model.

3.1. Model Architecture

Object Feature Retrieval. Our method is based on de-
tected region proposals. As shown in Fig. 2, the model
uses a pre-trained Faster R-CNN [43] to detect all objects
from the input image I, generating a set of bounding boxes
B = {b1,---,b,} where p denotes the total number of
detected instances. Their corresponding regional features
h = {hi,ho, -+ ,hp}, h; € R4 xd2xds gre extracted from
the outputs of the ROI pooling layer, where dy, do and d3
denote the dimensions of features.

Semantic Proximity Graph Construction. To incorporate
external knowledge from multiple sources, we process these
regional features with a set of N Semantic Proximity Net-
works (SPNs) that predict the semantic proximity graphs
under the supervision from N different external knowledge
sources. This design makes it flexible to extend the model
with additional knowledge bases. Given regional features
h, a semantic proximity graph is computed as

A= fén(h), (D

where floy denotes the SPN supervised by an external
knowledge graph A; where [ =1,--- , V.

Semantic Proximity Knowledge Distillation. Upon ob-
taining N predicted graphs A = {A;, Ay,--- , Ay}, the
regional features are processed with N different Graph At-
tention Networks (sGATs), sharing the saliency features

to their immediate neighbors in the corresponding seman-

tic proximity graphs to generate updated regional features
!

h; = {hgl’ h227 T 7h;p}:

hy = fai.(h). @)

By supervising the SPNs with different externally built
ground-truth proximity graphs, diverse proximity knowl-
edge can be learned from external knowledge, so that fea-
tures can be propagated along the predicted graphs.

We concatenate all the updated regional features
{h;}, 1 €[1,2, -, N] and use a convolution layer to com-
pute the final updated features k', which are projected back
to replace the raw map features m,. in the detected bound-
ing boxes. Features in overlapping regions are merged with
the max operation to create spatial feature map m..

Prior Maps Generation. As fixations tend to be biased
towards the center of the image [46], we model this center
bias b and combine it into the saliency map like many ex-
isting works [30, 33]. Specifically, our model learns a total
of R Gaussian prior maps from the data to model the cen-
ter bias, whose means (fi;, f1,;) and variances (03, 05) are
learned as follows:

(7 — piz)? N (y — uy)Q)).

exp(—( 202 202
T Y

fgau(xay) = 2770'9503;

3)

Saliency Map Generation. Consequently, the saliency
maps are constructed by concatenating spatial feature map
m., baseline feature map m; and prior maps b:

g = fena(me || my || ), “)

where || denotes the concatenation operations and fe,q rep-
resents two convolution layers and one bilinear upsampling
layer. Baseline feature map my, is obtained from a baseline
saliency model.

In the rest of this section, we describe two key compo-
nents of the architecture.

3.2. Semantic Proximity Network

A key component of our model is the explicit model-
ing of semantic proximity, with the supervision from exter-
nal knowledge. As shown in Fig. 3, the computation of an
external proximity graph consists of two steps. First, we
propose a Semantic Proximity Network (SPN) that predicts
the semantic proximity graph based on the input features.
Each node in the semantic proximity graph represents a de-
tected object, and the edges indicate their pairwise seman-
tic proximity. Next, we build an external knowledge graph
from semantic databases (e.g. MSCOCO captions, Word-
Net), which models the semantic proximity between differ-
ent object categories. While the external knowledge graph
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Figure 2. Architecture of the proposed graph semantic saliency network. The architecture mainly consists of a Region Proposal Net-
work (RPN), a Semantic Proximity Network (SPN), a Spatial Graph Attention Network (sGAT), and a baseline saliency network. The
concatenated features from external knowledge (top), baseline saliency network (bottom) and prior maps (optional) are fed into several

convolutional and upsampling layers to compute saliency maps.
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Figure 3. Learning of the Semantic Proximity Network. Region-
to-region semantic proximity values are predicted by feeding con-
catenated regional features to a four-layer MLP. The weights of
SPN are trained under the supervision of external object relation-
ship knowledge with a MSE loss.

is used as the explicit supervision of the SPN, the distilla-
tion is not forced. Instead, with the distillation loss as a part
of the model objective, the model can learn various seman-
tic relationships, and how to incorporate such information
is dependent on the input image. To include richer semantic
proximity information, multiple knowledge graphs can be
incorporated with different SPNs.

We define the [-th semantic proximity graph as a p X p
adjacency matrix A;, and é;; represents the learned edge
connectivity between region ¢ and region j, where p is the
number of regions. The SPN aims to predict the edge con-
nectivity between every two regions. Specifically, as shown
in Fig. 3, the edge é;; of specific graph’s adjacency matrix
A, canbe computed with a Multi-Layer Perceptron (MLP):

éij = MLP 4 (h; || hyj), (5)

1
where || represents the concatenation operation. If é;; is
greater than a pre-defined threshold 6;, an edge is formed
between region ¢ and region j.

To supervise the learning of each SPN, we construct ex-
ternal knowledge graphs of semantic proximity. The prox-
imity information can be obtained from multiple sources.
Details about building external knowledge graphs will be
discussed in Implementation Details (Section 4.3).

3.3. Spatial Graph Attention Network

We propose a Spatial Graph Attention Network (sGAT)
to use the distilled external knowledge (i.e., semantic prox-
imity graph) for saliency prediction. The sGAT is com-
posed of multiple graph convolutional layers. The inputs to
the sGAT are the regional features h = {hi, ho, -, hp},
while its output is a group of updated regional features
hy = {hjy, hig, - )}, € REXd2xds - The sGAT
computes attention coefficients c;;, where 7, j are the in-
dices of the regions.

To predict saliency, it is important to preserve the spatial
characteristics of the region proposals. Therefore, different
from the standard GAT method, in this work c;; is computed
as

Cij = fax(W o hy, W o h;), (6)

where W are learnable weights of a spatial filter, o denotes
the convolution operation, and f,, represents an attention
block following GAT [47]. The sGAT computes the coef-
ficients of the region ¢’s immediate neighbors (include %)
in the predicted semantic proximity graph. With a softmax
normalization on ¢;;, we obtain attention values {c;}, in-
dicating region j’s importance towards region 1.

Finally, we obtain an updated node features hj; by lin-
early combining convoluted features from node i’s neigh-
boring nodes with attention values as weights. We adopted
a multi-head strategy to stabilize the learning process:

i = ||£(:1‘7(Z ai;;W o hj),
JEN;

(7

where || represents concatenation and K = 8 is the number
of attention heads.

3.4. Objective

In this work, we aim to jointly optimize the saliency
prediction and the prediction of semantic proximity graph.
Therefore, our model is optimized with two objective func-
tions: the saliency prediction loss and the semantic proxim-
ity loss.
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For the saliency prediction, our model is trained with a
linear combination of L loss following [54]) and two of the
most recommended saliency evaluation metrics [7] CC and
NSS. They complement each other and together ensure the
model’s overall performance:

Ly = L1(9,y) — BLcc(9,y) —vLnss(,y),  (8)

where ¢ denotes the output saliency map and the ground
truth is denoted as y.

To supervise the predicted semantic proximity graph Ay,
we need to leverage instance labels in the training phase.
Assume we are going to predict the connectivity between
region ¢ and region j, we can find their corresponding class
7/ and j’ based on the positions. Next, we retrieve the cor-
responding ground truth edge connectivity e, j» from A;.
Note that Al is in m X m, while A; is in p X p, where
m is the number of proposed regions and p is the number
of classes from external knowledge. We generate multiple
proximity graphs with different semantics with the mean
squared error (MSE) loss:

Lprox = Z

0<=i<j<p

(615 — eirjr)? 9

The final loss is the linear combination between saliency
prediction loss and semantic proximity loss:

L= Lsal + >\Lprox~ (10)

4. Experiments

This section reports extensive comparative experiments
and analyses. We first introduce the datasets, evaluation
metrics, and implementation details. Next, we quantita-
tively compare our proposed method to the state-of-the-art
saliency prediction methods. Finally, we conduct ablation
studies to examine the effect of each proposed component,
and present qualitative results.

4.1. Saliency Datasets

We evaluate our models on four public saliency datasets:
SALICON [23] is the largest available dataset for saliency
prediction. It contains 10,000 training images, 5,000 valida-
tion images and 5,000 testing images, all selected from the
MSCOCO dataset [36]. It provides ground-truth fixation
maps by simulating eye-tracking with mouse movements.
MIT1003 [25] includes 1,003 natural indoor and outdoor
scenes, with 779 landscape and 228 portrait images. The
eye fixations are collected from 15 observers aged between
18 to 35. CAT2000 [6] contains 4,000 images from 20 dif-
ferent categories, which are collected from a total of 120 ob-
servers. The dataset is divided into two sets, with 2,000 im-
ages in the training set and the rest in the test set. OSIE [53]
consists of 700 indoor and outdoor scenes from Flickr and

SALICON

MIT1003

Methods CC AUC NSS sAUC KL SIM

CC AUC NSS sAUC KL SIM

GraSSNet+CB  0.866 0.892 3.292 0.784 0.604 0.812
GraSSNet 0.867 0.888 3.261 0.786 0.598 0.805
DINet [54] 0.860 0.884 3.249 0.782 0.613 0.804
SAM-Res [10]  0.842 0.883 3.204 0.779 0.607 0.791
SAM-VGG [10] 0.825 0.881 3.143 0.774 0.610 0.793
DSCLRCN [37] 0.831 0.884 3.157 0.776 0.637 0.731
SalNet [41] 0.730 0.862 2.767 0.731 0.674 0.716
SALICON [18] 0.657 0.837 2.917 0.710 0.658 0.662

0.775 0.910 2.921 0.629 0.574 0.595
0.772 0.909 2.897 0.641 0.633 0.577
0.764 0.907 2.851 0.635 0.690 0.561
0.768 0.913 2.893 0.617 0.684 0.543
0.757 0.910 2.852 0.613 0.676 0.568
0.749 0.882 2.817 0.621 0.727 0.527
0.727 0.879 2.697 0.628 0.763 0.544
0.724 0.875 2.764 0.613 0.818 0.534

CAT2000

OSIE

GraSSNet+CB  0.897 0.889 2.481 0.610 0.529 0.785
GraSSNet 0.894 0.886 2.413 0.617 0.567 0.779
DINet [54] 0.874 0.877 2.379 0.612 0.598 0.765
SAM-Res [10]  0.892 0.883 2.386 0.585 0.563 0.778
SAM-VGG [10] 0.891 0.882 2.387 0.581 0.547 0.762
DSCLRCN [37] 0.834 0.861 2.357 0.541 0.851 0.684

0.853 0.911 3.324 0.859 0.711 0.725
0.847 0.906 3.317 0.864 0.729 0.724
0.842 0.903 3.264 0.860 0.751 0.718
0.843 0.901 3.237 0.862 0.704 0.723
0.832 0.893 3.196 0.858 0.727 0.690
0.667 0.882 2.621 0.831 0.878 0.499

SalNet [41] 0.817 0.864 2.361 0.563 0.674 0.663
SALICON [18] 0.801 0.862 2.343 0.524 0.867 0.652

0.805 0.887 2.897 0.837 0.764 0.624
0.686 0.890 2.849 0.842 0.725 0.566

Table 1. Evaluation results of the the compared models. RED and
BLUE indicate the best performance and the second best. The pro-
posed model is compared with six state-of-the-art models on SAL-
ICON, MIT1003, CAT2000 and OSIE datasets under six evalua-
tion metrics. Respectively, GraSSNet+CB and GraSSNet denote
the model with and without prior map generation as center bias.

Google, with fixations collected from 15 observers between
18 to 30. The dataset has a total of 5,551 segmented objects
with fine contours.

4.2. Evaluation Metrics

Metrics to evaluate saliency prediction performance can
be classified into two categories: distribution-based metrics
and location-based metrics [7, 44].

We evaluate saliency models with three location-based
metrics. One of the most universally accepted location-
based metrics is the Area Under the ROC curve (AUC) [25],
which treats each pixel at the saliency map as a classifi-
cation task. To take into account the center bias in eye
fixations, we also use the shuffled AUC (sAUC) [56] that
draws negative samples from fixations in other images. An-
other widely used metric is Normalized Scanpath Saliency
(NSS) [42], which is computed as the average normalized
saliency at fixated locations.

We also use three distribution-based metrics for model
evaluation. One is the Linear Correlation Coefficient
(CC) [7]. The CC metric is computed by dividing the co-
variance between predicted and ground-truth saliency map
with ground truth. Besides, the similarity metric (SIM) [7]
is also adopted to measure the similarity between two dis-
tributions. We also computed Kullback-Leibler divergence
(KL) [7] that measures the difference between two distribu-
tions from the perspective of information theory.

4.3. Implementation Details

Our CNN backbone follows the design of DINet [54],
which is a dilated ResNet-50 network with the convolution
layers in the last two blocks replaced with dilated convolu-
tion. The parameters of the backbone are initialized using a
ResNet-50 network pre-trained on ImageNet [28].
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The Faster R-CNN object detector is trained on the
MSCOCO dataset with default hyper-parameters [43]. In-
stead of using the original anchor size, we adopt a small an-
chor size {64, 128, 256}, which shows a better performance
in detecting small objects in the scene. The weight is fixed
in the rest part of training.

We consider two external knowledge sources for build-
ing the ground-truth semantic proximity graph: MSCOCO
image captioning and WordNet, learned with two SPNs. For
the MSCOCO image captioning data, if different seman-
tics (i.e., MSCOCO object categories, for simplicity) are
frequently mentioned in the captions of different images,
we consider them to be close to each other in the semantic
space. Specifically, we use the number of occurrence be-
tween two semantics divided by the max occurrence as the
value of the entry. For the WordNet data, we can retrieve the
wup_similarity value [52] between every pair of object cate-
gories from the WordNet to produce a ground-truth seman-
tic proximity graph. The thresholds to identify a predicted
edge from the SPNs are 0.3 for MSCOCO image captioning
and 0.5 for WordNet.

In our experiments, we train and evaluate our model with
and without modeling the center bias. We set the number of
prior maps R = 16. For the SALICON dataset, we train
the model on its training set and evaluate it on the valida-
tion set. The size of mini-batch is 10 and the optimizer is
Adam optimizer [26]. The initial learning rate is 10~ and
the learning decay rate is 10~*. For the other datasets, we
fine-tuned the model trained on SALICON with the corre-
sponding eye-tracking data. We randomly select 80% of the
samples for training and use the rest 20% for validation.
During the fine-tuning, the size of mini-batch is 10, and
the optimizer is Adam optimizer. The initial learning rate
is decreased to 10~* and the learning decay rate is 1074,
To ensure a fair comparison, we replicated the compared
models using the same training and validation sets as ours.
Time complexity for training/inference is 0.59s/0.026s per
640 x 480 image on a 1080Ti GPU, which is comparable
with DINet (0.36s/0.015s).

4.4. Quantitative Analysis

As shown in Table ??, our method achieves state-of-the-
art performances on all the datasets. It consistently outper-
forms other methods in all the metrics on SALICON. The
promising results suggest that modeling semantic proxim-
ity is effective for improving the overall performance of
saliency prediction. On the other datasets, GraSSNet also
achieves better performances than the DINet that shares
the same backbone as ours. Also, due to the differences
in image characteristics among these datasets, the promis-
ing results demonstrate that the knowledge learned from the
SALICON data can be successfully transferred to the other
saliency datasets. It is noteworthy that GraSSNet includes

SAM- SAM-
age Humans GraSSNet DINet ResNet VGG DSCLRCN SalNet SALICON

Figure 4. Qualitative comparison between our model and state-of-
the-art saliency prediction methods. In each row, we list the im-
age, ground truth, saliency maps without prior maps of our method
and six state-of-the-arts models. Examples (a)-(e) demonstrate im-
ages with different object categories and examples (f)-(h) demon-
strate images with the same object categories.

CC and NSS as part of the objective, which gives advan-
tages on CAT2000, MIT1003 and OSIE under both met-
rics. They complement each other and together ensure the
model’s overall performance. The SIM scores of our model
are also significantly better than the others even though SIM
is not used as a training loss. Similarly, the KL scores are
the best on SALICON, MIT1003, CAT2000 and the second-
best on OSIE. Besides, our model also maintains improved
sAUC values over DINet on SALICON when center bias is
explicitly modeled.

4.5. Qualitative Analysis

We report the qualitative results of our model, in com-
parison with the state-of-the-art approaches. These qual-
itative examples are selected from the SALICON valida-
tion set, which demonstrates complex scenes in which se-
mantic proximity can effectively improve saliency predic-
tion. As shown in Fig. 4, our GraSSNet method performs
the best for complex scenes with many objects in the fore-
ground and background. In particular, for salient objects
with strong semantic relationships, including both different
objects (e.g. people and computers in Fig. 4c) and similar
objects (e.g. multiple people in Fig. 4g), our method suc-
cessfully predicts the relative saliency among these salient
regions. To be more specific, taking Fig. 4a-d for exam-
ple, our method captures the close relationship between the
person and bus/computer/food, and hence highlights both.
Similarly, both the traffic light and the car (Fig. 4e) get high-
lighted due to their strong semantic relationship. Besides,
as can be seen from (Fig. 4f-h), which consists of multi-
ple buses/people, the features are interchanged among them
to intensify the saliency. A more detailed analysis of how
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Figure 5. Visualization of external semantic proximity graphs. We
visualize knowledge graph from MSCOCO image captioning (top)
and WordNet (bottom) with classes as nodes in cycle layout. The
width of the link indicates the strength of semantic proximity be-
tween the connected classes.

regions are connected to produce proximity graph and how
the distilled information benefits saliency prediction are dis-
cussed in Section 4.6.3.

4.6. Ablation Studies

To demonstrate the effectiveness of the various compo-
nents and hyper-parameters used in the model, we conduct
ablation studies on the SALICON dataset.

Backbone  External Knowledge CC AUC NSS sAUC
ResNet-50 - 0.851 0.874 3.239 0.762
ResNet-50 MSCOCO 0.863 0.886 3.251 0.784
ResNet-50 WordNet 0.861 0.884 3.247 0.778

ResNet-50 MSCOCO + WordNet 0.867 0.888 3.261 0.786

ResNet-101 - 0.841 0.864 3.084 0.757
ResNet-101 MSCOCO 0.861 0.887 3.252 0.777
ResNet-101 WordNet 0.859 0.879 3.234 0.761

ResNet-101 MSCOCO + WordNet 0.864 0.888 3.254 0.778

VGG-19 - 0.834 0.854 2915 0.749
VGG-19 MSCOCO 0.855 0.882 3.246 0.775
VGG-19 WordNet 0.853 0.877 3.243 0.772
VGG-19  MSCOCO + WordNet 0.859 0.886 3.249 0.776

Table 2. Ablation study of the external knowledge on the SALI-
CON dataset. We test the performance of models without prior
maps trained with different combinations of external knowledge
for different backbones (ResNet-50, ResNet-101, and VGG-19).

4.6.1 Effects of External Knowledge

We first examine how external knowledge benefits the
saliency prediction. Table 2 reports the ablation study on
the incorporation of external knowledge. On three different
backbone networks, the comparison between models with
and without external knowledge supervision shows that in-
clusion of external knowledge from MSCOCO image cap-
tioning and WordNet both improve the model performance.
The results suggest that external knowledge about seman-
tic proximity from both data sources can provide essen-
tial information for saliency prediction. Fig. 5 visualizes
the semantic proximity graphs built from MSCOCO im-
age captioning and WordNet, where nodes represent the
80 MSCOCO categories and the width of edges repre-
sents proximity. The figure illustrates that knowledge in
MSCOCO is human-centric, providing a list of classes
that commonly occur at the presence of the person type
(e.g. handbag, spoon, cup, bowl, efc.). Besides, the knowl-
edge graph from WordNet is relevant to the taxonomy of
object types. It is quite effective in saliency prediction be-
cause objects of the same class are likely to appear together
(e.g. knife, fork and spoon often present together as din-
nerware). Taking multiple knowledge bases into account is
helpful for the model’s generalizability to a broader domain.

4.6.2 Effects of Hyper-Parameters

Here we examine the choice of hyper-parameters. Firstly,
since our loss function is a linear combination of L dis-
tance, CC and NSS, as well as the MSE loss of edge pre-
dictions, we explore how different combinations of the pa-
rameters {3,~, A} influence model performance. Results
from Table 3 indicate that setting 5 = 0.3, v = 0.15 and
A = 0.8 can optimally balance the scores of different eval-
uation metrics and achieve the overall best performance.
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Figure 6. Visualization of region proposals and semantic proximity graphs. We show the proposed bounding boxes (column 1), saliency
prediction results of our method without prior maps (column 2) and connected the regions with predicted edges from SPN (column 3).
Besides, we list the ground truth fixation maps (the third column) and the saliency map of DINet (column 4).

B vy A CC AUC NSS sAUC
03 0.15 0.8 0.867 0.888 3.261 0.786

0.01 0.15 0.8 0.848 0.880 3.248 0.782
0.1 0.15 0.8 0.864 0.887 3.254 0.785
1 015 08 0.857 0.882 3.241 0.774
10 0.15 0.8 085 0.876 3.227 0.769

0.3 0.01 0.8 0.858 0.873 3.227 0.776
03 0.1 08 0862 0.881 3.242 0.781
0.3 1 0.8 0.843 0.879 3.255 0.773
03 10 0.8 0.837 0.868 3.240 0.756

03 0.15 0.1 0.841 0.870 3.236 0.770
03 015 1 0861 0.884 3.250 0.778
03 0.15 10 0.839 0.868 3.212 0.772

Table 3. Ablation study of the hyper-parameters on the SALICON
dataset. We report model performances without prior maps in four
metrics (CC, AUC, NSS and sAUC) under different combinations
of B, v, A\

4.6.3 Visualizations

We visualize detected object regions and predicted seman-
tic proximity graphs in Fig. 6, to illustrate the effects of
semantic proximity information on saliency prediction. As
can be seen, regions of the same category or related cat-
egories are interconnected with edges. Generally, edges

are formed among all the donuts in Fig. 6a, most dogs in
Fig. 6d, cups, spoons, and bowls in Fig. 6b. Such seman-
tic proximity reflects the taxonomy of these words from the
WordNet. Besides, some categories of objects are more re-
lated to people (e.g. handbag, cup, spoon, dog, efc.). This
kind of human-centric semantic proximity is mostly derived
from the MSCOCO image captioning. By taking into ac-
count the semantic proximity graphs, our model can better
predict the saliency of semantically related regions.

5. Conclusion

In this paper, we present a novel saliency prediction net-
work that explicitly models the semantic proximity as a
graph, based on detected objects from the input. One of our
key technical contributions is the novel SPN supervised by
external knowledge. Beyond that, we proposed the sGAT to
propagate the semantic information across the graph nodes,
while preserving spatial features in node attributes. The
modeling of semantic proximity allows our model to take
the semantic relationships among multiple objects into ac-
count, and to better predict their relative saliency. The pro-
posed method achieves promising performances on multiple
saliency datasets. In future studies, we aim to extend this
work by considering specific relationship modeling with the
scene graph. We will also extend this work to video saliency
and top-down saliency prediction.
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