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Abstract 30 

Iron nitrides are possible constituents of the cores of Earth and other terrestrial planets. Pressure-31 
induced magnetic changes in iron nitrides and effects on compressibility remain poorly 32 
understood. Here we report synchrotron X-ray emission spectroscopy (XES) and X-ray 33 
diffraction (XRD) results for ε-Fe7N3 and γ’-Fe4N up to 60 GPa at 300 K. The XES spectra 34 
reveal completion of high- to low-spin transition in ε-Fe7N3 and γ’-Fe4N at 43 and 34 GPa, 35 
respectively. The completion of the spin transition induces stiffening in bulk modulus of ε-Fe7N3 36 
by 22% at ~40 GPa, but has no resolvable effect on the compression behavior of γ’-Fe4N. Fitting 37 
pressure-volume data to the Birch-Murnaghan equation of state yields V0 = 83.29±0.03 (Å3), K0 38 
= 232±9 GPa, K0' = 4.1±0.5 for nonmagnetic ε-Fe7N3 above the spin transition completion 39 
pressure, and V0 = 54.82±0.02 (Å3), K0 = 152±2 GPa, K0' = 4.0±0.1 for γ’-Fe4N over the studied 40 
pressure range. By re-examining evidence for spin transition and effects on compressibility of 41 
other candidate components of terrestrial planet cores, Fe3S, Fe3P, Fe7C3, and Fe3C based on 42 
previous XES and XRD measurements, we located the completion of high- to low-spin transition 43 
at ~67, 38, 50, and 30 GPa at 300 K, respectively. The completion of spin transitions of Fe3S, 44 
Fe3P and Fe3C induces elastic stiffening, whereas that of Fe7C3 induces elastic softening. 45 
Changes in compressibility at completion of spin transitions in iron-light element alloys may 46 
influence the properties of Earth’s and planetary cores. 47 

1 Introduction 48 

The Fe-Ni alloy that comprises the Earth’s core must also contain light elements based on 49 
both geophysical observations (Birch, 1952) and compositions of planetary building blocks 50 
(Mcdonough & Sun, 1995), with potential implications for volatile storage and cycling within 51 
our planet. The leading candidate light elements for Earth’s core include silicon, oxygen, sulfur, 52 
carbon, and hydrogen (Poirier, 1994); in addition to a possible mixture of these, nitrogen has 53 
been more recently proposed as a candidate light element in the core (e.g., Kusakabe et al., 2019; 54 
Minobe et al., 2015) based on structural stability and physical properties of iron nitrides (β-55 
Fe7N3) extrapolated to core conditions. Additional support for the presence of iron nitrides in 56 
planetary interiors is provided by observations of iron nitrides in iron meteorites (Rubin & Ma, 57 
2017) and in inclusions in superdeep diamonds, which potentially incorporate material from 58 
Earth’s core-mantle boundary region (Kaminsky & Wirth, 2017) or locally reduced domains of 59 
Earth’s mantle (Zedgenizov & Litasov, 2017). The behavior of nitrogen-bearing iron alloys and 60 
compounds at conditions relevant to both accretion and the modern core is thus important to 61 
evaluate the potential abundance of nitrogen in Earth’s interior (e.g., Kusakabe et al., 2019; 62 
Litasov et al., 2017; Liu et al., 2019; Minobe et al., 2015). The few constraints on the identities 63 
and abundances of core light elements include observed seismological characteristics of Earth’s 64 
inner and outer core, particularly ~4-7% density deficit of the core relative to properties of Fe-Ni 65 
noted since (Birch, 1952). Available constraints on thermoelasticity of solid iron nitrides from 66 
previous studies (e.g., Adler & Williams, 2005; Breton et al., 2019; Kusakabe et al., 2019; 67 
Litasov et al., 2017) can be extrapolated for comparison to Earth’s core, but extrapolation 68 
depends on stability and electronic/magnetic properties of these materials under high pressure 69 
conditions which remain poorly understood. 70 

A wide range of stable iron nitride compounds with varying stoichiometries are stabilized 71 
by different conditions (De Waele et al., 2019; Wriedt et al., 1987). Stable iron nitrides at 1 bar 72 
include nonstoichiometric ε-Fe3Nx (0.75 < x < 1.4) with iron atoms arranged in a hexagonal-73 
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close-packed structure, and stoichiometric γ’-Fe4N adopting a cubic-close-packed structure 74 
(Widenmeyer et al., 2014; Wriedt et al., 1987). Previous studies have identified additional 75 
structures in the Fe-N system stabilized by high pressure (e.g., De Waele et al., 2019; Wetzel et 76 
al., 2019; Widenmeyer et al., 2014). The ε-Fe7N3 structure (same stoichiometry as Fe3Nx =1.3, 77 
space group Р6322) remains stable up to 51 GPa and 300 K (Adler & Williams, 2005), and was 78 
observed to transform to β-Fe7N3 above 41 GPa and ~1000 K (Minobe et al., 2015). γ’-Fe4N 79 
(space group Pm3̅m) is predicted to decompose to β-Fe7N3 + ε-Fe at ~56 GPa and 300 K based 80 
on thermodynamic analysis (Breton et al., 2019). At high temperatures, γ’-Fe4N was observed to 81 
transform to ε-Fe4N above 1373 K and 8.5 GPa (Guo et al., 2013), and decompose to Fe + β-82 
Fe7N3 above 41 GPa at ~1000 K (Minobe et al., 2015). β-Fe7N3 was observed to remain stable up 83 
to 3100 K and 135 GPa, and proposed to exist in the Earth’s solid inner core (Kusakabe et al., 84 
2019). In addition, a new crystal structure of Fe7N3 with space group C2/m was predicted to be 85 
stable under Earth’s core conditions (Sagatov et al., 2019). However, due to the complex 86 
stoichiometries and structural variations in iron nitrides at high pressure and temperature 87 
conditions, understanding of high-pressure phase stability in this system remains incomplete.  88 

The effects of incorporating nitrogen in iron alloys and compounds include not only 89 
modifying stable crystalline structure, but also the arrangement and bonding style of electrons in 90 
d orbitals around iron atoms that control magneto-elastic properties (e.g., Sifkovits et al., 1999; 91 
Widenmeyer et al., 2014). Electronic structure of iron nitrides have been investigated by first 92 
principles calculations and experimental measurements, which indicate that the chemical 93 
bonding in ε-Fe7N3 (e.g., Zhang et al., 2012) and γ-Fe4N (e.g., dos Santos & Samudio Pérez, 94 
2016) are complex mixtures of metallic, covalent, and ionic characters. Additionally, iron 95 
nitrides undergo pressure-induced magnetic transitions, which may affect thermodynamics and 96 
elasticities of Fe-N alloys and compounds at high pressures (e.g., dos Santos & Samudio Pérez, 97 
2016; Ishimatsu et al., 2003; Popov et al., 2015). At 1 bar, the d-orbital electrons in Fe in all 98 
known Fe-N compounds adopt a high-spin ferromagnetic arrangement and are remarkable for 99 
high saturation of magnetism (which generally decreases with N concentration): the magnetic 100 
moment of ε-Fe3Nx ranges from 2.0 to 0.2 μB per Fe atom as N concentration increases from x = 101 
1 to 1.48 (Leineweber et al., 2001), while the magnetic moment of γ’-Fe4N is 2.3 μB per Fe atom 102 
(Dirba et al., 2015). Only a few high-pressure studies on magnetism of the Fe-N system exist, 103 
and the magnetic transition pressures of iron nitrides and their effects on elasticities are largely 104 
unknown. Experiments on pressure-induced magnetic transitions of ε-Fe3Nx have not been 105 
conducted. γ’-Fe4N undergoes a ferromagnetic to paramagnetic transition at 24 GPa and 300 K 106 
as resolved by X-ray magnetic circular dichroism (XMCD) measurements (Ishimatsu et al., 107 
2003), while first-principles calculations predicted the magnetic to nonmagnetic transition in γ’-108 
Fe4N occurs at 250 GPa (Popov et al., 2015). Systematic experimental constraints on pressure-109 
induced magnetic transitions in both ε-Fe3Nx and γ’-Fe4N from ferromagnetic to paramagnetic or 110 
nonmagnetic state and the coupling between these electronic arrangements and elasticities and 111 
phase stability are necessary for an improved understanding of the physical properties of iron 112 
nitrides. 113 

The identification of magneto-elastic coupling behavior in other iron alloy systems such 114 
as Fe-C, Fe-S, and Fe-P (recently reviewed by Caracas, 2016) provides additional motivation to 115 
test whether the Fe-N system behaves similarly. In the electronically- and structurally-similar Fe-116 
C system, ferromagnetic (FM) Fe-C compounds undergo transitions first to a paramagnetic (PM) 117 
state, and then to a low-spin non-magnetic (NM) state, and these transitions have been proposed 118 
to significantly affect compressibility of Fe-C materials (e.g., Chen et al., 2012; Chen et al., 119 
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2018; Lin et al., 2004b; Mookherjee et al., 2011; Prescher et al., 2012). The pressure-induced 120 
magnetic transition of Fe-S (e.g., Chen et al., 2007; Lin et al., 2004a) and Fe-P compounds (e.g., 121 
Gu et al., 2014, 2016; Lai et al., 2020) have also been reported as well to affect compressibility 122 
and sound velocities. Due to the lack of characterization of electronic states at high pressures in 123 
previous studies of compression and phase transitions of iron nitrides (e.g., Adler & Williams, 124 
2005; Breton et al., 2019; Litasov et al., 2017), the amount and role of N in Earth’s core relative 125 
to other candidate light elements remains poorly constrained.  126 

Magnetic transitions at high pressures have been experimentally detected using methods 127 
that directly characterize electronic states, as well as methods that indirectly assess magnetism 128 
through its effects on elasticity and compression behavior. The total spin moment of Fe, ranging 129 
from high to low spin, can be characterized by X-ray emission spectroscopy (XES). The 130 
appearance of the satellite emission peak Kβ’ located at the lower energy relative to the main 131 
emission peak Kβ1,3 is a result of the 3p-3d core-hole exchange interaction in the final state of the 132 
emission process. That is, the intensity of the satellite peak depends on the spin polarization of 133 
the 3d shell and is sensitive to the net magnetic spin state. The collapse of the magnetization of 134 
Fe is characterized by the disappearance of the low-energy satellite due to the loss of 3d 135 
magnetic moment (e.g., Badro et al., 2003; Badro et al., 2004). Therefore, the local spin moment 136 
change of iron atoms revealed by XES can distinguish between high-spin (FM or PM) states vs. 137 
low-spin (NM) states. XES spectroscopy performed at high pressures using a synchrotron X-ray 138 
source has been used to study magnetic spin transitions in Fe-C, Fe-S, and Fe-P compounds (e.g., 139 
Chen et al., 2018; Chen et al., 2014; Gu et al., 2016; Lin et al., 2004b; Shen et al., 2003). 140 
Characterizing magneto-elastic coupling requires complementary information provided by 141 
spectroscopic methods such as X-ray emission and structural/elastic methods such as X-ray 142 
diffraction to confirm magnetic transitions and discontinuous compression behavior operate in 143 
tandem (e.g., Chen et al., 2014). However, no such study has been conducted in the Fe-N system. 144 

Here we present a systematic study of magnetic transitions and compressibility of iron-145 
nitrides, ε-Fe7N3 and γ’-Fe4N, using synchrotron XES and XRD measurements up to 60 GPa at 146 
300 K. Compression behavior of both compounds is monitored by dense pressure-volume (P-V) 147 
data coverage, combined with total spin moment indicated by XES, to determine any effects of 148 
magnetic transitions on the incompressibility of iron nitrides. Observed behavior is compared to 149 
the effect of magneto-elastic coupling in other Fe alloys studied using the same protocol. 150 

2 Experimental methods 151 

High purity nonstoichiometric ε-Fe7N3 and γ’-Fe4N powders (99.9%, Kojundo Chemical 152 
Lab. Co. Ltd., average grain size ~1 m) were used as starting materials. XRD for both samples 153 
at ambient conditions confirms unit cell volumes in good agreement with previous studies of ε-154 
Fe7N3 (Adler & Williams, 2005; Kusakabe et al., 2019; Litasov et al., 2017; Minobe et al., 2015) 155 
and γ’-Fe4N (Adler & Williams, 2005; Guo et al., 2013). For the nonstoichiometric ε-Fe7N3, the 156 
ambient volume measured for our sample V0 = 86.32(±0.01) Å3 is consistent with a linear 157 
relationship between unit-cell volume and nitrogen content in ε-Fe3Nx, V = 10.637x + 72.858 158 
(Litasov et al., 2017) when x is 1.27. 159 

XES of ε-Fe7N3 and γ’-Fe4N was measured up to 60 GPa at intervals of ~5 GPa. 160 
Compression in the diamond anvil cell (DAC) was performed using two pairs of diamond anvils 161 
with 200-μm flat culet. In each DAC, a flake of ε-Fe7N3 (~ 20 × 20 × 10 μm3) or γ’-Fe4N (~ 15 × 162 
23 × 10 μm3) sample was loaded in a 100-μm diameter sample chamber confined by a pre-163 
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indented Be gasket. The sample chamber was drilled in the center of the Be gasket with pre-164 
indented thickness of ~30 μm using the laser drilling system at HPCAT (Sector 16) at the 165 
Advanced Photon Source (APS), Argonne National Laboratory (ANL) (Hrubiak et al., 2015). 166 
Silicone oil (Alfa Aesar) served as the pressure-transmitting medium and a 5-μm ruby ball was 167 
loaded into the sample chamber as the pressure standard. Pressures were determined by ruby 168 
fluorescence (Mao et al., 1986) before and after each XES collection, and differed by up to 10% 169 
due to relaxation of the sample or cell assembly. The XES measurements were performed at 300 170 
K at beamline 16-ID-D of the APS, ANL. The incident X-ray beam was focused to 5×7 μm2 full 171 
width at half maximum at the sample position. The fluorescence signal was observed through the 172 
Be gasket. The incident X-ray energy was 11.3 keV with a bandwidth of ~1 eV was used for the 173 
experiments. Fe Kβ emission was selected by silicon analyzer and reflected to a silicon detector 174 
with an energy step of about 0.3 eV. Each spectrum was recorded for about 40 min and 3 spectra 175 
were taken to accumulate at least 30,000 counts at the Fe Kβ main peak at each pressure. All 176 
spectra were normalized to area and aligned to the position of the Fe Kβ main peak (Fig. 2). The 177 
high-spin reference is the sample spectrum at 1 bar, and low-spin references are the spectrum of 178 
FeS2 at 1 bar collected using the same setup and the sample spectrum at 60 GPa. Intensity 179 
difference between the sample and references was integrated over the energy range of the 180 
satellite Kβ’ peak (7030-7053.0 eV) using the integrated relative difference method (Mao et al., 181 
2014). Uncertainty in total spin moment was determined based on difference in calculations 182 
using FeS2 vs. pressurized sample as low-spin references. 183 

XRD measurements were carried out at 300 K up to 60 GPa with 1-2 GPa steps. The 184 
sample flakes of ε-Fe7N3 (~ 20 × 20 × 10 μm3) and γ’-Fe4N (~ 15 × 23 × 10 μm3) were loaded 185 
side-by-side in the sample chamber of a DAC with a pair of 300-µm-culet diamonds. The sample 186 
chamber was drilled in the center of the Re gasket with a pre-indented thickness of ~30 μm using 187 
the laser drilling system at HPCAT (Hrubiak et al., 2015). Au powder (>99.95%, Goodfellow) 188 
was spread on top of the samples to serve as the pressure calibrant (Fei et al., 2007). Because the 189 
Au (111) peak overlapped with of ε-Fe7N3 (110) peak, we use the pressure calculated from Au at 190 
the position of the γ’-Fe4N sample to represent the pressure at all sample positions. A flake of 191 
pure Fe (>99.997%, Alfa Aesar) with a size of ~ 25 × 23 × 10 μm3 was loaded alongside the 192 
samples as a secondary reference to monitor the hydrostaticity of stress conditions in the sample 193 
chamber (Liu et al., 2016). Ne was loaded into the sample chamber as the pressure-transmitting 194 
medium using the COMPRES/GSECARS gas-loading system (Rivers et al., 2008). The 195 
uncertainties in pressures were propagated from the standard deviation of the unit-cell volumes 196 
of Au and Ne (if applicable). Angle-dispersive X-ray diffraction measurements were performed 197 
at beamline 13-BM-C of the APS, ANL. The incident X-ray beam had a monochromatic 198 
wavelength of 0.434 Å and was focused to ~15 × 15 μm2. Two-dimensional X-ray diffraction 199 
images were recorded on a MAR165 CCD detector and the sample-to-detector distance and the 200 
tilt angle of the detector relative to the incident X-ray beam were calibrated using 1-bar 201 
diffraction of the NIST 660a LaB6 standard. X-ray diffraction images of ε-Fe7N3, γ’-Fe4N, and 202 
Fe were exposed for 60 s. At each pressure, the XRD patterns were integrated using Dioptas 203 
software (Prescher & Prakapenka, 2015). For selected pressures (lowest, highest, and one 204 
intermediate pressure), crystal structures were confirmed from XRD data using the full spectrum 205 
Le Bail fitting technique (Le Bail, 2012) implemented in the EXPGUI/GSAS software package 206 
(Toby, 2001).  207 
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3 Results 208 

3.1 No structural transition of Fe7N3 or Fe4N 209 

XRD patterns for both iron nitrides within the investigated pressure range at 300 K show 210 
sharp and intense peaks from the sample, Au, Ne, and Re, and no new diffraction lines nor 211 
splitting of lines were observed. The lattice parameters of ε-Fe7N3 were obtained by fitting 212 
diffraction lines (002), (111) and (112), and that of γ’-Fe4N was fit from diffraction lines (111) 213 
and (200) using PDIndexer (Seto et al., 2010). The uncertainty in the lattice parameters 214 
corresponds to one standard deviation obtained in fit using multiple XRD peaks. The pressure at 215 
each step was calculated from the lattice parameters of Au by fitting the diffraction lines (111) 216 
and (200), and from Ne by fitting (111) and (200) peaks at ~19-60 GPa as well (Table S1-3). The 217 
uncertainties of pressures were propagated from uncertainties of unit cell volumes of Au and Ne, 218 
and uncertainties of their equation of state parameters (Fei et al., 2007). 219 

  
Figure 1. (a) and (b) are representative X-ray diffraction patterns of ε-Fe7N3 at 1 and 60 GPa at 300 K, 
respectively; (c) and (d) are representative X-ray diffraction patterns of γ’-Fe4N at 1 and 60 GPa at 300 K, 
respectively. Le Bail refinements (red solid curves) of observed XRD data (black dots) were carried out after 
background subtraction, demonstrating all sample peaks match hexagonal ε-Fe7N3 and cubic γ’-Fe4N, respectively, 
within the investigated pressure range. The vertical ticks are ε-Fe7N3 (blue), γ’-Fe4N (dark green), and the pressure 
calibrant, Au (orange). The wavelength of the incident X-ray beam was 0.434 Å. 

Diffraction data of ε-Fe7N3 were refined using a Р6322 space group (averaged wRp = 2.2 220 
%, representatives shown in Figs. 1a and 1b) up to 60 GPa. Le Bail refinements of the structure 221 
of γ’-Fe4N were performed with the Pm3̅m space group (averaged wRp = 1.8 %, representatives 222 
shown in Figs. 1c and 1d) up to 60 GPa. Note that previous work indicates that ε-Fe7N3 is 223 
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metastable above ~40 GPa (Minobe et al., 2015), and γ’-Fe4N is metastable above ~56 GPa 224 
(Breton et al., 2019). Both samples continue to adopt the initial structures without dissociation or 225 
phase transition up to 60 GPa at 300 K, but above 40 GPa we assume that ε-Fe7N3 is structurally 226 
metastable.  227 

3.2 Spin states of ε-Fe7N3 and γ’-Fe4N 228 

  

   
Figure 2. (a-b) Fe-Kβ fluorescence spectra of ε-Fe7N3 and γ’-Fe4N up to 60.5 GPa at 300 K. The XES spectra 
were normalized to unity in integrated intensity. The top-left inset shows intensity difference of observed satellite 
emission peak (Kβ’) between 7030 and 7053 eV relative to the low-spin reference FeS2 at 0 GPa (black dashed 
line). (c-d) High-spin fraction of Fe in ε-Fe7N3 and γ’-Fe4N as a function of pressure derived from the XES 
measurements following integrated relative difference method (Mao et al., 2014). Completion of the spin 
transition of ε-Fe7N3 is at ~40 GPa, and for γ’-Fe4N at ~30 GPa. The dashed line is fitted by Boltzmann function, 
and error bars determined by comparing results using FeS2 vs. sample at 60 GPa as low-spin references. Pressures 
were determined by ruby fluorescence (Mao et al., 1986) before and after each XES collection, which differed by 
up to 10% due to relaxation of the sample or cell assembly. 

The net magnetic spin state of 3d electrons of Fe in ε-Fe7N3 and γ’-Fe4N can be probed 229 
by XES spectra of the Kβ fluorescence lines. At ambient conditions, the XES spectra for both 230 
iron nitrides are composed of a dominant Kβ1,3 peak and a lower-energy satellite Kβ’ peak, as a 231 
result of the 3p core-hole-3d exchange interaction in the final state of the emission process, 232 
consistent with iron entirely in the high-spin state (Figs. 2a and 2b). The intensity of the satellite 233 
peak in the magnetic/high spin state is lower than that of iron oxides such as FeO and Fe2O3 234 
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(Badro et al., 2003; Badro et al., 2002), but similar to that of pure iron and iron alloys (such as 235 
Fe-C, Fe-P, Fe-S alloys). As pressure increases, the integrated Kβ’ peak intensity begins to 236 
decrease. The observed decrease demonstrates that the onsets of spin transitions in both 237 
compounds are nearly immediate upon compression and no higher than 10 GPa in ε-Fe7N3 and 5 238 
GPa in γ’-Fe4N. The integrated Kβ’ peak of ε-Fe7N3 and γ’-Fe4N disappears at 43 and 34 GPa, 239 
respectively, with no further change up to 60 GPa (Figs. 2c and 2d). The decrease of total spin 240 
moment of Fe as a function of pressure illustrates both ε-Fe7N3 and γ’-Fe4N undergo a gradual 241 
spin-pairing transition from high to low-spin state, with Fe in ε-Fe7N3 and γ’-Fe4N fully in low-242 
spin state at pressures higher than 43 and 34 GPa, respectively (Figs. 2c and 2d). Spin transition 243 
pressures are expected to be upper bounds due to possible effects of pressure hysteresis and non-244 
hydrostatic stress on the spin crossover upon compression (Lin et al., 2013). Observed changes 245 
in XES spectra of ε-Fe7N3 and γ’-Fe4N correspond to magnetic to nonmagnetic (high to low 246 
spin) transitions, but the ferromagnetic to paramagnetic transition, depending on the relative 247 
orientations of the individual spins, cannot be detected by XES. However, both ferromagnetic-248 
paramagnetic and magnetic-nonmagnetic transitions may be detected via XRD if they take place 249 
and affect compressibility. 250 

3.3 Compression behavior of ε-Fe7N3 and γ’-Fe4N 251 

  
Figure 3. Compression behavior of ε-Fe7N3 at 300 K. (a) Unit-cell volume of ε-Fe7N3 up to 60 GPa at 300 K 
determined from X-ray diffraction measurements in this work (solid circles), together with previous experimental 
results. The black and red curves represent the 3rd-order Birch-Murnaghan equation of state (BM3-EoS) fits for 
the data for high spin (HS) and mixed spin (MS) / magnetic state (1 bar-40 GPa), low spin (LS) / nonmagnetic 
state (40-60 GPa), respectively. (b) Normalized stress G as a function of effective strain g. Solid black, gray, and 
red circles represent the results of high spin, mixed spin, and low spin state, respectively, as determined by XES. 
Black and red lines indicate fits of the high spin and low spin state G(g) data, respectively. The V0 for the 
nonmagnetic state is obtained by extrapolating g to g0. 

Pressure-volume (P-V) data obtained from XRD of ε-Fe7N3 and γ’-Fe4N at 300 K 252 
demonstrate smooth compression without discontinuity in volume (Figs. 3a and 4a). Second-253 
order and order-disorder transitions such as magnetic transitions may be continuous in volume 254 
but discontinuous in the higher-order derivatives of P(V) (Vocadlo et al., 2002). Subtle effects on 255 
the unit cell volume with abrupt changes in incompressibility may be emphasized by the 256 
relationship between the Eulerian finite strain (fE = [(V0/V)2/3-1]/2) versus the normalized stress 257 
(FE = P/[3fE(1+2fE)5/2]) (Angel, 2000) as in previous studies (Chen et al., 2012; Liu et al., 2016). 258 



manuscript submitted to JGR: Solid Earth 

 

However, it is important to note that the calculation of both FE and fE requires priori knowledge 259 
of the 1-bar volume (V0), and using an incorrect value of V0 produces an anomalous curvature in 260 
the f-F plot (Angel, 2000). Thus, to avoid the bias caused by V0 of the unquenchable 261 
nonmagnetic phase, we plot the effective strain (g = [(V0/V)2/3-1]/2), same as fE, versus the 262 
normalized stress (G = P/[3(1 + 2g)3/2]) following the formalism (Jeanloz, 1981) for ε-Fe7N3 and 263 
γ’-Fe4N (Figs. 3b and 4b), respectively.  264 

  
Figure 4. Compression behavior of γ’-Fe4N at 300 K. (a) Unit-cell volume of γ’-Fe4N up to 60 GPa at 300 K 
determined from X-ray diffraction measurements in this work (dark green circles), together with previous 
experimental results. The black curve represents the 3rd-order Birch-Murnaghan equation of state (BM-EoS) fit 
of all pressure-volume data from this study. (b) Normalized stress G as a function of effective strain g. Solid 
black, gray, and red circles represent the results of high spin, mixed spin, and low spin state, respectively, as 
determined by XES. The black solid line indicates a linear fit for all data. The pressure of onset and completion of 
spin transition is indicated by XES, but no change in compressibility can be observed in either plot. 

As is shown in Fig. 3(b), the g-G plot of ε-Fe7N3 reveals that the pressure-dependent 265 
stress exhibits a linear response to applied strain up to 40 GPa within the established errors. 266 
Above 40 GPa, the slope of linearized g-G increases, implying a discontinuity of compression 267 
behavior and an increase in the incompressibility given that dG/dg is positively correlated with 268 
(K0+P). This pressure is within the uncertainty of the completion of the magnetic to nonmagnetic 269 
transition (i.e., completion of spin transition) pressure of ~40 GPa determined independently by 270 
XES, indicating the elastic stiffening coincides with the magnetic collapse of Fe in ε-Fe7N3. In 271 
addition, this change of compressibility is similar to the pressure of ε- to β-Fe7N3 transition 272 
(Minobe et al., 2015) observed with laser-heating to promote equilibrium phase transitions. Due 273 
to the low pressure of the onset of the spin transition observed by XES, with upper bound ~10 274 
GPa, and gradual, broad pressure range of the transition, it is difficult to resolve a transition from 275 
high to mixed spin state in the compression behavior. The compression behavior up to 40 GPa 276 
may thus represent the mixed-spin state. The crossing point of the g axis (i.e., G = 0) and the 277 
fitted curve constrain the zero-pressure volume of the nonmagnetic (or low spin state) phase to 278 
83.29 ± 0.03 Å3, with the error propagated from the error of linear fitting and volume at ambient 279 
conditions. No stiffening is observed at pressures lower than the spin transition pressure, so no 280 
clear evidence is available for any ferromagnetic-paramagnetic transition in ε-Fe7N3.  281 

In contrast, the calculated G of γ’-Fe4N can be linearized as a function of g within the 282 
investigated pressure range, and no discontinuity is observed (Fig. 4b). That is, both onset and 283 
completion of spin transition of Fe have little effect on the compression behavior γ’-Fe4N, and no 284 
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anomalous compressibility behavior needs to be explained by any other magnetic transition such 285 
as a ferromagnetic-paramagnetic transition.  286 

 
Figure 5. Isothermal bulk modulus (K) of high spin and mixed spin (magnetic) state ε-Fe7N3 (black curve), low 
spin (nonmagnetic) state ε-Fe7N3 (red curve), and γ’-Fe4N (dark green curve) at 300 K as a function of pressure, 
calculated from the fitted BM-EOS parameters (Table 1). The magnetic to nonmagnetic transition of ε-Fe7N3 
induces +22% increase in incompressibility at 40 GPa. 

Discontinuities in higher derivatives of compression behavior can also be generated by 287 
nonhydrostatic stress in the sample chamber. To rule out this effect on iron nitrides, we consider 288 
the pressure gradient observed in Ne medium, microstrain in Au calibrant as determined by peak 289 
width, and the behavior of the Fe foil relative to previous measurements under quasi-hydrostatic 290 
conditions. The pressure difference determined from the Ne medium at positions of the two iron 291 
nitride samples is remains less than ~0.5 GPa up to the peak pressure of 60 GPa (Table S1-2), 292 
consistent with the low strength of Ne. Nonhydrostatic stress generally results in diffraction peak 293 
broadening due to microstrain (e.g., Takemura & Dewaele, 2008). We choose the Au (111) peak 294 
obtained at the γ’-Fe4N sample position (Fig. 1c and d) to examine changes in diffraction peak 295 
width as a function of pressure. The normalized FWHM of the Au peak and its trend with 296 
pressure are comparable to previous measurements of Au foil and powder in He pressure 297 
medium (Takemura & Dewaele, 2008) (Fig. S2), indicating hydrostatic conditions up to 17 GPa 298 
and quasi-hydrostatic conditions at higher pressures, in agreement with previous characterization 299 
of the stress gradient sustained by the pressure medium Ne (Klotz et al., 2009). In addition, 300 
compression of both phases of pure Fe remains smooth over the entire pressure range and the 301 
condition of the phase transition and compressibility are in agreement with previous studies 302 
conducted under quasi-hydrostatic stress (e.g., Dewaele et al., 2006) (Fig. S1a). We investigated 303 
the P-V data and g-G plot of pure Fe loaded in the same sample chamber as a reference (Fig. S1). 304 
The discontinuities of both compression curve and g-G plot of Fe at ~15 GPa reflect a phase 305 
transition of α- to ε-Fe, which is in good agreement with previous studies (Dewaele et al., 2006). 306 
Therefore, the change in hydrostaticity of Ne at ~17 GPa (Fig. S2) was not manifested in the 307 
compression behavior of the samples, and the change in G-g at ~40 GPa of ε-Fe7N3 is not 308 
associated with nonhydrostaticity. Relative to previous studies (Adler & Williams, 2005; Litasov 309 
et al., 2017), the design of this study provides greater sensitivity to discontinuities in the 310 
compression behavior of ε-Fe7N3 due to denser data coverage with pressure intervals of ~1 GPa 311 
(Fig. 3a) and quasi-hydrostatic medium. 312 
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Given the compression and magnetic behaviors described above, we separately fit the P-313 
V data of ε-Fe7N3 using third-order Birch-Murnaghan equation of state (BM3-EoS) over two 314 
distinct pressure ranges above and below 40 GPa, and that of γ’-Fe4N with a single curve for the 315 
entire data range in order to better describe the compressibility. Below 40 GPa ε-Fe7N3 has a 316 
continuously-evolving, mixed-spin state, and the resulting EoS parameters are expected to be 317 
anomalously soft relative to the high-spin state. The parameters of the BM3-EoS, isothermal 318 
bulk modulus, K0, its pressure derivative, K0ʹ, and volume at 1 bar V0, obtained in the present 319 
study and previous studies are summarized in Table 1. 320 

The BM3-EoS parameters of magnetic, mixed spin ε-Fe7N3 obtained by fitting the P-V 321 
data from 1 bar and 40 GPa to BM3-EoS are compared with previous experimental constraints 322 
on the same stoichiometry (Adler & Williams, 2005; Litasov et al., 2017) (Table 1), showing 323 
consistency with the parameters obtained by (Litasov et al., 2017) within uncertainties, whereas 324 
5% (or higher given the tradeoff between K0 and K0ʹ) elastic softer than that constrained by 325 
(Adler & Williams, 2005). Fig. 3a shows our measured P-V data are in good agreement with data 326 
obtained by (Litasov et al., 2017) from 1 bar to 31 GPa using a multi-anvil press, supporting a 327 
quasi-hydrostatic conditions in this study. However, the volume data reported by Adler and 328 
Williams (2005) deviate from our measurements at pressures higher than 30 GPa, likely due to 329 
the nonhydrostatic stress supported by methanol:ethanol:water pressure transmitting medium. 330 
Properties predicted for magnetic ε-Fe3N1.25 by density functional theory (Popov et al., 2015) are 331 
significantly offset, with V0 lower by 6% and K0 higher by 38% compared to experimental 332 
constraints. For nonmagnetic, low spin ε-Fe7N3, EoS fit for the data from 40 GPa to 60 GPa with 333 
a fixed V0 [83.28(±2) Å3] constrained by g-G plot (Fig. 3b) yields K0 45% higher than that of 334 
magnetic phase (22% increase in bulk modulus at 40 GPa, Fig. 5), indicating a significant elastic 335 
stiffening associated with the magnetic collapse. Popov et al. (2015) predicted a magnetic-336 
nonmagnetic transition of ε-Fe7N3 completed at 130 GPa, inducing a 35% difference in K0, but 337 
both the transition pressure and bulk modulus are much higher than our constraints (Table 1). An 338 
increase in incompressibility induced by the collapse of magnetic momentum has been observed 339 
in other Fe-alloys such as Fe3C (Prescher et al., 2012) and Fe3P (Lai et al., 2020). These alloys 340 
are also not observed to soften during the spin transition, in contrast to pressure-induced Invar 341 
behavior of Fe alloys such as Fe-Ni (Dubrovinsky et al., 2001) and Fe7C3 (Chen et al., 2012) 342 
which undergo elastic softening during the transition followed by reaching a stiffer nonmagnetic 343 
state. 344 

The EoS parameters of γ’-Fe4N derived by fitting the measured P-V data up to 60 GPa to 345 
BM3-EoS agree with the parameters reported by Adler and Williams (2005) and (Guo et al., 346 
2013) within uncertainties (Table 1). However, the K0 reported by Breton et al. (2019), 169(±6) 347 
GPa, is 13% higher than our result, and the measured volumes deviate from our measurements as 348 
illustrated in Fig 4a. This discrepancy can be attributed to nonhydrostatic conditions in the 349 
sample chamber produced using KCl as the pressure transmitting medium, and lack of data at 0-350 
20 GPa regime may cause a fitting bias when fixing the V0 constrained by (Adler & Williams, 351 
2005). K0 computed by density functional theory with generalized gradient approximation 352 
studies (Niewa et al., 2009b; Popov et al., 2015) spans a range from 0 to 9% higher than that 353 
constrained by experiments, whereas the K0 calculated from single-crystal elastic constants by 354 
first-principles total-energy method is 26% higher than that constrained by experiments.  355 



manuscript submitted to JGR: Solid Earth 

 

Table 1. Equation of state parameters of ε-Fe7N3 and γ’-Fe4N  356 

Phase Magnetism P (GPa) V0 (Å3) K0 K0' Method Reference 
ε-Fe7N3 Magnetic (mixed spin) 0-40 86.55(2)a 160(2) 4.3(2) DACc This study 
ε-Fe7N3 Nonmagnetic (low spin) 40-60 83.29(3) 232(9) 4.1(5) DAC This study 
ε-Fe7N3 - 0-51 86.04(10) 168(10) 5.7(2) DAC Adler and Williams (2005) 
ε-Fe3N1.26 - 0-31 86.18(3) 163(2) 5.3(2) MAd Litasov et al. (2017) 
ε-Fe3N1.25 Magnetic (mixed spin) 0-100 81.35 224(1) 4.30(5) DFT-GGAe Popov et al. (2015) 
ε-Fe3N1.25 Nonmagnetic 0-500 77.44 303(1) 4.38(1) DFT-GGA Popov et al. (2015) 
γ'-Fe4N - 0-60 54.82(2) 152(2) 4.0(1) DAC This study 
γ'-Fe4N - 0-31 54.95(22) 155(3) 4b DAC Adler and Williams (2005) 
γ'-Fe4N - 0-33 54.81 154(3) 5.3(1) DAC Guo et al. (2013) 
γ'-Fe4N - 22-60 54.95b 169(6) 4.1(4) DAC Breton et al. (2019) 
γ'-Fe4N - - - 166(1) 4.2(1) DFT-GGA Niewa et al. (2009) 
γ'-Fe4N Magnetic - 54.64 192(1) - FP-TECf Gressmann et al. (2007) 
γ'-Fe4N Magnetic (mixed spin) 0-200 54.10 152(4) 5.41(17) DFT-GGA Popov et al. (2015) 
γ'-Fe4N Nonmagnetic 0-500 49.25 285(3) 4.38(1) DFT-GGA Popov et al. (2015) 
a Numbers in parentheses are uncertainties on the last digits. 357 
b Fixed value 358 
c Diamond anvil cell 359 
d Multi-anvil press 360 
e Density functional theory -generalized gradient approximation 361 
f First-principles total-energy calculations 362 
 363 

 364 

 365 
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Popov et al. (2015) predicted a magnetic-nonmagnetic transition of γ’-Fe4N completed at 250 366 
GPa, inducing an +87.5% jump of K0, in contrast to our observation of this transition at much 367 
lower pressure with no significant effect on elasticity. γ’-Fe4N is also less incompressible than 368 
both magnetic and nonmagnetic ε-Fe7N3, which leads to its destabilization at pressures above 60 369 
GPa (Breton et al., 2019).  370 

4 Discussion 371 

4.1 Magnetic transitions of ε-Fe7N3 and γ’-Fe4N 372 

Both ε-Fe7N3 and γ’-Fe4N adopt a ferromagnetic state at 1 bar with Curie temperatures of 373 
400 K (Leineweber et al., 2001) and 750 K (Wriedt et al., 1987), respectively. Based on the XES 374 
observations described above, these compounds have fully reached a non-magnetic state by 43 375 
and 34 GPa, respectively. Iron-light element compounds and alloys in Fe-P, Fe-C, Fe-S and other 376 
systems typically undergo a transition from ferromagnetic to paramagnetic state before the 377 
transition to a fully non-magnetic state (Chen et al., 2018; Chen et al., 2014; Gu et al., 2016; Lin 378 
et al., 2004a), so it can be inferred that an additional FM-PM transition may take place in Fe-N 379 
compounds below the completion of the spin transition. The only previous experimental 380 
investigation of pressure-induced magnetic transitions of iron nitrides was conducted by 381 
(Ishimatsu et al., 2003) on γ’-Fe4N using XMCD, and showed the spin polarization was 382 
suppressed by pressure and finally vanished at 24 GPa. This loss of spin polarization was 383 
interpreted as a ferromagnetic to paramagnetic transition. This combined with our XES results 384 
indicates that paramagnetic γ’-Fe4N has completely transitioned to the nonmagnetic state by 34 385 
GPa. However, the pressure of any FM-PM transition in ε-Fe7N3 has not been directly observed 386 
by experiments, due to the lack of studies using Mössbauer spectroscopy or XMCD.  387 

Indirect measurement of a FM-PM transition in Fe-N compounds through compression 388 
behavior has been inconclusive, and in iron-light element compounds more broadly, effects of 389 
FM-PM transitions on compressibility are either not observed or controversial. For example, the 390 
pressure of the FM-PM transition in Fe3C was determined at ~8-10 GPa using Mössbauer 391 
spectroscopy, and no effect on the compression behavior was observed (Prescher et al., 2012); 392 
whereas Litasov et al. (2013) observed this transition at ~7-9 GPa by based on anomalous 393 
compression behavior of the a-axis, and proposed an elastic stiffening. Conditions of FM-PM 394 
transitions identified in previous work on ε-Fe7N3 and γ’-Fe4N do not correspond to any 395 
significant changes in incompressibility. 396 

In contrast, most Fe-light element compounds and alloys do exhibit stiffening after 397 
completing the transition to nonmagnetic state. Comparison between compression behavior and 398 
spin transition of ε-Fe7N3 reveals elastic stiffening associated with magnetic-nonmagnetic (i.e., 399 
high to low spin) transition at ~40 GPa. Similar behaviors have been observed and predicted in 400 
iron alloys, such as Fe-C, Fe-P, Fe-S systems (see section 4.2 for more discussion), which 401 
consistently show that the PM-NM transition induces elastic stiffening, whereas elastic softening 402 
of Fe7C3 is due to Invar behavior (Chen et al., 2012; Chen et al., 2014; Mookherjee et al., 2011). 403 
γ’-Fe4N is unique among the Fe-light element compounds and alloys discussed here: while the 404 
pressure of the PM-NM transition is constrained through complementary spectroscopic methods, 405 
it has no significant effect on compression behavior. 406 

Ab initio calculations of magnetic states of Fe-N compounds have predicted magnetic 407 
transition pressures much higher than those observed in experiments. The transitions from 408 
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magnetic to non-magnetic states of ε-Fe3N1.25 and γ’-Fe4N at 0 K were predicted to complete at 409 
130 GPa and 250 GPa, respectively (Popov et al., 2015). Popov et al. (2015) also predicted 410 
significant volume collapse of iron nitrides due to the changes in the magnetic moment, which is 411 
in contrast to experimental observations, and not reported in previous ab initio calculations on 412 
iron carbides (Mookherjee et al., 2011; Vocadlo et al., 2002) although both studies used the 413 
generalized gradient approximation (GGA). 414 

The difference in magneto-elastic coupling behavior between ε-Fe7N3 and γ’-Fe4N may 415 
be attributed to the difference in strengths of Fe-N bonds associated with the crystal structures. In 416 
the idealized model of the crystal structure of ε-Fe3N, the iron atoms are distributed according to 417 
hexagonal close packing (ε-Fe) and nitrogen atoms occupy one-third of octahedral voids between 418 
the iron layers in an ordered manner (Fig. S3). However, nonstoichiometric ε-Fe3Nx (0.75 < x < 419 
1.4) exhibits a broad homogeneity range together with some entropy-driven transfer of nitrogen 420 
to further octahedral voids (Niewa et al., 2009a). Iron atoms in γ’-Fe4N are distributed according 421 
to the cubic close packing (γ-Fe) and nitrogen atoms occupy one-fourth of octahedral voids (Fig. 422 
S3). The resulting different 3d band structure affected by stronger 3p-3d hybridization of Fe and 423 
N in ε-Fe7N3 leads to a magnetic to nonmagnetic transition pressure of ε-Fe7N3 ~10 GPa higher 424 
than that observed in γ’-Fe4N (Fig. 2). The difference in transition pressures may also be due to 425 
the relationship between anisotropic compressibility and the orientation of the magnetic moment 426 
relative to the crystal structure. For ε-Fe7N3, a collinear ferromagnetic arrangement of moments 427 
was determined to be parallel to the c-axis by neutron diffraction measurements (Robbins & 428 
White, 1964), and c-axis is more incompressible than a-axis (Shi et al., 2013) (c/a ratio increases 429 
with pressure, Fig. S4); while for γ'-Fe4N, magnetic arrangement of moments was proposed to be 430 
parallel to the a-axis (Costa-Krämer et al., 2004), which is the stiffest direction (Gressmann et 431 
al., 2007). To better understand the effect of spin transition on elastic anisotropy of both iron 432 
nitrides, further measurements on elastic constants up to spin transition pressures are necessary. 433 

4.2. Magneto-elastic coupling in Fe-light element alloys/compounds 434 

Previous studies have identified multiple candidate Fe alloys and light element 435 
compounds that can match the observed density and elastic properties of Earth’s core (reviewed 436 
by Hirose et al., 2013; Li & Fei, 2014), and many of them undergo pressure-induced magnetic 437 
transitions with effects on elasticity (reviewed by Caracas, 2016). As a result, the extrapolation 438 
of density and velocity of ambient or low-pressure data to Earth’s core conditions may be 439 
misleading, and experiments at higher pressures and temperatures are critical. However, the 440 
pressure of magnetic collapse and its coupling with elastic properties were inconsistent in 441 
previous results: for example, the pressure of PM to NM transition for Fe3C from different 442 
studies spans a large range of 22 to 68 GPa (reviewed by Chen & Li, 2016). This inconsistency is 443 
partially caused by different criteria for magnetic transitions constrained using different methods.  444 

The spin transition (or PM - NM transition) of ionic or covalent materials is usually 445 
accompanied by a change in interatomic distance due to a decrease in the size of the Fe atom, 446 
which results in a volume collapse (Lin et al., 2013). In Fe alloys, the effect of the spin transition 447 
on structure and volume is subtle, leading to difficulties in detection. For direct comparison to 448 
this work on ε-Fe7N3 and γ’-Fe4N, in which complementary methods determine the collapse of 449 
magnetic momentum and changes in compression behavior, we re-examine evidence for 450 
magnetic collapse and its effect on the compression behavior of other Fe-light element 451 
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compounds Fe3S, Fe3P, Fe7C3, and Fe3C, for which previous authors have obtained both XES 452 
measurements and dense P-V data coverage up to ~150 GPa. 453 

  

  
Figure 6. Normalized stress G as a function of effective strain g for (a) Fe3S (Chen et al., 2007; Kamada et al., 
2014; Seagle et al., 2006), (b) Fe3P (Lai et al., 2020), (c) Fe7C3 (Chen et al., 2012; Liu et al., 2016), and (d) Fe3C 
(Li et al., 2002; Litasov et al., 2013; Ono & Mibe, 2010; Sata et al., 2010). Dashed lines are linear fits to g-G, and 
the discontinuity in compression behavior corresponds to the change of slope of the linearized g-G plot. 

Fe3S remains in the tetragonal structure up to at least 200 GPa, with the completion of 454 
magnetic-nonmagnetic transition determined to occur at ~25 GPa by XES (Shen et al., 2003). A 455 
previous study argued that the magnetic transition did not affect the structure or compression 456 
behavior of Fe3S (Kamada et al., 2014). However, a g-G plot (Fig. 6a) of the compression 457 
measurements from (Chen et al., 2007; Kamada et al., 2014; Seagle et al., 2006) illustrates a 458 
discontinuity in compression behavior at ~67 GPa, which could have been induced by a 459 
magnetic collapse. The spin transition pressure may be underestimated by XES (Shen et al., 460 
2003), due to the limitations of the spectral analysis method (no low spin reference applied) and 461 
the limited pressure range (up to 30 GPa) of the study.  462 

Fe3P is isostructural with the Fe3S tetragonal phase at ambient conditions, and in-situ 463 
XRD patterns suggest no structural phase transition up to 111 GPa (Lai et al., 2020), although 464 
the structural evolution of Fe3P upon compression remains controversial (Gu et al., 2014; 465 
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Sagatov et al., 2020; Scott et al., 2007). The g-G plot based on the P-V measurements by (Lai et 466 
al., 2020) shows an increase in incompressibility at ~38 GPa (Fig. 6b), which coincides with the 467 
pressure of magnetic spin momentum collapse determined by XES (Gu et al., 2016). Lai et al. 468 
(2020) propose the completion of magnetic-nonmagnetic transition occurred at 21 GPa based on 469 
the disappearance of fast oscillation in Mössbauer spectra, which can be attributed to a 470 
ferromagnetic to paramagnetic transition. 471 

Fe7C3 adopts a hexagonal structure from ~7-8 GPa to 167 GPa (Chen et al., 2012; Lord et 472 
al., 2009), and its magneto-elastic coupling effects have been thoroughly studied. By plotting the 473 
measurements from (Chen et al., 2012; Liu et al., 2016) as a g-G relation, an elastic stiffening 474 
occurs at 16 GPa and a softening occurs at 50 GPa (Fig. 6c). These discontinuities in the 475 
compression behavior can be explained by a noncollinear to paramagnetic transition proposed by 476 
(Liu et al., 2016) and a magnetic collapse determined by XES (Chen et al., 2014), respectively. 477 

Fe3C, known as the mineral cohenite, has an orthorhombic structure with Pnma space 478 
group, and no structural change in Fe3C was observed up to 187 GPa (Sata et al., 2010). The 479 
pressure of PM‐NM (or high- to low-spin) transition in Fe3C determined by XES has ranged 480 
widely from ~25 GPa by (Lin et al., 2004b) to ~50 GPa by (Chen et al., 2018). The g-G plot of 481 
P-V measurements combined from (Li et al., 2002; Litasov et al., 2013; Ono & Mibe, 2010; Sata 482 
et al., 2010) indicates an elastic stiffening occurring at ~30 GPa (Fig. 6d), which is consistent 483 
with the decreasing of the emission satellite peak intensity until 30 GPa observed by (Lin et al., 484 
2004b). We thus interpret the discontinuity in compression behavior of Fe3C at ~30 GPa is 485 
induced by the completion of the spin transition.  486 

In summary, XES and g-G plots generally reveal the collapse of magnetic moment and 487 
effects on the compression behavior of Fe-light element alloys and compounds, which are 488 
candidate constituents of the Earth’ core. A change in incompressibility induced by magnetic-489 
nonmagnetic transitions may be common throughout Fe-light element compound systems, 490 
whereas the effects from FM-PM transition on compression are not significant for most 491 
compounds. To extrapolate physical properties to conditions of Earth’s core, low 492 
spin/nonmagnetic thermodynamic parameters should be used, and the effects of temperature 493 
should be considered. It has been shown that the pressure range for mixed-spin ferropericlase 494 
[(Mg0.75Fe0.25)O] is broadened by 30 GPa as the temperature increases from 300 to 2000 K (Mao 495 
et al., 2011). The thermal equations of state of Fe-light element alloys up to Earth’s core 496 
conditions await further investigation.  497 

4.3. Implications for iron alloys in Earth’s and planetary cores 498 

Our results suggest that although magnetic-to-nonmagnetic transitions do not produce 499 
sharp discontinuities in the compression behavior of Fe7N3, Fe3S, Fe3P, Fe7C3, and Fe3C, their 500 
effect is non-negligible and additional tools, such as XES experiments and an analysis of g-G 501 
plots, are required to accurately determine the pressure range of the magnetic transitions. 502 
Consequently, the effect of magnetic transitions on the compression behavior of other light-503 
element-bearing iron compounds may have been overlooked in previous experiments based only 504 
on an analysis of the pressure-volume data (e.g., Kamada et al., 2014). The effects of magnetic 505 
transitions should not be ignored when investigating the roles of iron alloys in Earth’s and 506 
planetary cores under relevant conditions.  507 
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For example, distribution of iron isotopes in the Earth, which has been used to trace 508 
planetary differentiation processes, is dependent on isotope fractionation between various 509 
candidate host phases for iron in planetary cores and silicate melts under different pressure, 510 
temperature, composition, and oxygen fugacity conditions (Dauphas et al., 2017). Pressure 511 
effects on iron isotope fractionation determined by nuclear resonant inelastic X-ray scattering 512 
spectroscopy measurements have been different for different alloys, which is explained by 513 
differences in bond strength between combinations of iron with different alloying elements (Liu 514 
et al., 2017; Shahar et al., 2016). Considering the effects of magnetic transitions on bond lengths 515 
and strengths of iron alloys presented in this study, magnetic transitions of iron alloys may 516 
impact the pressure dependence of the 57/54Fe β factor (reduced partition function ratios) and thus 517 
the iron isotope fractionation over Earth’s history. 518 

The pressure conditions of the magnetic transitions in ε-Fe7N3, Fe3S, Fe3P, Fe7C3, and 519 
Fe3C revealed by this study overlap with the moderate P-T range of the cores of relatively small 520 
planets, such as Mercury (∼8 to 40 GPa, ∼1700 to 2200 K) (Chen et al., 2008) and Mars (∼24 to 521 
42 GPa, ∼2000 to 2600 K) (Fei & Bertka, 2005). Whether Mercury and Mars have fully molten 522 
cores (Margot et al., 2007; Yoder et al., 2003) or include solid inner cores (Genova et al., 2019; 523 
Stevenson, 2001) is under debate. In either case, planetary cooling may entail a present and/or 524 
past “snowing-core” scenario where iron-rich solids nucleate at the liquidus and sink or rise 525 
based on buoyancy. Minor solid iron alloys may thus significantly affect planetary core 526 
dynamics through powering magnetic dynamos (Breuer et al., 2015 and references therein). The 527 
effects of magnetic transition on physical properties [such as incompressibility and density (Fig. 528 
S5)] of these candidate constituents of planetary cores may play an important role in deciphering 529 
the potential role of N, C, S, and P in these planetary cores. 530 

5 Conclusions 531 

In this work, we report spin/magnetic transitions and compressibility of ε-Fe7N3 and γ’-532 
Fe4N, the two stable iron nitrides at ambient conditions. Synchrotron XES and XRD 533 
measurements were carried out up to 60 GPa at 300 K using DAC. The completion of magnetic 534 
collapse in ε-Fe7N3 and γ’-Fe4N is observed at 43 and 34 GPa, respectively, indicated by the 535 
completion of high- to low-spin state transition. Comparing spin transition and discontinuities in 536 
compression behavior monitored by g-G plot, the completion of spin transition induces elastic 537 
stiffening in ε-Fe7N3 by 22% at ~40 GPa, but has no resolvable effect on the compression 538 
behavior of γ’-Fe4N. Accordingly, fitting P-V data to BM3-EoS yields: V0 = 86.55±0.02 (Å3), K0 539 
= 160 ± 2 GPa, and K0' = 4.3 ± 0.2 for magnetic, mixed spin ε-Fe7N3; V0 = 83.29 ± 0.03 (Å3), K0 540 
= 232 ± 9 GPa, and K0' = 4.1 ± 0.5 for nonmagnetic, low spin ε-Fe7N3; V0 = 54.82 ± 0.02 (Å3), 541 
K0 = 152 ± 2 GPa, and K0' = 4.0 ± 0.1 for γ’-Fe4N within the investigated pressure range. 542 

Using the same protocol, we re-examine evidence for magnetic collapse and its effect on 543 
the compression behavior of other Fe-light element compounds as candidate components of 544 
terrestrial planet’s core, Fe3S, Fe3P, Fe7C3, and Fe3C. We summarize previous reported dense P-545 
V data up to ~150 GPa and comparing with XES measurements, which indicate the completion 546 
of the magnetic transition in Fe3S, Fe3P, and Fe7C3 is at about 67, 38, 50, and 30 GPa, 547 
respectively. The completion of the magnetic transition of Fe3S and Fe3P induces elastic 548 
stiffening, whereas that of Fe7C3 induces elastic softening. The changes of incompressibility 549 
induced by magnetic-nonmagnetic transition may have potential implications in deciphering the 550 
role of iron-light element alloys in Earth’s and planetary cores. 551 
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