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ABSTRACT
Variational inference is a popular method for estimating model parameters and conditional distributions in
hierarchical and mixed models, which arise frequently in many settings in the health, social, and biological
sciences. Variational inference in a frequentist context works by approximating intractable conditional
distributions with a tractable family and optimizing the resulting lower bound on the log-likelihood. The
variational objective function is typically less computationally intensive to optimize than the true likelihood,
enabling scientists to !t rich models even with extremely large datasets. Despite widespread use, little is
known about the general theoretical properties of estimators arising from variational approximations to
the log-likelihood, which hinders their use in inferential statistics. In this article, we connect such estimators
to pro!le M-estimation, which enables us to provide regularity conditions for consistency and asymptotic
normality of variational estimators. Our theory also motivates three methodological improvements to
variational inference: estimation of the asymptotic model-robust covariance matrix, a one-step correction
that improves estimator e"ciency, and an empirical assessment of consistency. We evaluate the proposed
results using simulation studies and data on marijuana use from the National Longitudinal Study of Youth.
Supplementary materials for this article are available online.
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1. Introduction

Thanks to rapid improvements in data availability and user-
friendly tools for data storage and manipulation, researchers
from an ever-broader set of scienti!c disciplines now routinely
analyze extremely complex, high-dimensional data. However,
computing parameter estimates using stalwart statistical tech-
niques such as maximum likelihood (ML) and Markov chain
Monte Carlo can be a challenge in these settings and is o"en a
bottleneck in practice. In these situations, researchers o"en turn
to computationally e#cient approximations.

Variational approximations are one method of approxi-
mating a likelihood function or posterior distribution that
are increasingly popular across a range of scienti!c !elds.
In public health, for example, Lee and Wand (2016) used a
variational approximation to estimate a model for overall and
hospital-speci!c trends in cesarean section rates. In statistical
genetics, Raj, Stephens, and Pritchard (2014) used a variational
approximation to a multinomial model of allele frequencies
across populations of individuals. O’Connor et al. (2010) used
a variational approximation to a model of demographics and
lexical choice in geo-tagged Twitter data.

Despite their popularity, variational approximations do not
typically come with guarantees about the statistical properties of
the resulting estimator. This drawback is particularly problem-
atic when a scientist would like to interpret a parameter esti-
mate, in which case estimator consistency is crucial, or report
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a con!dence interval, in which case good coverage rates rely
on the ability to accurately estimate the sampling distribution
of the estimator. In this article, we address the problem of
inference using variational approximations. We show that, in
a wide range of parametric mixture models, well-established
theory from pro!le M-estimation provides an asymptotic lens
through which we may understand the large-sample properties
of parameter estimates resulting from variational approxima-
tions to the log-likelihood. Using the M-estimation framework,
we derive conditions for consistency and asymptotic normality
of variational estimators.

The theory we establish for variational estimators motivates
us to also propose three methodological improvements to
these estimators. First, we provide a consistent estimator of the
asymptotic covariance matrix of variational estimators. Second,
we introduce a one-step correction to the variational estimator
that improves large-sample statistical e#ciency. Third, we
develop an empirical evaluation of estimator consistency for
use when the theoretical calculations are intractable. We
demonstrate the importance of these methodological advances
with two logistic mixture models of marijuana use by age among
participants in the National Longitudinal Survey of Youth
(NLSY).

The remainder of the article is organized as follows. This
section formally de!nes the class of models and variational
estimators we study. Section 2 connects variational estimation
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to pro!le M-estimation and states our theoretical results. Sec-
tion 3 illustrates the general theoretical results in a few simple
models. Section 4 presents our three methodological contribu-
tions. Section 5 evaluates our methods using simulated data and
demonstrates an application to the NLSY. Section 6 presents
a discussion. Technical conditions and proofs of theorems are
provide in the supplementary material. Code to replicate all
of the empirical analyses in this article are available at https://
github.com/tedwestling/variational_asymptotics.

1.1. Variational Estimators

In this article, we consider inference for a Euclidean parameter
θ in a parametric mixture model pθ (x) =

∫
Z pθ (x, z) dµ(z),

where the marginal likelihood pθ (x) is computationally expen-
sive to compute. Parametric mixture models have been used in
a variety of scienti!c contexts. For example, mixed-membership
models are a type of mixture model that have been used to model
text (Blei, Ng, and Jordan 2003), social networks (Airoldi et al.
2008), population genetics (Pritchard, Stephens, and Donnelly
2000), and scienti!c collaborations (Erosheva, Fienberg, and
La$erty 2004).

Mixture models have been used in conjunction with both
Bayesian and frequentist inferential frameworks. In a frequentist
setting, ML estimation comes with guarantees of asymptotic e#-
ciency and methods of conducting inference for many models.
These guarantees provide a degree of assurance for scientists
that the point estimates and uncertainty intervals will behave in
predictable ways.

ML estimation can, however, be computationally burden-
some. When the integral in pθ (x) must be approximated numer-
ically, the cost of this computation increases exponentially with
the dimension of the domain Z of the latent variable since
pθ (x, z) needs to be evaluated at su#ciently many points to
accurately approximate the integral. This computational burden
is a signi!cant barrier for researchers who want to develop
tailored mixture models to %exibly represent the dependencies
in their data. As a result, a variety of approximate methods have
been developed as alternatives to ML.

Variational inference is an approximate method based on
optimizing a lower bound for the original objective function.
This lower bound is designed to eliminate the need for, or at
least reduce the dimension of, any numerical integrals, thereby
improving computational e#ciency. Variational inference can
be used in a frequentist context to approximate the log-
likelihood or in a Bayesian context to approximate the posterior
distribution. In this article, we focus on the former. We will
refer to estimators of θ resulting from optimizing a variational
approximation to the log-likelihood as variational estimators.

Before providing formal de!nitions, we distinguish between
two key aspects of the variational approximation. First, we can
evaluate the properties of the optimizer of the variational lower
bound. Second, we could consider the tightness of the varia-
tional lower bound to the true objective function. These ques-
tions are related. Demonstrating tightness of the lower bound
is one way to control the di$erence between the true and vari-
ational optimizers, for example. However, a tight variational
lower bound is not a necessary condition for good behavior of

the variational estimator, and indeed does not hold in many
settings where the variational estimator performs well. In this
article, we address the former of these two components, that is,
the properties of the optimizer of the variational lower bound.

We now move to a formal de!nition of variational estimation.
Blei, Kucukelbir, and McAuli$e (2017) presented a thorough
introduction to variational inference and many relevant refer-
ences. Let X1, . . . , Xn be observed p-variate data generated inde-
pendently and identically from a distribution P0 on a sample
space X . Let P = {Pθ : θ ∈ "} be a statistical model,
where " is an open subset of Rd and each Pθ has a density
pθ (x) =

∫
Z pθ (x, z) dµ(z). Here µ is a dominating measure on

Z ⊆ Rk. We can conceptualize this data-generating process as
!rst drawing independent latent random variables Z1, . . . , Zn
from the marginal distribution pθ ,Z(z) =

∫
X pθ (x, z) dx, then

drawing each Xi given Zi from the conditional distribution
pθ ,X|Z(x | Zi) = pθ (x, Zi)/pθ ,Z(Zi). Of these, we only observe
X1, . . . , Xn.

We are most interested in cases where pθ (x) cannot be
written in closed-form in terms of elementary functions, as
in many generalized linear mixed models (McCulloch and
Neuhaus 2001) and nonlinear hierarchical models (Davidian
and Giltinan 1995; Goldstein 2011). In these cases, calculating
the log-likelihood of the observed data,

∑n
i=1 log pθ (Xi), and its

derivatives with respect to θ requires numerical integration.
When the dimension of the latent variable is large, these
numerical integrals are computationally expensive.

Variational inference parameter estimates are obtained by
maximizing a criterion function motivated as follows. Denote
by Q0 the set of densities dominated by µ, and by QX

0 the set
of all conditional densities dominated by µ for all x ∈ X ; that
is, all s : Z × X → R such that s(· | x) ∈ Q0 for all x ∈ X .
Suppose that P0 ∈ P , so that P0 = Pθ0 for some θ0 ∈ ". Then
θ0 and the true conditional distribution of the latent variable
πθ0(z | x) := pθ0(x, z)/pθ0(x) can be represented as

(θ0, πθ0)

= arg max
θ∈",s∈QX

0

EP0

[∫

Z
log

(pθ (X, Z)

s(Z | X)

)
s(Z | X) dµ(Z)

]
. (1)

To see this, !rst de!ne

f0(θ , s) := EP0 [−DKL(s(· | X)‖πθ (· | X))]

= EP0

[∫

Z
log

(
πθ(Z | X)

s(Z | X)

)
s(Z | X) dµ(Z)

]
,

where DKL denotes the Kullback–Leibler (KL) divergence. Thus,
f0(θ , s) is the expected KL divergence between s(· | X) and
πθ(· | X). By Gibbs’ inequality, f0(θ , s)≤ 0 = f0(θ0, πθ0) for
all (θ , s) ∈ " × QX

0 . Next, note that θ0 maximizes θ (→
g0(θ) := EP0 [log pθ (X)

p0(X) ] = −DKL(p0‖pθ ). Therefore, (θ0, πθ0)

maximizes (θ , s) (→ f0(θ , s) + g0(θ) over " × QX
0 , and a"er

some rearranging, we can see that this is equivalent to the
representation in (1).

The expectation-maximization (EM) algorithm can be moti-
vated by (1) by replacing the unknown P0 with the empirical
distribution and alternating between optimization over θ

and s. Using similar reasoning to that presented above, this
amounts to alternating between computing θ(t) := arg maxθ∈"
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∑n
i=1

∫
Z

[
log pθ (Xi, Z)

]
πθ(t−1) (Z | Xi) dµ(Z), where θ(t−1) is

the previous value of θ , and computing πθ(t) (· | Xi) for each
observed Xi. However, if the marginal likelihood pθ (x) cannot
be written in terms of elementary functions, then neither can
πθ , and hence the EM algorithm requires numerical integration.

To construct a variational approximation to the log-
likelihood, we replace the optimization over QX

0 in (1) with an
optimization over QX , where Q is a smaller variational family
of distributions, and as before QX is the set of conditional
distributions over X such that s(· | x) ∈ Q for each x ∈ X .
For example, Q could consist of all independent products
over each dimension of z (known as mean-!eld variational
inference), all multivariate Gaussian distributions, or all
independent Gaussian distributions. For simplicity, we will
assume throughout that Q is indexed by a !nite-dimensional
Euclidean parameter ψ ∈ ! , so that every s ∈ QX can be
identi!ed with a density s(· | x) = q(·; ψ(x)). We note that in
some cases even when Q is a semiparametric family, it can be
shown that the optimal q lies in a parametric sub-family with
a known form, so that our results can still be applied (see, e.g.,
Wainwright and Jordan 2008, sec. 5.3). For families where this
does not apply, our theory could be extended to incorporate
semiparametric Q.

Let !n denote the n-fold Cartesian product ! × · · · × ! .
For ψ ∈ !n and i ∈ {1, . . . , n}, we will denote ψi ∈ ! the
ith element of ψ . Given the observed data X1, . . . , Xn, !n then
parametrizes the set of variational conditional distributions over
X1, . . . , Xn, and each ψi parametrizes the variational conditional
distribution s(· | Xi) = q(·; ψi). Given Q and ! , the variational
estimator of θ , which we will denote θ̂n, and the variational con-
ditional estimators ψ̂n are the joint maximizers of the following
objective function

(θ̂n, ψ̂n) := arg max
θ∈",ψ∈%n

n∑

i=1

∫
log

(pθ (Xi, Zi)

q(Zi; ψi)

)
q(Zi; ψi)dµ(Zi)

= arg max
θ∈",ψ∈%n

Ln(θ , ψ ; Xn). (2)

We note that we are implicitly assuming that the full varia-
tional distribution over (Z1, . . . , Zn) factors as

∏n
i=1 q(Zi; ψi).

However, since the true conditional distribution of (Z1, . . . , Zn)
given (X1, . . . , Xn) factors as

∏n
i=1 πθ0(Zi | Xi), the optimal

variational distribution will always factor as well, so this
assumption comes with no loss of generality.

A crucial piece of motivation for our work is that, since Ln
is typically not proportional to the log-likelihood, it is not clear
what the asymptotic properties of the variational estimator θ̂n
are. In many circumstances, the variational estimator is used for
prediction. In such cases, scientists can evaluate the quality of
the variational approximation using cross-validation or another
held-out data technique. If, however, a scientist would like to go
beyond prediction and interpret the point estimator (or, criti-
cally, its uncertainty) produced by a variational approximation,
not knowing the properties of the estimator is a substantial
hindrance. In particular, we would like to know whether θ̂n is
consistent and, if it is consistent, what the asymptotic distribu-
tion of

√
n(θ̂n − θ0) is.

Asymptotic properties of variational estimators have been
studied in depth for certain speci!c models, yielding positive

results regarding the consistency of variational estimators for
Gaussian mixture models (Wang and Titterington 2006), expo-
nential family models with missing values (Wang and Titter-
ington 2004), Poisson mixed models as the cluster size and
number of clusters both diverge (Hall, Ormerod, and Wand
2011; Hall et al. 2011), Markovian models with missing values
(Hall, Humphreys, and Titterington 2002), and stochastic block
models for social networks (Bickel et al. 2013). Of particular
note are Hall, Ormerod, and Wand (2011) and Hall et al. (2011),
who derive sharp asymptotics for Poisson regression with ran-
dom cluster intercepts as both the number of clusters and obser-
vations per cluster diverge. Our work is distinct from these
results in two ways. First, we provide results at a general level
rather than for a speci!c model. Second, we focus on the asymp-
totic regime where the number of clusters is diverging, but the
number of observations per cluster is stochastically bounded.

More recently, researchers have begun developing general
theoretical results for variational estimators. For example,
Pati, Bhattacharya, and Yang (2018) studied !nite-sample risk
bounds for mean-!eld variational Bayes estimators in a very
general setting, and applied their results to derive the rate of
convergence of variational Bayes estimators in latent Dirichlet
allocation and Gaussian mixture models. Wang and Blei (2018)
provided su#cient conditions for a Bernstein–von Mises result
for the variational Bayes posterior distribution. We note that
both of these recent works are distinct from our goals here,
which are to study the asymptotic properties of frequentist
variational estimators.

2. Variational Approximations and M-Estimation

In this section, we demonstrate the connection between
M-estimators and variational inference. The key for this
connection is using a pro!le version of the variational objective
function. Viewing variational inference in this way unlocks
a deep and broad set of theoretical results developed for M-
estimators. We make this connection explicit in this section and
then, in Section 4, demonstrate how these theoretical results can
be used to develop new methods for scienti!c practice.

2.1. Variational Estimation as M-Estimation

We will study the general properties of the variational estimator
θ̂n through the lens of M-estimation. An M-estimator of a
parameter θ is the maximizer of a data-dependent objective
function Mn(θ) = 1

n
∑n

i=1 m(θ ; Xi). From (2) we can see that

Ln(θ , ψn; Xn) =
n∑

i=1
v(θ , ψi; Xi)

for v(θ , ψ ; x) =
∫

log
(pθ (x, z)

q(z; ψ)

)
q(z; ψ) dµ(z).

Applying the theory of M-estimation to the vector (θ , ψn) with
m(·) = v(·) is complicated due to the dependence on ψi, which
are known as incidental parameters speci!c to each data point.
The θ , in contrast, are structural parameters shared across all
data (Lancaster 2000). Hall, Ormerod, and Wand (2011) dealt
with this problem for Poisson mixed models by assuming the
cluster size was growing with the number of observations, so
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that the incidental parameters e$ectively became structural. In
our more general setting we could analogously assume that each
observed data Xi is composed of replicates Xi1, . . . , Xim and let
m grow with n. However, this would limit the applicability of
our results to only cases where clusters are very large. Since, in
practice, clusters are o"en small, we instead apply M-estimation
to the pro!led variational objective.

To use the M-estimation framework for the variational esti-
mator θ̂n, we will express the optimization de!ned in (2) as a
two-stage procedure, where !rst Ln is optimized with respect
to ψn for each !xed θ , then this pro!led function is optimized
with respect to θ . Furthermore, we note that optimizing Ln
with respect to ψn for !xed θ is equivalent to optimizing each
summand v(θ , ψi; x) with respect to ψi for !xed θ . Therefore,
we will assume that for each θ ∈ " and P0-a.e. x, the map ψ (→
v(θ , ψ ; x) possesses a unique point of maximum in ! , which we
will denote by ψ̂(θ ; x). We then de!ne the pro!led single-data
objective function

m(θ ; x) := sup
ψ∈%

v(θ , ψ ; x) = v(θ , ψ̂(θ , x); x).

Proposition 1 asserts that, with this assumption, the variational
estimator θ̂n of the model parameters from Equation (2) is
equal to the maximizer of the pro!led criterion function∑n

i=1 m(θ ; Xi). This result formally establishes the connection
between variational inference and M-estimation that we will use
throughout this article.

Proposition 1. Suppose that, for all θ ∈ " and P0-a.e. x, ψ (→
v(θ , ψ ; X) possesses a unique maximizer in ! , and that θ (→∑n

i=1 m(θ ; Xi) possesses at least one maximizer in ". Then θ̂n ∈
arg maxθ∈"

∑n
i=1 m(θ ; Xi).

The proofs of all results are provided in the supplementary
materials.

The representation of θ̂n provided by Proposition 1 now
falls within the M-estimator framework. We can therefore use
the existing, well-studied asymptotic theory of M-estimators
to better understand the asymptotic properties of variational
estimators. In the subsequent sections, we show that, using
this representation, the theory for M-estimators yields general
results for consistency and asymptotic normality for variational
estimators.

2.2. Consistency

We !rst explore consistency using the M-estimator representa-
tion of the variational estimator. An important point that we
will return to later is that, depending on the model and approx-
imation, the estimator based on the variational lower bound
may not be consistent for the truth. Hence, in what follows, we
refer to θ̄ as the limit of θ̂n, so that θ̄ = θ0 if and only if θ̂n is
consistent.

The population objective function M0(θ) = EP0[m(θ ; X)]
governs the asymptotic properties of the variational estimator
θ̂n. Under regularity conditions, θ̂n

P0−→ arg maxθ M0(θ), so that
if M0 is uniquely maximized at θ0 then θ̂n is consistent for θ0, as
we state below.

Theorem 1. Suppose the function M0(θ) = EP0 [v(θ , ψ̂(θ ; X);
X)] attains a !nite global maximum at θ̄ and conditions (A1)–
(A3) hold. Then θ̂n

P0−→ θ̄ .

Regularity conditions (A1)–(A3) justify the application of
Theorem 5.14 of van der Vaart (2000) and are provided in
the supplementary materials. Condition (A1) requires that
v(θ , ψ̂(θ ; x); x) be upper semicontinuous in θ for a.e. x. This
is implied, for instance, if v is upper semicontinuous in θ

and ψ and ψ̂ is continuous in θ , for a.e. x. Condition (A2)
requires that v have a measurable and integrable local envelope
function. Condition (A3) requires that θ̂n be contained in a
compact with probability tending to one. If the parameter space
is not compact, (A3) can o"en be established via a suitable
compacti!cation of the parameter space, as in van der Vaart
(2000, Example 5.16).

Here and throughout, we de!ne Dψ and Dθ as the derivative
operators with respect to ψ and θ , respectively. If v and ψ̂

are su#ciently smooth functions of θ for P0-a.e. x (see the
supplementary materials for additional details), then the Leibniz
integral rule implies that Dθ M0|θ=θ̄ = EP0 [Dθ v|θ=θ̄ ,ψ=ψ̂(θ̄ ;X)],
and furthermore since Dψv|ψ=ψ̂(θ ;x) = 0 by de!nition of ψ̂

as a maximizer, EP0 [Dθ v|θ=θ̄ ,ψ=ψ̂(θ̄ ;X)] = 0 as well. Therefore,
a preliminary step in assessing whether θ̂n is consistent is to
determine whether EP0 [Dθ v|θ=θ̄ ,ψ=ψ̂(θ̄ ;x)] = 0. If it does not
equal zero, then θ̂n cannot be consistent. If it does equal zero, and
in addition M0(θ) is strictly concave and regularity conditions
(A1)–(A3) hold, then θ̂n is consistent.

In practice, it is o"en not possible to derive ψ̂(θ ; x) in closed
form, which prevents a theoretical assessment of consistency
of the variational estimator. This is the situation, for instance,
in many generalized linear mixed models. In Section 4.3, we
propose an empirical method of assessing consistency that does
not require explicit derivation of ψ̂(θ ; x).

2.3. Asymptotic Normality

If the variational estimator θ̂n is consistent for θ̄ and additional
regularity conditions hold then

√
n(θ̂n − θ̄ )

d−→ N(0, V(θ̄ ))

where V(θ) is the sandwich covariance. Here and throughout,
we denote by D2

• the second derivative operator with respect
to •.

Theorem 2. Suppose θ̂n
P0−→ θ̄ , a point of maximum of M0(θ) =

EP0[m(θ ; X)], and conditions (B1)–(B4) hold. Then
√

n(θ̂n − θ̄ )
d−→ Nd(0, V(θ̄ )),

where V(θ) = A(θ)−1B(θ)A(θ)−1 for

A(θ) = EP0

[
D2

θ m(θ ; X)
]

, (3)
B(θ) = EP0

[
(Dθ m(θ ; X))(Dθ m(θ ; X))T]

. (4)

In the next section, we provide formulas for estimating
the matrices A and B regardless of whether m(θ ; X) is known
explicitly.

Conditions (B1)–(B4), stated in the supplementary materials,
guarantee that m(θ ; X) satis!es the conditions of van der Vaart
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(2000, Theorem 5.23). Condition (B1) states that ψ̂(θ ; x) exists
for all θ and a.e. x, and (B2) states that it is twice continuously
di$erentiable in θ in a neighborhood of θ̄ for a.e. x. If for θ

in a neighborhood of θ̄ and a.e. x, (i) v is twice continuously
di$erentiable in ψ , (ii) Dψv|θ ,ψ̂(θ ;x) = 0, (iii) D2

ψv is invertible,
and (iv) Dψv is twice continuously di$erentiable in θ , then the
implicit function theorem implies (B1) and (B2).

Condition (B3) requires that v be twice continuously di$er-
entiable in θ in a neighborhood of θ̄ and ψ̂(θ̄ ; x) for a.e. x. The
di$erentiability of v required by this condition and the implicit
function theorem from the previous paragraph depend on the
smoothness of pθ (x, z) and the variational density q(z; ψ). For
instance, by the Leibniz integral rule, if pθ is twice continuously
di$erentiable in θ at x and for q(·; ψ)-a.e. z, and its second
derivative is dominated by a q(·; ψ)-integrable function, then v
is twice continuously di$erentiable in θ at ψ and x.

Finally, condition (B4) requires that v and ψ̂ be Lipschitz
functions in neighborhoods of θ̄ and ψ̂(θ̄ ; x) for every x, and
that their Lipschitz constant be bounded by a square-integrable
function of x. The Lipschitz property of v and ψ̂ for !xed x
is implied by the di$erentiability required by (B2) and (B3).
Square-integrability of the Lipschitz constant as a function of x
is not guaranteed, but is a relatively mild requirement since the
neighborhoods around θ̄ and ψ̂(θ̄ ; x) may be arbitrarily small.

3. Illustrations of the General Theory

In this section, we illustrate the use of our theoretical results
for assessing the consistency and asymptotic e#ciency of vari-
ational estimators in two mixture models. For each model,
we highlight the main features necessary to apply our general
results, and leave detailed derivations for the supplementary
materials.

3.1. Consistent and E!cient Variational Estimation

As our !rst illustration of our general theoretical results, we
demonstrate that a variational estimator is consistent and e#-
cient in an exponential mixture model. Suppose that each data
unit i consists of a vector of observations Xi = (Xi1, . . . , Xip).
Conditional on independent latent random variables Z1, . . . , Zn
each distributed as Exp(β), these observations are generated
independently as Xij ∼ Exp(Zi). The parameter vector is θ =
β ∈ R+. This could serve, for instance, as a model of the
lifetimes of clusters of memoryless units.

The marginal density of Xi is pθ (x) = '(p + 1)β
(
β

+ ∑p
j=1 xj

)−(p+1)
, and hence the true conditional distribution

of Zi given Xi is Gamma(p + 1, β + ∑p
j=1 Xij). Therefore,

any variational family of conditional distributions that includes
the gamma family as a subclass will yield a variational esti-
mator θ̂n that is equal to the MLE. However, for the purpose
of demonstrating our theoretical method of assessing consis-
tency, it is illustrative to consider a variational class that does
not include the true conditional distribution. We will show
that in this example, using the misspeci!ed variational class of

log-normal distributions still yields a consistent, and even e#-
cient, variational estimator.

Suppose the variational class is taken to be all log-normal
distributions, parameterized by ψ = (µ, σ 2) ∈ R × R+ = % .
Straightforward computation then gives

v(θ , ψ ; x) ∝ log β + (p + 1)µ −



β +
d∑

j=1
xj





× eµ+σ 2/2 + log σ .

This is a smooth function, and by composition laws for concave
functions, we can see that v(θ , ψ ; x) is strictly concave in ψ for
each !xed θ and x (Boyd and Vandenberghe 2004). Therefore,
the unique zero of the gradient of v with respect to ψ is the
unique ψ maximizing v for !xed θ and x. This gives µ̂(θ ; x) =
log p+1

β+∑p
j=1 xj

− (p + 1)−1/2 and σ̂ (θ ; x) = (p + 1)−1/2.

Thus, the pro!le objective function m(θ ; x) = v(θ , ψ̂(θ ; x); x)

can be written explicitly up to a constant as log β(
β+∑p

j=1 xj
)p+1 .

Condition (A1) is satis!ed because m is smooth in θ . Condition
(A2) is satis!ed because supθ m(θ ; x) = c − p log

(∑p
j=1 xj

)
for

some c < ∞, and the expectation of this expression is !nite.
Condition (A3), which requires tightness of θ̂n, can be estab-
lished either by restricting the parameter space to a compact, or
by extending the parameter space to [0, ∞] equipped with the
metric d(β1, β2) = | arctan β1 − arctan β2|, as in van der Vaart
(2000, Example 5.16).

Since conditions (A1)–(A3) hold, Theorem 1 implies that
θ̂n

P−→ θ̄ , the point of maximum of θ (→ M0(θ)= EP0[m(θ ; X)].
In this case, since m(θ ; x) is equal up to a constant to the
log-likelihood of a single observation, by a standard argument
involving Jensen’s inequality, M0(θ) is uniquely maximized at
θ0. Therefore, θ̂n is consistent even though the variational class
does not include the true conditional distribution.

Conditions (B1)–(B3) are satis!ed because both v and ψ̂ are
smooth in θ , and the second derivative of m is bounded up
to a constant in a neighborhood of θ0 by (

∑p
j=1 xj)−1, which

is P0-integrable. The Lipschitz condition (B4) is also satis!ed
because v and ψ̂ are di$erentiable with bounded derivatives in
a neighborhood of (θ0, ψ̂) and θ0, respectively. The asymptotic
variance of

√
n(θ̂n − θ0), as implied by Theorem 2, is equal to

(1 + 2/p)β2
0 .

3.2. Inconsistent Variational Estimation

We now consider an extension of the previous model in which a
variational estimator is inconsistent. We keep an identical setup
from the previous model, but now, we model the latent variable
as Zi ∼ Gamma(α, β) rather than Exp(β). This is a more
%exible model indexed by the parameter θ = (α, β) ∈ R+×R+.

The marginal density of Xi is now pθ (x)= '(p + α)

'(α)−1βα
(
β + ∑p

j=1 xj
)−(p+α)

, and hence the true condi-
tional distribution of Zi given Xi is Gamma(p+α, β+∑p

j=1 Xij).
As before, for illustrative purposes we take the variational
class to be all log-normal distributions, parameterized by
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ψ = (µ, σ 2) ∈ R × R+ = % . We now have

v(θ , ψ ; x) ∝ α log β − log '(α) + (p + α)µ

−



β +
d∑

j=1
xj



 eµ+σ 2/2 + log σ .

Once again, v is a smooth function, and is strictly concave in ψ

for each !xed θ and x. Setting its derivative with respect to µ

and σ to zero and solving gives µ̂(θ ; x) = log p+α

β+∑p
j=1 xj

− (p +
α)−1/2 and σ̂ (θ) = (p + α)−1/2. Thus,

m(θ ; x) ∝ α log β − log '(α) + (p + α) log p + α

β + ∑p
j=1 xj

− (p + α) − 1
2 log(p + α)

= log pθ (x) − log '(p + α) − (α + p)

+ (p + α) log(p + α) − 1
2 log(p + α).

Conditions (A1)–(A3) can be checked for this example much
as in the previous example. Therefore, Theorem 1 again implies
that θ̂n tends in probability to the point of maximum of M0(θ).
As before, M0 is not available in closed form in terms of elemen-
tary functions. However, we have M0(θ) = EP0[log pθ (X)] +
f (α), where f ′(α) > 0 for all α. Since EP0[log pθ (X)] is smooth
and maximized at θ0, this implies that Dθ M0|θ=θ0 .= 0, so
that θ0 cannot be the point of maximum of M0. This shows
that the variational estimator using a misspeci!ed log-normal
conditional distribution is inconsistent in this example.

While the limit θ̄ is not available explicitly, we can approxi-
mate it using numerical integration and optimization. Figure 1
shows the limits of the variational estimators as a function of the
true parameter value for p = 5. The bias is small when α0 and
β0 are small, but increases as α0 and β0 grow.

4. Practical Tools for Inference With Variational
Estimators

We now propose three methodological innovations based on
the asymptotic results from Section 2. First, we demonstrate
how to leverage asymptotic normality to enhance uncertainty
estimators. Second, we show that a one-step correction can be
applied to improve the e#ciency of the variational estimator.
Finally, we address the di#culty of theoretical assessment of
consistency mentioned in Section 2, providing a way to test the
consistency of a variational estimator when theoretical calcula-
tions are intractable.

4.1. Sandwich Covariance Estimation

We now discuss computation of consistent covariance estima-
tors. Recall that in practice, m(θ ; X) is o"en not available in
closed form. Fortunately, the derivatives of m(θ ; X) can be
expressed in terms of the derivatives of v(θ , ψ ; X), which are
always available, because v(θ , ψ ; X) is a result of the model
and variational family used. Thus, using the chain rule, the
asymptotic variance can be estimated whether or not m(θ ; X)

is available explicitly. We denote by Dθ v and Dψv the !rst

partial derivatives of v, and D2
θθ v, D2

θψ , and D2
ψψv the second

derivatives of v.
Concerning Dθ m(θ ; x), which appears in Equation (4),

since ψ̂(θ ; x) maximizes v for !xed θ , x, Dθ m(θ ; x)= Dθ

v(θ , ψ ; x)|ψ=ψ̂(θ ;x). For D2
θ m(θ ; x) in Equation (3),

D2
θ m(θ ; x) =

[
D2

θθ v − D2
θψv

(
D2

ψψv
)−1

D2
θψvT

]

ψ=ψ̂(θ ;x)

,

as we show in the supplementary materials, where we abbrevi-
ate v(θ , ψ ; X) as v for presentation. Replacing the appropriate
derivatives in the de!nition of V(θ) with the above expressions
and the population expectations with empirical ones gives a way
to calculate the asymptotic covariance only knowing v(θ , ψ ; X)

and its derivatives (which can be calculated numerically), as
opposed to m(θ ; x), the computation of which involves opti-
mization.

We now have Ân(θ̂n)−1B̂n(θ̂n)Ân(θ̂n)−1 P−→ V(θ̄) where

Ân(θ) = 1
n

n∑

i=1

[
D2

θθ v − D2
θψv

(
D2

ψψv
)−1

D2
θψvT

]

ψ=ψ̂i,x=Xi

,

(5)

B̂n(θ) = 1
n

n∑

i=1

[
(Dθ v) (Dθ v)T]

ψ=ψ̂i,x=Xi
. (6)

Equations (5) and (6) provide a formula for constructing an
asymptotic covariance matrix for the variational estimator θ̂n.
This covariance can be used to construct asymptotically cali-
brated Wald intervals, regions, and hypothesis tests about θ0 if
θ̄ = θ0. Furthermore, the sandwich covariance is model-robust
in the sense that it is valid even if P0 /∈ P .

For an MLE under correct model speci!cation, A(θ) = B(θ)

and the asymptotic covariance reduces to A(θ)−1, the inverse
Fisher information matrix. In this case the sandwich covariance
is only needed for model-robust uncertainty estimation. How-
ever, when m is not proportional to the log-likelihood, as is o"en
true with variational inference, A and B are not necessarily equal
even under correct model speci!cation. Therefore, the sandwich
covariance is necessary even if P0 ∈ P .

4.2. One-Step Correction

The variational estimator θ̂n is not guaranteed to be asymp-
totically e#cient since the variational objective function need
not be proportional to the log-likelihood. Hence while Wald-
type intervals, regions, and tests using the sandwich estimator
proposed in the last section will be asymptotically valid, they
may be suboptimal since θ̂n may have larger asymptotic variance
than the MLE. In these cases, a one-step correction to the
variational estimator yields a more e#cient estimator.

The one-step estimator is θ̂
(1)
n = θ̂n − In(θ̂n)−1Sn(θ̂n), where

l(θ ; x) = log pθ (x) and

Sn(θ) = 1
n

n∑

i=1
Dθ l(θ ; Xi),

In(θ) = 1
n

n∑

i=1
(Dθ l(θ ; Xi))(Dθ l(θ ; Xi))

T
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Figure 1. Limits of the variational parameter estimates in the Exponential-Gamma mixture model using a misspeci!ed variational conditional distribution. The left display
shows the limit ᾱ as a function of the true α0 used to generate the data. Note that ᾱ does not depend on β0. The right display shows the limit β̄ as a function of the true
β0 for four values of α0. The identity function is shown as a solid black line.

are the score and observed information at θ . Under regularity
conditions

√
n(θ̂

(1)
n − θ0)

P−→ N(0, I(θ0)−1) for I(θ0) the Fisher
information matrix, which is the same asymptotic distribution
as the ML estimator or posterior mean.

Computing Sn and In require numerical integration in the
same way that computing the MLE would. Indeed, the one-
step correction is a single step of a Newton–Raphson algorithm
for !nding the MLE starting at θ̂n. However, unlike !nding the
MLE, this one-step procedure only requires a single calculation
of these quantities, so requires less computation than !nding the
exact MLE. Nevertheless, in some cases the one-step correction
may not be computationally feasible for the same reasons that
computing the MLE is not.

4.3. An Empirical Test of the Consistency of Variational
Estimators

In many cases, including generalized linear mixed models, nei-
ther ψ̂(θ ; x), m(θ ; x), nor M0(θ) are available analytically. This
presents a challenge not present in the classical M-estimation
scenario and seriously undermines the goal of theoretically
evaluating the consistency of variational estimators. Simulation
studies could be used to assess consistency for any particular
!xed, known truth, but would be computationally burdensome.

Here, we propose a method for evaluating the consistency
of a variational estimator at a single !xed parameter value
θ∗ when m(θ ; x) is not available explicitly. Suppose that the
data were generated from P0 = Pθ∗ . Then a crucial condition
for consistency of the variational estimator at θ∗, as stated in
Theorem 1, is that M∗(θ) := Eθ∗ [m(θ ; X)] be maximized at θ∗.
If M∗ is smooth and θ∗ is in the interior of the parameter space,
then M∗ being maximized at θ∗ implies that Dθ M∗(θ∗) = 0.
Furthermore, as long as |Dθ m(θ ; x)| ≤ h(x) for all θ in a
neighborhood of θ∗ and Pθ∗-a.e. x for a Pθ∗-integrable function
h, then by the dominated convergence theorem, Dθ M∗(θ∗) =
Eθ∗ [Dθ m(θ∗; X)] = Eθ∗ [Dθ v(θ∗, ψ̂(θ∗; X); X)]. Our proposed
method for numerically evaluating consistency of the varia-
tional estimator under Pθ∗ is motivated by numerically assessing
whether Eθ∗ [Dθ v(θ∗, ψ̂(θ∗; X); X)] = 0. Our method unfolds
in the following steps.

1. Fix θ∗ and b very large (for instance 104 or 105).
2. For j = 1, . . . , b:

(a) Simulate X∗
j ∼ Pθ∗ .

(b) Find ψ∗
j = ψ̂(θ∗; X∗

j ) by numerically optimizing ψ (→
v(θ∗, ψ ; X∗

j ).
(c) Evaluate G∗

j = Dθ v|θ∗,ψ∗
j ,X∗

j
.

3. Test the null hypothesis that Eθ∗ [G∗
j ] = 0 either using inde-

pendent t-tests on each component or Hotelling’s T2 test on
the entire vector.

If the test rejects the null hypothesis then the variational esti-
mator cannot be consistent; if not then one can be arbitrarily
certain (with large enough b) that the mean score is zero at θ∗.
If a weakly signi!cant p-value is found and it is unclear what to
conclude, the experiment could be repeated with a larger b.

This method is a necessary, but not su#cient test of consis-
tency. As we explain more below, asymptotically we expect our
method to have few false negatives (indication that the estimator
is inconsistent when it is actually consistent) but possibly false
positives (indications that the estimator is consistent when it
is actually inconsistent). The !rst reason for potential false
positives is that Eθ∗ [G∗

j ] = 0 is a necessary but not su#cient
condition for consistency. Even if its gradient is zero, θ∗ it need
not be a global maxima of the objective function. The second
reason for potential false positives is that the method can only
assess consistency at a single parameter value θ∗ rather than on
the entirety of the parameter space. Typically one will !rst use
the variational algorithm to estimate θ̂n, then use this method
to assess consistency at θ∗ = θ̂n. If the estimator is consistent
for every θ in a neighborhood of θ0 then for n large enough θ̂n
will be in that neighborhood and the method will not indicate
inconsistency. On the other hand if θ̂n

P0−→ θ̄ .= θ0 then this
method is approximately assessing whether the algorithm is
consistent near θ̄ . If the variational algorithm is consistent at θ̄

but not at θ0 then the method would indicate that the estimator
is consistent when in fact it is not. Despite the possibility of false
positives, we do not know of any other practical ways to assess
consistency of variational estimators when the limit objective is
not available in closed form.
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5. Numerical Studies

In this section, we empirically evaluate the variational estimator,
the sandwich covariance, and the one-step correction in mixed
e$ects logistic regression models. In these models, theoretical
assessment of the consistency and e#ciency of variational infer-
ence is challenging because the pro!led criterion function is
not available in closed form. Hence, we turn to our empirical
assessment of consistency and numerical studies to assess the
properties of variational estimators.

We consider mixed e$ects logistic regression models—!rst
with random intercepts, then with random intercepts, slopes,
and quadratic terms—using data on marijuana use in adoles-
cents in the United States from the NLSY 1997 (Bureau of Labor
Statistics, U.S. Department of Labor 2013). The data consist
of approximately yearly interviews of n = 8660 youth from
1997 to 2012, with the number of interviews per youth ranging
from 4 to 16. For youth i’s jth interview, we consider the binary
outcome Yij of whether the youth used marijuana in the 30
days preceding the interview. We focus on understanding the
relationship between marijuana use, age, and sex. Since our goal
is to understand the properties of variational estimators, we
use the data, along with “known” parameter values, to simulate
outcomes. This way we can assess the accuracy of parameter
estimates and coverage of uncertainty intervals. We also use our
methods to conduct an analysis of the real NLSY data.

The results indicate that variational estimators are not always
consistent: in the !rst example the estimator is consistent
for some parameters and not for others, and in the second
example it is not consistent for any parameters. The !rst example
also demonstrates that even when the variational estimator
is consistent, it is not necessarily e#cient. In either case the
sandwich covariance matrix provides good con!dence interval
coverage rates and the one-step correction improves e#ciency.
The empirical evaluation of consistency correctly identi!es
inconsistency of the parameter vector as a whole, but not always
inconsistency of individual parameters.

5.1. Logistic Regression With Random Intercepts

First we consider logistic regression with random intercepts.
Let Zi be a random intercept controlling each youth’s overall
propensity for marijuana use, SEXi be an indicator that the
youth is male, and AGEij be youth i’s age at interview j. Denote
pij = P(Yij = 1 | Zi, SEXi, AGEij). Our !rst model for
marijuana usage is then

logit(pij) =
{

Zi + β0 + β1(AGEij/35) + β2(AGEij/35)2, SEXi = 0
Zi + β3 + β4(AGEij/35) + β5(AGEij/35)2, SEXi = 1.

Each youth’s outcomes Yi1, . . . , Yini are assumed conditionally
independent given Zi, and we model Zi as iid N(0, σ 2). The
parameter vector is θ = (β , log(σ 2)). The inclusion of the
quadratic e$ect of age is important because we expect that mari-
juana usage peaks some time in young adulthood and decreases
therea"er. This model form is similar to that used in the analysis
of age-crime curves (Fabio et al. 2011).

To estimate θ we consider a variational class of conditional
distributions over Zn consisting of all independent Gaussian

distributions. This is known as a Gaussian variational approxi-
mation (GVA). The variational parameters are ψi = (mi, log si),
mi being the mean and si the standard deviation of the varia-
tional conditional distribution of γi. The variational objective
involves one-dimensional numerical integrals. To optimize the
variational objective function we use a variational EM algorithm
using the statistical so"ware R (R Core Team 2018). We used
the R package fastGHQuad (Blocker 2018) for numerical
integration. In this case it is not possible to express the pro!led
objective function explicitly.

To evaluate our methods, we conducted a simulation study
based on the NLSY data. For each of 1000 simulations, we draw
a bootstrap sample of youth. Conditional on these youth’s age
and sex we simulated Y1, . . . , Yn from the model, treating the
variational estimate θ̂n for the data as the true parameter value
θ0. We then estimated the model parameters and asymptotic
covariance matrix using ML with the R package lme4 (Bates
et al. 2015), the Gaussian variational approximation, and the
one-step correction to the variational estimator. Finally, we used
our proposed method to assess consistency of the variational
algorithm at the estimated parameter value.

We !rst examine the accuracy of point estimates for regres-
sion !xed e$ects. All three estimators concentrate on the true
values of the !xed e$ects β0 through β5 (boxplots are provided
in the supplementary materials). Table 1 shows the variance
of the estimators for each of the seven model parameters. The
variational estimator has slightly larger variance than the MLE,
but the one-step correction nearly matches the variance of the
MLE. Thus, as we asserted theoretically, the one-step correction
is e#cient as long as the variational estimator is consistent, even
when the variational estimator is ine#cient.

Moving now to the random intercept variance, the MLE
concentrates on the true variance component, log(σ 2), while
the variational estimator and one-step correction do not.
Our empirical assessment of consistency described in Sec-
tion 4.3 correctly identi!es this inconsistency. The multivariate
Hotelling test rejected in every simulation with p < 10−16,
correctly indicating that the population mean gradient of
the entire parameter vector was signi!cantly di$erent from
zero. Additionally, no more than 2.5% of the marginal t-
tests rejected at the 0.01 level for each of the !xed e$ects, in
line with their apparent consistency, while every one of the
1000 simulations rejected the marginal t-test for the variance
parameter with p < 10−16. These results are better than what
is guaranteed theoretically, since the theory does not guarantee
that the marginal t-tests will accurately re%ect the consistency
or inconsistency of individual parameters.

We now move to examining uncertainty intervals. Table 2
shows the estimated coverage of marginal 95% Wald-type con-
!dence intervals of the model parameters for each the three
estimators. The coverage of the con!dence intervals of the linear
and quadratic age !xed e$ects using the sandwich covariance
for the variational estimator and the inverse Fisher information
for the one-step correction are within the Monte Carlo error
of the nominal 95%. The variational con!dence intervals for
the sex-speci!c intercepts β0 and β3 are too small at 90%,
likely because of the underestimation of σ 2, the variance of the
random intercept. The coverage of the con!dence intervals of
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Table 1. Estimator variances in the logistic regression with random intercepts simulation.

β0 β1 β2 β3 β4 β5 log(σ 2)

MLE 0.16 1.68 1.05 0.12 1.25 0.77 8.6 × 10−3

GVA 0.23 1.90 1.19 0.19 1.46 0.91 0.61
One-step correction to GVA 0.17 1.67 1.04 0.13 1.26 0.78 0.60

log σ 2 is close to zero for the variational estimator and one-
step correction, which is not surprising given that the estima-
tor is inconsistent. The coverage of log σ 2 is not shown for
the MLE because lme4 does not provide an interval for this
parameter.

5.2. Logistic Regression With Random Quadratics

We now alter the model presented above to include random
slopes and quadratic terms for each youth. The random inter-
cept model may not accurately capture the dependence structure
of a single subject’s marijuana use over time, since the random
intercepts model implies an exchangeable marginal correlation
structure, which is unrealistic given the longitudinal nature of
the data. A more realistic model allows random slopes and
quadratic terms as well, so that the latent variable Zi now has
three components. For the conditional probability pij = P(Yij =
1|Zi, SEXi, AGEij) we now have

logit(pij)

=






(Zi0 + β0) + (Zi1 + β1)(AGEij/35)

+(Zi2 + β2)(AGEij/35)2, SEXi = 0
(Zi0 + β3) + (Zi1 + β4)(AGEij/35)

+(Zi2 + β5)(AGEij/35)2, SEXi = 1.

Thus, β0, β1, and β2 are the coe#cients of the quadratic curve
for the average female, and analogously for males. We model
the random e$ects Zn as iid mean zero multivariate Gaussian
with covariance matrix +. Once again we use MLE, a Gaus-
sian variational approximation, and a one-step correction to
the Gaussian variational approximation to estimate the average
random e$ects and covariance matrix.

The marginal likelihood for this model involves an
intractable integral over R3. GVA only requires numerical
integration over a one-dimensional integral, and is hence less
computationally intensive than ML estimation. To compare
the computational burden of these methods, we simulated 100
datasets each at sample sizes n = 100, 250, and 500, and used the
lme4 package, which uses a Laplace approximation to the log-
likelihood, GVA, the one-step correction, and ML estimation to
obtain estimates of the parameters in the logistic regression with
random quadratics model. We used the implementation of the

L-BFGS-B algorithm (Byrd et al. 1995) in the optim function
in R (R Core Team 2018) to compute the GVA and MLE.

Figure 2 shows boxplots of the computation time in minutes
of these four algorithms. The MLE was the most computation-
ally expensive—at sample size n = 500, the average compu-
tation time was already 70 min. GVA and GVA+OS required
an average of 6.3 and 9.7 min, respectively, to compute with
n = 500 observations. lme4 was the most computationally
e#cient, requiring an average of 2.4 min.

We conducted a simulation study with the same structure as
the study in the last section to compare the point estimates and
CI coverage of lme4 (Bates et al. 2015), GVA, and GVA+OS
using all 8660 observations. Boxplots of the three estimators of
the mean random e$ects are shown in Figure 3. The pattern is
very di$erent from the random intercept model. Thelme4 esti-
mates are slightly inconsistent (for random e$ects with dimen-
sion larger than one the lme4 package uses a Laplace approx-
imation to the likelihood). The GVA estimates are even more
biased than the lme4 estimates. Despite this, it appears that our
proposed one-step corrected !xed e$ects are roughly centered
around the true values. This is surprising since our theory
does not guarantee that the one-step correction will be consis-
tent when the variational estimate is not. All three estimators
performed quite poorly in terms of estimating the covariance
matrix of the random e$ects.

Table 3 shows the estimated coverage of 95% CIs for the mean
random e$ects for the three estimators. The variational sand-
wich coverage was close to 0 in every case due to the bias in the
parameter estimate seen in Figure 3. The lme4 CIs also do not
perform well, with substantially lower than desired coverage.
The one-step correction coverage is closest to the desired 95%.
These intervals are conservative, containing the true value more
than 95% of the time.

The multivariate Hotelling test of consistency soundly
rejected for every simulation, correctly indicating that the
variational parameter estimator is consistent. In practice,
therefore, while we would not be able to perform the same
empirical evaluation as we have here (since we do not know
the true model parameters to compute accuracy and coverage),
we would have information that calls into question the viability
of the GVA procedure for this model. The marginal t-tests of
consistency for β did not reject in the majority of simulations.

Table 2. Coverage of 95% con!dence intervals in the logistic regression with random intercepts simulation.

β0 β1 β2 β3 β4 β5 log(σ 2)

Maximum likelihood 0.94 0.94 0.94 0.95 0.95 0.95 –
GVA + sandwich covariance 0.90 0.94 0.94 0.90 0.94 0.94 0.09
One-step correction to GVA 0.93 0.94 0.94 0.91 0.95 0.95 0.02
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Figure 2. Boxplots of the computation time of four estimation methods of the logistic regression with random quadratics model. Three sample sizes are shown. “lme4”
refers to the lme4 package, which uses a Laplace approximation to the marginal likelihood, “GVA” stands for Gaussian variational approximation, “GVA+OS” refers to the
one-step correction, and “MLE” stands for maximum likelihood estimation, performed using L-BFGS-B optimization.

Figure 3. Estimates of mean random e"ects from the logistic regression with random quadratics simulation study. The dotted line indicates the true parameter value.
“lme4” corresponds to estimate from the lme4 package, which uses a Laplace approximation. “GVA” stands for Gaussian variational approximation, and “GVA+OS” refers
to the one-step correction.

Table 3. Coverage of 95% CIs in the logistic regression with random quadratics simulation.

β0 β1 β2 β3 β4 β5

Laplace approximation via lme4 0.72 0.68 0.60 0.67 0.61 0.52
GVA + sandwich 0.01 0.01 0.00 0.013 0.01 0.00
One-step correction to GVA 0.98 0.98 0.98 0.98 0.98 0.98

Hence, while the marginal t-tests were an accurate diagnostic
tool in the random intercept setting, they were not in the
random quadratic setting.

5.3. Analysis of Marijuana Use in NLSY97

We used our one-step corrected estimator to assess the
likelihood of marijuana usage by age and sex in the NLSY.
We performed our analysis in R (R Core Team 2018) using
the packages numDeriv (Gilbert and Varadhan 2016),
parallel (R Core Team 2018), fastGHQuad (Blocker
2018), ggplot2 (Wickham 2016), reshape (Wickham
2007), plyr (Wickham 2011), MASS (Venables and Ripley
2002), and DescTools (Signorell 2019). Figure 4 shows the
estimated mean curves as a function of age for both the random
intercepts and random quadratics models and for both females

and males. The average male and female from the random
quadratics model have slightly faster increases, peak at younger
ages, and decrease earlier than the average male and female from
the random intercepts model. In both models the average male
has higher overall probability and slightly later peak usage: in
the random intercepts model, the estimated peak female usage
probability occurs at 21.3 years (95% CI: [18.1, 24.5]), and peak
male usage at 22.2 years (95% CI: [19.9, 24.6]). In the random
quadratics model, the estimated peak female usage probability
occurs at 17.9 years (95% CI: [15.9, 20.0]), and peak male usage
at 19.1 years (95% CI: [17.3, 20.8]).

6. Discussion

We have presented a general framework for understanding
the properties of variational estimation for parametric mixture
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Figure 4. One-step correction point estimates and pointwise 95% con!dence intervals of probability of having used marijuana in the past month. Curves on the left are
for the average female, right are average male. Both the logistic regression with random intercepts and random quadratics are shown.

models. The key insight of our work comes from representing
the pro!led variational objective function as an M-estimator.
Once we make this connection, we can leverage a rich toolkit of
asymptotic and methodological results available for this context.

The theory does not guarantee that variational estimators are
consistent, and it is o"en di#cult to derive the pro!le objec-
tive function necessary to assess consistency. We proposed an
empirical test of consistency based on estimating the gradient of
the pro!le objective at a single parameter value. This proposed
method worked well in practice, correctly indicating whether
variational estimator is inconsistent in two generalized linear
mixed models.

We also used the asymptotic theory to propose a sandwich
covariance estimator to provide calibrated con!dence regions
of variational estimators and a one-step correction to the vari-
ational estimator. Both of these methods work well when the
variational estimator is consistent, and in fact the one-step
correction exceeded our expectations by correcting some of the
bias in !xed-e$ect variational parameter estimators in a logistic
regression model with random quadratics.

Our theory is limited to models which are iid at some level.
While this includes many hierarchical and longitudinal models,
it excludes models for fully dependent time series, spatial data,
and dyadic data. Extending the theory to cover those cases could
be a fruitful next step. Additionally, we made the simplifying
assumption that the variational class is of !xed and !nite dimen-
sion, but our theory could be extended to other variational
classes.

Our theory only provides results regarding the asymptotic
behavior of the variational estimator θ̂n of the structural param-
eters θ0. It does not cover the behavior of the variational param-
eters ψ̂i, which govern the unit-speci!c variational conditional
distributions of the latent variable Zi given the observed data
Xi. The behavior of these parameters is important in settings
where con!dence regions with valid coverage are desired for
the Zi. This is the case, for instance, when the Zi correspond
to speci!c !xtures of the real world, such as counties or schools.
However, we note that, since the variational family typically does
not contain the true conditional distribution, it may be di#cult
to provide regions with good coverage of Zi using variational
inference. By contrast, as we have demonstrated, θ̂n may be

consistent even when the variational family does not contain the
true conditional. This was one reason we chose to focus on the
asymptotic behavior of θ̂n. Nevertheless, we would conjecture
that ψ̂i given Xi converges in distribution to

arg max
ψ∈!

∫ (
log

pθ̄ (Xi, z)
q(z; ψ)

)
q(z; ψ) dz

for each i, where θ̄ is the limit in probability of the variational
estimator θ̂n. We leave further discussion along these lines to
future work.

We developed our theory in the context of a !xed varia-
tional family of conditional distributions. A natural question
is whether our theory provides insight about which variational
families yield consistency. Unfortunately, it appears to be dif-
!cult to address this question in a general manner. As a sim-
ple example, it would intuitively seem that if a given class of
variational distributions yields a consistent estimator, then any
enlargement of the class should also yield a consistent estimator.
However, it is not clear whether this is true based on our theory.
This would be an important topic of future research.

Supplementary Materials

Supplementary materials include proofs of Theorems 1 and 2, an intuitive
explanation of the over-concentration of the variational Bayes posterior
distribution, derivations related to the exponential mixture model, and
additional simulation results.
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