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Abstract

We present the Sequential Ensemble Transform (SET) method, an approach for generat-
ing approximate samples from a Bayesian posterior distribution. �e method explores the
posterior distribution by solving a sequence of discrete optimal transport problems to pro-
duce a series of transport plans which map prior samples to posterior samples. We prove that
the sequence of Dirac mixture distributions produced by the SET method converges weakly
to the true posterior as the sample size approaches in�nity. Furthermore, our numerical re-
sults indicate that, when compared to standard Sequential Monte Carlo (SMC) methods, the
SET approach is more robust to the choice of Markov mutation kernels and requires less
computational e�orts to reach a similar accuracy when used to explore complex posterior
distributions. Finally, we describe adaptive schemes that allow to completely automate the
use of the SET method.

1 Introduction
Inverse problems enable integration of observational and experimental data, simulations and/or
mathematical models to make scienti�c predictions. We focus on inverse problems in which
the goal is to determine a parameter of interest from indirect and imprecise observations. �e
relationship between the parameter and the noise-free observations, the forward map, is o�en
provided through the solution of a complex mathematical model, the forward problem.

�e Bayesian approach formulates the inverse problem as a statistical inference problem
[MT95,Stu10,KS06]. Given noisy observational data, the governing forward problem, and a prior
probability distribution, the solution of the Bayesian inverse problem is the posterior probability
distribution over the parameters. �e prior distribution encodes knowledge or assumptions about
the parameter space before data are observed. �e posterior distribution incorporates both the
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prior knowledge and the observations. Non-linearity of the forward map leads to posterior distri-
butions that are typically not Gaussian, even in situations when both the prior and observational
noise probability distributions are Gaussian.

Exploring a high dimensional non-Gaussian posterior is computationally challenging. In-
deed, evaluating the posterior density typically requires evaluating the forward map which, for
problems governed by partial di�erential equations (PDEs), dominates the computational cost.
Standard numerical quadrature methods routinely used for estimating statistical quantities of in-
terest (e.g. statistical moments, probability of rare event) are infeasible in these high-dimensional
se�ings.

�e Markov chain Monte Carlo (MCMC) algorithm [Has70,MRR+53] is a popular approach
for exploring the posterior distribution in Bayesian inverse problems. Estimates obtained from
standard MCMCmethods o�en require a large number of samples to be meaningful, especially in
high dimensional se�ings. In Bayesian inverse problems, generating eachMCMC sample requires
an evaluation of the posterior density, which relies on evaluating the computationally expensive
forward map.

Sequential Monte Carlo (SMC) methods are computational techniques widely used in engi-
neering, statistics, and many other �elds [GSS93,DDFG01,Del04,DJ09,DMDJ06] to approximate a
sequence of probability distributions, usually of increasing complexity or dimension. A standard
approach in Bayesian inverse problems consists of introducing a sequence of distributions that
interpolates between a distribution that is easy to sample from (e.g. the prior distribution, or a
Gaussian approximation of the posterior distribution) and the posterior distribution. �rough a
combination of importance sampling, Markovian mutations and resampling procedures, the SMC
method iteratively constructs a sequence of particle approximations of this sequence of distribu-
tions. Under verymild assumptions, SMCmethods are consistent in the limit when the numberN
of particles goes to in�nity and converge at Monte-Carlo rate O(N�1/2). Furthermore, methods
are available for implementing this class of algorithms on parallel architectures [WLH+16, VD-
DMM15,LW16, ST19].

In this article, inspired by recent developments in the data-assimilation literature [Rei13,
CR13], we exploit algorithms based on the concept of optimal transport [Mon81, Vil08, Vil03,
PC+19]. Our approach, the Sequential Ensemble Transform (SET) method, combines the SMC
framework with the use of optimal transport to e�ciently build particle approximations of the
posterior distribution in high-dimensional Bayesian inverse problems (see �gure 1). We refer the
readers to [MM12, HDP15, PM14, SBM18] for other Monte-Carlo methods based on transporta-
tion concepts. Unlike SMC methods, the SET approach, similarly to the algorithm of [Rei13],
uses an optimal transport scheme instead of the usual resampling procedure. �e main advan-
tage of the proposed method is its robustness with respect to the choice of mutation kernel steps.
Indeed, without mutation kernel, the SMC method is a variant of the standard importance sam-
pling procedure, which is known to behave poorly in high-dimensional se�ings [BBL+08], or
more generally when there is a large discrepancy between the proposal and target distributions.
Consequently, good mutation kernels are o�en crucial to the successful implementation of SMC
methods in Bayesian inverse problems [BCJ14]. Unfortunately, it is notoriously di�cult to de-
sign Markov mutation kernels with good mixing properties in high-dimensional se�ings that
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are common in Bayesian inverse problems [BTGMS13b, BJMS15, KBJ14]. Adaptive SMC proce-
dures [Cho02,DMDJ12, JSDT11,BJKT15] can help mitigate this issue by automatically tuning the
mutation kernels and the interpolating sequence of distributions. Our numerical studies pre-
sented in Section 6 show that the SET approach performs favorably when compared to stan-
dard SMC methods. Furthermore, although approximate methods [GCPB16,Cut13] are available
for e�ciently solving discrete optimal transport problems, we have found that in most realistic
Bayesian inverse problems and for a typical number of particlesN . 104, the computational cost
of (exactly) solving the discrete optimal transport problems is negligible when compared to the
computational burden associated with the forward-solves necessary to implement the SET/SMC
algorithms. Finally, it should be mentioned that in situations (such as low dimensional parameter
spaces or closed-to-Gaussian posteriors) when the design of Markov kernels with good mixing
properties is not challenging, our proposed method may not provide signi�cant computational
savings over more standard SMC or MCMC methods.

Our main contributions are as follows. We propose the Sequential Ensemble Transform
(SET) algorithm, an interacting particle methodology inspired from the data-assimilation liter-
ature [Rei13], for Bayesian inversion. Unlike most interacting particle methods that rely on
resampling approaches, the SET method is based on optimal transportation. We demonstrate
empirically that this leads to an algorithm that is less a�ected by particle degeneracy, and re-
quires less computational e�ort to converge, than more standard SMC approaches when used
in complex se�ings where designing e�cient Markov mutation kernels is not trivial. We make
SET practical, especially for complex applications, by providing several adaptation strategies for
automating the choice of tuning parameters. Finally, we establish conditions under which, in the
limit when the number of particles approaches in�nity, the SET method is provably consistent,
i.e., the sequence of particle approximations produced by the SET converges weakly towards the
underlying target distribution.

πτ0
(prior)

πτ1
(intermediate)

πτK
(posterior)

Figure 1: A representation of the SET method using optimal transport to move particles in pa-
rameter space as to represent the posterior

�e article is structured as follows. In Section 2, PDE-constrained Bayesian inverse problems
are brie�y described. An overview of particle methods and importance sampling is presented in
Section 3. Section 4 presents the concept of optimal transport and describes the main components
of SET method, as well as their asymptotic properties. Section 5 describes the SET methods in
details, as well as several adaptive strategies that can be used to automate several aspects of
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the method. Finally, Section 6 presents various numerical results, including a Bayesian inverse
problemwith a non-linear forwardmap. Section 7 concludes the paper and discusses future work.

Notations and conventions
Unless stated otherwise, all the state spaces are endowed with a metric and the associated Borel
�-algebra. �e notations µ and ⌫ (along with any use of super- or sub-scripts) denote probability
distributions. A sequence of probability distributions {µN}N�1 on X converges weakly towards
the distribution µ, denoted as µN w�! µ, if for any bounded and continuous test function ' : X !
R we have that

R
'(u)µN(du) !

R
'(u)µ(du) as N ! 1. Similarly, a sequence of random

probability distribution µN
! almost surely converges weakly towards µ if, for P-almost every !,

we have that µN
!

w�! µ. �e set of probability distributions on a state spaceX is denoted as P(X ).
For a set S, the notation S refers to the indicator function of S, i.e., the function that equals
one for x 2 S and zero otherwise. For u 2 X , the Dirac probability distribution �(u) is the
distribution that puts all its probability mass at u.

2 Problem Statement
Although the methods described in this article are general, for illustration purposes, we focus
on the Bayesian treatment of inverse problems. We are interested in estimating a �eld u 2 X ,
where X denotes a space of functions, from a �nite set of observations contaminated by additive
Gaussian noise,

d = G(u) + ⌘,

where d = [d1, . . . , dD]> 2 Y and ⌘ ⇠ N (0,L) is centred Gaussian vector with covariance ma-
trix L. �e operator G : X ! Y describes the mapping from the parameters to observables. In
Bayesian inverse problems and as illustrated in Section 6, estimating the quantity G(u) typically
involves solving a set of partial di�erential equations. In order to estimate the uncertainty associ-
ated to the necessarily imperfect reconstruction of the parameter u 2 X , the Bayesian approach
postulates a prior distribution µprior that describes the information available on the parameter u
prior to any data collection. Under mild assumptions [Stu10], the Bayesian posterior distribution
µpost is de�ned through the change of measure formula

dµpost

dµprior
(u) / exp

⇢
�1

2
|d� G (u)|2L

�
(1)

where |·|L ⌘
���L� 1

2 ·
��� denotes the L� 1

2 -weighted Euclidean norm. In situations when the mapping
G is non-linear, the posterior distribution is typically intractable and numerical methods such as
MCMC are required to estimate expectations (and other statistics) of observables with respect to
the posterior µpost.
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3 Particle Methods
Particle methods approximate probability distributions with weighted mixtures of Diracs, also
referred to as particle approximation in this text. To construct a particle approximation of the
posterior distribution, the SMC and SET approaches proceed by introducing a sequence {µk}Kk=0

of distributions that interpolates between a distribution that is easy to sample from, i.e. µ0, and
the posterior distribution µK . A standard choice for µ0 is the prior distribution, or a Gaussian
approximation of the posterior distribution obtained through e�cient deterministic methods. For
any index 1  k  K , set

dµk

dµk�1

(u) =
1

Zk
 k(u), (2)

for a µk�1-integrable potential function k : X ! (0,1) and (typically unknown) normalization
constant Zk > 0. �e SMC algorithm recursively constructs particle approximations

µN
k =

1

N

NX

i=1

�(uN
k,i) ⇡ µk,

whereN � 1 denotes the number of particles, by iterating re-weighting, resampling, andmutation
operations that are described below. In the remaining of this text, we make use of the following
notations that are standard in the Monte-Carlo literature and compactly allow to describe expec-
tationswith respect to probability distributions andMarkov kernels. For a probability distribution
µ on the state space X and a µ-integrable test function ' : X ! R, set µ(') ⌘

R
'(u)µ(du).

Similarly, for a Markov kernelM(u, dv), de�ne (M')(u) ⌘
R

'(v)M(u, dv).

3.1 Re-weighting
Consider two probability distributions µ and ⌫ de�ned on the same state space X and related by
a change of measure (Radon-Nikodym derivative)

d⌫

dµ
(u) =

1

Z
 (u) (3)

for a µ-integrable potential function  : X ! (0,1) and a possibly unknown normalization
constant Z > 0. Suppose that, for any integer N � 1, it is possible to generate a set of N
particles {uN

i }Ni=1
⇢ X such that the sequence of equally weighted particle approximations,

µN ⌘ 1

N

NX

i=1

�(uN
i ),

convergesweakly towardsµ asN !1. Undermild assumptions, the sequence of self-normalized
importance sampling weighted particle approximations ⌫N de�ned as

⌫N ⌘
NX

i=1

wN
i �(uN

i ) (4)

5



for normalized weights

wN
i ⌘

 (uN
i )

[ (uN
1
) + . . .+ (uN

N)]

converges weakly to ⌫. For concreteness, de�ne the mapping from µN to ⌫N as ⌫N = B (µN)
where B is the so-called Bayes operator that transforms a probability distribution µ into the
probability distribution B (µ) that satis�es B (µ)(') = µ( ')/µ( ) for any test function '.
�e following proposition shows that, under a mild uniform integrability condition, the conver-
gence B (µN)

w�! B (µ) holds.

Proposition 1. Consider a probability distribution µ and a continuous and positive µ-integrable
function  . Assume that there exists a continuous µ-integrable function E : X ! [1,1) such that

lim
t!1

lim sup
N!1

µN(E ⇥ E>t) = 0, (5)

and  (u)  E(u) for µ-almost every u 2 X . We have that:

1. for any (potentially unbounded) continuous test function ' such that |'|  E ,

lim
N!1

µN(') = µ(').

2. the sequence B (µN) converges weakly towards B (µ).

Remark 2. �e technical condition Equation (5)means that if ⇣N is a sequence of random variables
such that ⇣N ⇠ µN , the sequence of scalar random variables ⇣N ⌘ E(⇣N) is uniformly integrable
[Wil91].

Proof. �e second assertion is a direct consequence of the �rst one since

B (µ
N)(') =

µN( ')

µN( )
and B (µ)(') =

µ( ')

µ( )
,

and µN( )! µ( ) as well as µN( ')! µ( ') for any bounded and continuous test function
'. Let us now prove the �rst assertion. Since X is a metric space and E is continuous, for any
threshold t � 0 there exists (Urysohn’s lemma) a separating continuous function ⇢t : X ! [0, 1]
(Urysohn’s function) such that ⇢t(u) = 1 on the set {u 2 X : E(u)  t � 1} and ⇢t(u) = 0 on
the set {u 2 X : E(u) � t}. Since E is µ-integrable and |'|  E µ-almost everywhere, then for
any " > 0 there exists T" � 0 such that |µ(')� µ('⇢t)| < " for any t � T". Furthermore, since
the function '⇢t is bounded and continuous and µN w�! µ, we have that µN('⇢t) ! µ('⇢t). It
follows that for any t > T"

lim sup
N!1

|µN(')� µ(')|  lim sup
N!1

|µN('⇢t)� µ(')|+ lim sup
N!1

|µN(' (1� ⇢t))|

 lim sup
N!1

|µN('⇢t)� µ(')|+ lim sup
N!1

µN(E ⇥ E>t�1)

 "+ lim sup
N!1

µN(E ⇥ E>t�1).

Equation (5) gives the conclusion.
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Note that if the potential  is bounded, Proposition 1 always applies. In the standard Monte-
Carlo se�ing where uN

i = ui for i.i.d samples {ui}i�0 from the distribution µ, more precise
estimates are available. �e distributions µN and ⌫N are random and one can readily check that

������µN � µ
������  1p

N
, (6)

where we have used the norm de�ned as
������µN � µ

������2 ⌘ sup
k'k1<1

E
h�
µN(')� µ(')

�2i (7)

to measure the discrepancy between two random measures. Furthermore, [APSAS15, �eorem
2.1] states that

������µN � µ
������  2p

N

µ( 2)
1
2

µ( )
.

�e sequence of approximations µN converges at Monte-Carlo rate towards µ.

3.2 Resampling schemes
In standard SMC methods, as well as the SET method described in this article, one needs to
transform a weighted particle approximation of a distribution µ into an equally weighted particle
approximation of the same distribution. �e multinomial resampling scheme approximates µN =PN

i=1
wN

i �(uN
i ) by the equally weighted particle approximation

µN
IS
⌘ 1

N

NX

i=1

�(uN
i,IS)

where {uN
i,IS}Ni=1

are i.i.d. samples from µN . Equation (6) states that the norm between a dis-
tribution and an equally weighted mixture of Dirac masses centred at N i.i.d samples from that
distribution is less than 1/

p
N . Applying this remark and the fact that µN

IS
is precisely an equally

weightedmixture of Diracmasses centred atN i.i.d samples fromµN , it follows that
������µN

IS
� µN

������ 
1/
p
N . �ere are more sophisticated approaches, such as the strati�ed [HSG06] and system-

atic [DC05] resampling methods, to generate equally weighted particle approximations. We refer
the reader to [GCW17] for a recent study of theoretical properties of these typically more sta-
tistically e�cient resampling schemes. Unless otherwise stated, all the numerical simulations
presented in this article use the strati�ed resampling scheme.

For concreteness, we denote by R the resampling operator that maps a weighted particle
approximation to an equally weighted one. Note that for a given weighted particle approximation
µN , the quantity R(µN) is in general a random probability distribution. �e resampling scheme
R is called consistent if it maps µN , a possibly random sequence of distributions that almost surely
converges weakly towards µ, into another sequence R(µN) that almost surely converges weakly
towards µ. It has long been known [CD02] that the multinomial resampling scheme is consistent
in �nite dimensional Euclidean spaces. As investigated in [HSG06], the situation is much more
delicate for the strati�ed and systematic resampling methods.
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3.3 Mutation
Consider a sequence {µk}Kk=0

of distributions interpolating between a tractable distribution µ0

and the posterior distribution µK such that for any index 1  k  K we have

dµk

dµk�1

(u) =
1

Zk
 k(u)

for a µk�1-integrable potential function k : X ! (0,1). For technical reasons, we also assume
that  k is continuous. Consider a particle approximation

µN
0
=

1

N

NX

i=1

�(uN
0,i)

of the initial distribution µ0. Under mild assumptions, the sequence of equally weighted distri-
butions µN

k = (1/N)
PN

i=1
�(uN

k,i) recursively de�ned as µN
k = R �B k

(µN
k�1

) converges in an
appropriate sense towards µk asN !1. For example, Proposition 1 shows that, if the potential
 k are bounded and the resampling scheme R is consistent, as soon as µN

0
almost surely con-

verges weakly towards µ0 the sequence µN
k also almost surely converges weakly towards µk as

N !1.
In most realistic scenarios, though, the particle approximation µN

K , as an approximation to
µK , is worse than the direct importance sampling particle approximation B 1 2... K (µ

N
0
) from

µ0 to µK where (dµK/dµ0)(u) / [ 1 2 . . . K ](u). It is because in that case the particles
{uN

K,i}Ni=1
form a subset of {uN

0,i}Ni=1
. Consequently, if the initial set of particles {u0,i}Ni=1

are
located in regions of the parameter space where the distribution µK does not have much prob-
ability mass, the approximation µN

K to µK can be very poor. For importance sampling to work
well in high-dimensional situations, the proposal distributions need to be chosen very judiciously,
and adaptive importance sampling (AIS) [OB92, CMMR12, CDG+08, FT19] can partially remedy
this issue. A standard approach to mitigate this issue is to introduce mutation steps, which we
now describe. For each distribution µk in the interpolating sequence of distributions, consider
a (mutation) Feller Markov kernel Mk(u, dbu) that leaves the distribution µk invariant. Con-
sider the operator Mk that transforms a particle approximation µN

k = (1/N)
PN

i=1
�(uN

k,i) into
Mk(µN

k ) = (1/N)
PN

i=1
�(vNk,i)where, conditionally upon {uN

k,i}Ni=1
, the samples {vNk,i}Ni=1

are in-
dependent realizations ofMk(uN

k,i, dbu). �e following lemma shows that, as soon as the sequence
µN
k almost surely converges weakly to µk, the sequence Mk(µN

k ) also almost surely converges
weakly to µk.

Lemma 3. Let µ be a probability distribution on a locally compact and �-compact metric space X .
Consider M(u, dbu) a µ-invariant Feller Markov kernel. For each N � 1, let {uN

i }Ni=1
⇢ X be such

that

1

N

NX

i=1

�(uN
i )

w�! µ.
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For independent random variables V N
i ⇠M(uN

i , dbu), we have that, almost surely,

1

N

NX

i=1

�(V N
i )

w�! µ.

Proof. Since X is a locally compact and �-compact metric space, there exists a countable and
dense (for the supremum norm) subsetH of the set of continuous functions with compact support
in X . One needs to prove that for any ' 2 H we have that lim

N!1
(1/N)

PN
i=1

'(vNi ) = µ(')

almost surely. Since the functionM' is continuous and bounded,

lim
N!1

E
"
1

N

NX

i=1

'(vNi )

#
= lim

N!1

1

N

NX

i=1

(M')(uN
i ) = µ(M') = µ(').

Since ' is bounded, the moment of order four of the ergodic sum 1

N

PN
i=1

['(vNi ) � (M')(uN
i )]

is upper bounded by a constant multiple ofN�2. �e Borel-Cantelli lemma gives the conclusion.

Leveraging these Markov mutation kernels, we now de�ne the sequence of equally weighted
particle approximations {µN

k }Kk=0
recursively as

µN
k = Mk �R �B k

(µN
k�1

). (8)

�e Markov mutations ensure that, in general, the particles {uN
k,i}Ni=1

do not form a subset of
{uN

0,i}Ni=1
. �e particle algorithm resulting from (8) is a special case of Sequential Monte Carlo

(SMC) samplers [DMDJ06]. Note that, in Bayesian inverse problems, simulating from the Marko-
vian kernelMk typically requires evaluating the computationally expensive forward map. More-
over, as explained in the introduction, whilst well-designed Markovian kernels can greatly en-
hance the statistical e�ciency of the resulting algorithm, it is notoriously di�cult to design well-
mixing mutation kernels in high-dimensional se�ings or �r exploring distribution with complex
dependency structures.

4 Optimal Transport
For technical simplicity, we assume in this section that the state space X is a �nite dimensional
Euclidean space with norm denoted by k · k. For two distributions µ and ⌫ related by a change of
probability d⌫/dµ(u) /  (u), the Monge-Kantorovich optimal transport approach provides an
alternate methodology for building a particle approximation of a distribution ⌫ out of a particle
approximation of µ. To the best of our knowledge, the idea was �rst proposed in [Rei13], and
further developed in [GCR16, CRR16, GT19], in the context of data-assimilation of dynamical
systems. For two probability distributions µ and ⌫, let P(µ, ⌫) be the set of probability couplings
between µ and ⌫, i.e. the convex set of probability distributions on X ⇥X that admit µ and ⌫ as
marginals. For a cost function c : X ⇥ X ! [0,1), the optimal transportation problem seeks
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to minimize the transport cost E�[c(û, v̂)], for (û, v̂) ⇠ �, over the set of all possible couplings
� 2 P(µ, ⌫),

�OT = argmin
n
� 7! E�[c(û, v̂)] with � 2 P(µ, ⌫)

o
. (9)

On an Euclidean space, a standard choice is the quadratic cost function c(u, v) = ku � vk2. For
cost functions of the type c(u, v) = h(v � u) for a strictly convex function h, Brenier’s theorem
[Bre91] states that, if µ is compactly supported and has a density with respect to the Lebesgue
measure, there exists a deterministic map T : X ! X , uniquely de�ned on the support of µ,
such that the optimal coupling �OT is obtained by pushing-forward the distribution µ through
the deterministic function (Id,T) : X 7! X ⇥ X . �at is, for a test function ' : X ⇥ X ! R,
the quantity �OT(') can also be expressed as Eµ['(û,T(û))] for û ⇠ µ. For more general cost
functions, the situation is more delicate [EG99,TW01,CFM02,Amb03].

4.1 Approximation of the Bayes operator
Consider a weighted particle approximation µN =

PN
i=1

↵i �(uN
i ) of the distribution µ and, for a

potential function  : X ! (0;1), the probability distribution

B (µ
N) ⌘

NX

i=1

�i �(u
N
i ) ⌘ ⌫N , (10)

with �i = ↵i (uN
i )/[↵1 (uN

1
)+ . . .+↵N  (uN

N)]. �e optimal coupling �OT,N between µN and
⌫N is supported on the �nite set {(uN

i , u
N
j )}1i,jN and can thus be expressed as

�OT,N =
NX

i,j=1

COT,N
ij �(uN

i )⌦ �(uN
j ).

where �(u)⌦ �(v) denotes the Dirac mass centred at (u, v) 2 X ⇥X . Here, the coupling matrix
COT,N 2 RN,N

+ is the solution of the linear programming problem that consists in minimizing
the matrix functional

C 7!
NX

i,j=1

Ci,j ⇥ c(uN
i , u

N
j ) ⌘ hC,DiF with Di,j = c(uN

i , u
N
j ) (11)

over the convex setP(↵, �) of matrices with marginals ↵ and �, i.e. the set of matricesC 2 RN,N
+

such that
P

j Ci0,j = ↵i0 and
P

i Ci,j0 = �j0 for all 1  i0, j0  N . In Equation (11), the quantity
hC,DiF =

P
i,j Ci,j Di,j is the Frobenius inner product between the coupling matrix C and the

cost matrixD 2 RN,N . More details are given at the end of this section.
We now describe how, once the coupling matrix COT,N has been computed, a particle ap-

proximation of the distribution B (µN) can be constructed: we stress that, in order to imple-
ment this method, the coupling matrix COT,N is the only quantity that needs to be computed.
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For motivating the methodology, assume that the optimal coupling �OT 2 P(µ, ⌫) is described
by a deterministic map T : X ! X and consider a test function ' : X ! R. Since µN is a
particle approximation to µ, the quantity µN(' � T) =

PN
i=1

↵i �(T(uN
i )) is expected to be an

approximation of µ(' �T) = ⌫('). Consequently, it is reasonable to expect

NX

i=1

↵i �(T(uN
i ))

to be a particle approximation of ⌫. Although the optimal transformation T is generally compu-
tationally intractable (i.e. it is never actually computed in our proposed method) one can resort
to an approximation scheme. Note that the quantity T(uN

i ) can be expressed as a conditional
expectation

T(uN
i ) = E[v̂ | û = uN

i ] for (û, v̂) ⇠ �OT,

since the pair (û, v̂) has the same distribution as (û,T(û)) for û ⇠ µ. �is motivates the approx-
imation

T(uN
i ) ⇡ E

⇥
v̂N | ûN = uN

i

⇤
=

PN
j=1

COT,N
ij uN

jPN
j=1

COT,N
ij

=
1

↵i

NX

j=1

COT,N
ij uN

j (12)

with (ûN , v̂N) ⇠ �OT,N . �e newly created particles {uOT,N
i }Ni=1

de�ned as

uOT,N
i ⌘ 1

↵i

NX

j=1

COT,N
ij uN

j (13)

are convex combinations of the original particles {uN
1
, . . . , uN

N} and thus all lie in the convex hull
of the set of original particles. In summary, the computational optimal transport executed in the
SET algorithm proceeds by �rst solving for COT,N given the constraints described by Equation
11. In a second stage, the coupling matrixCOT,N is then used to transport the particles following
Equation 13. For concreteness and in accordance with the previous sections, we denote by T 
the operator that realizes the mapping

T 

 
NX

i=1

↵i �(u
N
i )

!
⌘

NX

i=1

↵i �(u
OT,N
i ) =

NX

i=1

↵i �

 
1

↵i

NX

j=1

COT,N
ij uN

j

!
. (14)

Similar to the operator R �B , the operator T maps an equally weighted particle approxima-
tion of a probability distribution µ into an equally weighted particle approximation of B (µ).
However, unlike R �B , the support of the particle approximation µN and T (µN) are typically
disjoint.
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Algorithm 1: Optimal Transportation operator T 
Weights computation: de�ne

�i = ↵i (u
N
i )/[↵1 (u

N
1
) + . . .+ ↵N  (u

N
N)].

Cost matrix: build the matrixD 2 RN,N de�ned in (11).
Optimal Transport: compute COT,N = argminP(↵,�)C 7! hC,DiF.
Transportation: set uOT,N

i = (1/↵i)
PN

j=1
COT,N

ij uN
j and de�ne

T (µ
N) =

NX

i=1

↵i �(u
OT,N
i )

Algorithm 1 summarizes the optimal transport approach to approximating the Bayes operator
that transforms a particle approximation µN =

PN
i=1

↵i �(uN
i ) of a distribution µ into a particle

approximation T (µN) of the distribution ⌫ = B (µ),

µN =
NX

i=1

↵i �(u
N
i )

Optimal Transport
GGGGGGGGGGGGGGGGGA

T 

NX

i=1

↵i �(u
OT,N
i ) ⌘ T (µ

N).

�e only potentially computationally expensive step is the computation of the coupling matrix
COT,N . �e computational costs are discussed at the start of Section 6 and we refer the reader
to [PC+19] for a book-length treatment of the computational aspects associated to optimal trans-
portation problems.

4.2 Consistency
Consider a potential function  : X ! (0,1) and two distributions µ and ⌫ = B (µ). In this
section, we generalize and extend �eorem 1 of [Rei13] to prove that, under mild assumptions,
the optimal transport operator T transforms a sequence µN w�! µ into a sequence T (µN) that
converges weakly to B (µ).

Assumption 4 (Unique Deterministic Coupling). �e optimal transport problem between µ and
B (µ) with cost function c admits a unique solution � that can be realized by a deterministic trans-
port map T : X ! X .

�e problem of existence and uniqueness of the solution to an optimal transport problem is
well-studied. Under mild assumptions (see McCann’s main theorem [Mcc95]), the set of cou-
plings between µ and ⌫ is weakly compact and the functional µ 7! Eµ[c(u, v)] is continuous in
the appropriate topologies, ensuring the existence of an optimal coupling. �e uniqueness and
regularity properties of the optimal transport map are more delicate to establish and we refer
to [Cav15] for recent developments. To proceed to the main result of this section we further
assume the following.
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Assumption 5 (Regularity of the Transport Map). Let Assumption 4 holds for a deterministic map
T : X ! X . For any bounded and Lipschitz function ' : X ! R and sequence µN that converges
weakly to µ, we have that µN(' �T)! µ(' �T).

�e continuous mapping theorem [MW43] shows that Assumption 5 is satis�ed provided that
the set of discontinuities ofT has zero measure under µ. In particular, Assumption 5 holds in the
case when the optimal map T is continuous. �eorem 6 below shows that, under mild growth
and regularity assumptions on the optimal transport map T : X ! X , the optimal transport
scheme T is consistent as the number of particles N � 1 approaches in�nity.

�eorem 6. Consider a potential function : X ! (0;1) and two probability distributions µ and
⌫ = B (µ) on the state space X . Assume that Assumptions 4 and 5 are satis�ed for a deterministic
optimal map T : X ! X . Consider further a sequence of weighted particle approximations

µN =
NX

i=1

↵N
i �(uN

i )

that converges weakly to µ, and such that B (µN) converges weakly to B (µ). If the growth
assumption

lim sup
N!1

µN(u 7! |T(u)|p) + B (µ
N)(u 7! |u|p) <1, (15)

is satis�ed for some exponent p > 1, we have that

T (µ
N)

w�! B (µ) ⌘ ⌫. (16)

Proof. Let �OT,N =
P

i,j C
N
i,j �(u

N
i )⌦ �(uN

j ) be the optimal coupling between µN and B (µN).
By assumption, µN w�! µ and ⌫N ⌘ B (µN)

w�! B (µ) ⌘ ⌫ and there is a unique optimal
coupling �OT between µ and ⌫. By compactness (see, e.g. [Vil08, Corollary 5.21]), we have that
�OT,N w�! � as N !1.

To show theweak convergence ofT (µN) towards ⌫, it su�ces to prove that for any Lipschitz
and bounded test function ' we have that T (µN)! ⌫('). Assumption 5 implies µN(' �T)!
µ(' � T) = ⌫('). Consequently, it su�ces to show that the di�erence T (µN) � µN(' � T)
converges to zero as N !1, i.e.,

lim
N!1

NX

i=1

↵N
i

�����'
 

1

↵N
i

NX

j=1

CN
ij u

N
j

!
� '

�
T(uN

i )
�
����� = 0.

Since ' is Lipschitz, and
PN

j=1
CN

ij = ↵N
i , it is su�cient to show that

lim
N!1

NX

i,j

CN
ij

��uN
j �T(uN

i )
�� = 0.
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Note that
PN

i,j C
N
ij

��uN
j �T(uN

i )
�� = �OT,N(F ) with F (u, v) = |v � T(u)|. Since F p(u, v) .

|v|p + |T(u)|p, assumption (15) yields that lim supN �OT,N(F p) < 1. Since �OT,N w�! �, the
bound lim supN �OT,N(F p) < 1 implies that the sequence �OT,N(F ) converges towards �(F ).
Since �(F ) = 0, the conclusion follows.

5 Sequential Ensemble Transform
In this section, we describe our proposed methodology, the Sequential Ensemble Transform (SET),
prove that it is consistent in the limit of in�nitelymany particles, and discuss adaptation strategies
that are important for practical implementations of the method.

5.1 High-level description and consistency
As in Section 3, consider a sequence {µi}Ki=0

of distributions that interpolates between a distribu-
tionµ0 and the posterior distributionµK . For any index 1  k  K wehave that (dµk/dµk�1)(u) =
(1/Zk) k(u) for a µk�1-integrable and continuous potential function  k : X ! (0,1). In this
section, we assume the following.

Assumption 7. �e sequence of probability distributions {µk}Kk=0
is such that:

1. for any 0  k  K , the support of µk is bounded,

2. for any 1  k  K , the pair of distributions (µk�1, µk) satis�es Assumptions 4 and 5.

Instead of constructing a sequence of particle approximations to the intermediate distribu-
tions µk through importance sampling-resampling methods, consider the following approach
that leverages optimal transport. Let µN

0
= (1/N)

PN
i=0

�(uN
0,i) be an equally-weighted particle

approximation of the initial distribution µ0. De�ne the equally weighted particle approximations
µN
k through the recursion formula

µN
k = Mk �T k

(µN
k�1

), (17)

where Mk is the operator associated to a µk-invariant Markov mutation kernelMk.

�eorem 8 (Consistency of the SET algorithm). Let {µk}Kk=0
be a sequence of distributions that

satis�es Assumption 7 and consider {uN
0,i}Ni=1

⇢ Rd such that

µN
0
⌘ 1

N

NX

i=1

�(uN
0,i)

w�! µ0.

�en, for any index 1  k  K , the sequence of equally weighted particle approximations µN
k

de�ned recursively through Equation (17) weakly converges to µk almost surely.
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Proof. One can proceed by induction. It su�ces to prove that if µN
k�1

w�! µk�1 almost surely
then Mk � T k

(µN
k�1

) ⌘ µN
k

w�! µk almost surely. Under Assumption (7), the support of the
distribution µk�1 is bounded: one can �nd a bounded and continuous function Vk that dominates
 k and invoke Proposition 1 to see that B k

(µN
k�1

)
w�! µk almost surely. Furthermore, under

Assumption 7 the pair (µk�1, µk) satis�es Assumptions (4)-(5) as well as Equation 15. �eorem 6
shows that T k

(µN
k�1

)
w�! µk almost surely. Finally, since the Feller Markov process Mk lets µk

invariant, Lemma 3 yields that Mk �T k
(µN

k�1
)

w�! µk almost surely.

As previously mentioned, one of the advantages of relying on optimal transportation instead
of sampling-resampling techniques is that, as illustrated in Section 6, the resulting algorithm is
much less sensitive to the mixing properties of the Markov mutation kernels Mk. Moreover, the
adaptive tempering strategies described in Section 5.2 can be used within the SET method. In
Section 6, we compare the SET approach to more standard SMC approaches.

5.2 Adaptive tempering
In complex scenarios such as Bayesian inverse problems, it is a nontrivial task to specify a se-
quence of distributions (2) that interpolates between a distribution µ0 that is straightforward to
sample from and the posterior distribution. Instead, we consider an adaptive annealing scheme
[DBR00, MDMM10, JSDT11, ZJA16, NSPD16, SC13, KBJ14]. �e reader is referred to [BJKT15,
GDM+17] for a theoretical analysis of adaptive annealing methods. For notational convenience,
we identify distributions with their densities, and assume that the posterior distribution µpost
is absolutely continuous with respect to µ0, i.e. dµpost/dµ0(u) / exp[V (u)] for some potential
function V : Rd ! R. Consider the sequence {µk}Kk=0

de�ned as

dµk

dµ0

(u) / exp [⌧k V (u)] (18)

for an (inverse) temperature parameter ⌧k that interpolates between ⌧0 = 0 and ⌧K = 1. In
practice, it can be di�cult to choose the number K � 1 of temperatures (i.e. the number of
interpolating densities) and the corresponding temperatures. �e adaptive scheme proceeds as
follows. Assume that the particle approximation

µN
k =

1

N

NX

i=1

�(uN
k,i)

to the density µk has already been constructed. For a predetermined threshold 0 < ⇠ESS < 1, the
next temperature ⌧k+1 is de�ned as the smallest temperature ⌧ > ⌧k such that ESSk(⌧)  ⇠ESS .
Here,�e E�ective Sample Size (ESS) functional is de�ned as

ESSk(⌧) ⌘
1

N

⇣PN
i=1

exp
⇥
(⌧ � ⌧k)V (uN

k,i)
⇤⌘2

PN
i=1

exp
⇥
(⌧ � ⌧k)V (uN

k,i)
⇤2 2 [0, 1]. (19)
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Clearly, ESSk(⌧k) = 1. Lemma 3.1 of [BJKT15] states that the function ⌧ 7! ESSk(⌧) is decreas-
ing for ⌧ 2 (⌧k,1) so that ⌧k+1 can very e�ciently be found by a bisection method. Finding
⌧k+1 typically does not require evaluating the forward map since, in standard implementations of
the SMC or SET methods, the quantities V (uN

k,i) would have already been computed at previous
steps. Starting from ⌧0 = 0 and se�ing

⌧k+1 = inf {⌧ > ⌧k : ESSk(⌧)  ⇠ESS}, (20)

the procedure stops as soon as ⌧k is greater or equal to one. One thus setsK = inf {k � 1 : ⌧k � 1}
and de�nes ⌧K = 1. Note that taking ⇠ESS close to one leads to a slow annealing, which may be
computationally wasteful. On the other hand, taking ⇠ESS close to zero can lead to an anneal-
ing scheme that is too rapid, ultimately leading to a poor particle approximation of the posterior
distribution. Except stated otherwise, we choose ⇠ESS = 1/2 in the numerical experiments of
Section 6.

5.3 Adaptive mutation kernels
Choosing a-priori a sequence of well-mixingMarkovmutation kernels is, in most realistic scenar-
ios, not feasible. A standard approach consists in exploiting the population {uN

k,i}Ni=1
of particles

at temperature ⌧k to estimate summary statistics of the distribution µk. �ese summary statistics
estimates (e.g. mean and covariance matrix) can then be leveraged to design a Markov kernelMk

with reasonable mixing properties and that lets the distribution µk invariant. In high-dimensional
se�ings, this adaptive tuning of the mutation kernel is o�en crucial to obtaining satisfying per-
formances. In this section, we concentrate on two classes of proposals, namely autoregressive
proposals that do not make use of any derivative information and Preconditioned Crank-Nicholson
Langevin proposals that can make use of gradient information for enhanced mixing properties.
We refer the reader to [CLM16] and the references therein for more advanced adaptation strate-
gies especially designed to tackle high-dimensional Bayesian inverse problems.

Autoregressive Proposals: for a mean vectorm 2 Rd and a positive de�nite covariance matrix
� 2 Rd,d, the Markovian proposal u 7! bu de�ned as

bu = m+ ⇢ (u�m) + (1� ⇢2)1/2 N (0,�) (21)

for some scaling factor ⇢ 2 (0, 1) is reversible with respect to the Gaussian distributionwithmean
m and covariance �. �is proposal mechanism, also sometimes called the Preconditioned Crank-
Nicholson proposal [CRSW13], can consequently be used within a standard Metropolis-Hastings
scheme to e�ciently explore distributions that are well approximated by a Gaussian distribution
withmeanm and covariance�. �is remark can be used to design an adaptation strategy [KBJ14]
for automatically tuning the mutation kernels within SMC methods or the SET algorithm. At it-
eration k, right a�er the resampling step of a SMC method, or right a�er the transportation step
of the SET, consider a set {euN

k,i}Ni=1
of particles whose (equally weighted) empirical distribution

approximates the distribution µk. In order to use an autoregressive Markov kernel (21), one can
use the particles {euN

k,i}Ni=1
to compute an approximation mN

k of the mean of µk as well as an
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approximation �N
k of its covariance matrix. In high-dimensional se�ings, or when the number

of particles is low when compared to the dimensionality of the state-space, it is customary to
only consider diagonal approximations of the covariance structure: the approximate covariance
matrix �N

k is diagonal, with the empirical marginal variances on its diagonal. �e scaling factor
⇢Nk can also be chosen adaptively. Values of ⇢Nk ⇡ 1� lead to conservative proposals while values
of ⇢Nk ⇡ 0+ are more likely to be rejected. Given two �xed thresholds 0 < ⇠� < ⇠+ < 1, the
scaling factor ⇢Nk can be adapted based upon the acceptance rate of the Metropolis-Hastings pro-
posals (21). Speci�cally, we set ⇢Nk = min(1, [1 + "] ⇢Nk�1

) if the proportion of accepted proposals
falls below ⇠�, set ⇢Nk = [1 � "] ⇢Nk�1

if the proportion of accepted proposals is above ⇠+ and
set ⇢Nk+1

= ⇢Nk otherwise. In other words, the scaling factor is augmented or decreased by an
proportion " 2 (0, 1) depending on the acceptance rate of the MCMC proposals. In experiments
presented in Section 6, we use ⇠� = 20% and ⇠+ = 85% and " = 20%.

Preconditioned Crank-Nicholson Langevin proposals: one potential drawback of the au-
toregressive proposals (21) is that no derivative information is exploited. Instead, Markovian
proposals u 7! bu of the type

bu = u+ (1� ⇢)�r log µk(u) + (1� ⇢2)1/2 N (0,�) (22)

can be used within a Metropolis-Hastings scheme for exploring the target density µk. Here, � is
still an approximation of the covariance matrix of µk and ⇢ 2 (0, 1) is a scaling factor. Indeed,
in the case where the target density is Gaussian, this reduces to the autoregressive proposal (21).
Both the scaling factor ⇢ and the covariance matrix � can be adapted throughout the evolution
of a SMC or SET method. In the non-linear-PDE example of Section 6.3, we describe how gradi-
ent/Hessian information can be leveraged to adapt the covariance structure �.

5.4 Adaptive number of Mutations
In challenging scenarios, it is important to apply several steps of Markovian mutation at each
temperature level. Nevertheless, choosing a sensible number of mutation steps a-priori is of-
ten di�cult. In this section, we present an adaptive procedure for automatically selecting the
appropriate number of mutation steps, inspired by the methodology �rst proposed in [KBJ14].
Consider the SET approach when implemented to approximate a target distribution on the state-
space X ⌘ Rd. Furthermore, consider S � 1 summary statistics, i.e. functions Ss : X ! R for
1  s  S.

At iteration k � 0, right a�er the resampling step of a SMC method, or right a�er the trans-
portation step of the SET approach, consider a set {euN

k,i}Ni=1
of particles whose empirical distri-

bution approximates the distribution µk. Before applying the mutation kernelMk, the summary
statistics are computed, i.e. esN,s

k,i = Ss(euN
k,i), for 1  i  N and 1  s  S. �e mutation kernel

Mk is then applied to the particles until the correlation along the summary statistics has fallen
under a pre-determined threshold 0 < ⇠stat < 1. In other words, the particles are mutated by
de�ning {euN

k,i[p]}
pk
p=0

where euN
k,i[p] ⇠Mk

�
euN
k,i[p� 1], dbu

�
, initialized at euN

k,i[p = 0] = euN
k,i, and the
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number of mutation steps pk is set as the smallest index p � 1 such that

Corr
�
{Ss(euN

k,i[0])}Ni=1
, {Ss(euN

k,i[p])}Ni=1

�
 ⇠stat for all 1  s  S (23)

or when the number of iteration pk � 1 reaches a maximum threshold. �e index pk is referred
to as the adaptive number of mutation steps. �e �nal mutated particles can thus be described as

uN
k,i ⇠Mpk

k

�
euN
k,i, dbu

�
.

A similar approach has been employed in [KBJ14] in which the low-frequencies of a Fourier ex-
pansion is used as summary statistics. In Section 6.3, we use as summary statistics the projection
of the particles along likelihood-informed directions and a threshold of ⇠stat = 80%.

5.5 Sequential Ensemble Transform: practical implementations
For completeness, we now described in more details the SETmethodology when used in conjunc-
tion with the adaptation strategies discussed in Sections 5.2 and 5.3. As in Section 5.2, consider an
initial distribution µ0 that is straightforward to sample from, and the posterior distribution µpost
that can be expressed as dµpost/dµ0(u) / exp[V (u)] for some potential V : Rd ! R. We consider
tempered distributions µk de�ned as dµk/dµ0(u) / exp[⌧k V (u)] for a temperature parameter
⌧k 2 [0, 1] that is found adaptively. �e entire method is summarised in Algorithm 2.
Algorithm 2: Sequential Ensemble Transform
Inputs: initial and �nal distributions µ0 and µpost

Output: particle approximation (1/N)
PN

i=1
�(uN

i,?) of the distribution µpost Set k = 0 and
⌧0 = 0 and initialize {uN

0,i}Ni=1
as samples from µ0.

while ⌧k < 1 do
Evaluate V (uN

k,i) for 1  i  N .
Find the next temperature ⌧k+1 through Equation (20)
De�ne the probability weights wN

k+1,i / exp[(⌧k+1 � ⌧k)V (uN
k,i)].

Compute the cost matrix Di,j = c(uN
k,i, u

N
k,j)

Compute COT,N = argmin C 7! hC,DiF 2 RN,N
+ under the constraint

NX

j=1

COT,N(i, j) =
1

N
and

NX

i=1

COT,N(i, j) = wN
k+1,j.

Transport the particles by se�ing: euN
k+1,i = N

PN
j=1

COT,N(i, j) uN
k,j

Use {euN
k+1,i}Ni=1

to tune a µk+1-invariant Markov kernelMk+1(u, dbu).
Set euN

k+1,i[0] = euN
k+1,i and pk = 0.

while criterion (23) not satis�ed do
Set pk  pk + 1
De�ne: euN

k+1,i[pk] ⇠Mk+1(euN
k+1,i[pk � 1], dbu)

Set uN
k+1,i = euN

k+1,i[pk] and k  k + 1 .
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6 Numerical Experiments
For PDE-constrained Bayesian inverse problems, the overall cost of the SET algorithm is dom-
inated by PDE solves [DHJ+03]. Estimating the matrices COT,N requires solving an optimal
transport problem: the standard simplex method or interior point method [PW09] directly ap-
plied to the linear program (11) scales as O(N3). Faster and approximate methods are available:
for example, the entropic relaxation of [Cut13] computes an "-approximation with the cost of
O(N2/"3) [ANWR17]. Our numerical experiments show that even with N = O(104) particles,
the computational overheads associated with solving optimal transport problems to obtain the
optimal transport matrix COT,N is negligible when compared to the cost of computing the for-
ward PDE solves. Consequently, for all the numerical simulations presented in this section, the
approximate but more scalable methods such as the ones described in [GCPB16,Cut13] for com-
puting discrete optimal transport schemes were not employed. Instead, the optimal transport
matrices were computed through a standard simplex solver [FC17]. To operate, the SET method
requires O(N ⇥M) PDE-solves where M is the total number of Markov mutations applied to
each particle. In this section, we adopt the strategies described in Sections 5.2 and 5.3 and 5.4
for automatically adapting the sequence of temperatures, the Markov mutation kernels, and the
number of times these Markov mutation kernels were applied. We compare the SET approach
to the state-of-the-art adaptive SMC approach of [KBJ14, BJKT15]. In this section, we present
three numerical experiments with increasing complexity. �e �rst experiment investigates the
in�uence of the mixing properties of the mutation kernels: for this purpose, the adaptive schemes
used for adapting the Markov kernels, temperature ladder, and number of mutations at each tem-
perature are switched o�. �e second experiment looks into the e�ect of the number of mutations
at each temperature level. Finally, the last experiment is a relatively challenging Bayesian inverse
problem. It illustrates the robustness and e�ciency of the SET method when used in conjunc-
tion with automated adaptation strategies; to the best of our knowledge, the scheme using the
averaged Gauss-Newton Hessian for adapting the PCNL covariance structure is new.

6.1 Scalar Target Distribution
In this section, we investigate the in�uence of the mixing properties of the Markov mutation
kernels. We consider a one-dimensional Gaussian target distribution µ(du) de�ned as

dµ

dµ0

(u) / exp

⇢
� 1

�2

noise
(u� 1/2)2

�
⌘ exp [V (u)] (24)

for a “prior” distribution µ0 chosen as a centred Gaussian with unit variance �0 = 1. In the
experiments presented in this section, we chose �noise = 10�3: although all the quantities are
Gaussian, this se�ing is challenging since �noise ⌧ �0. In order to focus on the mixing properties
of the Markov mutation kernels, we �x a sequence of intermediate temperatures equally spaced
on a logarithmic scale {⌧k}Kk=1

with K = 30. In other words, the adaptive tempering scheme
presented in Section 5.2 is not used. Denote by �k the standard deviation of the Gaussian in-
termediate distribution µk de�ned as dµk/dµ0(u) / exp[⌧k V (u)]. At temperature ⌧k > 0, the
Markov mutation kernel is chosen as a Random Walk Metropolis (RWM) kernel with Gaussian
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perturbations with standard deviation ⇢ �k, where ⇢ > 0 is used to control the mixing properties
of the mutation kernels. For ⇢ ⌧ 1, the mutation kernels are ine�cient while for ⇢ ⇡ 1 the
mutation kernels are close to optimal.

Figure 2: Target distribution (24) with N = 102 particles, no adaptation and a ladder of K = 30
temperatures equally spaced on a logarithmic scale. Each experiment is executed and averaged
over n = 100 times. �e scaling parameter ⇢ > 0 quanti�es the quality of the Markovian muta-
tions. Le�: distribution of |bmN

post �mpost| Middle: distribution of the quantity P(N) de�ned in
(25) Right: distribution of the ratio b�N

post/�post

Set mpost and �post the mean and standard deviation of the target distribution µ(du). For a
particle approximation µN = (1/N)

PN
i=1

�(uN
i ), we take bmN

post and b�N
post as its mean and stan-

dard deviation. We also consider the quantity P(N) that equals, up to irrelevant additive and
multiplicative constants, the negative log-posterior,

P(N) ⌘ 1

N

NX

i=1

(uN
i �mpost)2

�2
post

. (25)

In this Gaussian se�ing and in the idealized situation when the samples {uN
i }Ni=1

are i.i.d samples
from µpost and N ! 1, the quantity (25) converges to one. Figure 2 reports the quality of the
approximation of the mean, standard deviation, and the quantity (25) when the SET and SMC
methods are employed with N = 102 particles and identical conditions. For each value of ⇢, the
same experiment is executed n = 100 times. For quantifying the quality of the approximation
of the posterior mean, the absolute di�erence |bmN

post � mpost| is reported. For quantifying the
approximation of the standard deviation, the ratio b�N

post/�post is reported. Finally, the quantity
(25) is also reported: values closer to one indicate a be�er calibrated approximation. In this
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se�ing, the SET approach outperforms the SMC method over all the metrics. Furthermore and
as expected, as ⇢ ! 0, i.e. as the mixing of the mutation kernels gets worse, the e�ciency of
the SMC approach degrades. Although the theoretical results described in Section 4.2 does not
explain this phenomenon, the SET method appears to continue to perform well in the regime
⇢! 0 in that example.

6.2 Multivariate Gaussian Target Distribution

Figure 3: Estimation of the posterior mean of distribution (26) with N = 102 (le�) and N = 103

(right) particles. �e error kbmN
post�mpostk is plo�ed against the number of mutation steps p � 1

at each temperature level. Each experiment is averaged over n = 50 runs.

In this section, we study the in�uence of the number of mutation steps at each temperature
in a more challenging scenario. As opposed to Section 6.1, we employ the adaptive tempering
scheme described in Section 5.2. Let µ0 be a centered Gaussian distribution in RD with identity
covariancematrix. �e Gaussian target distributionµ is de�ned through the change of probability
measure

dµ

dµ0

(u) / exp

⇢
�1

2
hu,��1ui

�
. (26)

�e covariance matrix � 2 RD,D is given by

�i,j = �2 exp

⇢
�(j � i)2

2 `2

�

for a variance parameter �2 > 0 and length-scale parameter ` > 0. In the numerical experiments
of this section, we chose � = 1 and ` = 4 and D = 20. Although the target distribution
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Figure 4: Estimation of the posterior standard deviation of distribution (26) with N = 102 (le�)
andN = 103 (right) particles. �e quantityR(N) de�ned in Equation (27) is plo�ed against the
number p � 1 of mutation steps at each temperature level. Each experiment is repeated n = 50
times.

is Gaussian, it is a challenging scenario since it is already relatively high-dimensional (D =
20) and the covariance matrix of the posterior distribution is highly ill-conditioned (and hence
the posterior probability mass is concentrated in low dimensional spaces dictated by dominant
eigenvectors of the covariance matrix). �e SET and SMC methods have been implemented with
a number of particles N 2 {102, 103} and an e�ective sample size threshold (20) is set to ⇠ESS =
1/2. Furthermore, we used autoregressive MCMC proposals as de�ned in Equation 21 with mean
and covariance structure empirically estimated from the population of particles. In particular,
the covariance matrix of the autoregressive proposals is assumed to be diagonal with empirical
marginal variances on the diagonal (see [KBJ14] for a similar approach in the SMC context). As
described in Section 5.2 the scaling parameter ⇢ > 0 was chosen adaptively to maintain MCMC
mutations with acceptance rates in between the thresholds ⇠� = 20% and ⇠+ = 80%.

We compared the performance of the SET and SMC methods when used with a �xed number
p � 1 of mutation steps at each temperature level. Experiments were carried out for a number
of mutations as low as p = 1 and as high as p = 103. As in Section 6.1, we report the quality of
the posterior mean and posterior standard deviation. In Figure 3, for each value of the number of
mutation steps p � 1, kbmN

post �mpostk is averaged over 50 runs, where bmN
post 2 RD denotes the

posterior mean estimated from the population of particles. Similarly, in Figure 4 we report the
averaged ratioR(N) between the estimated standard deviations and the theoretical ones,

R(N) ⌘ 1

D

DX

d=1

b�N
post,d

�post,d
, (27)
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Figure 5: Density plots of the four �rst coordinates of the 20-dimensional target distribution (26)
for SMC (le�) and SET (right)withN = 104 particles and p = 20mutations at each temperature.
Middle is the density plot of N = 104 independent samples from the target distribution.

where �post,d is the marginal standard deviation in the d-th dimension and b�N
post,d is its estimate ob-

tained from the population of particles. Similarly to Section 6.1, we observe that the SET method
appears to be more robust when the number of mutations p is very low. As p increases, the
di�erence between the two methods progressively disappears andR(N)! 1 for both methods.

Figure 6: Temperature trajectories for the target distribution (26) using the SET (le�) and the SMC
(center)methods withN = 500 particles and p = 20mutations at each temperature: each trajec-
tory corresponds to a di�erent e�ective sample size threshold ⇠ESS 2 {1%, 21%, 41%, 61%, 81%}.
�e plot on the (right) displays the the R(N) statistics, which quanti�es the approximation of
the posterior mean, for each value of ⇠ESS.

Figure 5 shows the result withN = 104 particles and p = 20mutations for each temperature.
�e marginal pairwise distribution of the �rst four dimensions are displayed: although for p = 20
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neither SMC nor SET produces an entirely satisfactory approximation of the target distribution,
it is qualitatively visible that the SET produces an approximation that is closer to the correct
distribution.

Finally, in order to gain some understanding of the in�uence of the e�ective sample size
threshold ⇠ESS on the sequence of temperatures, as well as to study the sequence of temperatures
adaptively chosen by the SMC and SET methods, Figure 6 displays the temperature paths for the
SMC and SET methods. As expected, larger values of the e�ective sample size threshold ⇠ESS
lead to a slower increase of the (inverse) temperature parameter. Furthermore, low values of the
e�ective sample size threshold results in a loss of accuracy. �is phenomenon is well understood
for SMC methods since lowering ⇠ESS exacerbates particle degeneracy but more investigations
are required for SET to understand in more details the mechanisms. Figure 6 also shows that,
except at the very start of the algorithm, the (inverse) temperature increases roughly linearly on
a logarithmic scale. Furthermore, when the number of mutations per temperature is �xed, as is
done in this example, the SET and SMC temperature trajectories are very close to each other. �is
remark is important since it ensures that the numerical results presented in Figures 3 and 4 are
fair, that is, for each number p � 1 mutations per temperature, the computational budgets used
by the SMC and SET methods are equivalent.

6.3 Bayesian Inverse Problem
In this section, we test the SET method for inference in a Bayesian inverse problem governed by
a Partial Di�erential Equation (PDE). More speci�cally, we consider the following Poisson PDE
on the unit disk ⌦ ⇢ R2,

r · (ezrf)(x) = h(x) for x 2 ⌦, (28)

for a known source term h : ⌦ ! R , Dirichlet boundary conditions f(x) = 0 for x 2 @⌦
and a temperature �eld f : ⌦ ! R. We are interested in reconstructing z : ⌦ ! R, the log-
conductivity �eld, from noisy observations collected at locations x1, . . . , xK 2 ⌦ modelled as
di = f(xi) + ⌘i 2 R with independent Gaussian random noises ⌘1, . . . , ⌘K centered at 0 and
with variance �2

noise
. We assume a Gaussian prior distribution µz

prior on the log-conductivity �eld
z : ⌦! R with Matern covariance structure [LRL11]. Draws from this prior distribution can be
generated by solving the elliptic PDE

�
2 ��

�
z(x) = w(x) for x 2 ⌦ (29)

with vanishing Dirichlet boundary conditions. �e right-hand-side of Equation (29) is the re-
alization w : ⌦ ! R of a Gaussian white noise process on the domain ⌦. For the numerical
experiments, the scale parameter  was set to 10�1. �e posterior distribution µz

post(dz) on the
log-conductivity �elds reads

dµz
post

dµz
prior

(z) / exp

(
� 1

2 �2

noise

KX

i=1

(di � F(z)[xi])
2

)
(30)
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where F is the parameter-to-observable map that associates to each log-conductivity �eld z the
corresponding temperature �eld f = F(z) obtained by solving the PDE (28). In our experiments,
we assume that the standard deviation of the additive Gaussian noise is known, i.e. �noise = 10�2.
�e location of the observations, the ground truth temperature and log-conductivity �elds are
depicted in Figure 7. Here, the ground truth log-conductivity �eld was obtained as a draw from
the prior distribution (29).

Figure 7: Ground truth and MAP estimates of the temperature �eld f : ⌦ ! R and log-
conductivity �eld z : ⌦ ! R in the inverse problem (28). �e prior distribution on the log-
conductivity �eld is a Gaussian �eld with vanishing mean and Ma�ern covariance structure (29).

6.3.1 Discretization and parametrization

�e PDE (28) was discretized with the Finite Element Method (FEM) implemented on a meshM
with M = 1170 nodes, as shown in Figure 7, using FEniCS [DHJ+03]. In the remainder of this
section, we consequently approximated all functions de�ned on the domain ⌦ with their pro-
jection on the �nite element function space with piecewise linear basis functions ei : ⌦ ! R
for 1  i  M . In other words, the function space (in�nite dimensional) Bayesian poste-
rior described in Equation (30) is approximated by a M -dimensional posterior distribution. To
avoid the notational burden, we use the same notations to refer to the original (in�nite dimen-
sional) quantities and their FEM approximations. Similarly, the notation F refers to both the
original forward operator and its discretized version. If M denotes the mass matrix associ-
ated to the FEM basis {ei}Mi=1

, the discretization of a Gaussian white noise on ⌦ can be real-
ized as w(x) = w1 e1(x) + . . . + wM eM(x) where w = (w1, . . . , wM) 2 RM is a realiza-
tion of a centered Gaussian random variable with covariance matrix M�1. We used a (sparse)
Cholesky decomposition M = LL> and expressed the white noise vector as solution of the
linear system L> w = u where u 2 RM is the realization of a centered standard Gaussian
distribution with identity covariance matrix. For convenience, denote by � : RM ! RM

the (linear) operator that maps u to the corresponding log-conductivity �eld. In other words,
the function z(x) = z1 e1(x) + . . . + zM eM(x), with (z1, . . . , zM) = z = �(u) 2 RM , is
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the solution obtained through the FEM of the PDE (29) with right-hand-side represented by
w = (L>)�1 u. When implementing the SET and SMC methods, the log-conductivity �eld is
parametrized through the quantity u. �is parametrization has the advantage of corresponding
to a standard isotropic Gaussian prior distribution with identity covariancematrix and a posterior
distribution that is close to a standard Gaussian distribution except along a few data-informed
directions [FWA+11, BTBG+12, BTGMS13a, CLM16]. �ese properties lead to Markov mutation
kernels that are easier to tune and automatically adapted. In this parametrization, theRM -valued
posterior density µu

post(u) reads

µu
post(u) / exp

(
�1

2
kuk2 � 1

2 �2

noise

KX

i=1

(di � F(z)[xi])
2

)
/ µu

0
(u) exp [V (u)] (31)

where µu
0
is the density of a centered standard isotropic Gaussian distribution inRM and V (u) =

�(1/2)��2

noise

PK
i=1

(di � F(z)[xi])
2 is the negative of the data-mis�t functional.

For implementing the SET method, a cost matrix is needed. In order to take into account the
geometry of the problem, when the SET method is implemented with N particles {uN

i }Ni=1
, the

costs matrixD 2 RN,N
+ is de�ned as follows. �e entryDi,j is set to the squared L2(⌦) distance

between the log-conductivity �elds associated to the particles ui and uj ,

Di,j = huN
j ,MuN

j i. (32)

6.3.2 Adaptive scheme

To automate the choice of the number of mutation steps at each temperature, the adaptive scheme
presented in Section 5.4 is used. In order to obtain meaningful summary statistics, we considered
a data-driven approach. First, the maximum a posterior (MAP) estimate uMAP was obtained by
minimizing the negative log-posterior densityu 7! � log µu

post(u): gradients were computedwith
the adjoint method and a standard L-BFGS minimization procedure was used. Figure 7 displays
the MAP estimate as well as the ground truth. �en, we formed a Gauss-Newton approximation1
HGN(uMAP) of the Hessian to � log µu

post at the MAP,

HGN(uMAP) = I+
1

�2

noise

KX

i=1

(ruF(z)[xi])(ruF(z)[xi])
> 2 RM,M . (33)

On the right-hand-side of (33), all the gradient terms are evaluated at u = uMAP. �e eigenvectors
v1, . . . ,vK 2 RM corresponding to theK dominating eigenvalues of the Gauss-Newton Hessian
HGN(uMAP) span the directions along which the collected data are the most informative and along
which the posterior distribution di�ers most from the prior distribution [BWG+08, BTG12]. Fi-
nally, we chose S = K summary statistics de�ned as Sk(u) ⌘ hvk, ui. Figure 6.3.2 shows the
K = 6 directions �(vk) for 1  k  K .

1Note that the Gauss-Newton approximation includes a term corresponding to the Gaussian prior.
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Figure 8: Directions {�(vk)}Kk=1
associated to the K = 6 dominating eigenvectors {vk}Kk=1

of
the Gauss-Newton HessianHGN(uMAP) de�ned in Equation (33).

We used Preconditioned Crank-Nicholson Langevin (PCNL) proposals, as described in Sec-
tion 5.3, for mutating the particles: the scaling parameter ⇢ 2 (0, 1) was adapted so as to main-
tain an acceptance probability in between ⇠� = 20% and ⇠+ = 80%. �e structure of the
covariance � of the PCNL proposals was also chosen adaptively. When exploring the density
µk(u) / µu

0
(u) exp[⌧k V (u)] at temperature ⌧k, the particle system {uN

i }Ni=1
was used to approx-

imate the averaged Gauss-Newton Hessian (1/N)
PN

i=1
H⌧k

GN(u
N
i ) where

H⌧k
GN(u) = I+

⌧k
�2

noise

KX

i=1

(ruF(z)[xi])(ruF(z)[xi])
> 2 RM,M . (34)

In the se�ing when the prior distribution is Gaussian and the forward map is linear, the poste-
rior distribution is also Gaussian and the averaged Gauss-Newton Hessian equals the precision
of this Gaussian posterior distribution. �is motivates the use of the averaged Gauss-Newton
Hessian—which is guaranteed to be positive de�nite—as the inverse covariance structure for the
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noise used within the PCNL proposals. To summarize, at temperature ⌧k and right a�er the trans-
portation step when using the SET approach, or right a�er the resampling step when using SMC,
the covariance b�k used within the PCNL proposals was de�ned as

b�k =

(
1

N

NX

i=1

H⌧k
GN(u

N
i )

)�1

(35)

where {uN
i }Ni=1

, again, denotes the current particle population.

6.3.3 Results

Figure 9: Bayesian Inverse Problem (28): Trajectories for Temperature (le�) and averaged data-
mis�t functional (right) using the SET and SMC methods with N = 2.103 particles, adaptive
PCNL mutation kernels, an adaptive temperature scheme, and an adaptive number of mutation
steps at each temperature.

We implemented the SET and SMC approaches with N = 2.103 particles with identical con-
ditions on a server with 20 computing cores, one for each particle to be computed in parallel.
�e initial distribution was chosen as the prior, i.e. µu

0
(u) / exp [�(1/2)kuk2]. Furthermore,

the schemes presented in Sections 5.2, 5.3 and 5.4 were used to automatically adapt the ladder of
temperatures, the Markov mutation kernels, and the number of mutations.

�e ground truth was obtained by running 20 Preconditioned Crank-Nicholson Langevin
MCMC simulations (in parallel) for L = 107 iterations, each of the runs was initialized from inde-
pendent draws using the Gauss-Newton approximation described in Section 6.3.2. Convergence
was checked by verifying that the marginal means, variances, and summary statistics described
in Section 6.3.2 agreed among the 20 chains.

Figure 9 (le�) shows the trajectories of the temperatures for both the SET and SMC methods
as a function of the total number of mutation steps. In this example, the Markov mutation steps
are more computationally expensive, by at least an order of magnitude, than all the other com-
putational overheads. Consequently, the total number of mutation steps is roughly proportional
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to the wall-clock compute time. Note that the SET method requires almost an order magnitude
less iterations to converge since, as numerically observed in Sections 6.1 and 6.2, it is less a�ected
by particle degeneracy. Consequently, it is able to more e�ciently adapt the Markov mutation
kernels through the adaptation strategy (35). Figure 9 (right) displays the averaged value of the
data-mis�t functional (�1/N)

PN
j=1

V (uN
j ) as a function of the total number of mutation steps.

As displayed in Figure 10, the estimation of the posterior marginal mean and standard devia-
tion produced by the SMC and SET methods are equally good, and agree well with the MCMC
simulations.

Figure 10: Bayesian Inverse Problem (28). (First row:) posterior mean obtained from MCMC
(le�) and SET (center) and SMC (right). (Second row:) posterior marginal standard deviations
obtained from MCMC (le�) and SET (center) and SMC (right). �e SET and SMC methods
were used with N = 2.103 particles, adaptive PCNL mutation kernels, an adaptive temperature
scheme, and an adaptive number of mutation steps at each temperature.

We conclude this section with a brief discussion of e�ective sample size computations. Al-
though there have been a few recent and important methodological advances in this area [CL+13,
LW18,OD+19,DG19], it is fair to say that it is still di�cult reliably to evaluate the e�ective sample
size for interacting particles methods such as SMC or the SET. It is worth emphasizing that the
e�ective sample size functional de�ned in Equation (19) is only used for adapting the temperature
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ladder: it is not designed, nor should be used, to provide a reliable estimate of the variability of
the quantities derived from a particle system.

7 Conclusions
We have introduced the SET method, an optimal-transport based approach for performing infer-
ence in high-dimensional Bayesian inverse problems. �e SET methodology is, under mild as-
sumptions, provably consistent in the large-particle regime. Our numerical simulations indicate
that, in complex high-dimensional scenarios such as PDE-constrained Bayesian inverse prob-
lems where it is typically di�cult to design e�cient Markov mutation kernels, the SET method
performs favourably when compared to other particle-based approaches such as modern adap-
tive SMC methodologies. Our numerical results indicate that the SET method, by relying on
transportation methods instead of a resampling scheme, is less a�ected than SMC by particles
degeneracy and is able to be�er exploit the particles system to adapt the mutation kernels. Al-
though our theoretical results provide consistency guarantees, they do not quantify nor explain
the empirical gains observed when comparing the SET to standard SMC approaches.
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