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Abstract

We present the Sequential Ensemble Transform (SET) method, an approach for generat-
ing approximate samples from a Bayesian posterior distribution. The method explores the
posterior distribution by solving a sequence of discrete optimal transport problems to pro-
duce a series of transport plans which map prior samples to posterior samples. We prove that
the sequence of Dirac mixture distributions produced by the SET method converges weakly
to the true posterior as the sample size approaches infinity. Furthermore, our numerical re-
sults indicate that, when compared to standard Sequential Monte Carlo (SMC) methods, the
SET approach is more robust to the choice of Markov mutation kernels and requires less
computational efforts to reach a similar accuracy when used to explore complex posterior
distributions. Finally, we describe adaptive schemes that allow to completely automate the
use of the SET method.

1 Introduction

Inverse problems enable integration of observational and experimental data, simulations and/or
mathematical models to make scientific predictions. We focus on inverse problems in which
the goal is to determine a parameter of interest from indirect and imprecise observations. The
relationship between the parameter and the noise-free observations, the forward map, is often
provided through the solution of a complex mathematical model, the forward problem.

The Bayesian approach formulates the inverse problem as a statistical inference problem
[MT95,S5tu10,KS06]. Given noisy observational data, the governing forward problem, and a prior
probability distribution, the solution of the Bayesian inverse problem is the posterior probability
distribution over the parameters. The prior distribution encodes knowledge or assumptions about
the parameter space before data are observed. The posterior distribution incorporates both the
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prior knowledge and the observations. Non-linearity of the forward map leads to posterior distri-
butions that are typically not Gaussian, even in situations when both the prior and observational
noise probability distributions are Gaussian.

Exploring a high dimensional non-Gaussian posterior is computationally challenging. In-
deed, evaluating the posterior density typically requires evaluating the forward map which, for
problems governed by partial differential equations (PDEs), dominates the computational cost.
Standard numerical quadrature methods routinely used for estimating statistical quantities of in-
terest (e.g. statistical moments, probability of rare event) are infeasible in these high-dimensional
settings.

The Markov chain Monte Carlo (MCMC) algorithm [Has70, MRR" 53] is a popular approach
for exploring the posterior distribution in Bayesian inverse problems. Estimates obtained from
standard MCMC methods often require a large number of samples to be meaningful, especially in
high dimensional settings. In Bayesian inverse problems, generating each MCMC sample requires
an evaluation of the posterior density, which relies on evaluating the computationally expensive
forward map.

Sequential Monte Carlo (SMC) methods are computational techniques widely used in engi-
neering, statistics, and many other fields [GSS93,DDFG01,Del04,D]J09,DMD]J06] to approximate a
sequence of probability distributions, usually of increasing complexity or dimension. A standard
approach in Bayesian inverse problems consists of introducing a sequence of distributions that
interpolates between a distribution that is easy to sample from (e.g. the prior distribution, or a
Gaussian approximation of the posterior distribution) and the posterior distribution. Through a
combination of importance sampling, Markovian mutations and resampling procedures, the SMC
method iteratively constructs a sequence of particle approximations of this sequence of distribu-
tions. Under very mild assumptions, SMC methods are consistent in the limit when the number N
of particles goes to infinity and converge at Monte-Carlo rate O(N~'/2). Furthermore, methods
are available for implementing this class of algorithms on parallel architectures [WLH™ 16, VD-
DMM15,LW16,ST19].

In this article, inspired by recent developments in the data-assimilation literature [Reil3,
CR13], we exploit algorithms based on the concept of optimal transport [Mon81, Vil08, Vil03,
PC*19]. Our approach, the Sequential Ensemble Transform (SET) method, combines the SMC
framework with the use of optimal transport to efficiently build particle approximations of the
posterior distribution in high-dimensional Bayesian inverse problems (see figure 1). We refer the
readers to [MM12, HDP15, PM14, SBM18] for other Monte-Carlo methods based on transporta-
tion concepts. Unlike SMC methods, the SET approach, similarly to the algorithm of [Reil3],
uses an optimal transport scheme instead of the usual resampling procedure. The main advan-
tage of the proposed method is its robustness with respect to the choice of mutation kernel steps.
Indeed, without mutation kernel, the SMC method is a variant of the standard importance sam-
pling procedure, which is known to behave poorly in high-dimensional settings [BBL08], or
more generally when there is a large discrepancy between the proposal and target distributions.
Consequently, good mutation kernels are often crucial to the successful implementation of SMC
methods in Bayesian inverse problems [BCJ14]. Unfortunately, it is notoriously difficult to de-
sign Markov mutation kernels with good mixing properties in high-dimensional settings that



are common in Bayesian inverse problems [BTGMS13b, BJMS15,KBJ14]. Adaptive SMC proce-
dures [Cho02,DMD]J12,JSDT11,BJKT15] can help mitigate this issue by automatically tuning the
mutation kernels and the interpolating sequence of distributions. Our numerical studies pre-
sented in Section 6 show that the SET approach performs favorably when compared to stan-
dard SMC methods. Furthermore, although approximate methods [GCPB16,Cut13] are available
for efficiently solving discrete optimal transport problems, we have found that in most realistic
Bayesian inverse problems and for a typical number of particles N < 10%, the computational cost
of (exactly) solving the discrete optimal transport problems is negligible when compared to the
computational burden associated with the forward-solves necessary to implement the SET/SMC
algorithms. Finally, it should be mentioned that in situations (such as low dimensional parameter
spaces or closed-to-Gaussian posteriors) when the design of Markov kernels with good mixing
properties is not challenging, our proposed method may not provide significant computational
savings over more standard SMC or MCMC methods.

Our main contributions are as follows. We propose the Sequential Ensemble Transform
(SET) algorithm, an interacting particle methodology inspired from the data-assimilation liter-
ature [Reil3], for Bayesian inversion. Unlike most interacting particle methods that rely on
resampling approaches, the SET method is based on optimal transportation. We demonstrate
empirically that this leads to an algorithm that is less affected by particle degeneracy, and re-
quires less computational effort to converge, than more standard SMC approaches when used
in complex settings where designing efficient Markov mutation kernels is not trivial. We make
SET practical, especially for complex applications, by providing several adaptation strategies for
automating the choice of tuning parameters. Finally, we establish conditions under which, in the
limit when the number of particles approaches infinity, the SET method is provably consistent,
i.e., the sequence of particle approximations produced by the SET converges weakly towards the
underlying target distribution.
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Figure 1: A representation of the SET method using optimal transport to move particles in pa-
rameter space as to represent the posterior

The article is structured as follows. In Section 2, PDE-constrained Bayesian inverse problems
are briefly described. An overview of particle methods and importance sampling is presented in
Section 3. Section 4 presents the concept of optimal transport and describes the main components
of SET method, as well as their asymptotic properties. Section 5 describes the SET methods in
details, as well as several adaptive strategies that can be used to automate several aspects of



the method. Finally, Section 6 presents various numerical results, including a Bayesian inverse
problem with a non-linear forward map. Section 7 concludes the paper and discusses future work.

Notations and conventions

Unless stated otherwise, all the state spaces are endowed with a metric and the associated Borel
o-algebra. The notations i and v (along with any use of super- or sub-scripts) denote probability
distributions. A sequence of probability distributions {x™ } y>; on X' converges weakly towards
the distribution p, denoted as Y = 1, if for any bounded and continuous test function ¢ : X —
R we have that [ p(u) ¥ (du) — [ (u) p(du) as N — oc. Similarly, a sequence of random
probability distribution ) almost surely converges weakly towards 1 if, for P-almost every w,
we have that 1Y = 1. The set of probability distributions on a state space X’ is denoted as P(X).
For a set S, the notation 1g refers to the indicator function of S, i.e., the function that equals
one for z € S and zero otherwise. For u € X, the Dirac probability distribution d(u) is the
distribution that puts all its probability mass at u.

2 Problem Statement

Although the methods described in this article are general, for illustration purposes, we focus
on the Bayesian treatment of inverse problems. We are interested in estimating a field u € &,
where X denotes a space of functions, from a finite set of observations contaminated by additive
Gaussian noise,

d=G(u)+mn,

whered = [dy,...,dp|" € Y andn ~ N (0,L) is centred Gaussian vector with covariance ma-
trix L. The operator G : X — ) describes the mapping from the parameters to observables. In
Bayesian inverse problems and as illustrated in Section 6, estimating the quantity G(u) typically
involves solving a set of partial differential equations. In order to estimate the uncertainty associ-
ated to the necessarily imperfect reconstruction of the parameter u € X, the Bayesian approach
postulates a prior distribution fipio, that describes the information available on the parameter u
prior to any data collection. Under mild assumptions [Stu10], the Bayesian posterior distribution
Hpost is defined through the change of measure formula

Pt () oxcxp { -3 14 = G 0

where |-|;, =

Lz ’ denotes the L_%—Weighted Euclidean norm. In situations when the mapping
G is non-linear, the posterior distribution is typically intractable and numerical methods such as
MCMC are required to estimate expectations (and other statistics) of observables with respect to
the posterior fipo.



3 Particle Methods

Particle methods approximate probability distributions with weighted mixtures of Diracs, also
referred to as particle approximation in this text. To construct a particle approximation of the
posterior distribution, the SMC and SET approaches proceed by introducing a sequence {4}~
of distributions that interpolates between a distribution that is easy to sample from, i.e. yo, and
the posterior distribution p . A standard choice for i is the prior distribution, or a Gaussian
approximation of the posterior distribution obtained through efficient deterministic methods. For
any index 1 < k£ < K, set
d,uk 1

d,uk—l u) = Z_k \Ilk(u)a (2)

for a ju;,_-integrable potential function ¥y : X — (0, 00) and (typically unknown) normalization
constant Z;, > 0. The SMC algorithm recursively constructs particle approximations

N
1
M]kv - N Z 5(“%) ~ ks
i=1

where NV > 1 denotes the number of particles, by iterating re-weighting, resampling, and mutation
operations that are described below. In the remaining of this text, we make use of the following
notations that are standard in the Monte-Carlo literature and compactly allow to describe expec-
tations with respect to probability distributions and Markov kernels. For a probability distribution
(v on the state space X and a p-integrable test function ¢ : X — R, set u(p) = [ p(u) p(du).
Similarly, for a Markov kernel M (u, dv), define (M) (u) = [ ¢(v) M (u,dv).

3.1 Re-weighting

Consider two probability distributions y and v defined on the same state space X and related by
a change of measure (Radon-Nikodym derivative)

dv 1
@(U) = W(u) (3)

for a u-integrable potential function ¥ : X — (0, 00) and a possibly unknown normalization
constant Z > (. Suppose that, for any integer N > 1, it is possible to generate a set of N
particles {uN }%¥, C X such that the sequence of equally weighted particle approximations,

N

N _ 1 N

converges weakly towards p1as N — oo. Under mild assumptions, the sequence of self-normalized
importance sampling weighted particle approximations v~ defined as

N
T wav S(ul) (4)
i=1



for normalized weights

W = U(u))
converges weakly to v. For concreteness, define the mapping from p to vV as vV = By (u")
where %y is the so-called Bayes operator that transforms a probability distribution p into the
probability distribution %y (1) that satisfies By (1) (@) = (¥ @)/ (V) for any test function .
The following proposition shows that, under a mild uniform integrability condition, the conver-
gence By (1) = Py (1) holds.

Proposition 1. Consider a probability distribution p and a continuous and positive i-integrable
function U. Assume that there exists a continuous ji-integrable function £ : X — [1,00) such that

lim limsup p (€ x 1gsy) =0, (5)

=00 N0

and V(u) < E(u) for p-almost every u € X. We have that:

1. for any (potentially unbounded) continuous test function ¢ such that |p| < E,
lim () = pp).
—00

2. the sequence Py (1) converges weakly towards By (11).

Remark 2. The technical condition Equation (5) means that if (v is a sequence of random variables
such that (y ~ p', the sequence of scalar random variables {y = E(Cy) is uniformly integrable
[Wil91].

Proof. The second assertion is a direct consequence of the first one since

N P (Vo) V)
PBu(1™)(0) = (D) and  By(p)(p) = (T

and pN (V) — u(V) as well as 4™ (¥ ¢) — u(¥ @) for any bounded and continuous test function
©. Let us now prove the first assertion. Since X is a metric space and £ is continuous, for any
threshold ¢t > 0 there exists (Urysohn’s lemma) a separating continuous function p; : X — [0, 1]
(Urysohn’s function) such that p;(u) = 1 on the set {u € X : £(u) <t — 1} and p;(u) = 0 on
the set {u € X' : £(u) > t}. Since & is p-integrable and |p| < & p-almost everywhere, then for
any € > 0 there exists 7. > 0 such that |(p) — u(p pi)| < € for any ¢ > T.. Furthermore, since
the function ¢ p, is bounded and continuous and p™¥ % 11, we have that u™ (o p;) — (@ py). It
follows that for any ¢ > T}

limsup | (p) — ()| < limsup [N (¢ pr) — p(p)| + limsup [ (o (1 — pr))]

N—o00 N—o00 N—o00
< limsup [ (¢ pe) — pp(0)| +limsup g™ (€ X Lgsy1)
N—oo N—o00
< e+ limsup N (€ X Less_1).
N—o00
Equation (5) gives the conclusion. O]



Note that if the potential W is bounded, Proposition 1 always applies. In the standard Monte-
Carlo setting where ul¥ = wu; for iid samples {u;};>o from the distribution g, more precise
estimates are available. The distributions y/¥ and vV are random and one can readily check that
1
N _ < 6
o - ull < = ©
where we have used the norm defined as
2 2

o™ = ull”= s E [(MN(SO) — () } (7)

¢lloo<

to measure the discrepancy between two random measures. Furthermore, [APSAS15, Theorem
2.1] states that

=

N 2 N(\Iﬂ)
2™ = ull| < N u(0)

The sequence of approximations ¥ converges at Monte-Carlo rate towards .

3.2 Resampling schemes

In standard SMC methods, as well as the SET method described in this article, one needs to
transform a weighted particle approximation of a distribution y into an equally weighted particle
approximation of the same distribution. The multinomial resampling scheme approximates ¥ =
Zé\il wl 6(ul) by the equally weighted particle approximation

1 N
N Z 0(uiys)
=1

where {uZNIS}fV:l are i.i.d. samples from ;. Equation (6) states that the norm between a dis-
tribution and an equally weighted mixture of Dirac masses centred at NV i.i.d samples from that
distribution is less than 1/+/N. Applying this remark and the fact that ;.4 is precisely an equally
weighted mixture of Dirac masses centred at N i.i.d samples from p, it follows that |Huf\§ —uv ‘ H <
1/+/N. There are more sophisticated approaches, such as the stratified [HSG06] and system-
atic [DCO05] resampling methods, to generate equally weighted particle approximations. We refer
the reader to [GCW17] for a recent study of theoretical properties of these typically more sta-
tistically efficient resampling schemes. Unless otherwise stated, all the numerical simulations
presented in this article use the stratified resampling scheme.

For concreteness, we denote by &% the resampling operator that maps a weighted particle
approximation to an equally weighted one. Note that for a given weighted particle approximation
u™, the quantity Z(u") is in general a random probability distribution. The resampling scheme
X is called consistent if it maps 1™V, a possibly random sequence of distributions that almost surely
converges weakly towards /i, into another sequence (") that almost surely converges weakly
towards (. It has long been known [CD02] that the multinomial resampling scheme is consistent
in finite dimensional Euclidean spaces. As investigated in [HSG06], the situation is much more
delicate for the stratified and systematic resampling methods.

N
H1s



3.3 Mutation

Consider a sequence {uy,}_, of distributions interpolating between a tractable distribution 1
and the posterior distribution 15 such that for any index 1 < £ < K we have
d/ubk 1

u) = — V(u
dptp—1 ) Zy, k<)

for a yu;_1-integrable potential function ¥y, : X — (0, 00). For technical reasons, we also assume
that Wy, is continuous. Consider a particle approximation

of the initial distribution 1. Under mild assumptions, the sequence of equally weighted distri-
butions pl = (1/N) Zi\; d(uy;) recursively defined as iy = %2 o Py, (1) converges in an
appropriate sense towards i, as N — oco. For example, Proposition 1 shows that, if the potential
U, are bounded and the resampling scheme % is consistent, as soon as y) almost surely con-
verges weakly towards i the sequence y}' also almost surely converges weakly towards 1, as
N — oo.

In most realistic scenarios, though, the particle approximation p%, as an approximation to
{ix, is worse than the direct importance sampling particle approximation By, y,. v, (pd’) from
to to pr where (dug /dupg)(u) o< [¥Ws. .. Wi|(u). It is because in that case the particles
{uy ;}iL, form a subset of {ug;};-,. Consequently, if the initial set of particles {ug;}; , are
located in regions of the parameter space where the distribution x5 does not have much prob-
ability mass, the approximation ¥ to px can be very poor. For importance sampling to work
well in high-dimensional situations, the proposal distributions need to be chosen very judiciously,
and adaptive importance sampling (AIS) [OB92, CMMR12,CDG'08,FT19] can partially remedy
this issue. A standard approach to mitigate this issue is to introduce mutation steps, which we
now describe. For each distribution p in the interpolating sequence of distributions, consider
a (mutation) Feller Markov kernel M. (u,du) that leaves the distribution j invariant. Con-
sider the operator ./, that transforms a particle approximation yY = (1/N) Zf\; d(uy;) into
M) = (1/N) S, 6(v);) where, conditionally upon {up; }iL,, the samples {v};} X are in-
dependent realizations of M, k(u]kv ;, du). The following lemma shows that, as soon as the sequence
p almost surely converges weakly to s, the sequence .7 (ul ) also almost surely converges

weakly to 1.

Lemma 3. Let i1 be a probability distribution on a locally compact and o-compact metric space X.
Consider M (u, du) a pi-invariant Feller Markov kernel. For each N > 1, let {ulN }}Y., C X be such
that



For independent random variables VN ~ M (ul, du), we have that, almost surely,
| X
N w
N ;:1 o(ViY) = p

Proof. Since X is a locally compact and o-compact metric space, there exists a countable and

dense (for the supremum norm) subset ‘H of the set of continuous functions with compact support

in X. One needs to prove that for any ¢ € H we have that ]\}im (1/N) Zf\;l o) = u(p)
—00

almost surely. Since the function M ¢ is continuous and bounded,

lim E

N—oo

%Zw(vﬁ)l — lim %Z(Mgo)(uiv) = u(Me) = p(p).

N—oo
i=1 i=1

Since ¢ is bounded, the moment of order four of the ergodic sum SV e(wN) = (M) (ul)]
is upper bounded by a constant multiple of N ~2. The Borel-Cantelli lemma gives the conclusion.
]

Leveraging these Markov mutation kernels, we now define the sequence of equally weighted
particle approximations {y }&_, recursively as

py = Mo R o By, (1 ,)- 8)

The Markov mutations ensure that, in general, the particles {u]kvz}fil do not form a subset of
{ué\;- N . The particle algorithm resulting from (8) is a special case of Sequential Monte Carlo
(SMC) samplers [DMD]06]. Note that, in Bayesian inverse problems, simulating from the Marko-
vian kernel M, typically requires evaluating the computationally expensive forward map. More-
over, as explained in the introduction, whilst well-designed Markovian kernels can greatly en-
hance the statistical efficiency of the resulting algorithm, it is notoriously difficult to design well-
mixing mutation kernels in high-dimensional settings or fir exploring distribution with complex
dependency structures.

4 Optimal Transport

For technical simplicity, we assume in this section that the state space X is a finite dimensional
Euclidean space with norm denoted by || - ||. For two distributions ;1 and v related by a change of
probability dv/du(u) o« ¥(u), the Monge-Kantorovich optimal transport approach provides an
alternate methodology for building a particle approximation of a distribution v out of a particle
approximation of . To the best of our knowledge, the idea was first proposed in [Reil3], and
further developed in [GCR16, CRR16, GT19], in the context of data-assimilation of dynamical
systems. For two probability distributions ;. and v, let P(u, ) be the set of probability couplings
between 1 and v, i.e. the convex set of probability distributions on & x X" that admit pz and v as
marginals. For a cost function ¢ : X x X — [0, 00), the optimal transportation problem seeks



to minimize the transport cost E,[c(%, 0)], for (@, ?) ~ ~, over the set of all possible couplings
v € Plusv),

AOT = argmin{7 — E,[c(q,0)] with v e P(pu, 1/)} 9)

On an Euclidean space, a standard choice is the quadratic cost function c(u,v) = ||u — v||%. For
cost functions of the type c(u, v) = h(v — u) for a strictly convex function h, Brenier’s theorem
[Bre91] states that, if 1 is compactly supported and has a density with respect to the Lebesgue
measure, there exists a deterministic map T : X — X, uniquely defined on the support of y,
such that the optimal coupling 7“7 is obtained by pushing-forward the distribution z through
the deterministic function (Id, T') : X — & x X. That is, for a test function p : X x X — R,
the quantity 7°T(¢) can also be expressed as E,,[¢(@, T(@))] for @ ~ . For more general cost
functions, the situation is more delicate [EG99, TW01, CFM02, Amb03].

4.1 Approximation of the Bayes operator

Consider a weighted particle approximation p = vazl a; 0(ulN) of the distribution /. and, for a
potential function ¥ : X — (0; 00), the probability distribution

N
Bu(p) =D Bio(u)) = vV, (10)
i=1

with 8; = a; U(ul¥) /[y O (ud)+. .. +ayn ¥(ul)]. The optimal coupling v°T» between ;¥ and
vV is supported on the finite set {(u’, Ué‘v)}lgi,jgN and can thus be expressed as
N
AT = 3 OO () ® 6(u).

i,j=1

where ¢(u) ® §(v) denotes the Dirac mass centred at (u,v) € X x X. Here, the coupling matrix
COTN ¢ Rf’N is the solution of the linear programming problem that consists in minimizing
the matrix functional

N
C— Z Cij % c(u),ul) = (C,D)s with D,; = c(u;', uj) (11)

i g i g
,7=1

over the convex set P(«, ) of matrices with marginals « and /3, i.e. the set of matrices C' € Rf’N
such that }_, Cj, ; = ay, and ), C j, = B, forall 1 < i, jo < N. In Equation (11), the quantity
(C, D) = >, ; Ci; D; is the Frobenius inner product between the coupling matrix C' and the
cost matrix D € RY:Y. More details are given at the end of this section.

We now describe how, once the coupling matrix COT+V has been computed, a particle ap-
proximation of the distribution %y (1) can be constructed: we stress that, in order to imple-
ment this method, the coupling matrix C°TV is the only quantity that needs to be computed.

10



For motivating the methodology, assume that the optimal coupling Y°T € P(u,v) is described
by a deterministic map T : X — X and consider a test function ¢ : X — R. Since p” is a
particle approximation to i, the quantity /(¢ o T) = 32N o, 6(T(ul)) is expected to be an
approximation of 1(p o T) = v(¢). Consequently, it is reasonable to expect

N
Z o 6 (T (ulY
i=1

to be a particle approximation of v. Although the optimal transformation T is generally compu-
tationally intractable (i.e. it is never actually computed in our proposed method) one can resort
to an approximation scheme. Note that the quantity T (u?) can be expressed as a conditional
expectation

T) = Efp[a=u)] for (a)~7°",

since the pair (1, 0) has the same distribution as (@, T'(@)) for & ~ p. This motivates the approx-
imation
OT,N N
Z] 1 C
OT, s
Zj:l Cij

3 3

T(u) ~ E[N |V =u] = = E ZCOTN v (12)

7j=1

with (@Y, V) ~ 49T The newly created particles {u>""} ¥ | defined as

OT N Z COT N N (13)

are convex combinations of the original particles {u!', ... u%} and thus all lie in the convex hull
of the set of original particles. In summary, the computational optimal transport executed in the
SET algorithm proceeds by first solving for C°T-" given the constraints described by Equation
11. In a second stage, the coupling matrix C°T" is then used to transport the particles following
Equation 13. For concreteness and in accordance with the previous sections, we denote by 7
the operator that realizes the mapping

N N
v (Z ;0 ) Z ;0 OT N Z ; 0 <ai Z CET’N u§V> . (14)
i=1 v

Jj=1

Similar to the operator % o Ay, the operator .7y maps an equally weighted particle approxima-
tion of a probability distribution 4 into an equally weighted particle approximation of Zy (11).
However, unlike % o %y, the support of the particle approximation p”¥ and .F (") are typically
disjoint.

11



Algorithm 1: Optimal Transportation operator 7y
Weights computation: define

Bi = a; U(uM)/[ay U(ul) + ...+ an U(ul)].

Cost matrix: build the matrix D € R™? defined in (11).
Optimal Transport: compute COTV = argming, 5C +— (C, D)r.
Transportation: set " = (1/a;) Z?]:l CgT’N uY and define

7

Algorithm 1 summarizes the optimal transport approach to approximating the Bayes operator

that transforms a particle approximation pV = Zfil a; 6(ud) of a distribution y into a particle

approximation 7y (V) of the distribution v = %y (11),

N N
=D ) IS0 ) = 73(0),
=1 )4 =1

The only potentially computationally expensive step is the computation of the coupling matrix
COTN_ The computational costs are discussed at the start of Section 6 and we refer the reader
to [PCT19] for a book-length treatment of the computational aspects associated to optimal trans-
portation problems.

4.2 Consistency

Consider a potential function ¥ : X — (0, 00) and two distributions p and v = Zy(u). In this
section, we generalize and extend Theorem 1 of [Reil3] to prove that, under mild assumptions,
the optimal transport operator .7y transforms a sequence [LN A 1 into a sequence ﬁ\y(p,N ) that
converges weakly to By (1).

Assumption 4 (Unique Deterministic Coupling). The optimal transport problem between 1 and
Py (1) with cost function ¢ admits a unique solution -y that can be realized by a deterministic trans-
portmapT : X — X.

The problem of existence and uniqueness of the solution to an optimal transport problem is
well-studied. Under mild assumptions (see McCann’s main theorem [Mcc95]), the set of cou-
plings between p and v is weakly compact and the functional p — E,[c(u, v)] is continuous in
the appropriate topologies, ensuring the existence of an optimal coupling. The uniqueness and
regularity properties of the optimal transport map are more delicate to establish and we refer
to [Cav15] for recent developments. To proceed to the main result of this section we further
assume the following.

12



Assumption 5 (Regularity of the Transport Map). Let Assumption 4 holds for a deterministic map
T : X — X. For any bounded and Lipschitz function ¢ : X — R and sequence ¥ that converges
weakly to y1, we have that i’ (o o T) — pu(p o T).

The continuous mapping theorem [MW43] shows that Assumption 5 is satisfied provided that
the set of discontinuities of T has zero measure under 4. In particular, Assumption 5 holds in the
case when the optimal map T is continuous. Theorem 6 below shows that, under mild growth
and regularity assumptions on the optimal transport map T : X — &, the optimal transport
scheme 7 is consistent as the number of particles N > 1 approaches infinity.

Theorem 6. Consider a potential function W : X — (0; 00) and two probability distributions j. and
v = Py (1) on the state space X. Assume that Assumptions 4 and 5 are satisfied for a deterministic
optimal map T : X — X. Consider further a sequence of weighted particle approximations

N
pN=>"al 5(ul)
=1

that converges weakly to y, and such that By (u") converges weakly to By (11). If the growth
assumption

limsup  p (u = |T(u)P) + By (™) (u = |ul?) < oo, (15)

N—oo

is satisfied for some exponent p > 1, we have that
Ty (W) = Bu() = v. (16)

Proof. Let TN = D i CZNJ S(ul) ® 5(u§v) be the optimal coupling between 1 and By (u').
By assumption, u" % pand vV = By(uV) = By(u) = v and there is a unique optimal
coupling v°T between p and v. By compactness (see, e.g. [Vil08, Corollary 5.21]), we have that
AOTN B~ as N — oo.

To show the weak convergence of 7y (11") towards v, it suffices to prove that for any Lipschitz
and bounded test function ¢ we have that 74 (1) — v(y). Assumption 5 implies ™ (¢ o T) —
u(p o T) = v(p). Consequently, it suffices to show that the difference Fy (") — V(¢ o T)
converges to zero as N — oo, i.e.,

N
lim E aly = 0.
N—o00

i=1

o o8 - elme)

J=1

Since ¢ is Lipschitz, and Zjvzl CJ = )Y, it is sufficient to show that

N—oo

N
lim Y CY |u) — T(u))| = 0.
Y]
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Note that vaj Cy |u§\7 - T(ufv)’ = yOTN(F) with F(u,v) = |v — T(u)|. Since FP(u,v) <
|v[P + |T(u)[P, assumption (15) yields that limsupy 7TV (FP) < oco. Since v°TN % 4, the
bound lim sup,, 7T (FP) < oo implies that the sequence Y97V (F) converges towards (F').
Since v(F') = 0, the conclusion follows. O

5 Sequential Ensemble Transform

In this section, we describe our proposed methodology, the Sequential Ensemble Transform (SET),
prove that it is consistent in the limit of infinitely many particles, and discuss adaptation strategies
that are important for practical implementations of the method.

5.1 High-level description and consistency

As in Section 3, consider a sequence {/; } X, of distributions that interpolates between a distribu-
tion 149 and the posterior distribution pi . Foranyindex 1 < k < K we have that (dpuy/dpug_1)(u) =
(1/Zk) ¥y (u) for a ug_,-integrable and continuous potential function ¥y : X — (0, 00). In this
section, we assume the following.

Assumption 7. The sequence of probability distributions {u, }1_, is such that:
1. forany 0 < k < K, the support of ju, is bounded,
2. forany 1 < k < K, the pair of distributions (jx_1, jix.) satisfies Assumptions 4 and 5.
Instead of constructing a sequence of particle approximations to the intermediate distribu-

tions py, through importance sampling-resampling methods, consider the following approach

that leverages optimal transport. Let ) = (1/N) S~ 6 (uf;) be an equally-weighted particle

approximation of the initial distribution 4. Define the equally weighted particle approximations
ua through the recursion formula

N N
p, = My o Ty, (Hi_1), (17)
where .7, is the operator associated to a p-invariant Markov mutation kernel Mj.

Theorem 8 (Consistency of the SET algorithm). Let {u;. }1_, be a sequence of distributions that
satisfies Assumption 7 and consider {u};})*, C R? such that

N
1 w
1o N ;:1 5(“(])\;) = Ho-

Then, for any index 1 < k < K, the sequence of equally weighted particle approximations i}
defined recursively through Equation (17) weakly converges to ju;, almost surely.
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Proof. One can proceed by induction. It suffices to prove that if u) | ~ j_; almost surely
then 4, o Ty, (1l |) = pd = . almost surely. Under Assumption (7), the support of the
distribution (i is bounded: one can find a bounded and continuous function V}, that dominates
U}, and invoke Proposition 1 to see that %y, (1l ;) — px almost surely. Furthermore, under
Assumption 7 the pair (py_1, i1x) satisfies Assumptions (4)-(5) as well as Equation 15. Theorem 6
shows that Zy, (ud ) ~ i, almost surely. Finally, since the Feller Markov process M, lets i

invariant, Lemma 3 yields that .4}, o Ty, (4 ) ~ j1; almost surely.
]

As previously mentioned, one of the advantages of relying on optimal transportation instead
of sampling-resampling techniques is that, as illustrated in Section 6, the resulting algorithm is
much less sensitive to the mixing properties of the Markov mutation kernels M. Moreover, the
adaptive tempering strategies described in Section 5.2 can be used within the SET method. In
Section 6, we compare the SET approach to more standard SMC approaches.

5.2 Adaptive tempering

In complex scenarios such as Bayesian inverse problems, it is a nontrivial task to specify a se-
quence of distributions (2) that interpolates between a distribution p that is straightforward to
sample from and the posterior distribution. Instead, we consider an adaptive annealing scheme
[DBR00, MDMM10, JSDT11, ZJA16, NSPD16, SC13, KBJ14]. The reader is referred to [BJKT15,
GDM™17] for a theoretical analysis of adaptive annealing methods. For notational convenience,
we identify distributions with their densities, and assume that the posterior distribution jipes
is absolutely continuous with respect to 1, i.e. dfipost/dpio(u) o< exp[V (u)] for some potential
function V' : R — R. Consider the sequence {uy, }1_, defined as

d
h(u) o expln V(w) (18)
Ho
for an (inverse) temperature parameter 7, that interpolates between 7y = 0 and 7% = 1. In

practice, it can be difficult to choose the number K > 1 of temperatures (i.e. the number of
interpolating densities) and the corresponding temperatures. The adaptive scheme proceeds as
follows. Assume that the particle approximation

to the density i has already been constructed. For a predetermined threshold 0 < £ggg < 1, the
next temperature 75 is defined as the smallest temperature 7 > 73 such that ESS;(7) < {gss -
Here, The Effective Sample Size (ESS) functional is defined as

L (S e [ ) V)])
E e [0,1]. 19
N Zf\il exp [(T — Tk) V(ugz)} < 0.1] (19)

ESSk(T) =
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Clearly, ESSy (1) = 1. Lemma 3.1 of [BJKT15] states that the function 7 +— ESS;(7) is decreas-
ing for 7 € (7%, 00) so that 7,41 can very efficiently be found by a bisection method. Finding
Tr+1 typically does not require evaluating the forward map since, in standard implementations of
the SMC or SET methods, the quantities V' (uy;) would have already been computed at previous
steps. Starting from 7y = 0 and setting

Th4+1 = inf {7' > T - ESSk(T) < éEss}, (20)

the procedure stops as soon as 7y is greater or equal to one. One thussets K = inf {k > 1 : 7, > 1}
and defines 7 = 1. Note that taking {gsg close to one leads to a slow annealing, which may be
computationally wasteful. On the other hand, taking {ggg close to zero can lead to an anneal-
ing scheme that is too rapid, ultimately leading to a poor particle approximation of the posterior
distribution. Except stated otherwise, we choose {gss = 1/2 in the numerical experiments of
Section 6.

5.3 Adaptive mutation kernels

Choosing a-priori a sequence of well-mixing Markov mutation kernels is, in most realistic scenar-
ios, not feasible. A standard approach consists in exploiting the population {u,iv Y, of particles
at temperature 7, to estimate summary statistics of the distribution 5. These summary statistics
estimates (e.g. mean and covariance matrix) can then be leveraged to design a Markov kernel M},
with reasonable mixing properties and that lets the distribution yi;, invariant. In high-dimensional
settings, this adaptive tuning of the mutation kernel is often crucial to obtaining satisfying per-
formances. In this section, we concentrate on two classes of proposals, namely autoregressive
proposals that do not make use of any derivative information and Preconditioned Crank-Nicholson
Langevin proposals that can make use of gradient information for enhanced mixing properties.
We refer the reader to [CLM16] and the references therein for more advanced adaptation strate-
gies especially designed to tackle high-dimensional Bayesian inverse problems.

Autoregressive Proposals: for a mean vector m € R? and a positive definite covariance matrix
I’ € R%4, the Markovian proposal u + U defined as

a=m+p(u—m)+(1-p)2N(0,T) (21)

for some scaling factor p € (0, 1) is reversible with respect to the Gaussian distribution with mean
m and covariance I'. This proposal mechanism, also sometimes called the Preconditioned Crank-
Nicholson proposal [CRSW13], can consequently be used within a standard Metropolis-Hastings
scheme to efficiently explore distributions that are well approximated by a Gaussian distribution
with mean m and covariance I'. This remark can be used to design an adaptation strategy [KBJ14]
for automatically tuning the mutation kernels within SMC methods or the SET algorithm. At it-
eration k, right after the resampling step of a SMC method, or right after the transportation step
of the SET, consider a set {};}}, of particles whose (equally weighted) empirical distribution
approximates the distribution ;. In order to use an autoregressive Markov kernel (21), one can
use the particles {ﬂkN 1Y, to compute an approximation mj’ of the mean of yy, as well as an
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approximation I') of its covariance matrix. In high-dimensional settings, or when the number
of particles is low when compared to the dimensionality of the state-space, it is customary to
only consider diagonal approximations of the covariance structure: the approximate covariance
matrix I'}’ is diagonal, with the empirical marginal variances on its diagonal. The scaling factor
p¥ can also be chosen adaptively. Values of py ~ 1~ lead to conservative proposals while values
of pY ~ 0" are more likely to be rejected. Given two fixed thresholds 0 < £ < &, < 1, the
scaling factor plY can be adapted based upon the acceptance rate of the Metropolis-Hastings pro-
posals (21). Specifically, we set pY = min(1, [l +¢] pY¥_,) if the proportion of accepted proposals
falls below &_, set pi = [1 — ¢] pi_, if the proportion of accepted proposals is above ' and
set py.; = py otherwise. In other words, the scaling factor is augmented or decreased by an
proportion ¢ € (0, 1) depending on the acceptance rate of the MCMC proposals. In experiments
presented in Section 6, we use £ = 20% and £, = 85% and ¢ = 20%.

Preconditioned Crank-Nicholson Langevin proposals: one potential drawback of the au-
toregressive proposals (21) is that no derivative information is exploited. Instead, Markovian
proposals u +— u of the type

U=u+ (1—p)I Vliog up(u) + (1 — p*)Y2N(0,T) (22)

can be used within a Metropolis-Hastings scheme for exploring the target density p;. Here, I is
still an approximation of the covariance matrix of y and p € (0, 1) is a scaling factor. Indeed,
in the case where the target density is Gaussian, this reduces to the autoregressive proposal (21).
Both the scaling factor p and the covariance matrix I' can be adapted throughout the evolution
of a SMC or SET method. In the non-linear-PDE example of Section 6.3, we describe how gradi-
ent/Hessian information can be leveraged to adapt the covariance structure I'.

5.4 Adaptive number of Mutations

In challenging scenarios, it is important to apply several steps of Markovian mutation at each
temperature level. Nevertheless, choosing a sensible number of mutation steps a-priori is of-
ten difficult. In this section, we present an adaptive procedure for automatically selecting the
appropriate number of mutation steps, inspired by the methodology first proposed in [KBJ14].
Consider the SET approach when implemented to approximate a target distribution on the state-
space X = R?. Furthermore, consider S > 1 summary statistics, i.e. functions S; : X — R for
1<s<8S.

At iteration k > 0, right after the resampling step of a SMC method, or right after the trans-
portation step of the SET approach, consider a set {ﬂ]kv Y, of particles whose empirical distri-
bution approximates the distribution ;. Before applying the mutation kernel M}, the summary
statistics are computed, i.e. Eﬁf = Ss(ﬁﬁ ),for1 <i < Nandl < s <S. The mutation kernel
M, is then applied to the particles until the correlation along the summary statistics has fallen
under a pre-determined threshold 0 < &gy < 1. In other words, the particles are mutated by
defining {u};[p|}o=, where uy;[p] ~ M, (up;[p— 1], d@i), initialized at @} ;[p = 0] = @}, and the
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number of mutation steps py, is set as the smallest index p > 1 such that
Corr ({Ss(u 0D}y, S (@ [P })) < ae for all 1<s<S (23)

or when the number of iteration p;, > 1 reaches a maximum threshold. The index p; is referred
to as the adaptive number of mutation steps. The final mutated particles can thus be described as

u,“ ~ MZ* (uk o du)

A similar approach has been employed in [KBJ14] in which the low-frequencies of a Fourier ex-
pansion is used as summary statistics. In Section 6.3, we use as summary statistics the projection
of the particles along likelihood-informed directions and a threshold of &.; = 80%.

5.5 Sequential Ensemble Transform: practical implementations

For completeness, we now described in more details the SET methodology when used in conjunc-
tion with the adaptation strategies discussed in Sections 5.2 and 5.3. As in Section 5.2, consider an
initial distribution ji that is straightforward to sample from, and the posterior distribution jipos
that can be expressed as dipost/dpio(u) o< exp[V (u)] for some potential V : R* — R. We consider
tempered distributions (i, defined as duy/dpo(u) o< exp[r, V(u)] for a temperature parameter
7, € [0, 1] that is found adaptively. The entire method is summarised in Algorithm 2.

Algorithm 2: Sequential Ensemble Transform

Inputs: initial and final distributions p and upost

Output: particle approximation (1/N) Z 6(ul,) of the distribution /1,6 Set k = 0 and
7o = 0 and initialize {u{;}), as samples from Ho-

while 7, < 1 do

Evaluate V' (uy;) for 1 <i < N.

Find the next temperature 74, through Equation (20)

Define the probability weights wy,; ; o< exp[(Tre1 — i) V (up;)].
Compute the cost matrix D; ; = c(uy;, uy ;)

Compute COTN = argmin C + (C,D)r € RY"" under the constraint

N N

1
SO =L e SO —ut,
j:l =1
Transport the particles by setting: @y, ;, = N 2 COTN (i, §) uy;

Use {ukJrl Y, to tune a i 41 -invariant Markov kernel My 1 (u, du).
Set )y, ;. Z[0] Uy, ; and pp = 0.
while criterion (23) not satisfied do
Set pr. <—pr +1
L Define: ﬂl]fv—i-l,i[pk] ~ Mk‘f‘l(ﬂ]]fv—i-l,i[pk — 1}, du)

Set uy y ;= Uy [pe) and k< k+1.
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6 Numerical Experiments

For PDE-constrained Bayesian inverse problems, the overall cost of the SET algorithm is dom-
inated by PDE solves [DHJT03]. Estimating the matrices C°T"" requires solving an optimal
transport problem: the standard simplex method or interior point method [PW09] directly ap-
plied to the linear program (11) scales as O(N?). Faster and approximate methods are available:
for example, the entropic relaxation of [Cut13] computes an e-approximation with the cost of
O(N?/e3) [ANWR17]. Our numerical experiments show that even with N = O(10") particles,
the computational overheads associated with solving optimal transport problems to obtain the
optimal transport matrix CT-V is negligible when compared to the cost of computing the for-
ward PDE solves. Consequently, for all the numerical simulations presented in this section, the
approximate but more scalable methods such as the ones described in [GCPB16, Cut13] for com-
puting discrete optimal transport schemes were not employed. Instead, the optimal transport
matrices were computed through a standard simplex solver [FC17]. To operate, the SET method
requires O(N x M) PDE-solves where M is the total number of Markov mutations applied to
each particle. In this section, we adopt the strategies described in Sections 5.2 and 5.3 and 5.4
for automatically adapting the sequence of temperatures, the Markov mutation kernels, and the
number of times these Markov mutation kernels were applied. We compare the SET approach
to the state-of-the-art adaptive SMC approach of [KBJ14, BJKT15]. In this section, we present
three numerical experiments with increasing complexity. The first experiment investigates the
influence of the mixing properties of the mutation kernels: for this purpose, the adaptive schemes
used for adapting the Markov kernels, temperature ladder, and number of mutations at each tem-
perature are switched off. The second experiment looks into the effect of the number of mutations
at each temperature level. Finally, the last experiment is a relatively challenging Bayesian inverse
problem. It illustrates the robustness and efficiency of the SET method when used in conjunc-
tion with automated adaptation strategies; to the best of our knowledge, the scheme using the
averaged Gauss-Newton Hessian for adapting the PCNL covariance structure is new.

6.1 Scalar Target Distribution

In this section, we investigate the influence of the mixing properties of the Markov mutation
kernels. We consider a one-dimensional Gaussian target distribution p(du) defined as

I ) o exp {— L /2)2} = exp [V (u)] (24)
d,uo noise

for a “prior” distribution iy chosen as a centred Gaussian with unit variance oy = 1. In the
experiments presented in this section, we chose 0,4 = 1073: although all the quantities are
Gaussian, this setting is challenging since 0y0ise << 0. In order to focus on the mixing properties
of the Markov mutation kernels, we fix a sequence of intermediate temperatures equally spaced
on a logarithmic scale {7;}% ; with K = 30. In other words, the adaptive tempering scheme
presented in Section 5.2 is not used. Denote by o}, the standard deviation of the Gaussian in-
termediate distribution py, defined as dpuy./dpug(u) o explri V(u)]. At temperature 7, > 0, the
Markov mutation kernel is chosen as a Random Walk Metropolis (RWM) kernel with Gaussian
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perturbations with standard deviation p oy, where p > 0 is used to control the mixing properties

of the mutation kernels. For p < 1, the mutation kernels are inefficient while for p ~ 1 the
mutation kernels are close to optimal.

Posterior mean P(N) Standard Deviation

— OT — OT

i L, T
il 10° i %@%%{-é{-ﬁ 1ot
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Figure 2: Target distribution (24) with N = 10? particles, no adaptation and a ladder of K = 30
temperatures equally spaced on a logarithmic scale. Each experiment is executed and averaged
over n = 100 times. The scaling parameter p > 0 quantifies the quality of the Markovian muta-
tions. Left: distribution of |7, — 7pes| Middle: distribution of the quantity P(N) defined in
(25) Right: distribution of the ratio 8;Ym / Opost

Set Mpost and opoq the mean and standard deviation of the target distribution p(du). For a

particle approximation ;" = (1/N) S, 6(ul), we take 7 Ml and 0% as its mean and stan-
dard deviation. We also consider the quantity P(/N) that equals, up to irrelevant additive and
multiplicative constants, the negative log-posterior,

2
mpost
)= — E . 25
N o2 (5)

post

In this Gaussian setting and in the idealized situation when the samples {u'}¥ | are i.i.d samples
from fipo and N — o0, the quantity (25) converges to one. Figure 2 reports the quality of the
approximation of the mean, standard deviation, and the quantity (25) when the SET and SMC
methods are employed with N = 10? particles and identical conditions. For each value of p, the
same experiment is executed n = 100 times. For quantifying the quality of the approximation
of the posterior mean, the absolute difference \mpost Mpost| is reported. For quantifying the
approximation of the standard deviation, the ratio 72, sost/ Opost 18 reported. Finally, the quantity
(25) is also reported: values closer to one indicate a better calibrated approximation. In this
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setting, the SET approach outperforms the SMC method over all the metrics. Furthermore and
as expected, as p — 0, i.e. as the mixing of the mutation kernels gets worse, the efficiency of
the SMC approach degrades. Although the theoretical results described in Section 4.2 does not
explain this phenomenon, the SET method appears to continue to perform well in the regime
p — 0 in that example.

6.2 Multivariate Gaussian Target Distribution

Posterior Mean estimation: N=100 Posterior Mean estimation: N=1000
10° % % % 100 % %
1071 4 1071
— oT — OoT
— SMC — SMC
1 2 3 5 10 15 20 50 100 500 1000 1 2 3 5 10 15 20 50 100 500 1000
Mutation Steps per Temperature Mutation Steps per Temperature

Figure 3: Estimation of the posterior mean of distribution (26) with N = 10? (left) and N = 103
(right) particles. The error ||77]; — Mpost|| is plotted against the number of mutation steps p > 1

at each temperature level. Each experiment is averaged over n = 50 runs.

In this section, we study the influence of the number of mutation steps at each temperature
in a more challenging scenario. As opposed to Section 6.1, we employ the adaptive tempering
scheme described in Section 5.2. Let jio be a centered Gaussian distribution in R? with identity
covariance matrix. The Gaussian target distribution p is defined through the change of probability
measure

du 1
— ——(u, T u) 3. 26
P x ep{-gurn ) )
The covariance matrix I' € RP"? is given by

(j — i)
Fi7j202 exp{— 2 02

for a variance parameter 02 > (0 and length-scale parameter £ > 0. In the numerical experiments
of this section, we chose ¢ = 1 and ¢/ = 4 and D = 20. Although the target distribution
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Figure 4: Estimation of the posterior standard deviation of distribution (26) with N' = 10? (left)
and N = 103 (right) particles. The quantity R(/N) defined in Equation (27) is plotted against the
number p > 1 of mutation steps at each temperature level. Each experiment is repeated n = 50
times.

is Gaussian, it is a challenging scenario since it is already relatively high-dimensional (D =
20) and the covariance matrix of the posterior distribution is highly ill-conditioned (and hence
the posterior probability mass is concentrated in low dimensional spaces dictated by dominant
eigenvectors of the covariance matrix). The SET and SMC methods have been implemented with
a number of particles N € {10?, 10} and an effective sample size threshold (20) is set to ggg =
1/2. Furthermore, we used autoregressive MCMC proposals as defined in Equation 21 with mean
and covariance structure empirically estimated from the population of particles. In particular,
the covariance matrix of the autoregressive proposals is assumed to be diagonal with empirical
marginal variances on the diagonal (see [KB]J14] for a similar approach in the SMC context). As
described in Section 5.2 the scaling parameter p > 0 was chosen adaptively to maintain MCMC
mutations with acceptance rates in between the thresholds £ = 20% and £, = 80%.

We compared the performance of the SET and SMC methods when used with a fixed number
p > 1 of mutation steps at each temperature level. Experiments were carried out for a number
of mutations as low as p = 1 and as high as p = 103. As in Section 6.1, we report the quality of
the posterior mean and posterior standard deviation. In Figure 3, for each value of the number of
mutation steps p > 1, ||y — Mypost|| is averaged over 50 runs, where 7)), € R” denotes the
posterior mean estimated from the population of particles. Similarly, in Figure 4 we report the
averaged ratio R(/V) between the estimated standard deviations and the theoretical ones,

D ~N
1 O pos
R(N)=— ) 2=t (27)
D =1 Opost,d
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Figure 5: Density plots of the four first coordinates of the 20-dimensional target distribution (26)
for SMC (left) and SET (right) with N = 10* particles and p = 20 mutations at each temperature.
Middle is the density plot of N = 10* independent samples from the target distribution.

where 0,04, is the marginal standard deviation in the d-th dimension and 3é\ést’ 4 18 its estimate ob-
tained from the population of particles. Similarly to Section 6.1, we observe that the SET method
appears to be more robust when the number of mutations p is very low. As p increases, the
difference between the two methods progressively disappears and R(N) — 1 for both methods.

SET: temperature path SMC: temperature path R(N =500)
S 100 4 N ]
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Figure 6: Temperature trajectories for the target distribution (26) using the SET (left) and the SMC
(center) methods with N = 500 particles and p = 20 mutations at each temperature: each trajec-
tory corresponds to a different effective sample size threshold {gss € {1%, 21%, 41%, 61%, 81%}.
The plot on the (right) displays the the R(N) statistics, which quantifies the approximation of
the posterior mean, for each value of ¢ggs.

Figure 5 shows the result with N = 10? particles and p = 20 mutations for each temperature.
The marginal pairwise distribution of the first four dimensions are displayed: although for p = 20

23



neither SMC nor SET produces an entirely satisfactory approximation of the target distribution,
it is qualitatively visible that the SET produces an approximation that is closer to the correct
distribution.

Finally, in order to gain some understanding of the influence of the effective sample size
threshold £ggg on the sequence of temperatures, as well as to study the sequence of temperatures
adaptively chosen by the SMC and SET methods, Figure 6 displays the temperature paths for the
SMC and SET methods. As expected, larger values of the effective sample size threshold {ggs
lead to a slower increase of the (inverse) temperature parameter. Furthermore, low values of the
effective sample size threshold results in a loss of accuracy. This phenomenon is well understood
for SMC methods since lowering éggg exacerbates particle degeneracy but more investigations
are required for SET to understand in more details the mechanisms. Figure 6 also shows that,
except at the very start of the algorithm, the (inverse) temperature increases roughly linearly on
a logarithmic scale. Furthermore, when the number of mutations per temperature is fixed, as is
done in this example, the SET and SMC temperature trajectories are very close to each other. This
remark is important since it ensures that the numerical results presented in Figures 3 and 4 are
fair, that is, for each number p > 1 mutations per temperature, the computational budgets used
by the SMC and SET methods are equivalent.

6.3 Bayesian Inverse Problem

In this section, we test the SET method for inference in a Bayesian inverse problem governed by
a Partial Differential Equation (PDE). More specifically, we consider the following Poisson PDE
on the unit disk  C R?,

V- (e*Vf)(z) = h(x) for x €, (28)

for a known source term h : 0 — R, Dirichlet boundary conditions f(x) = 0 for z € 0Q
and a temperature field f : 2 — R. We are interested in reconstructing z : {2 — R, the log-
conductivity field, from noisy observations collected at locations x;,...,xx € {2 modelled as
d; = f(x;) + n; € R with independent Gaussian random noises 7, . .., 7k centered at 0 and
with variance o2, .. We assume a Gaussian prior distribution Iprior ON the log-conductivity field
z : {0 — R with Matern covariance structure [LRL11]. Draws from this prior distribution can be
generated by solving the elliptic PDE

(% = A)z(z) = w() for x €} (29)

with vanishing Dirichlet boundary conditions. The right-hand-side of Equation (29) is the re-
alization w : €2 — R of a Gaussian white noise process on the domain (2. For the numerical
experiments, the scale parameter x was set to 107!, The posterior distribution [50si(dz) on the
log-conductivity fields reads

du? K
Hpos (2) o exp{—2 1 Z(di—F(Z)[xi])Q} (30)

z
d/JJ prior noise ;—1

24



where F is the parameter-to-observable map that associates to each log-conductivity field z the
corresponding temperature field f = F(z) obtained by solving the PDE (28). In our experiments,
we assume that the standard deviation of the additive Gaussian noise is known, i.e. 0,ie = 1072.
The location of the observations, the ground truth temperature and log-conductivity fields are
depicted in Figure 7. Here, the ground truth log-conductivity field was obtained as a draw from
the prior distribution (29).

Temperature: Truth Temperature: MAP Conductivity: Truth Conductivity: MAP

YR

* Observations * Observations * Observations * Observations

Figure 7: Ground truth and MAP estimates of the temperature field f : 2 — R and log-
conductivity field z : 2 — R in the inverse problem (28). The prior distribution on the log-
conductivity field is a Gaussian field with vanishing mean and Mattern covariance structure (29).

6.3.1 Discretization and parametrization

The PDE (28) was discretized with the Finite Element Method (FEM) implemented on a mesh M
with M = 1170 nodes, as shown in Figure 7, using FEniCS [DHJ"03]. In the remainder of this
section, we consequently approximated all functions defined on the domain €2 with their pro-
jection on the finite element function space with piecewise linear basis functions e; : 2 — R
for 1 < ¢ < M. In other words, the function space (infinite dimensional) Bayesian poste-
rior described in Equation (30) is approximated by a M-dimensional posterior distribution. To
avoid the notational burden, we use the same notations to refer to the original (infinite dimen-
sional) quantities and their FEM approximations. Similarly, the notation F refers to both the
original forward operator and its discretized version. If M denotes the mass matrix associ-
ated to the FEM basis {e;}2,, the discretization of a Gaussian white noise on 2 can be real-
ized as w(zr) = wye(x) + ... + wyey(xr) where w = (wy,...,wy) € RM is a realiza-
tion of a centered Gaussian random variable with covariance matrix M~!. We used a (sparse)
Cholesky decomposition M = LL' and expressed the white noise vector as solution of the
linear system L' w = u where u € R is the realization of a centered standard Gaussian
distribution with identity covariance matrix. For convenience, denote by ® : R — RM
the (linear) operator that maps u to the corresponding log-conductivity field. In other words,
the function 2(z) = z1e1(x) + ... + zpren (), with (21,...,2y) = z = ®(u) € RM, is
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the solution obtained through the FEM of the PDE (29) with right-hand-side represented by
w = (L") 'u. When implementing the SET and SMC methods, the log-conductivity field is
parametrized through the quantity u. This parametrization has the advantage of corresponding
to a standard isotropic Gaussian prior distribution with identity covariance matrix and a posterior
distribution that is close to a standard Gaussian distribution except along a few data-informed
directions [FWA™11,BTBG"12,BTGMS13a, CLM16]. These properties lead to Markov mutation
kernels that are easier to tune and automatically adapted. In this parametrization, the R -valued
posterior density ji,(u) reads

() o exp {—%Huﬂz e f(z)[a:m?} () esp[V(w)] 61

where 18l is the density of a centered standard isotropic Gaussian distribution in R* and V'(u) =
—(1/2)0;.2.. K (di — F(2)[z])? is the negative of the data-misfit functional.

For implementing the SET method, a cost matrix is needed. In order to take into account the
geometry of the problem, when the SET method is implemented with N particles {u¥ }¥,, the
costs matrix D € Rf’N is defined as follows. The entry D; ; is set to the squared L?({2) distance
between the log-conductivity fields associated to the particles u; and u;,

D;; = (u),Mu}). (32)

6.3.2 Adaptive scheme

To automate the choice of the number of mutation steps at each temperature, the adaptive scheme
presented in Section 5.4 is used. In order to obtain meaningful summary statistics, we considered
a data-driven approach. First, the maximum a posterior (MAP) estimate uyap Was obtained by
minimizing the negative log-posterior density u +— — log ji;\, (u): gradients were computed with
the adjoint method and a standard L-BFGS minimization procedure was used. Figure 7 displays
the MAP estimate as well as the ground truth. Then, we formed a Gauss-Newton approximation’
Hon(upap) of the Hessian to — log jup), at the MAP,

Hon(upap) = I+ 21 Z (VuF (2)[z:]) (Vo F (2)[zi]) T € RMM, (33)

noise ;_—1

On the right-hand-side of (33), all the gradient terms are evaluated at u = uysp. The eigenvectors
vy,...,vg € RM corresponding to the K dominating eigenvalues of the Gauss-Newton Hessian
Hon(upmap) span the directions along which the collected data are the most informative and along
which the posterior distribution differs most from the prior distribution [BWG*08, BTG12]. Fi-
nally, we chose S = K summary statistics defined as S(u) = (vg, u). Figure 6.3.2 shows the
K = 6 directions ®(vy) for 1 < k < K.

'Note that the Gauss-Newton approximation includes a term corresponding to the Gaussian prior.
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Figure 8: Directions {®(wvy)}X | associated to the K = 6 dominating eigenvectors {v;} 5 | of
the Gauss-Newton Hessian Hgn(upmap) defined in Equation (33).

We used Preconditioned Crank-Nicholson Langevin (PCNL) proposals, as described in Sec-
tion 5.3, for mutating the particles: the scaling parameter p € (0, 1) was adapted so as to main-
tain an acceptance probability in between £ = 20% and &, = 80%. The structure of the
covariance [' of the PCNL proposals was also chosen adaptively. When exploring the density
pr(u) o pg(u) exp|r V(u)] at temperature 7, the particle system {ul’ })¥; was used to approx-
imate the averaged Gauss-Newton Hessian (1/N) >°N  H (ulN) where

=T+ 5 3 (VuF () ) (VuF () a]) T € RMY. (34)

noise ;—q

cn(u

In the setting when the prior distribution is Gaussian and the forward map is linear, the poste-
rior distribution is also Gaussian and the averaged Gauss-Newton Hessian equals the precision
of this Gaussian posterior distribution. This motivates the use of the averaged Gauss-Newton
Hessian—which is guaranteed to be positive definite—as the inverse covariance structure for the
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noise used within the PCNL proposals. To summarize, at temperature 75 and right after the trans-
portation step when using the SET approach, or right after the resampling step when using SMC,
the covariance I'j; used within the PCNL proposals was defined as

1 & -
fk = {N Z Hgif(ufv)} (35)
i=1

N1N || again, denotes the current particle population.

where {u;" };,,

6.3.3 Results

Temperature Trajectory Data Misfit
10°1 — smc 10° 5 — sMC
| oT — OT
1071 4 104
g 8
£102 E 3
g g 10
2 o
g1073 T 102
It o
-4
1075
10! 102 103 104 10! 102 103 104

Iteration Iteration

Figure 9: Bayesian Inverse Problem (28): Trajectories for Temperature (left) and averaged data-
misfit functional (right) using the SET and SMC methods with N = 2.10% particles, adaptive
PCNL mutation kernels, an adaptive temperature scheme, and an adaptive number of mutation
steps at each temperature.

We implemented the SET and SMC approaches with N = 2.10% particles with identical con-
ditions on a server with 20 computing cores, one for each particle to be computed in parallel.
The initial distribution was chosen as the prior, i.e. p(u) o< exp [—(1/2)|[ul|?]. Furthermore,
the schemes presented in Sections 5.2, 5.3 and 5.4 were used to automatically adapt the ladder of
temperatures, the Markov mutation kernels, and the number of mutations.

The ground truth was obtained by running 20 Preconditioned Crank-Nicholson Langevin
MCMC simulations (in parallel) for L = 107 iterations, each of the runs was initialized from inde-
pendent draws using the Gauss-Newton approximation described in Section 6.3.2. Convergence
was checked by verifying that the marginal means, variances, and summary statistics described
in Section 6.3.2 agreed among the 20 chains.

Figure 9 (left) shows the trajectories of the temperatures for both the SET and SMC methods
as a function of the total number of mutation steps. In this example, the Markov mutation steps
are more computationally expensive, by at least an order of magnitude, than all the other com-
putational overheads. Consequently, the total number of mutation steps is roughly proportional
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tion produced by the SMC and SET methods are equally good, and agree well with the MCMC
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kernels through the adaptation strategy (35). Figure 9 (right) displays the averaged value of the
As displayed in Figure 10, the estimation of the posterior marginal mean and standard devia-
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Bayesian Inverse Problem (28
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Figure 10

obtained from MCMC (left) and SET (center) and SMC (right). The SET and SMC methods

were used with IV

scheme, and an adaptive number of mutation steps at each temperature.

We conclude this section with a brief discussion of effective sample size computations. Al-
though there have been a few recent and important methodological advances in this area [CL*13,

LW18,0D"19,DG19], it is fair to say that it is still difficult reliably to evaluate the effective sample

Interacting par

for
effective sample size functional defined in Equation (19) is only used for adapting the temperature
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ladder: it is not designed, nor should be used, to provide a reliable estimate of the variability of
the quantities derived from a particle system.

7 Conclusions

We have introduced the SET method, an optimal-transport based approach for performing infer-
ence in high-dimensional Bayesian inverse problems. The SET methodology is, under mild as-
sumptions, provably consistent in the large-particle regime. Our numerical simulations indicate
that, in complex high-dimensional scenarios such as PDE-constrained Bayesian inverse prob-
lems where it is typically difficult to design efficient Markov mutation kernels, the SET method
performs favourably when compared to other particle-based approaches such as modern adap-
tive SMC methodologies. Our numerical results indicate that the SET method, by relying on
transportation methods instead of a resampling scheme, is less affected than SMC by particles
degeneracy and is able to better exploit the particles system to adapt the mutation kernels. Al-
though our theoretical results provide consistency guarantees, they do not quantify nor explain
the empirical gains observed when comparing the SET to standard SMC approaches.
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