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Abstract— Objective: This paper explores the predic-
tive capability of dynamic functional connectivity extracted
from functional magnetic resonance imaging (fMRI) of the
human brain, in contrast to static connectivity used in
past research. Methods: Several state-of-the-art features
extracted from static functional connectivity of the brain
are employed to predict biological gender and intelligence
using publicly available Human Connectome Project (HCP)
database. Next, a novel tensor parallel factor (PARAFAC)
decomposition model is proposed to decompose sequence
of dynamic connectivity matrices into common connec-
tivity components that are orthonormal to each other,
common time-courses, and corresponding distinct subject-
wise weights. The subject-wise loading of the components
are employed to predict biological gender and intelligence
using a random forest classifier (respectively, regressor)
using 5-fold cross-validation. Results: The results demon-
strate that dynamic functional connectivity can indeed clas-
sify biological gender with a high accuracy (0.94, where
male identification accuracy was 0.87 and female identifi-
cation accuracy was 0.97). It can also predict intelligence
with less normalized mean square error (0.139 for fluid in-
telligence and 0.031 for fluid ability metrics) compared with
other functional connectivity measures (the nearest mean
square error were 0.147 and 0.037 for fluid intelligence and
fluid ability metrics, respectively, using static connectivity
approaches). Conclusion: Our work is an important mile-
stone for the understanding of non-stationary behavior of
hemodynamic blood-oxygen level dependent (BOLD) signal
in brain and how they are associated with biological gen-
der and intelligence. Significance: The paper demonstrates
that dynamic behavior of brain can contribute substantially
towards forming a fingerprint of biological gender and
intelligence.

Index Terms— fMRI, Prediction of gender, Intelligence
Prediction, Tensor Decomposition, resting-state, task,
functional connectivity, dynamic, Human Connectome
Project, PARAFAC.

I. INTRODUCTION

This paper presents classification and regression approaches
to predict gender and intelligence of humans from the func-
tional magnetic resonance imaging (fMRI) of the brain. In
particular, the paper investigates the predictive power of dy-
namic functional connectivity (dFC) for classifying biological
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gender and intelligence metrics. The results are compared with
static connectivity and it is shown that dFC is predictive of
two important phenotypes in humans. We use a large dataset
containing task and resting state fMRI data of 475 subjects
(each subject performed 7 tasks, e.g., emotion, gambling,
working memory, relational, social, motor, language as well
as rest) from the Human Connectome Database [1] to test the
classification method.

Dynamic functional connectivity of human brain refers to
change in spatio-temporal organization of neuronal units over
time [2], [3]. Dynamic connectivity was known previously
to exist for brain scanning modalities with rich temporal
resolution, i.e., electroencephalography (EEG), magnetoen-
cephalography (MEG) [4]–[8]. However, only recently dFC
was shown to be present in functional magnetic resonance
imaging (fMRI) [9]. Since then, several papers have in-
vestigated how dFC correlates with demographic character-
ization (e.g., age [10], gender [11], intelligence [12] and
cognition [13]). Dynamic functional connectivity has also
been demonstrated to be associated with disease states [14]–
[16]. There has been an interest in using dFC for individual
characterization specifically for prediction studies − dFC was
used in [17], [18] for classifying gender [17], psychiatric
disorders [19] and for predicting attention load [20].

Given the plethora of work with evidence that dFC is an
important phenomena in neuroimaging, our understanding is
still constrained about the possible personal characteristics
that can be predicted based on dFC. This paper shows that
dFC can contribute substantially towards forming a fingerprint
for classifying biological gender and predicting intelligence
quotient (IQ) based on behavioral tasks. Predicting IQ from
dFC has not been reported in literature before, and is a major
contribution of our work. Additionally, it is shown that dFC
can match, or sometimes outperform, other standard MRI-
based models for classification of biological gender [17]. This
paper presents a novel way to extract dFC states from task
fMRI (t-fMRI) and resting state fMRI (rs-fMRI). The states
are formulated as a constrained tensor decomposition problem
that has a unique solution. An algorithm utilizing alternating
least square technique is derived that identifies the unique
component states.

The paper considers the analysis of both task-fMRI (t-fMRI)
and resting-state fMRI (rs-fMRI). A brief description of t-
fMRI or rs-fMRI is given next. During t-fMRI, the person
performs a number of repetitive tasks, e.g., tapping fingers,
watch pictures, make decision etc. while inside the scanner.
These behaviors invoke the hemodynamic response known as
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blood-oxygen level dependent (BOLD) signal corresponding
to the repetitive task [21]. Task fMRI contain valuable infor-
mation about a subject’s behavioral abilities, gender [22], and
age [23]. On the other hand, rs-fMRI measures the sponta-
neous fluctuation of BOLD signal during awake rest. In case
of many psychiatric illnesses, rs-fMRI signal of the patient is
highly meaningful and predictive of individual traits [24] and
psychiatric disorder [25]–[27].

A. Prior Work

1) Gender effect on dFC is not well characterized: In re-
cent years, a number of studies have found brain functional
connectivity differences for different biological gender using
various neuroimaging modalities. These differences are espe-
cially prominent in several cognitive and behavioral charac-
teristics, such as verbal abilities, working memory abilities
and spatial orientations [28]. However, these studies have
mainly addressed the psychometric or behavioral differences
at the group population level. Whether functional connectivity
differences have predictive capability of biological gender is of
utmost interest. A few prior publications have also investigated
functional and anatomical brain network dissimilarities for
classifying male vs. female [29]–[31]. Anatomical connec-
tivity differences for biological gender were reported in [29]
using structural diffusion tensor imaging (DTI). Zhang et
al. [30] used rs-fMRI and partial least square modeling to
classify gender. Moreover, global network properties extracted
from static connectivity were found to differ in emotion
regulation [31]. Stronger functional connectivity has been
noticed in default mode network for females. Particularly,
Buhm et al. [32] concluded that functional networks consisting
of posterior cingulate cortex (PCC), precuneus and bilateral
medial prefrontal cortex are active for females in rs-fMRI.
Strong intra-hemispheric network connectivity were reported
in females whereas strong inter-hemispheric connections were
prominent for males [33] during rest. Similar conclusion was
also reached in the case of anatomical networks [34]. Although
predicting biological gender based on static functional con-
nectivity and anatomical connectivity are well studied, there
is lack of scientific literature on understanding the predictive
ability of dynamic connectivity for biological gender. Recent
work by [17], [18] have made preliminary progress in this
direction. Menon et al. [17] were successful in classifying
biological gender based on intrinsic functional connectivity
such as edge consistency, edge variability and differential
power measures. The partial static connectivity and dFC were
able to classify biological gender with an accuracy of 0.90
and 0.80, respectively, in a leave-one-out model. Default Mode
Network and visuospatial networks were found to have mod-
erate variability among groups. Additionally, fronto-parietal
and attention networks had high functional variability. Cai et
al. [18] performed an association study using rs-fMRI data to
investigate biological gender differences. This study employed
a novel GICA-TVGL framework and observed that males and
females have significant differences with respect to visual
network. Additionally, differences in dFC state transition time
was reported.

2) IQ affect on dFC is not well characterized: Similarly, the
predictability of IQ from dFC is not well characterized. A
few studies have attempted to associate and predict individual
intelligence metrics from structural and functional MRI until
now. Among them, the work by Finn et al. [35] was able to
successfully establish the importance of static connectivity to
predict fluid intelligence using a cross-validation and machine-
learning modeling. Additionally, Dubois et al. [36] conducted
a study by utilizing a fully cross-validated model to show
that functional connectivity in human brain could predict 20
percent of the total variations for the intelligence distribution
in population. The model was built by the factor analysis
of intelligence scores for 10 different tasks. Similar study
was carried out in [37] and it was concluded that functional
activation maps of brain is predictive of general intelligence.
Although progress has been made to associate intelligence
with functional connectivity profile of brain, very few studies
have demonstrated the predictability of intelligence quotient
(IQ) using non-stationary functional profile of brain activity.
In addition, more work needs to be done to understand
whether finding from one cohort of subjects can directly be
extrapolated to different sub-groups of populations.

3) Computing Dynamic Functional Connectivity: The most
common way of extracting dFC from fMRI is by sliding-
window correlation matrix. Since fMRI is spatio-temporal,
one can conceive of the network of the spatial pattern to be
dynamic instead of static. A very interesting direction in fMRI
neuroimaging study is the extraction of spatial couplings that
vary over time. In order to extract the spatial couplings, blind
source separation (BSS) models, in particular, independent
component analysis (ICA), non-negative matrix factorization,
principal component analysis and tensor decomposition, have
been widely adapted in data-driven pattern studies [38]–[41].
A study by Kiviniemi et al. [40] investigated the stability
of ICA components over time segments to understand the
changes in spatial coupling of the default mode network. In
another model, an atlas is used to parcellate the brain into
spatial maps using BSS, where each map has distinct time
courses associated with it. Following this, the time-varying
property of the component time courses [42] is captured by
calculating Pearson’s correlation using windowing [43], [44].
Following this, ICA, PCA, etc. are performed to find out the
brain states. Although PCA and ICA are widely used for ex-
tracting dynamic functional connectivity, they suffer from two
drawbacks. PCA decomposition constrains both connectivity
maps as well as the time courses (activity level) of the maps
to be orthogonal to other maps and time courses. This can
severely hamper the expressiveness of model. ICA can over-
come the orthogonality constraint in the time domain, although
the uniqueness of spatial maps requires the sources to be
non-Gaussian. Tensor decomposition, specifically PARAFAC
decomposition, can alleviate both concerns, as the required
constraints can be added to a particular mode without affecting
other modes.

B. Contribution

The contribution of this paper is four-fold.
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• The paper presents yet another method for extracting dFC
from sliding window correlation using tensor decomposi-
tion. The uniqueness conditions for the tensor decomposi-
tion are formulated. In addition, we provide an algorithm
utilizing alternating least square based approaches for
finding the unique decomposition.

• The paper investigates the importance of dFC for bio-
logical gender classification from fMRI. It is shown that
gender can be predicted accurately from most of the task-
related connectivity patterns in brain.

• The paper successfully demonstrates the importance of
dFC for prediction of intelligence metrics from fMRI. We
find that subject-wise weights of dynamic spatio-temporal
maps are predictive of intelligence.

• The paper proposes a novel method to extract related
dynamic sub-networks associated with gender and intel-
ligence prediction. Statistical tests are also carried out to
validate the significance of the proposed sub-networks.

II. PARAFAC-BASED DECOMPOSITION MODEL

A. Notations
In this paper, tensors are denoted in caligraphic letters (e.g.,

X ), matrices in uppercase letters (e.g., A) and vectors in
lowercase letters (e.g., af ). ||.||F denotes Frobenius norm, �
denotes Khatri-Rao product, ∗ denotes Hadamard product.

B. Preliminaries
Regional time-series from each fMRI scan are extracted and

they are reshaped to a matrix (dim 1 = spatial, dim 2 =
temporal. From this matrix, a new dynamic connectivity
matrix based on sliding window of pre-defined strides are
formed. More details can be found in Section III (Experi-
mental Setup). In brief, each subject’s regional time-series
yield multiple time-series windows based on their strides,
which are then used to create Pearson’s correlation between
regions for each time-window. Following this, the Pearson’s
correlation matrices are vectorized and multiple connectivity
vectors are stacked to create a dFC matrix for each subject
where (dim 1 = edges, dim 2 = temporal). The scans from
a group of subjects are concatenated to form a 3-way tensor
where the dim 3 = subject. We denote the 3-way tensor of
size I1 × I2 × I3 as XI1,I2,I3 .

C. Traditional PARAFAC
Traditional unconstrained PARAFAC [45] modeling for de-

composing a tensor XI1,I2,I3 into F number of rank-1 tensors
can be written as

XI1,I2,I3 =

F∑
f = 1

af ◦ bf ◦ cf , X = (A,B,C) (1)

where A, B, C are of size I1 × F , I2 × F and I3 × F
respectively. af = A:,f , bf = B:,f , cf = C:,f where
A:,f is the f th column of A and ◦ denotes outer product. For
unconstrained PARAFAC decomposition, each rank-1 tensor
will consist of one matrix (A) representing spatial couplings
(column in A), corresponding time variation of the component

(each column of B) and the distinct weights of the time-
varying spatial-coupling map for each subject (column in C).
Precisely, this decomposition optimizes the following function:

min
A,B,C

||X1 − (C �B)AT ||2F (2)

where X1 = XI2I3,I1 . More specifically, X1 is tensor
X reshaped as a matrix with number of rows I2 × I3 and
columns I1. Likewise we also define X2 = XI3I1,I2 and
X3 = XI2I1,I3 where X2 and X3 correspond to reshaped
matrix form of tensor X . Previous works have shown that
unconstrained PARAFAC decomposition itself is unique under
very mild conditions [45]–[47].

Fig. 1: PARAFAC decomposition conceptual illustration. A 3-
D tensor is divided into rank-1 tensors where each of them is
outer product of three vectors. The outer product vectors for
each dimension from rank-1 tensors are collected in matrices.

D. Constrained-PARAFAC

Although unconstrained PARAFAC tensor may have unique
decomposition under mild conditions, the optimization process
used to find the decomposition matrices may introduce many
correlated components [45]. Moreover, in the case of de-
composing dynamic connectivity tensor into common spatio-
temporal components, it may introduce connectivity profiles
that are hard to interpret from a biological perspective. Thus
in order to alleviate these two problems, we introduce orthogo-
nality in dim−1. This guarantees that the spatial connectivity
components extracted from the tensor are uncorrelated. In
addition, we ensure that the decomposition profile is validated
by previous work on BSS for fMRI (using ICA, PCA) which
follows the hypothesis that cross-talk among spatial-coupling
should be small [19], [48]. These two cases are satisfied by
using ATA = I , where I is a identity matrix. Also, for in-
terpretability, we can assume the weighting of spatio-temporal
maps in each subject to be non-negative (C ≥ 0). Thus,
decomposition problem has milder uniqueness conditions than
traditional PARAFAC. The corresponding uniqueness and an
efficient algorithm for finding these components are derived
later. A conceptual illustration of PARAFAC and the proposed
constrained-PARAFAC models is shown in Fig. 1.

The corresponding optimization is stated as:

min
X̃
||X −X̃ ||2F s.t. X̃ = (A,B,C), ATA = I, C ≥ 0 (3)

Note that each sub-problem (for A, B and C) can be solved
optimally using generalized solution to the orthogonal pro-
crustes problem [49], generalized least square solution [50]
and non-negative least squares solution [51], respectively.

This constrained-PARAFAC decomposition was proposed
in [21] for extracting the static functional activation maps from
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raw fMRI data. In contrast, this paper utilizes the decomposi-
tion model for extracting dynamic spatial couplings that vary
over time and uses the distinct subject-wise loading vectors to
associate and predict gender (respectively, intelligence) from
both t-fMRI and rs-fMRI. Here we note that, although the
proposed tensor decomposition has straightforward interpre-
tations for t-fMRI since all subjects perform pre-scheduled
tasks, resting-state fMRI is not synchronized among subjects.
However, during rest, fMRI scans have shown synchronization
among regions of brain in humans. This is especially true
for the default mode network (DMN) [25] in brain. Recently,
trilinear tensor factorization was also applied explicitly to rs-
fMRI in [8], [52], i.e., time courses were synchronized among
subjects. We explored the predictive performance of the same
technique as an exploratory measure for rs-fMRI as well as to
predict biological traits. The model performance showed that
straightforward application of constrained-PARAFAC tensor
decomposition is useful for rs-fMRI for classification of bio-
logical gender and prediction of intelligence.

1) Uniqueness: Uniqueness conditions for the proposed
model are derived in the following two theorems.

Theorem 1. Consider X ∈ RI1×I2×I3 . Let A ∈ RI1×F , B ∈
RI2×F , C ∈ RI3×F represent the tensor decomposition ma-
trices such that C ≥ 0 and ATA = I . In this case a global
minimum for (3) exists. In other words, there is only one
solution for X̃ that minimizes (3).

Proof. The proof is given in Supplementary Information
Section Proofs Subsection A.

Now we state the two conditions that need to be satisfied
for the decomposition to be unique.

Condition I. B does not have proportional columns.
Condition II. C has full non-negative column rank.
Theorem 2. If conditions I and II are satisfied, then the

decomposition X̃ = (A,B,C) is unique up to permutation
and scaling.

Proof. The proof is given in Supplementary Information
Section Proofs Subsection B.

2) Algorithm for Solving the Problem: An algorithm for
finding the solution of (3) is given in Algorithm 1.

Theorem 3. Algorithm 1 finds the uniquely identifiable
decomposition of (3).

Proof. The proof is given in Supplementary Information
Section Proofs Subsection C.

III. EXPERIMENTAL SETUP

A. Dataset

The dataset used in the analysis is taken from Q2 release
of Human Connectome Project database [1], [53]. The dataset
consisting of 475 subjects is used to classify gender (male vs.
female) and predict intelligence of the subject. The subjects in
the database were scanned while they performed the following
seven tasks i) emotion, ii) gambling, iii) working memory, iv)
relational, v) language, vi) motor, vii) social. Additionally rs-
fMRI was also captured.

1) Biological Gender: Number of females 279, number of
males 196.

Algorithm 1: Alternating Least Square Algorithm for
Solving Constrained PARAFAC in (3)

Input : Tensor X , rank F
Output: Estimated connectivity maps A, time courses B,

subject-wise contribution C
1 (X1, X2, X3) = Unfold X along axis 1, 2, 3 respectively.
2 Initialize A, B, C
3 for i = 1 to until convergence do
4 % Solve for A from unfolding X1

5 M = [(B � C)TX1]
6 M = UΣV T

7 AT = UV T

8 % Solve for B from unfolding X2

9 BT = [(C �A)TX2]
10 % Solve for C from unfolding X3

11 N = (A�B)TX3

12 CT = [N+]
where N+ contains only the positive elements of N

13 end

TABLE I: Demographic and task score information for the
subjects.

Demographic Information Male Female Range
# of samples (n) 196 279

Age − mean (SD) 29.30 (3.31) 29.23 (3.48) 22-36
Task Score Information Male Female Range

Fluid Intelligence - mean (SD) 16.56 (5.21) 15.76 (5.13) 4-24
Fluid Ability Metrics - mean (SD) 99.50 (16.35) 101.85 (16.14) 47-150

2) Intelligence: Following [1], two relevant behavioral tasks
were chosen as metrics of intelligence [24] quotient. Table I
provides the the age and task scores along with the range of
score values. There were no significant differences (p > 0.05)
between males and females with respect to the scores.
• Fluid Intelligence. Fluid intelligence was measured using

the Penns Progressive Matrices (PMAT) [54]. PMAT is a
shortened version of Ravens Progressive Matrices. In this
test, the participants were given puzzles that contained
visual patterns. In the puzzles, a piece was missing and
they were asked to fill the blank piece from a number of
candidate pieces.

• Fluid Ability Metrics. The Pattern Comparison Processing
Test is a measure of speed of processing, which is
considered a ‘fluid ability’ because it steadily improves
from childhood to adolescence, and then begins to decline
in adulthood (Range 47-150). This test for ages 7-85
asks participants to identify if the two pictures shown
in the screen are same. The age-adjusted scale score was
used for our experiment. Participant score was normalized
using the age appropriate band of Toolbox Norming
Sample (bands of ages 18-29, or 30-35). A score of 100
signifies performance that is same as national average,
whereas a score one standard deviation away corresponds
to an increase or decrease of 15 points.

B. Data Acquisition and Preprocessing

The fMRI dataset consisted of 475 subjects taken from Hu-
man Connectome Project database [1], [53]. All the tasks and
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resting state data were used. The fMRI data can be publicly
accessed from 1. Functional magnetic resonance imaging data
were acquired using a customized Siemens 3T Connectome
Skyra scanner. The scans were taken using 2 mm isotropic
voxels with TR = 720ms, TE = 33.1 ms as described in [55].
Details of the task paradigms can be found in WU-Minn HCP
500 Subjects Data Release Manual available from 2.

The HCP fMRI data was first processed following the HCP
fMRI Volume pipeline (v3.4), which includes gradient unwrap-
ping, motion/distortion correction, registration to structural
scan, nonlinear registration into MNI152 space, and inten-
sity normalization as reported in [56]. Subsequently, spatial
smoothing and activation maps generation using the gener-
alized linear model implemented in FSLs FILM (FMRIBs
Improved Linear Model with autocorrelation) were performed.
Using Freesurfer cortical parcellation atlas [57], 85 regions of
interest were identified as shown in Table R1 in Supplementary
Information. Mean time-series values of voxels in every region
for each subject were then extracted. For static connectivity
analysis, one-shot absolute Pearson’s correlation values are
extracted for each subject from the mean time-series.

The time-series for each subjects were then divided into
multiple sliding windows of varying strides (1, 5, 10, 15). The
window size were kept fixed at 50s following the recommenda-
tions from [58]. Absolute Pearson’s correlation were calculated
for each subject and each time window between the 85 regions.
Note that the correlation coefficient values are bidirectional.
Hence only one set of values for each pair of regions were
kept and thus we get

(
85
2

)
= 3570 edge correlation values

(or vector of size 3570 × 1) for each window. Correlation
vectors extracted from different time-windows were stacked to
form a dynamic functional connectivity matrix (size 3570×T
where T depends on the sliding window stride). Dynamic
functional connectivity matrix were then concatenated to form
a 3 dimensional tensor of size 3570 × T × 475. A workflow
diagram for the proposed prediction scheme is given in Fig. 2.

Fig. 2: The workflow for proposed classification/ regression
framework. Static and dynamic connectivity matrices are ex-
tracted from brain regions. The features extracted from these
matrices are used to predict biological gender and intelligence.

C. Performance Comparison
We compare the performance of proposed dFC against the

following baseline methods:

1https://db.humanconnectome.org
2https://www.humanconnectome.org/

Partial Least Squares (PLS) [31]: Partial least squares
method is useful for associating neuroimaging markers with
behavior. PLS finds a new projection of the response variables
and independent variables into a new common space. PLS was
run on the static correlation matrix extracted for the group
of subjects for classification and prediction. The number of
components for PLS were chosen based on cross-validation
performance.

Correlation Coefficients [59]: Raw values of correlation
coefficients were used as features for classification and pre-
diction scheme. However, the number of features is very large
compared to number of samples (475) and hence there is a
chance of reduced prediction power for curse of dimensional-
ity. As a result, feature selection becomes important for predic-
tion task [22], [60]. Feature selection was implemented using
Minimum Redundancy Maximum Relevance (mRMR) [61].
Note that other techniques such as Minimum Uncertainty and
Sample Elimination (MUSE) [60] can select important features
from larger datasets.

Network Features [62]: Adjacency matrices were used
to calculate network characteristics using Brain Connectivity
Toolbox (BCT) 3 as described in [26]. At a local (node)
level in the network, three features, namely local efficiency
(LE), clustering coefficient (CC) and betweenness centrality
(BC), were computed [63], [64]. At a global level, we cal-
culated two features: modularity and global efficiency [64].
The local and global features in the network represent com-
plementary viewpoints of the network for segregation and
integration of nodes, respectively. Hence from each subject,
we extracted 85 × 3 × 2 (for 3 features at each node) + 2 ×
2 (for modularity and global efficiency) = 514 network fea-
tures.

An overview of the network based features is discussed next
as described in [65]. Local efficiency is computed using the
summation of inverse of the shortest paths to the neighbors
of a node. This metric is used to understand how efficient a
node is for transferring information between two neighboring
nodes. Clustering coefficient is calculated by the number of
triangles created around a node out of all possible triangles.
Betweenness centrality of a node is calculated as the percent-
age of shortest paths that contain the node. Modularity metric
measures how a network is sub-divided into smaller dense
sub-networks with sparse inter-connections. Global efficiency
describes the efficiency of information transfer within the
whole graph. More details of the network measures can be
found in [62].

Sub-Graph Entropy [55]: We have recently shown that
sub-graph entropy metrics are well suited for identifying
brain states [55] and classifying patients suffering from metal
disorders [26]. From static one-shot connectivity matrix, node
entropy and edge entropy were calculated and they were used
for further analysis.

Principal Component Analysis (PCA) [48]: Principal
Component Analysis was carried out on the concatenated
correlation values from sliding window for all subjects. This
procedure extracted common network space and unique time-

3https://sites.google.com/site/bctnet/

https://db.humanconnectome.org
 https://www.humanconnectome.org/
https://sites.google.com/site/bctnet/
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courses for each subject that are orthonormal to each other.
The average value of unique time-courses were used as fea-
tures for prediction. The number of components for PCA were
chosen based on cross-validation performance.

Independent Component Analysis (ICA) [19]: Indepen-
dent Component Analysis is a popular method for analysis
dFC. In our experiments, ICA was also carried out on the
concatenated correlation values from sliding window for all
subjects. Like PCA, this analysis extracted common network
space and unique time-courses for each subject that are inde-
pendent of each other in statistical sense. The average value
of unique time-courses were used as features for prediction.
The number of components for ICA were chosen based on
cross-validation performance.

Mean dFC: For comparison to existing sliding window
approach, average absolute Pearson correlation value for all
the sliding window correlation matrices were calculated for
each subject. These average edge weights of size 3570×1 are
then used directly for classification (respectively, regression).

D. Statistical Analysis
We divided the dataset randomly into 5 unique sets that

were later used for 5-fold cross-validation. For each of the
tasks, 5-fold cross validation (CV) [66] was performed over
the dataset, where 4 folds are used for training each time and
the rest for testing with hyper-parameters chosen using in-
fold validation. In this paper, we reported the CV accuracy
as well as other performance measures such as sensitivity and
specificity. For intelligence prediction, we reported normalized
mean square error (MSE) as well as mean absolute error
(MAE) and standard deviation of error (SD). Normalized
mean square error was calculated by dividing the mean square
error by the square of actual values. For all the prediction
performance random forest classifier (respectively, regressor)
was employed. For hyperparamter tuning, {2i|i = 1, .., 7}
trees were trained using in-fold cross-validation. We used
the inbuilt implementation of random forest (TreeBagger)
available in MATLAB 4.

Additionally, t-tests were carried out to find out the connec-
tivity maps that have statistically different loading in male vs.
female. Similarly, Pearson’s correlation test was performed to
extract the connectivity components with statistically higher
correlation values with fluid intelligence and fluid ability
metrics. Note that, in both cases, the subject-wise loadings
(columns of C) of the components were used for finding the
statistical significance. As the test involves multiple compar-
isons for multiple components, the significance level (α) for
rejecting the null hypothesis that there was no significant dif-
ference (classification task/ biological gender identification) or
there was no significant correlation (regression/IQ prediction
task) was fixed at 0.05 with Bonferroni correction.

IV. RESULTS

A. Classification Results
The results for classifying biological gender and prediction

of IQ are described next.

4www.mathworks.com

All features were able to classify gender with high accuracy.
The results for using six distinct methods as described above
are shown in Fig. 3. We note that the proposed dFC (tensor)
turns out to be one of the two best performing features (other
one is edge entropy). For individual performances in each task,
features extracted from emotion task had the best performance
for classifying male vs. female with accuracy, sensitivity and
specificity of 0.84, 0.89 and 0.81, respectively. This was
closely followed by rs-fMRI. The results of the performance
for each type of features are shown in Table. II.

Fig. 3: Average 5-fold cross-validation accuracy for each task
employing different feature engineering techniques. Here more
the height of the bar, better the performance. The performance
accuracy for different features in Table II are shown for each
task. Our proposed dFC (Tensor) always performs within top
two methods for predicting biological gender.

Overall, dFC extracted from the concatenation of tasks
together performed the best in classifying biological gender. In
order to understand which stride for calculating dFC performs
the best for classifying gender, we tested the classification
scheme for stride = 1, 5, 10, 15. The winning stride is chosen
for the “final” classifier. The results are shown in Fig. 4. In
particular, stride = 10 had best overall performance for each
task where it classified biological gender most precisely for 7
out of 8 tasks.

Fig. 4: Average 5-fold cross-validation accuracy for each task
employing different sliding window strides for calculating
dFC. Here more the height of the bar, better the performance.
Stride 10 yields best accuracy most of the times.

Finally, the best performance for each class of features is
shown in Table II.

www.mathworks.com
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TABLE II: 5-Fold cross validation classification results for
biological gender classification

Task Features Accuracy Sensitivity Specificity
Partial Least Square [31] Emotion 15 0.80 0.66 0.86

Correlation [59] Emotion 15 0.73 0.64 0.75
Network Features [62] Rest 54 0.69 0.74 0.65

Node Entropy [55] Social 85 0.75 0.83 0.66
Edge Entropy [55] Emotion 3570 0.84 0.89 0.81

Dynamic Connectivity (Proposed) Combined 25 0.94 0.97 0.87

The proposed method for classifying biological gender was
compared with other ways of calculating dFC and the results
are shown in Table III.

TABLE III: 5-Fold cross validation classification results for
biological gender classification using different decomposition
techniques from dFC.

Task Features Accuracy Sensitivity Specificity
Tensor (Proposed) Combined 25 0.94 0.97 0.87

ICA [14] Combined 75 0.71 0.55 0.85
PCA [48] Combined 75 0.5 0.48 0.51
Mean dFC Emotion 3570 0.74 0.85 0.66

Fluid intelligence and Fluid ability metrics were predicted
in the same way. Figs. 5 and S1 (Supplementary Information)
demonstrate the results of using static and dynamic network
based features for predicting fluid intelligence and fluid ability
metrics, respectively. For fluid intelligence, the mean absolute
error were in the range of 5−6 for all the methods. Note that,
among the tasks, working memory task was most predictive of
fluid intelligence as it gave the task wise best performance for
2 out of 5 static connectivity features as shown in Table IV fol-
lowed by emotion task. However, combining the tasks together
and applying the proposed tensor decomposition yielded the
best prediction performance with MSE, MAE of 0.13 and 5.1,
respectively.

For fluid ability metrics, the mean absolute error were in
the range of 13 − 16 for all the methods. No task had a
consistently good performance across all static connectivity
features as shown in Table IV. Combining the tasks together
and applying the proposed tensor decomposition yielded the
best prediction performance with MSE, MAE of 0.031 and
15.37, respectively.

Additionally, Figs. 6 and S2 (Supplementary Information)
show the prediction results for dFC with different sliding
window strides. For fluid intelligence prediction, stride = 5
performed the best whereas for fluid ability metrics stride =
10 had the best performance.

Similar to the case of gender prediction, the winning model
from each types of features and task is listed in Table IV.

The proposed method was also compared with other ways
of calculating dFC (PCA, ICA) and the results are shown in
Table V. The dFC based features were able to predict 27% of
the variations for fluid intelligence and 22% of variations for
fluid ability metrics. Both of these values are higher than that
reported in [36].

To check the robustness of our results from dFC, we
carried out the classification scheme using a different brain
atlas based on functional organization [67]. The results on
gender classification, and intelligence predictions are reported
in Tables S1 and S2 (Supplementary Information). The results
are always within ∼ 2% of the performances compared to the

Fig. 5: Average 5-fold cross-validation normalized mean
square error for each task employing different feature engi-
neering techniques to predict fluid intelligence. The normal-
ized mean square error performance for different features in
Table IV are shown for each task. Here less the height of
the bar, better the performance. Our proposed dFC (Tensor)
always performs within top two methods for predicting intel-
ligence.

Fig. 6: Average 5-fold cross-validation normalized mean
square error to predict fluid intelligence for each task em-
ploying different sliding window strides for calculating dFC.
Here less the height of the bar, better the performance. Stride
5 yields best accuracy most of the times.

anatomical brain parcellations.

B. Important Networks
The dFC component maps extracted by combining sliding

window correlation values across tasks were highly predictive
of biological gender, and individual intelligence metrics. In
order to understand if the extracted maps were loaded in
significantly different ways in male vs. female groups, we
performed t-test on the individual weight matrix (C) of the
decomposed tensor. Note that columns of C correspond to
loading of spatio-temporal components and the rows of C
represent individual variations of different components. Hence
t-tests were carried out separately on each column of C based
on biological gender labels. Two components were found to be
statistically different (p < 0.002) after Bonferroni correction
of significance level. In order to visualize the component, the
edges with values in the top 5% are visualized by overlaying
them on an MNI brain using BrainNet toolbox [68]. The
components are illustrated in Fig. 7. We see that the cor-
responding weights are well distributed among the subjects,
which signifies that this component was prevalent in most
people in the group. In particular, Spatial Map 1 in Fig. 7
has higher weights for females compared with males. On the
other hand, Spatial Map 2 in Fig. 7 has higher weights for
males compared with females.
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TABLE IV: 5-Fold cross validation regression results for predicting IQ.

Fluid Intelligence Fluid Ability Metrics
Task Features MSE MAE SD Task Features MSE MAE SD

Partial Least Square [31] Emotion 15 0.58 11.42 2 Language 15 0.70 82.71 4.57
Correlation [59] Motor 15 0.15 5.36 4.3 Relational 15 0.044 16.78 0.86

Network Features [62] WM 425 0.15 5.35 0.33 Rest 425 0.045 17.03 3.43
Node Entropy [55] Emotion 85 0.16 5.62 0.36 Emotion 85 0.037 15.85 1.05
Edge Entropy [55] WM 3570 0.147 5.17 0.36 Motor 3570 0.041 15.38 0.64

Dynamic Connectivity (Proposed) Combined 25 0.139 5.1 0.2 Combined 25 0.031 15.37 1.01

TABLE V: 5-Fold cross validation regression results for predicting IQ using different decomposition techniques from dFC.

Fluid Intelligence Fluid Ability Metrics
Task Features MSE MAE SD Task Features MSE MAE SD

Tensor (Proposed) Combined 25 0.139 5.1 0.2 Combined 25 0.031 15.37 1.01
ICA [19] Combined 75 0.453 10.31 3 Combined 75 0.043 18.01 2
PCA [48] Combined 75 0.516 11.34 4.2 Combined 75 0.087 31.49 5
Mean dFC Motor 3570 0.169 5.80 0.13 Relational 3570 0.034 15.67 1.43

Fig. 7: Statistically significant spatial components along with the weight distributions for differentiating male vs. female. Left:
Spatial map with top 5% connectivity values. Middle: histogram of the weight loading for all subjects. Most of the subjects
have non-zero values for weights signifying that this map is present in the majority. Right: box-plot of the individual weights
values for different biological gender groups.

To infer about the important states in the case of intelligence
metrics, Pearson’s correlation test is carried out on the column
of C corresponding to each spatio-temporal map. In each case,
there were multiple components that had p < 0.05, however
the number of components that passed Bonferroni correction
were 3 and 2 for fluid intelligence and fluid ability metrics,
respectively. In both cases, two components with lowest p-
values are shown in Fig. 8 and S3 in Supplementary Infor-
mation, respectively. In order to visualize the component, the
edges with values in the top 5% are visualized by overlaying
them on an MNI brain using BrainNet toolbox [68]. For
fluid intelligence, we see that the corresponding weights are
well distributed among the subjects, which signifies that this
component was prevalent in most people in the group. In
particular, Spatial Map 1 and Spatial Map 2 in Fig. 8 have p =

0.0012 and p = 0.0063, respectively, with the fluid intelligence
metric. However, for fluid ability, the corresponding weights
have longer tail towards the lower range values and hence are
not well distributed among the subjects. In particular, Spatial
Map 1 has a negative correlation with p = 0.0003 and Spatial
Map 2 has a positive correlation with p = 0.0006 with the
fluid ability metric.

V. DISCUSSION

In this paper, we presented a novel method for extracting
dynamic functional connectivity using constrained-PARAFAC
decomposition technique. Conditions for uniqueness were de-
rived and an algorithm utilizing alternating least squares was
provided to find out the unique spatio-temporal decomposition.
Tensor based dFC approach was able to predict biological
gender with high accuracy and intelligence with low prediction
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Fig. 8: Statistically significant spatial components along with the weight distributions for correlating with fluid intelligence.
Left: Spatial map with top 5% connectivity values, Middle: histogram of the weight loading for all subjects. Most of the subjects
have non-zero values for weights signifying that this network is present in the majority. Right: scatter plot with correlation
curve and corresponding p-values for individual weights.

error compared with traditional static and dynamic functional
connectivity based features. We also extracted the dynamic
network maps that are associated with gender and IQ through
tensor decomposition. Key observations of biological signifi-
cance relative to the existing literature are described next.

A. Gender Effect on dFC
Although, biological gender has a large impact in static

and dynamic brain connectivity, there are differences in scien-
tific conclusions regarding their effects. Several connectivity
studies have reported the apparent connectivity differences.
The spatial map (spatial map 1) extracted from our analysis
implicated regions from prefrontal cortex, precuneus and pos-
terior cingulate cortex (PCC) that had higher connectivity in
females which are similar to that reported in the previous study
in [32]. Previously, in the graph theory based analysis in [59],
males showed significantly higher network connections in
the right hemisphere compared to females and lower left
hemispheric connections compared to female group. Spatial
map 1 seems to also suggest that female brain has higher
functional connections to the regions in the left hemisphere.
However, the connections are mainly inter-hemispherical, i.e.,
the connections criss-cross across the central gyrus. This is
also supported from anatomical connectivity literature [34].
Number of left brain regions with high functional connections
is more for females compared with male. But they are mainly
connected to regions in the other hemisphere. Here the compo-
nent had significantly higher prevalence in females compared
with males. In our work, within hemisphere connectivity is
noted in spatial map 2. Here the component had significantly
higher prevalence in males compared with females.

The study performed by [33] carried out statistical com-
parison of static network connectivity metrics between bio-
logical gender groups using ICA. The spatial maps found in
sensorimotor, salience, attention and auditory regions showed
statistically significant changes in network measures. Spatial
map 2 in our analysis has a hub region in temporal lobe in
the left hemisphere. The associated functional connectivity
may indicate more involvement of auditory networks in most
behavioral tasks for males. For Spatial map 1, well-connected
regions involve pre-central and post-central regions in left
hemisphere which is part of sensorimotor network whereas
for spatial map 2, the regions are sparsely connected. Thus
sensorimotor networks have higher inter-hemispherical con-
nections in female whereas they have somewhat reduced inter-
and intra-hemisphereical connections in males. Moreover, in
our results, the predictive sub-network contains regions from
salience network (hippocampus) and regions from striatum.
It also contains the hippocampus which is part of salience
network [26].

Dynamic functional connectivity has been shown to predict
biological gender accurately in [17] (accuracy 0.80). Our pro-
posed method employed a constrained-tensor decomposition
process to extract subject dependent features which improved
leave-one-out accuracy to 0.94 using dFC. Consistent with
Menon et al. [17] we note that both spatial maps that had
significant statistical differences involved regions from fronto-
parietal and attention network (precuneus). Similarly, the
spatial maps contained lateral occipital node that is part of
visual network [18] in the brain. Despite these findings, more
experiments need to be performed for better understanding of
biological gender effect on dFC.



10 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

B. IQ Effect on dFC

There has been progress in our understanding of intelli-
gence and its associated neural correlates using newer MRI
techniques. Recent works have reported the relation between
an individual’s intelligence metrics and thickness in gray
matter [69], white matter [70], and cortical thickness [71]. Our
method extracted regions from distributed regions in brain that
are correlated with intelligence metrics as shown in Figs. 8 and
S3 in Supplementary Information. This was also supported in
previous works on functional connectivity (FC) [72], [73]. In
addition, the connectivity maps with most functional edges
for fluid intelligence belong to the frontal-parietal circuit and
default mode networks in the brain that was also supported
in [24], [74]. Moreover, In our results, the predictive sub-
network contains regions from salience network (hippocam-
pus) and regions from striatum. Interestingly, the two sig-
nificant spatial maps for fluid intelligence contain regions
from different hemispheres separately (and for both cases the
correlation is positive), which reinforces that fluid intelligence
is a product of distributed intra-hemispheric communication.
A thorough investigation using network neuroscience has con-
firmed that general intelligence can be associated with small
world characteristics of the brain that has the potential to assert
more cognitive flexibility [75] in addition to the adaptability to
the information processing. However, for fluid ability metrics,
spatial map 1 consisted of fronto-parietal functional networks
in the left hemisphere that has negative correlation with the
score. The inter-hemispheric functional connectivity for spatial
map 2 in Fig. S3 in Supplementary Information may indicate
that the increase in inter-hemispheric functional edges improve
the fluid ability metrics.

VI. CONCLUSION AND FUTURE WORK

This paper has demonstrated that dFC of the human brain
can contribute substantially towards forming a fingerprint of
biological gender and intelligence. In addition, we proposed a
fully cross-validated scheme for the individual characteristic
prediction. The statistically different sub-network of interest
between two groups is extracted and their connection to the
existing literature is drawn. Moreover, significant networks
are extracted that have significantly high correlation with
intelligence metrics. Future work will be directed to the lesson
learned from this work to develop and plan group-specific
(based on gender, IQ etc.) therapies for patients suffering
from psychiatric disorders. Additionally, we will investigate
the constrained tensor decompositions of dynamic functional
connectivity for rs-fMRI where strict trilinearity is not required
using PARAFAC2 decomposition. Accurately inferred spatio-
temporal signal and connectivity maps from different groups
can also be used to compare differences among other types
of sub-groups in the population, e.g., age groups, language
groups, and other types of behavioral tasks.
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[73] J. Gläscher et al., “Distributed neural system for general intelligence
revealed by lesion mapping,” Proceedings of the National Academy of
Sciences, vol. 107, no. 10, pp. 4705–4709, 2010.

[74] E. Santarnecchi et al., “Network connectivity correlates of variability in
fluid intelligence performance,” Intelligence, vol. 65, pp. 35–47, 2017.

[75] A. K. Barbey, “Network neuroscience theory of human intelligence,”
Trends in Cognitive Sciences, vol. 22, no. 1, pp. 8–20, 2018.



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 1

Supplementary Information: Predicting
Biological Gender and Intelligence from fMRI via

Dynamic Functional Connectivity
Bhaskar Sen, Student Member, IEEE , and Keshab K. Parhi, Fellow, IEEE

I. S1: TABLES

TABLE S1: 5-Fold cross validation classification results for biological gender classification using different decomposition
techniques from dFC (for 264 regions).

Features Task Accuracy Sensitivity Specificity
Tensor (Proposed) Combined 25 0.94 0.96 0.88

ICA Combined 75 0.7 0.56 0.84
PCA Combined 75 0.5 0.51 0.49

TABLE S2: 5-Fold cross validation regression results for predicting IQ using different decomposition techniques from dFC
(for 264 regions).

Fluid Intelligence Fluid Ability Metrics
Task Features MSE MAE SD Task Features MSE MAE SD

Tensor (Proposed) Combined 25 0.1313 5.05 0.3 Combined 25 0.0306 14.1 1.21
ICA Combined 75 0.4661 10.12 2.8 Combined 75 0.0414 17.81 2.2
PCA Combined 75 0.5321 12.34 4.1 Combined 75 0.0866 30.79 4.97
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Bhaskar Sen and Keshab K. Parhi are with Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis (e-mail:
parhi@umn.edu)
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Fig. S1: Average 5-fold cross-validation normalized mean square error for each task employing different feature engineering
techniques to predict fluid ability metrics. The normalized mean square error performance for different features in Table S1
are shown for each task. Here less the height of the bar, better the performance. Our proposed dFC (Tensor) always performs
within top two methods for predicting biological gender.

Fig. S2: Average 5-fold cross-validation normalized mean square error to predict fluid ability metrics for each task employing
different sliding window strides for calculating dFC. Here less the height of the bar, better the performance. Stride 10 yields
best accuracy most of the times.
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Fig. S3: Statistically significant spatial components along with the weight distributions for correlating with fluid ability metrics.
Left: Spatial map with top 5% connectivity values. Middle: histogram of the weight loading for all subjects. Most of the subjects
have non-zero values for weights signifying that this network is present in most of the subject. Right: scatter plot with correlation
curve and corresponding p-values for individual weights.
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S3: ATLAS DETAILS

This section provides the details of the atlas regions and their corresponding coordinates in MNI152 space.

TABLE R1: Desikan Atlas Coordinates and Regions

X Y Z Region
-22.43799052 -40.01410235 -49.10043329 Left Cerebellum Cortex
-9.365745637 2.239886304 -14.37367795 Left Thalamus Proper
-10.07260101 27.72348485 -12.26073232 Left Caudate
-21.98422754 20.16952115 -20.84432891 Left Putamen
-16.83028771 16.79043546 -23.15999222 Left Pallidum
-0.075123916 -9.236922464 -48.42339352 Brain Stem
-20.50547599 -2.062973884 -30.15532856 Left Hippocampus
-19.81226823 15.48516687 -36.92135352 Left Amygdala
-7.276182432 31.04307432 -27.10304054 Left Accumbens area
21.48534428 -39.86756307 -49.02782405 Right Cerebellum Cortex
9.483949985 2.061275227 -13.59662913 Right Thalamus Proper
11.78609914 26.20757004 -11.62715517 Right Caudate
22.79048673 20.47876106 -20.71349558 Right Putamen
17.75835396 15.67295792 -21.86726485 Right Pallidum
22.00855593 -1.230696995 -31.1206177 Right Hippocampus
20.08349546 15.711738 -37.17331388 Right Amygdala
6.856174699 29.9811747 -26.78840361 Right Accumbens area
-46.56135363 -24.43048423 -8.671588408 ctx lh bankssts
-2.641475645 34.52602674 4.327244508 ctx lh caudalanteriorcingulate
-29.18799213 34.20815342 18.68062611 ctx lh caudalmiddlefrontal
-8.394193234 -59.99674691 0.810426155 ctx lh cuneus
-21.87644009 14.07402074 -47.78801843 ctx lh entorhinal
-30.9386489 -27.44044884 -34.66050092 ctx lh fusiform

-38.44759259 -46.19018519 10.055 ctx lh inferiorparietal
-45.16522307 -13.35528397 -36.35213969 ctx lh inferiortemporal
-6.797138047 -26.52777778 -0.606060606 ctx lh isthmuscingulate
-28.81817994 -68.91491475 -14.09027893 ctx lh lateraloccipital
-21.51043029 49.65374052 -35.04103453 ctx lh lateralorbitofrontal
-12.85870064 -50.95184803 -21.89164371 ctx lh lingual
-5.424302789 52.46314741 -33.96962151 ctx lh medialorbitofrontal
-51.38255075 -1.05607361 -29.19242037 ctx lh middletemporal
-20.70094021 -10.09763742 -33.50470106 ctx lh parahippocampal
-6.551643921 -8.080024814 28.71665633 ctx lh paracentral
-39.82481355 38.1677284 -3.969468614 ctx lh parsopercularis
-37.70623742 60.72183099 -31.45120724 ctx lh parsorbitalis
-41.22619629 47.33825684 -19.5916748 ctx lh parstriangularis
-11.2699553 -63.45146871 -10.27378672 ctx lh pericalcarine
-37.7076791 -0.500245339 17.57396958 ctx lh postcentral

-4.185311284 -0.283722438 12.20330739 ctx lh posteriorcingulate
-35.30378452 13.60621618 15.33101499 ctx lh precentral
-8.750484872 -38.07336113 13.38877036 ctx lh precuneus
-3.369775542 54.56656347 -17.64705882 ctx lh rostralanteriorcingulate
-27.43047381 65.73664656 -9.245512066 ctx lh rostralmiddlefrontal

X Y Z Region
-8.409821118 46.32435307 13.8764545 ctx lh superiorfrontal
-21.121497 -41.68930512 23.69906348 ctx lh superiorparietal

-46.72014687 8.292424968 -21.74289591 ctx lh superiortemporal
-46.00677227 -13.25964187 10.55130854 ctx lh supramarginal
-5.798690205 78.87528474 -29.70529613 ctx lh frontalpole
-25.94376504 31.79330393 -52.99268244 ctx lh temporalpole
-36.91558442 -0.342938312 -11.6599026 ctx lh transversetemporal
-30.75487945 20.2217279 -20.08969575 ctx lh insula
48.03367217 -19.09704574 -10.55749682 ctx rh bankssts
5.245158888 35.7336147 3.08031281 ctx rh caudalanteriorcingulate
31.32239106 30.37378154 20.14012328 ctx rh caudalmiddlefrontal
5.413062284 -61.50735294 2.649221453 ctx rh cuneus
19.14095007 13.38072122 -47.39684466 ctx rh entorhinal
30.54333274 -25.02878436 -34.88151553 ctx rh fusiform
40.10512232 -41.90762888 9.178134557 ctx rh inferiorparietal
43.5415707 -8.394461078 -39.20629894 ctx rh inferiortemporal

5.855446927 -27.09696728 -1.528830806 ctx rh isthmuscingulate
28.27539489 -65.8775836 -18.00317174 ctx rh lateraloccipital
21.03270609 48.73015873 -34.47388633 ctx rh lateralorbitofrontal
9.887762593 -49.87773888 -19.71100632 ctx rh lingual
4.966974573 55.82042114 -33.24071315 ctx rh medialorbitofrontal
50.85591502 -4.637917276 -30.79573414 ctx rh middletemporal
21.59495927 -9.769602851 -33.93711813 ctx rh parahippocampal
5.574623858 -6.455534659 29.1560317 ctx rh paracentral
43.43193444 33.05039788 -5.577159909 ctx rh parsopercularis
39.84943842 55.80170411 -30.06438807 ctx rh parsorbitalis
44.60538203 44.68959732 -16.17094734 ctx rh parstriangularis
10.07145966 -62.11767266 -9.486723738 ctx rh pericalcarine
37.2218269 -2.29390681 18.21908602 ctx rh postcentral

4.539522514 1.299480455 13.94575705 ctx rh posteriorcingulate
35.74047669 11.18046754 17.23375229 ctx rh precentral
7.952909887 -39.13619703 12.41339621 ctx rh precuneus
5.23004886 53.77137622 -18.7896987 ctx rh rostralanteriorcingulate

29.98936817 63.1596294 -6.599787363 ctx rh rostralmiddlefrontal
10.21130626 44.56652488 15.72779455 ctx rh superiorfrontal
19.52022891 -44.67677003 23.1629292 ctx rh superiorparietal
47.22200315 10.34015441 -23.27712519 ctx rh superiortemporal
46.5050845 -10.93363136 9.673192179 ctx rh supramarginal

7.123893805 80.40376106 -25.63053097 ctx rh frontalpole
22.85859073 30.3030888 -51.48117761 ctx rh temporalpole
38.81806931 1.170792079 -13.0730198 ctx rh transversetemporal
32.27828362 19.71071121 -21.13080728 ctx rh insula

PROOFS

The optimization is stated as:

min
X̃
||X − X̃ ||2F s.t. X̃ = (A,B,C), ATA = I, C ≥ 0 (1)

A. Theorem 1.

Consider X ∈ RI1×I2×I3 . Let A ∈ RI1×F , B ∈ RI2×F , C ∈ RI3×F represent the tensor decomposition matrices such that
C ≥ 0 and ATA = I . In this case a global minimum for (1) exists. In other words, there is only one solution for X̃ that
minimizes (1).

Proof. We prove this theorem following Proposition 3.1 of [1]. Note that (1) can be written in unfolded format as follows,

min
A,B,C

||X2 − (A� C)BT ||2F s.t. ATA = I, C ≥ 0 (2)

Let us denote, f(A,B,C) = ||X2 − (A�C)BT ||. Solving (1) is equivalent to finding the minimum for f(A,B,C). Since
ATA = I , (A� C)T (A� C) = I . Thus solving for B, BT = [(C �A)TX2]. Substituting BT into (2) yields,

g(A,C) = ||X2 − (A� C)(A� C)TX2||2F (3)

Note that ATA = I and C ≥ 0. In addition, g is continuous and the domain of g is compact (as the domain of A,B are
continuous and compact). Thus the global minimum exists for g. As a result, f has a global minimum. �
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B. Theorem 2.
If conditions I and II are satisfied, then the decomposition X̃ = (A,B,C) is unique up to permutation and scaling.
Proof. This can be proved by closely following the proof for the unrestricted case as given in [2]. The only difference is

the relaxation of restriction on the columns of C in our case. Note that the restrictions on columns for A to be a full column
rank is fully satisfied by the fact that ATA = I

Let BC = (B�C). Conditions I and II imply that the non-trivial combination of BC can not be written as represented as
tensor product of two vectors which satisfies the necessary and sufficient conditions of [2]. �

1) Algorithm for Solving the Problem: An algorithm for finding the solution of (1) is given in Algorithm S1.

Algorithm S1: Alternating Least Square Algorithm for Solving Constrained PARAFAC in (1)
Input : Tensor X , rank F
Output: Estimated connectivity maps A, time courses B, subject-wise contribution C
(X1, X2, X3) = Unfold X along axis 1, 2, 3 respectively.
Initialize A, B, C
for i = 1 to until convergence do

% Solve for A from unfolding X1

M = [(B � C)TX1]
M = UΣV T

AT = UV T

% Solve for B from unfolding X2

BT = [(C �A)TX2]
% Solve for C from unfolding X3

N = (A�B)TX3

CT = [N+] where N+ contains only the positive elements of N
end

C. Theorem 3.
Algorithm S1 finds the uniquely identifiable decomposition of (1).
Proof. The Lagrangian for (1) can be written as

L(A,B,C,Λ1,Λ2) = ||X2 − (A� C)BT ||2F +

Tr(Λ1(ATA− I)) + Tr(Λ2(−C))

The domain sets of A,B and C are in RI1×F , RI2×F and RI3×F , respectively, and hence they are convex sets. Note that
every update in Algorithm S1 is an optimal update for each sub-problem. Using proposition 2.7.1 of [3], (A∗, B∗, C∗) is a
stationary point.

For the unconstrained PARAFAC decomposition, there does not exist any proof of convergence, which may not converge,
or converge to a local minimum [4]. However, there exists research that describes global convergence for block-nonlinear
alternating least square under convex constraints. As the function ||X2− (A�C)BT ||2F is quasi-convex on RI1×F ×RI2×F ×
RI3×F , according to Proposition 5 of [5],(A∗, B∗, C∗) is a critical point of (1). From Theorem 1, (A∗, B∗, C∗) finds the
uniquely identifiable decomposition of (1). �.
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