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Abstract— This paper introduces an approach for classifying
adolescents suffering from MDD using resting-state fMRI. Accurate
diagnosis of MDD involves interviews with adolescent patients and
their parents, symptom rating scales based on Diagnostic and Sta-
tistical Manual of Mental Disorders (DSM), behavioral observation
as well as the experience of a clinician. Discovering predictive
biomarkers for diagnosing MDD patients using functional magnetic
resonance imaging (fMRI) scans can assist the clinicians in their
diagnostic assessments. This paper investigates various static
and dynamic connectivity measures extracted from resting-state
fMRI for assisting with MDD diagnosis. First, absolute Pearson
correlation matrices from 85 brain regions are computed and
they are used to calculate static features for predicting MDD. A
predictive sub-network extracted using sub-graph entropy classi-
fies adolescent MDD vs. typical healthy controls with high accu-
racy, sensitivity and specificity. Next, approaches utilizing dynamic
connectivity are employed to extract tensor based, independent
component based and principal component based subject specific
attributes. Finally, features from static and dynamic approaches
are combined to create a feature vector for classification. A leave-
one-out cross-validation method is used for the final predictor
performance. Out of 49 adolescents with MDD and 33 matched
healthy controls, a support vector machine (SVM) classifier using
a radial basis function (RBF) kernel using differential sub-graph
entropy combined with dynamic connectivity features classifies
MDD vs. healthy controls with an accuracy of 0.82 for leave-one-
out cross-validation. This classifier has specificity and sensitivity
of 0.79 and 0.84, respectively.

Index Terms— Major depressive disorder (MDD), sub-
graph entropy, brain network, static functional connectivity,
dynamic functional connectivity, resting-state, fMRI, classi-
fication, psychiatry, adolescent MDD

I. INTRODUCTION

Major-depressive disorder (MDD) is a debilitating neuro-
psychiatric illness that impacts all aspects of patients’ lives. This
disorder is characterized by the presence of at least five of nine
symptoms (low mood, lack of enjoyment, low energy, impaired sleep,
impaired appetite, concentration difficulties, poor self-esteem, and
suicidal thoughts) that cause impairment for at least two weeks. It
impacts about 322 million people’s lives worldwide [1]. Depression
is prevalent in a large proportion of general population; however, for
patients suffering from MDD, the symptoms of depression are very
persistent and critical. Although MDD is a serious life threatening
psychiatric disease, the neurobiology underlying MDD is still poorly
understood. Advancing this knowledge is needed to guide diagnosis
and treatment strategies, with the goal of restoring healthy brain
development and preventing negative outcomes such as suicide and
functional impairment over the lifespan. Among the different age
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groups of population vulnerable to MDD, adolescents constitute a
major subgroup. The current diagnostic process for adolescent MDD
involves a subjective understanding of the patient which includes
behavioral examinations, symptom ratings and interviews with par-
ents [2]. An artificial intelligence (AI) assisted clinical diagnostic tool
based on functional magnetic resonance imaging has the potential to
assist a clinician to diagnose MDD directly using brain scans [3].

The current study applied several novel analytic tools to resting-
state fMRI data from adolescents with and without MDD. Specifi-
cally, we (1) examined correlation between pairs of brain regions, (2)
calculated graph-theoretic properties of functional networks, and (3)
measured dynamic connectivity properties of these networks. This
paper develops a machine learning based diagnostic tool (classifier)
combining graph-theoretic and dynamic connectivity properties to
discriminate and identify adolescents suffering from MDD from
typical healthy developing adolescents. The classifier learns pre-
diction rules based on resting-state functional magnetic resonance
imaging (fMRI) based attributes of subjects. Identifying patient-
specific features for classifying adolescent MDD is a very important
step, as if left without proper treatment, the subjects may have
atypical neuronal development. However, how the resting-state brain
functional network changes among adolescents with MDD remains
unknown. Thus finding specific markers associated with MDD is of
significant interest.

Concurrent fMRI based psychiatric research has shown that fMRI
can be used to diagnose different neuronal disorders [4]–[7]. Func-
tional magnetic resonance imaging provides an in-vivo measurement
of brain activity during resting-state (rs-fMRI) or task (t-fMRI).
Specifically, fMRI measures the change of blood-oxygen level depen-
dent (BOLD) signal, when a person is scanned. This produces a 4-D
activation image of brain function, where the first three dimensions
show the spatial brain structure and the fourth dimension shows the
change of activation over time [6], [8]. The time component of fMRI
scans can be utilized to extract correlation based functional connectiv-
ity of brain regions. When a person is awake in rest condition, some
regions in the brain are always activated (default mode network). For
rs-fMRI, the spontaneous regional interaction between brain regions
are measured. Resting-state fMRI signal have been hypothesized to be
meaningful for identifying psychiatric patients as the hemodynamic
response is not confounded by any task response [9]. The current
paper considers only the analysis of rs-fMRI for adolescent MDD
patients and typically developing adolescents.

The goal of this paper is to classify adolescent MDD patients from
healthy controls accurately. In this process, we extract a brain sub-
network from rs-fMRI that has good classification performance for
identifying adolescent MDD vs. healthy controls. We use absolute
correlation coefficients, graph-theoretic properties of functional net-
work, and dynamic connectivity properties of human brain for clas-
sifying MDD and healthy controls. First we use absolute correlation
and network based features for predicting MDD. Second, network
measures using sub-graph entropy [10] and specifically differential
node entropy and edge entropy are used to extract most important
regions and edges impacted in adolescent MDD. Edge entropy is then
used to extract a sub-network containing 105 edges. The static con-
nectivity measures by itself achieve high classification performance.
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Following this, a dynamic functional connectivity feature extraction
technique based on constrained parallel factor analysis (PARAFAC)
tensor decomposition is carried out. The dFC features achieves high
sensitivity. Finally, a joint connectivity approach combining features
from static and dynamic connections leads to a high classification
accuracy, sensitivity and specificity for classification of MDD vs.
healthy.

A. Related Work
Recent advancements in machine learning in neuroimaging has

unraveled the relationship between computer aided designs and
psychiatry. Furthermore, advances in complex network theory, blind
source separation have also permeated neuroimaging and psychiatry.
In a complex network, different measures can be used to find the
important nodes [10], [11]. These metrics denote the cohesiveness
or segregation among different nodes. Network segregation refers to
the local characteristics at each node, i.e., how a particular node is
affected by the interaction with its neighbors. Network integration
refers to the large-scale behavior of the whole graph (global char-
acteristics). In particular, local efficiency (LE) [12], [13], clustering
coefficient (CE) [14] and betweenness centrality (BC) [15] measures
are examples of local network segregation. Global integration can be
specified in terms of global efficiency (GE) [12] and modularity [16].
An important network metric defines important nodes to be those
having the highest number of neighbors. This metric is known as
degree centrality [17].

A more complex metric using information-theoretic network mea-
sures [18] was used in [19] to extract leaders and followers from
a directed communication network. Mackenzie [18] showed that
information-theoretic importance can be used as centrality in a com-
munication network. An information-theoretic network segregation
metric, referred as sub-graph entropy [10], has been shown to be
useful for classifying brain states. This network metrics was used
in [6] for diagnosing adolescent obsessive compulsive disorder. Sub-
graph entropy is calculated using Shannon’s entropy function over
normalized edge weights. sub-graph entropy is larger for those cases
where the edge weights within a sub-network are uniform. Typically,
dominance of edge strength between two regions reduces the sub-
graph entropy. An example of calculation of graph entropy, sub-
graph entropy, node and edge entropy is illustrated in Fig. S1 in
Supplementary Information (SI). The reader is referred to [6], [10]
for more details.

Some of the above measures were used previously for com-
paring characteristics between two groups (e.g., schizophrenia vs.
healthy [4], [20], Alzheimer’s disorder vs. healthy [21], [22], border-
line personality disorder vs. healthy [5], and obsessive compulsive
disorder vs. healthy [6], [23]). Hypothesis driven association studies
can extract statistically significant functional neural correlates for
psychiatric disorder. In the current paper, we propose a combined
static and dynamic connectivity approach to predict whether an
adolescent has MDD. Using tools from communication and network
information theory and tensor analysis, we show that a network
measure called sub-graph entropy (node and edge entropy) introduced
in our recent paper [10] and constrained parallel factor analysis [8],
[24] can perform this task with high accuracy. Additionally, node and
edge entropy were used to rank brain regions and edges, respectively.
The important predictive sub-network extracted in this process carries
information regarding the possible neuronal impairment during MDD.
B. Contributions

The contributions of this paper are summarized as follows.
• Utilizing a number of static connectivity measures, e.g., absolute

correlation coefficient values, network metrics and sub-graph

entropy, the paper demonstrates that static connectivity measures
alone have high accuracy for classifying adolescent MDD vs.
healthy controls.

• The paper also shows the utility of dynamic connectivity profiles
for identifying adolescent MDD. Dynamic components extracted
using constrained-PARAFAC and ICA achieve high sensitivity
but low specificity for classification of MDD. This observation
indicates that dFC metrics alone may not be able to diagnose
MDD accurately.

• A joint static and dynamic feature concatenation process is
proposed for accurate classification of MDD using rs-fMRI data.
This feature combination process improves the leave-one-out
classification accuracy for classifying MDD vs. healthy controls
by 3% compared to previously known baseline methods [25].

• Finally, the regions and functional edges extracted by predictive
sub-graph are then compared with the previous literature. We
show that the predictive sub-network contains regions that
belong to well-known large-scale brain networks that are tra-
ditionally implicated in adolescent MDD.

TABLE I: Demographic and clinical score information for the subjects

Demographic Information Healthy MDD p− value
# of samples (n) 33 49

Biological sex (Male/ Female) 8/24 13/36 0.88
Age − mean (SD) 15.63 (2.05) 15.62 (2.86) 0.9
Clinical Severity Healthy MDD p− value

CDRS-R [26] (T scores) - mean (SD) NA 77 (6) NA
BDI-II [27] (most severe) - mean (SD) 3(4) 29(13) < 0.001

II. MATERIALS AND METHODS

A. Dataset and Preprocessing

The data collection process and experiments mentioned in the
present work that include human subjects were approved by the
University of Minnesota Institutional Review Board (IRB) (Study
number 0804S30542, approval date 9/16/2015). The study consisted
of 49 adolescents with MDD and 33 healthy control subjects. The
subjects were similar with respect to age, sex, or handedness as
described in [25], [28]. The two groups had significantly different
values for CDRS-R [26] scores and BDI-II [27] scores. Additionally,
there were no statistically significant differences in scores at the
group level for MDD patients on medication and no-medication. We
describe the data acquisition and pre-processing steps following [25],
[28]. A table containing the demographic and clinical information is
shown in Table I.

The study involved only adolescent subjects (12-19 years). Resting-
state functional magnetic resonance images were captured for 6
minutes with the following parameter specifications: repetition time
(TR) = 2s, field of view (FOV) = 220 × 220mm, and voxel size of
3.43× 3.43× 4 mm. There were 34 interleaved slices with no skip.
During the scanning process, adolescents undergoing the study were
awake. They were advised to close their eyes, relax and they were
asked not to think about something specific.

Following rs-fMRI data acquisition, FMRIB Software Library
(FSL) [29] tools were used to preprocess the raw voxel time-series.
This step involves removing skulls from images, correcting any
distortions, correcting motion that may distort images. Finally, the im-
ages were registered to 2×2×2 mm Montreal Neurological Institute
space (MNI). In order to remove many physiological artifacts (e.g.,
heart rate, respiration signal and linear trend), we used RETROICOR
process as described in [30]. Additionally, FreeSurfer [31] produced
white matter and cerebrospinal fluid were aligned with rs-fMRI
utilizing FLIRT program available through FSL [29]. More details
of the preprocessing can be found in [28]. After the preprocessing
step, the Desikan atlas [32] was used to extract mean time-series
from 85 cortical and sub-cortical regions. The regions are given
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Fig. 1: MDD classification pipeline using static and dynamic features. Functional MRI scans are used to extract static and dynamic features
that are later used for leave-one-out classification process.
in [32] and also in Supplementary Information (Table A1). The
extracted mean time-series from each subject were then subjected to
wavelet frequency decomposition into 4 frequency bands using a db-4
wavelet [5]. The time-series corresponding to the previous frequency
bands are described as: B1 (0.015 ∼ 0.03 Hz), B2 (0.03 ∼ 0.06Hz),
B3 (0.06 ∼ 0.12 Hz), B4 (0.12 ∼ 0.25 Hz) as described in [25]. A
pipeline demonstrating the whole experimental process is shown in
Fig. 1.

B. Static Features

1) Correlation Features: A number of connectivity measures
have been described in literature [33] to estimate human brain
functional connectivity. In this paper, we use Pearson’s correlation
coefficient as the metric for representing functional connectivity.
Pearson correlation coefficient was calculated for every frequency
band (B1...B4) using the formulae given below:
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Here r̂fi is the average of time-series for frequency band f and the

region id is denoted by i. Here four adjacency matrices are created for
every pair of brain regions for each subject. In this view, each of these
matrices may represent adjacency matrices in functional graph where
each entry represents an edge. Absolute value of these correlation
coefficients are used for further processing. Thus the number of
features for each frequency band is 85×84

2 = 3570. These unique
correlation values are later used as features for the classification task.

2) Network Features: As mentioned before, from each subject,
four 85 × 85 adjacency matrices [25] were extracted. The adja-
cency matrices contain absolute Pearson’s correlation coefficients.
From these adjacency matrices, we calculated network integra-
tion and segregation measures that describe each subject’s func-
tional brain network structure using Brain Connectivity Toolbox
(BCT) 1. Each of the adjacency matrices are then binarized keeping
{5%, 20%, 35%, 50%} of the highest values. Thus at each
frequency band, every subject has the same number of edges at each
sparsity level.

We describe the network feature extraction process following [25]
as we use them as baseline features in this paper. On a local node
level in the network, three features namely local efficiency (LE),
clustering coefficient (CC) and betweenness centrality (BC) were

1https://sites.google.com/site/bctnet/

computed [5], [34]. At a global level, we calculated two features
namely, modularity and global efficiency [34]. The local and global
features in the network represent complementary viewpoint of the
network for segregation and integration of nodes, respectively. Hence
from each subject, we extract 85×3×4 (for 3 features at each node)
+4×2 (for modularity and global efficiency)= 1028 network features
corresponding to the frequency bands.

An overview of the network based features is mentioned next
following the descriptions in [25]. Local efficiency is computed using
the summation of inverse of the shortest paths to the neighbors of a
node. This metric is used to understand how efficient a node is for
transferring information between two neighboring nodes. Clustering
coefficient is calculated by the number of triangles created around
a node out of all possible triangles. Betweenness centrality of a
node is calculated as the percentage of shortest paths that contain
the node. Modularity metric measures how a network is sub-divided
into smaller dense sub-networks with sparse inter-connections. Global
efficiency describes the efficiency of information transfer within the
whole graph. These network measures were also previously used for
classifying MDD vs. healthy from fMRI data as described in [25].
More details of the network measures can be found in [14].

3) Sub-Graph Entropy: We have recently shown that sub-graph
entropy can effectively classify brain states for task vs. no-task [10]
and healthy vs. psychiatric patients [6]. Sub-graphs can denote any
portion or sub-structure of the main graph. For a sub-graph Gs =
(Vs, Es) , of main graph G = (V,E), the sub-graph entropy can be
computed as follows:

H (Gs) = −
∑

x,x′∈Vs

q(x, x′) log
(
q(x, x′)

)
where q(x, x′) denotes the normalized edge weight between nodes
(x, x′) for sub-graph Gs. For calculating the node entropy of node x,
only the sub-graph containing the 1-hop neighborhood of node x is
used. Here logarithm is computed with respect to base 2. Usefulness
of graph entropy as a centrality measure has been demonstrated
in [18], [19] and extended to sub-graph entropy in [10]. Note that,
sub-graph entropy is larger for those cases where the edge weights
within a sub-network are uniform. Typically, dominance of edge
strength between two regions reduces the sub-graph entropy.

Node Entropy: Node entropy [10] refers to a sub-graph entropy
of structure containing a graph node and its immediate neighbors.
Although 1-hop neighborhood has been generally used to define
node substructure, k-hop neighborhood may also be considered. In
this paper, we only consider well understood 1-hop neighborhood

https://sites.google.com/site/bctnet/
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structure to calculate node entropy. Thus only the edges in the
immediate neighborhood of a node are extracted. The node entropy
values are used separately as features for classification.

Edge Entropy: Edge entropy [10] refers to a sub-graph entropy
of structure containing an edge and the immediate neighbors of
nodes that the edge connects. In this paper, we only consider well
understood 1-hop neighborhood structure of an edge to calculate
edge entropy. Thus only the edges in the immediate neighborhood
of the two nodes of an edge are extracted for the calculation. The
edge entropy values are used separately as features for classification.
Illustrative examples of calculating graph entropy, sub-graph entropy
for individual graph and a group of networks are described in [10].

Differential Sub-Graph (Node and Edge) Entropy:
Differential (node/edge) entropy refers to difference in node or

edge entropy values when the same graph is analysed for two different
conditions. Thus when a subject suffers through a mental disorder,
it is hypothesized that a healthy functional connectivity structure is
disrupted and thus the segregation/integration pattern of nodes/edges
change [10]. The nodes/edges that undergo most change in local
structural pattern can be extracted based on the highest change in
the sub-graph entropy. Thus a change of a relative distribution of
edge values for each subject is captured. A brief description for
differential node entropy is given next. Assume there are two groups
G1 and G2 (in the current scenario, they refer to healthy and MDD,
respectively). The node entropy for node vi for G1 and G2 are
denoted as H(G1

vi) and H(G2
vi), respectively. Then differential node

entropy is calculated as |H(G1
vi)−H(G2

vi)| [10]. The regions having
higher differential node entropy are thought to have undergone the
most functional connectivity changes. The same calculation process
for extracting edges that have undergone disruption for MDD is
carried out as well. In the next section, we describe how a leave-one-
out classification process is able to extract a sub-network containing
important edges predictive of MDD.

Fig. 2: Leave-one-out process for identifying a predictive sub-
network that can classify MDD vs. healthy.

4) Extracting Predictive Sub-Network Based on Edge En-
tropy: As mentioned earlier, the edge entropy values were used to
classify two groups (healthy vs. MDD). In order to extract a sub-
graph associated with the disruption of functional network during
MDD, we used a leave-one-out analysis based on classification
accuracy [6], [35]. This edge selection framework involves finding
top ranked edges at each iteration and add it to the sub-network. Then
the leave-one-out accuracy of the edge entropy values (that belong to
only the sub-network) is measured. We stop adding edges to the sub-
network once the accuracy drops beyond certain number of edges.
This process is illustrated in Fig. 2. Leave-one-out classification
scheme is a commonly used classification scheme for mitigating
the overfitting effect due to small sample size and high number of
features [20]. In all iterations, the classifier used is support vector

machine with radial basis kernel. The ranking process is also carried
out in a leave-one-out manner, where it is performed 82 times. At
each time, the ranking of regions/edges is carried out keeping one out
and then a histogram demonstrating the stability of ranking process
is plotted. In order to compare the predictive performance with other
sub-networks, union and intersection of top regions and edges are
employed for classification [10]

C. Dynamic Features
Dynamic functional connectivity (dFC) refers to brain network that

changes over time. Dynamic connectivity is usually extracted using
sliding-window Pearson’s correlation matrices extracted from fMRI
time-series containing regions of interest (85 regions). The collection
of symmetric correlation matrices for each subject are then vectorized
and stacked along the time dimension to create the dFC matrix for
that subject. Note in this case, (dim1 = edges, dim2 = temporal)
for every subject. Features were extracted from these dFC matrices
using the methods below. We briefly describe the dynamic features
following the description in [24].

1) Tensor Component Analysis: Tensor components analysis
has recently been introduced for extracting dFC features [38]. Tensor
decomposition makes use of high-dimensional blind source separation
techniques to create common edge maps and temporal profiles across
subjects. Also it produces subject-wise variations of those spatio-
temporal components. We have recently introduced constrained-
PARAFAC for predicting different phenotypes from fMRI data [24].
PARAFAC decomposition has better uniqueness properties and inter-
pretability [39] in comparison with matrix decomposition. The scans
from a group of subjects were concatenated to form a 3-way tensor
where the dim3 = subject. We denote the 3-way tensor of size
I1×I2×I3 as XI1,I2,I3 . The constrained-PARAFAC decomposition
is stated as:

min
X̃
||X − X̃ ||2F s.t. X̃ = (A,B,C), ATA = I, C ≥ 0

2) Principal Component Analysis (PCA): [37]: Principal Com-
ponent Analysis projects the dynamic functional connectivity matri-
ces extracted from each subject into a common subspace (principal
components). PCA analysis was performed on the collection of
sliding-window correlation vectors stacked for all subjects. The scans
from a group of subjects were concatenated in time dimension to
create a long matrix of size I1×I2I3. This process extracted subject-
wise unique time-series for each common principal component. The
means of the time-series were chosen as features for prediction.

3) Independent Component Analysis (ICA): [36]: Similar
to PCA, Independent Component Analysis projects the dynamic
functional connectivity matrices extracted from each subject into a
common subspace (termed as independent components). ICA has
received widespread popularity in dFC analysis from fMRI. To extract
ICA features, the scans from a group of subjects were concatenated
in time dimension to create a long matrix of size I1 × I2I3. ICA
extracts common dFC space that are statistically independent to each
other. Also this process finds out unique time-series for each of the
components for subjects. The means of the time-series were chosen
as features for prediction.

For Constrained-PARAFAC, PCA and ICA, the number of com-
ponents required for the analysis was fixed based on cross-validation
accuracy. In all blind source separation methods, source separations
were done on the training set and the leave-one-subject out case was
projected on the sources for extracting the features. Particularly for
PCA, the number of optimal components were chosen based upon
in-fold validation accuracy. As a result, each fold had its own PCA
variance associated with it. The minimum variance captured was 92%
and maximum variance captured was 99%.
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TABLE II: Leave-one-out classification results for various feature sets and their combinations. The number of features shown in the table is
the number that had maximum occurrence during the leave-one-out validation.

Types of features Methods # of Features Accuracy Sensitivity Specificity Classifier
Correlation [25] 10 0.74 0.82 0.64 SVM RBF

Network features [25] 10 0.67 0.84 0.42 SVM RBF
Static Correlation + Network features [25] 20 0.79 0.86 0.70 SVM RBF

features Node entropy [10] 25 0.67 0.84 0.42 SVM RBF
Predictive sub-network [6] 105 0.80 0.84 0.76 SVM RBF

Union sub-graph entropy [6] 130 0.80 0.84 0.76 SVM RBF
Intersection sub-graph entropy [6] 95 0.77 0.82 0.7 SVM RBF

Constrained-PARAFAC [24] 20 0.61 0.96 0.15 SVM RBF
Dynamic features ICA [36] 20 0.62 0.92 0.18 RF # of T 10

PCA [37] 20 0.57 0.86 0.15 RF # of T 10
Predictive sub-network + Constrained-PARAFAC 125 0.82 0.84 0.79 SVM RBF

Predictive sub-network + Correlation + Network features 125 0.78 0.87 0.64 SVM RBF
Predictive sub-network + Correlation 115 0.79 0.90 0.64 SVM RBF

Combined features (proposed) Predictive sub-network + Network features 115 0.80 0.94 0.61 SVM RBF
Constrained-PARAFAC + Correlation + Network features 40 0.65 0.84 0.36 SVM RBF

Constrained-PARAFAC + Correlation 30 0.67 0.84 0.42 SVM RBF
Constrained-PARAFAC + Network features 30 0.65 0.84 0.36 SVM RBF

D. Combination of Features
We hypothesize that static and dynamic feature sets will be able

to diagnose MDD in different subsets of population. It is pertinent to
utilize their full predictive capabilities in a combined model. In this
experiment, whether a joint set of features from different sets can
improve the accuracy was tested. Thus apart from using static and
dynamic features separately, we tested all the possible combination
of different feature sets. The feature combination was accomplished
using concatenation of raw features selected from different feature
sets using corresponding feature selection algorithms. The combined
feature sets that performed better than previously best known accu-
racy are reported in the classification performance.
E. Classifier

Each set of the features described before employs either Support
Vector Machine (SVM) or Random Forest (RF) classifiers to learn
classifiers since these two classifiers have been demonstrated to
work reasonably well for limited samples. Specifically SVM with
radial basis function (RBF) and linear kernel was utilized for all the
experiments. In case of SVM with RBF kernel, a standard set of
parameters γ ∈ {0.1 × 2i|i = −10,−9.., 9, 10} is followed using
in-fold cross-validation. The hyper-parameter C for SVM learning
algorithm is kept at 1, i.e., C = 1. For RF, number of trees was
chosen based on cross-validation by varying its range from 3 to 30.

All the classification results are shown in terms of leave-one-out
test accuracy. During the leave-one-out classification process, training
and testing process was run 82 times (i.e., number of subjects). For
each iteration, training was carried out on 81 subjects using SVM/ RF,
and a test was performed on the left-out subject. The test accuracy
was averaged across the 82 subjects to calculate the final accuracy
values. Note that, all the feature selections were performed in-fold,
i.e., separate feature selection was done each time on the training set
so that there was no possibility of information leakage. This process
reduces the problem of overfitting for small sample sets. Apart from
the leave-one-out classification accuracy, specificity and sensitivity
were also calculated to validate our approach.

A pipeline demonstrating the whole experimental process is shown
in Fig. 1. III. RESULTS

This section presents the classification results using the features
described in Section II. Moreover, we also present the regions, edges
and the predictive sub-network extracted through ranking based on
sub-graph entropy.

A. Classification using Correlation Coefficients
From correlation coefficients, 10 values that are most significant

based on minimum redundancy maximum relevance (mRMR) fea-
ture selection [40] were extracted using in-fold validation. Note

that other feature selection algorithms such as MUSE could also
be used [41]. The features are selected from frequency-band B2.
Pearson’s correlation values were able to classify MDD vs. healthy
with an accuracy 0.74, specificity 0.64 and sensitivity 0.82 as shown
in Table II using a leave-one-out classification method. The functional
connectivity between FrontalPoleL - TemporalPoleR, PrecuneusL -
RostralAntCingulateR and CerebCortL - BanksstsL were selected 82
out of 82 times during the mRMR feature selection and leave-one-out
classification [25], [42], [43].

B. Classification using Network Features
1) Network Features: From brain network features, 10 most

important integration and segregation features were extracted from
network through in-fold mRMR feature selection. Network features
had a leave-one-out classification accuracy of 0.67 with 0.84 sen-
sitivity and 0.42 specificity (Table II). Among the features elected
through this process, Clustering coefficient of insula (at sparsity 50%)
and clustering coefficient of caudal middle frontal (at sparsity 50%)
were selected in each fold by the mRMR feature selection process.
Frequency sub-band B2 had highest classification performance in
this set of features as well. Furthermore, a combination of feature
values extracted from correlation and network analysis increased the
accuracy to 0.79 with sensitivity 0.86 and specificity 0.70 as described
in [25].

2) Node Entropy: For static sub-graph entropy based network
analysis of MDD, we followed the same methodology described
in our previous work [6] for diagnosing OCD from rs-fMRI. Node
entropy was found to be most discriminating in the lower frequency
band (B2). Differential node entropy was used to identify the neuronal
units that are affected the most during MDD. These regions had
the highest ranks when ranking of brain regions were performed
using differential node entropy between MDD vs. healthy. The top-
25 brain areas extracted through this process are listed along with
their differential node entropy and p-values in Table S1 (SI). There
were four regions that had statistically different node entropy values
(p ≤ 0.05) among the top ranked regions. However as expected, node
entropy metric elevated the ranking of regions that are traditionally
thought to be parts of default mode network [9] [44]. This network is
active in awake-rest condition. When used as features for classifica-
tion, node entropy of top-25 regions had the following leave-one-out
classification performance: accuracy 0.67 with specificity 0.42 and
sensitivity 0.84 (same as network features). The ranking is expected
to elevate the regions from executive control circuitry, default mode
network and salience network [45] as they have been traditionally
hypothesized to be affected during adolescent MDD. The ranking
process based on differential node entropy captured a number of
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regions from these large-scale functional network among the highest
30% of all the regions in the atlas.

C. Extracting Predictive Sub-network

1) Accuracy of Predictive Sub-network: For edge entropy based
network analysis of MDD, we followed the same methodology
described in our previous work [6] for diagnosing OCD from rs-
fMRI. Edge entropy was found to be most discriminating in the
lower frequency band (B2). The edge ranking was performed 82
times, and in each iteration edges with most differential edge entropy
were selected for leave-one-out classification. The number of edges
chosen for classification was based on the performance over various
number of edges. In Fig. S2 in Supplementary Information, we
plotted the classification accuracies with changing the number of
functional links in the predictive sub-graph. It is clear that 105 edges
have the best leave-one-out prediction performance using SVM (RBF
kernel). Similar to [6], the leave-one-out classification performance
for MDD vs. healthy mimics the performance of a feature selection
method. The classification accuracy increases until adding 105 edges
but then the performance starts to degrade. The comparisons of
classification results between the proposed predictive sub-network
and other baseline techniques is shown in Table II.

When used as features, edge entropies of the extracted sub-network
achieves 0.80 accuracy with identifying 25 out of all healthy and 41
out of 49 MDD subjects correctly. Although the edge ranking process
in each group identifies the edges in the frontal, medial and the
default mode network (DMN), the differential edge entropy promotes
the edge that are traditionally though to be part of fronto-parietal,
salience, executive and fronto-limbic network. Among them edges
with most changes in differential edge entropy connect regions such
as putamen, pallidum, thalamus, amygdala, caudate and accumbens.

2) Sub-network Visualization and Statistical Analysis: The
predictive sub-network is illustrated in Fig. 3. This network comprises
33 regions and 105 edges. We have provided a table containing the top
25 regions from predictive sub-network in Table S1 in Supplementary
Information. To demonstrate that the edges identified using differen-
tial edge entropy are stable across the group of subjects, we performed
a leave-one-out test and plotted their occurrence in a histogram. Thus
in each iteration, 105 high ranked edges were selected based on 80
subjects. Among these 105 regions, we calculated how many of them
belong to the predictive network and plotted the frequencies Fig.
S3 in Supplementary Information. This histogram in uniform and
decays slowly signifying that the predictive edges are stable across
the subjects in the group. Additionally we showed box-plots for sub-
graph entropy values of the predictive sub-network for both healthy
and MDD groups in Fig. 4. Here MDD subjects have lower entropy
compared with healthy (with p = 0.13).

D. Dynamic Functional Connectivity:

Dynamic connectivity features extracted through tensor, ICA and
PCA in isolation had a lackluster performance compared to static
features. Constrained-PARAFAC with 20 components yielded an ac-
curacy of 0.61 with sensitivity 0.96 and specificity 0.15, respectively.
The classifiers were chosen based on the performance of SVM and
random forest. The classification performance along with best per-
forming classifiers are shown in Table II. ICA produced accuracy of
0.62 with sensitivity 0.92 and specificity 0.18, respectively, whereas
the corresponding results for PCA were 0.57, 0.86 and 0.15. Random
forest classifier (number of trees = 10) had the best performance while
using ICA and PCA features. Notably, ICA had the best accuracy and
specificity values among the dFC features. Constrained-PARAFAC
had the best sensitivity.

E. Combined Feature Set from Static and Dynamic
Connectivity:

From the static and dynamic connectivity measures as shown
in Table II, the feature sets having the highest sensitivity and
specificity were identified. Incidentally the feature set with highest
specificity belonged to static features whereas the feature set with
highest sensitivity belonged to dynamic features. We hypothesized
that a combination of these feature sets will further improve the
classification performance since static and dynamic feature sets may
identify different subsets of the population. Thus edge entropies
of predictive sub-network and constrained-PARAFAC were concate-
nated to create feature vectors for each subject as described in
the Methods Section. A leave-one-out cross-validation using this
combined feature improved the performance to accuracy of 0.82 (3%
increase compared to individual feature sets), sensitivity of 0.84 and
specificity of 0.79. The static and dynamic feature sets separately
had overlap in correctly classifying 41 out of 82 subjects, whereas
static predictive network features identified 16 subjects that were
not identified correctly by constrained-PARAFAC. Also, constrained-
PARAFAC identified 9 distinct subjects that were not identified
correctly by the predictive network. This validates our hypothesis
that static and dynamic feature sets can classify different subsets of
patient vs. healthy population more accurately. Additionally, six other
combinations of features concatenation involving static and dynamic
features were tested for completeness - edge entropy+correlation (115
features, accuracy 0.79), edge entropy+network (115 features, accu-
racy 0.80), edge entropy+correlation+network (125 features, accuracy
0.78), tensor+correlation+network (40 features, accuracy 0.65), ten-
sor+correlation (30 features, accuracy 0.67) and tensor+network (30
features, accuracy 0.65). These feature concatenation processes did
not improve the classification performance.

IV. DISCUSSION

This paper explored the viability of automated diagnostic process
for adolescent MDD patients based on rs-fMRI. We explored the
feasibility of a combined static-dynamic feature combination scheme
using edge entropy and tensor components for identifying a predic-
tive sub-network and classification of adolescent MDD vs. healthy
controls. The features that had the highest classification performance
belonged to hemodynamic response frequency band B2 (0.03 ∼ 0.06
Hz). This section discusses important observations from different
classification schemes from the results mentioned in Section III.

A. Regions and Edges
Previous neuroimaging studies involving MDD patients have con-

nected the dysfunction of fronto-limbic circuitry. This sub-network
has traditionally been responsible for regulating human emotion.
Literature support for the involvement of this sub-network in MDD
can be found in [46]–[48]. Traditionally, regions such as amygdala,
insula and prefrontal cortex were demonstrated to have differential
functions for youths with MDD. In particular, an imbalance in
synchronization between the frontal regions (responsible for control-
ling) and limbic areas specifically anterior cingulate cortex or ACC
(responsible for emotion) [49] is thought to cause severe symptoms
for MDD patients [50]. Neuroimaging studies have also implicated
reduced functional connectivity between ACC and temporal-frontal
brain regions [51]. Children with depression also showed atypical
functional network connections in ACC and posterior cingulate cortex
(PCC) [52], [53]. This was hypothesized to be associated with lower
levels of emotion regulation capability among the participant children.
Additionally, adolescent MDD duration was shown to associate with
the connectivity between amygdala and post central gyrus [47].
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Fig. 3: Proposed predictive sub-network identified using differential edge entropy.

Fig. 4: Box-plot of sub-graph entropy values of the proposed predic-
tive sub-network for MDD and healthy adolescent groups.

The proposed method and predictive sub-network are able to
extract well-known default mode network regions for rs-fMRI scans
from healthy humans [54]. For resting-state brain networks, all
top regions extracted are either default mode or associated with
resting-state. Adolescent MDD group showed higher differential node
entropy for regions such as putamen, pallidum, accumbens, cingulate,
postcentral gyrus, amygdala, pars-orbitalis and thalamus. Some of
these regions were also identified in [6], [25] to have higher change
in node entropy between healthy and disease states. These regions
are part of the fronto-limbic circuit [55] in the brain.

Fig. 3 illustrates the sub-network that was extracted using the leave-
one-out classification process for healthy vs. adolescent MDD. As
can be seen in the brain plot, the network consists of a number
of nodes that have more connections than the others and thus act
as hub regions [33]. The edges include connections from frontal
pole to striatal node. In case of MDD vs. healthy, the link between
DMN and limbic system also has higher importance. Additionally the
sub-network contains regions like accumbens, putamen, operculum,
thalamus.
B. Dynamic Functional Connectivity

Dynamic connectivity approaches separately were not able to
perform the classification task with higher accuracy. They had very
high sensitivity, i.e., they could identify true MDD subjects but had
difficulty identifying the healthy controls. The poor specificity may be
due to the fact that rs-fMRI may not contain many different dynamic

states between healthy vs. adolescent MDD patients. A task based
fMRI may be able to magnify the state differences between healthy
controls and MDD patients.

C. Validation
In order to demonstrate that the combined static-dynamic features

have better than chance statistical significance for classification, bino-
mial tests were performed on the results [6], [7]. The proposed feature
set had significantly more predictive performance (p = 9.24× 10−9

for classifying healthy vs. adolescent MDD with respect to a naive
random chance classifier. However, with respect to [34], the test
yielded p = 0.32. A box-plot containing the sub-graph entropies
for predictive network is illustrated in Fig. 4. It is evident that, MDD
patients tend to have lower entropy compared to healthy controls.
We have included the relationship between prediction probability of
predictive sub-network + constrained-PARAFAC and CDRS in Fig.
S4 (SI). Also we show the relationship between prediction probability
and BDI in Fig. S5 (SI).

In fMRI literature, Fisher z-transformation is used to test hypothe-
ses about the value of population correlation coefficient between
two brain regions represented by nodes. The premise of our study
is different; we are interested in classification of adolescent MDD
patients from typically developing controls. We do not assume any
underlying distribution of functional edge weights for the subjects
to validate a hypothesis. Our predictive study looks for patterns in
the functional connectivity based on static and dynamic features
without any assumption of their distributions and thus Fisher z-
transformation is not a necessity for calculating the features and
training the classifiers.

D. Predictive Sub-network as Part of Other Known Networks
The key observations from our experiments implied that a num-

ber of regions and functional connections from brain sub-networks
that were discovered before and well-known in fMRI literature are
affected for adolescent MDD.

1) Default Mode Network (DMN): During rest, when a person
is not actively doing a particular task, some regions of brain show
increased activation. The network consisting these regions comprise
the so called default mode network of human brain [9], [56]. These re-
gions active during rest are thought be responsible for our day dreams,
wandering minds, self ruminations etc. The algorithm prescribed in
this paper using differential sub-graph entropy is able to extract
regions such as cingulate cortex, temporal pole, parahippocampus,
precuneus and medial prefrontal cortex, that are traditionally thought
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to be part of DMN. Previous results have supported the hypothesis
that the DMN is altered in adolescents with MDD [57], [58].

2) Salience: Salience network (SN) is comprised of regions that
show increased activation when a person tries to decide where to
focus their attention. Additionally, SN supports a mechanism that
helps subjects attend important visual/other cues that are prominent
compared with the background. The adolescent MDD predictive net-
work includes entorhinal, hippocampus from SN [59], [60] network.
Apart from that, salience network involves regions from cingulate,
pallidum, thalamus etc. The regions and functional edges extracted
through leave-one-out process may indicate that adolescent MDD
subjects focus on physical cues in a different way compared to healthy
adolescents [61], [62].

3) Executive Network: The executive network (EN) of human
brain consists of neuronal units from frontal-parietal network. EN is
hypothesized to support higher cognitive functions in humans, e.g.,
making a decision and/or solving a problem at hand. Many nodes
belonging to fronto-parietal network were extracted as part of the
predictive sub-network (Fig. 2). These regions include parsorbitalis,
hippocampus, caudate, frontal pole, temporal cortex, and putamen.
The implication of these fronto-parietal regions may illuminate a pos-
sible change in executive network functions for adolescents suffering
from MDD in comparison with healthy subjects [45], [63].

4) Fronto-Limbic: Fronto-limbic system in brain controls the
resistance of distraction for any goal oriented behavior. The predictive
sub-network consists of regions from this special brain circuits.
Regions such as accumbens, hippocampus and postcentral in the pre-
dictive network are responsible for lower-level emotional responses
in brain (fight or flight). Their dysfunction for adolescent MDD has
been reported in the literature [45], [57].

V. CONCLUSION AND FUTURE WORK

This paper explored a number of rs-fMRI based static and dynamic
connectivity approaches to classify adolescents with MDD vs. healthy
subjects. Using edge entropy and leave-one-out analysis, we showed
that a predictive sub-network containing subsections of multiple large
scale brain networks yields good prediction performance in terms
of accuracy and specificity. The regions and edges in this sub-
network indicate possible functional deterioration of brain circuits
during adolescent MDD. However, features exploiting dynamic con-
nectivity approaches alone did not yield good performance. Instead,
the combined feature set from static and dynamic connectivity had
the highest classification accuracy. Some of the regions and edges
extracted by high differential sub-graph entropy had significantly
different sub-graph entropy values. Potential limitations of the current
model include small number of samples and non-availability of a hold
out set. In the current work, classification step was done through past
classification techniques. In image processing, the popular classifiers
are Convolutional Neural Networks (CNNs) and Long-Short Term
NNs which are innovative deep learning classifiers. Since we only
have 82 samples, we refrained from describing deep learning models
in the paper. However as the number of samples increases for
adolescent MDD vs. healthy subjects, we plan to leverage the power
of deep learning in future works. Combining features from different
modalities, e.g., diffusion MRI, fMRI and MEG should also be
explored for the classification problem in the future. Additionally,
efforts will be directed towards understanding effect of psychotropic
medications on MDD patients with respect to sub-graph entropy and
validating the proposed classification scheme for publicly available
adult MDD datasets such as [64].

VI. CODE AVAILABILITY

The codes for graph entropy and dynamic connectivity are avail-
able at https://github.com/parhi/SubgraphEntropy

and https://github.com/parhi/TensordFC, respectively.
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S1: SUB-GRAPH ENTROPY

A. Node, Edge and Sub-Graph Entropy
An example of graph entropy and sub-graph entropy is shown in Fig. S1.

Fig. S1: a) An illustrative example of functional network among 7 nodes. The edges have been normalized, i.e., they sum up to 1. Graph
entropy of this network is H(G) = −

∑
i,j qi,j log2(qi,j) = −[3 × 0.05 × log2(0.05) + 0.1 × log2(0.1) + 0.2 × log2(0.2) + 0.25 ×

log2(0.25) + 0.3 × log2(0.3)] = 2.466 bits. b) Sub-network containing node 2 and its immediate neighborhood. The node entropy is 1.5
bits. c) Sub-network containing edge 1-2 and its immediate neighborhood. The edge entropy is 1.5709 bits.

S2: ILLUSTRATIONS

Fig. S2: Leave-one-out accuracy vs. number of edges in sub-network.

Bhaskar Sen and Keshab K. Parhi are with Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis (e-mail:
parhi@umn.edu), Kathryn Cullen is with Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
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Fig. S3: Histogram of the edges and regions captured by leave-one-out training. X-axis represents edges/regions with corresponding rank.

Fig. S4: Relationship between prediction probability of predictive sub-network + constrained-PARAFAC and Children’s Depression Rating
Scale (CDRS).

Fig. S5: Relationship between prediction probability of predictive sub-network + constrained-PARAFAC and Beck Depression Inventory
(BDI).
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S3: TABLES

TABLE S1: Top-25 highest ranked regions and their differential node entropy between adolescent MDD vs. healthy group.

Rank Region / Hemisphere Diff. Entropy p-value
1 Putamen - L 0.5505 0.0076
2 Parsorbitalis - L 0.4662 0.0353
3 Pallidum - L 0.4126 0.1316
4 Putamen - R 0.4114 0.0477
5 Isthmus Cingulate - L 0.3796 0.0072
6 Accumbens - R 0.3509 0.1872
7 Entorhinal - R 0.3500 0.2403
8 Caudate - L 0.3280 0.1512
9 Pallidum - R 0.3134 0.2771
10 BrainStem 0.2890 0.3126
11 CerebCort - R 0.2881 0.2706
12 Pericalcarine - R 0.2792 0.1154
13 Pericalcarine - L 0.2694 0.1036
14 Postcentral - L 0.2682 0.1745
15 Supramarginal - R 0.2669 0.1727
16 Thalamus - L 0.2627 0.2208
17 Fusiform - R 0.2589 0.1316
18 Fusiform - L 0.2317 0.2052
19 Bankssts - L 0.2275 0.3956
20 CaudMidFrontal - L 0.2101 0.2655
21 Precuneus - L 0.2065 0.0946
22 Lateral Occipital - L 0.2005 0.3162
23 Bankssts - R 0.2003 0.3449
24 InfParCort - L 0.1959 0.2124
25 Amygdala - R 0.1898 0.4927

S4: ATLAS DETAILS

This section provides the details of the atlas regions and their corresponding coordinates in MNI152 space.

TABLE A1: Desikan Atlas Coordinates and Regions
X Y Z Region

-22.43799052 -40.01410235 -49.10043329 Left Cerebellum Cortex
-9.365745637 2.239886304 -14.37367795 Left Thalamus Proper
-10.07260101 27.72348485 -12.26073232 Left Caudate
-21.98422754 20.16952115 -20.84432891 Left Putamen
-16.83028771 16.79043546 -23.15999222 Left Pallidum
-0.075123916 -9.236922464 -48.42339352 Brain Stem
-20.50547599 -2.062973884 -30.15532856 Left Hippocampus
-19.81226823 15.48516687 -36.92135352 Left Amygdala
-7.276182432 31.04307432 -27.10304054 Left Accumbens area
21.48534428 -39.86756307 -49.02782405 Right Cerebellum Cortex
9.483949985 2.061275227 -13.59662913 Right Thalamus Proper
11.78609914 26.20757004 -11.62715517 Right Caudate
22.79048673 20.47876106 -20.71349558 Right Putamen
17.75835396 15.67295792 -21.86726485 Right Pallidum
22.00855593 -1.230696995 -31.1206177 Right Hippocampus
20.08349546 15.711738 -37.17331388 Right Amygdala
6.856174699 29.9811747 -26.78840361 Right Accumbens area
-46.56135363 -24.43048423 -8.671588408 ctx lh bankssts
-2.641475645 34.52602674 4.327244508 ctx lh caudalanteriorcingulate
-29.18799213 34.20815342 18.68062611 ctx lh caudalmiddlefrontal
-8.394193234 -59.99674691 0.810426155 ctx lh cuneus
-21.87644009 14.07402074 -47.78801843 ctx lh entorhinal
-30.9386489 -27.44044884 -34.66050092 ctx lh fusiform
-38.44759259 -46.19018519 10.055 ctx lh inferiorparietal
-45.16522307 -13.35528397 -36.35213969 ctx lh inferiortemporal
-6.797138047 -26.52777778 -0.606060606 ctx lh isthmuscingulate
-28.81817994 -68.91491475 -14.09027893 ctx lh lateraloccipital
-21.51043029 49.65374052 -35.04103453 ctx lh lateralorbitofrontal
-12.85870064 -50.95184803 -21.89164371 ctx lh lingual
-5.424302789 52.46314741 -33.96962151 ctx lh medialorbitofrontal
-51.38255075 -1.05607361 -29.19242037 ctx lh middletemporal
-20.70094021 -10.09763742 -33.50470106 ctx lh parahippocampal
-6.551643921 -8.080024814 28.71665633 ctx lh paracentral
-39.82481355 38.1677284 -3.969468614 ctx lh parsopercularis
-37.70623742 60.72183099 -31.45120724 ctx lh parsorbitalis
-41.22619629 47.33825684 -19.5916748 ctx lh parstriangularis
-11.2699553 -63.45146871 -10.27378672 ctx lh pericalcarine
-37.7076791 -0.500245339 17.57396958 ctx lh postcentral
-4.185311284 -0.283722438 12.20330739 ctx lh posteriorcingulate
-35.30378452 13.60621618 15.33101499 ctx lh precentral
-8.750484872 -38.07336113 13.38877036 ctx lh precuneus
-3.369775542 54.56656347 -17.64705882 ctx lh rostralanteriorcingulate
-27.43047381 65.73664656 -9.245512066 ctx lh rostralmiddlefrontal

X Y Z Region
-8.409821118 46.32435307 13.8764545 ctx lh superiorfrontal

-21.121497 -41.68930512 23.69906348 ctx lh superiorparietal
-46.72014687 8.292424968 -21.74289591 ctx lh superiortemporal
-46.00677227 -13.25964187 10.55130854 ctx lh supramarginal
-5.798690205 78.87528474 -29.70529613 ctx lh frontalpole
-25.94376504 31.79330393 -52.99268244 ctx lh temporalpole
-36.91558442 -0.342938312 -11.6599026 ctx lh transversetemporal
-30.75487945 20.2217279 -20.08969575 ctx lh insula
48.03367217 -19.09704574 -10.55749682 ctx rh bankssts
5.245158888 35.7336147 3.08031281 ctx rh caudalanteriorcingulate
31.32239106 30.37378154 20.14012328 ctx rh caudalmiddlefrontal
5.413062284 -61.50735294 2.649221453 ctx rh cuneus
19.14095007 13.38072122 -47.39684466 ctx rh entorhinal
30.54333274 -25.02878436 -34.88151553 ctx rh fusiform
40.10512232 -41.90762888 9.178134557 ctx rh inferiorparietal
43.5415707 -8.394461078 -39.20629894 ctx rh inferiortemporal
5.855446927 -27.09696728 -1.528830806 ctx rh isthmuscingulate
28.27539489 -65.8775836 -18.00317174 ctx rh lateraloccipital
21.03270609 48.73015873 -34.47388633 ctx rh lateralorbitofrontal
9.887762593 -49.87773888 -19.71100632 ctx rh lingual
4.966974573 55.82042114 -33.24071315 ctx rh medialorbitofrontal
50.85591502 -4.637917276 -30.79573414 ctx rh middletemporal
21.59495927 -9.769602851 -33.93711813 ctx rh parahippocampal
5.574623858 -6.455534659 29.1560317 ctx rh paracentral
43.43193444 33.05039788 -5.577159909 ctx rh parsopercularis
39.84943842 55.80170411 -30.06438807 ctx rh parsorbitalis
44.60538203 44.68959732 -16.17094734 ctx rh parstriangularis
10.07145966 -62.11767266 -9.486723738 ctx rh pericalcarine
37.2218269 -2.29390681 18.21908602 ctx rh postcentral
4.539522514 1.299480455 13.94575705 ctx rh posteriorcingulate
35.74047669 11.18046754 17.23375229 ctx rh precentral
7.952909887 -39.13619703 12.41339621 ctx rh precuneus
5.23004886 53.77137622 -18.7896987 ctx rh rostralanteriorcingulate
29.98936817 63.1596294 -6.599787363 ctx rh rostralmiddlefrontal
10.21130626 44.56652488 15.72779455 ctx rh superiorfrontal
19.52022891 -44.67677003 23.1629292 ctx rh superiorparietal
47.22200315 10.34015441 -23.27712519 ctx rh superiortemporal
46.5050845 -10.93363136 9.673192179 ctx rh supramarginal
7.123893805 80.40376106 -25.63053097 ctx rh frontalpole
22.85859073 30.3030888 -51.48117761 ctx rh temporalpole
38.81806931 1.170792079 -13.0730198 ctx rh transversetemporal
32.27828362 19.71071121 -21.13080728 ctx rh insula


