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Abstract. Micro-Tissue Engineered Neural Networks (Micro-TENNs) are living three-dimensional constructs designed to
replicate the neuroanatomy of white matter pathways in the brain and are being developed as implantable micro-tissue for
axon tract reconstruction, or as anatomically-relevant in vitro experimental platforms. Micro-TENNs are composed of discrete
neuronal aggregates connected by bundles of long-projecting axonal tracts within miniature tubular hydrogels. In order to
help design and optimize micro-TENN performance, we have created a new computational model including geometric and
functional properties. The model is built upon the three-dimensional diffusion equation and incorporates large-scale uni- and
bi-directional growth that simulates realistic neuron morphologies. The model captures unique features of 3D axonal tract
development that are not apparent in planar outgrowth and may be insightful for how white matter pathways form during
brain development. The processes of axonal outgrowth, branching, turning and aggregation/bundling from each neuron are
described through functions built on concentration equations and growth time distributed across the growth segments. Once
developed we conducted multiple parametric studies to explore the applicability of the method and conducted preliminary
validation via comparisons to experimentally grown micro-TENNs for a range of growth conditions. Using this framework,
the model can be applied to study micro-TENN growth processes and functional characteristics using spiking network or
compartmental network modeling. This model may be applied to improve our understanding of axonal tract development
and functionality, as well as to optimize the fabrication of implantable tissue engineered brain pathways for nervous system
reconstruction and/or modulation.

1. Introduction

Various neural tissue-engineering tools have been
created to model and study the development of

∗Corresponding author: Reuben H. Kraft. E-mail: rhk12@psu.
edu.

neuronal networks in vitro. Among them are micro-
tissue engineered neural networks (micro-TENNs),
which are three-dimensional (3D) living constructs
comprised of long-projecting axonal tracts and dis-
crete neuronal populations within a microscopic,
hollow hydrogel cylinder (microcolumn) filled with
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Fig. 1. Micro-TENNs as living, 3D neuronal-axonal constructs. (A) Micro-TENNs are fabricated in a three-step process. Neurons are isolated
and forced into spherical aggregates via gentle centrifugation (top). Simultaneously, single-channel microcolumns are cast from hydrogel to
a predetermined inner and outer diameter and filled with an extracellular matrix (ECM) comprised of collagen and laminin (bottom). Next,
ECM-filled microcolumns are seeded with either 1 aggregate or 2 aggregates to form either unidirectional or bidirectional micro-TENNs,
respectively. Micro-TENNs are then grown in vitro. (B) Phase microscopy image of a unidirectional, GFP-positive micro-TENN at 5 days in
vitro (DIV). (C-F) Confocal micrograph of same micro-TENN from (B). Axons can be seen projecting from the neuronal aggregate (D) and
extending through the ECM-filled microcolumn (E, F). (G) Phase micrograph of a bidirectional micro-TENN at 5 DIV. The two aggregates
have been individually transduced to express GFP (left) and mCherry (right), allowing for identification and monitoring of aggregate-specific
processes. (H-K) Confocal micrograph of the micro-TENN from (G), showing axons projecting from each aggregate (I, K) and growing
along each other (J). Scale bars: 100 �m.

an extracellular matrix (ECM) [1]. Preformed clus-
ters of neuronal cell bodies (aggregates) are housed
at one or both ends of the microcolumn, with axons
growing longitudinally through the hydrogel lumen
(Fig. 1). This segregation of long axonal tracts and
neuronal cell bodies approximates the network archi-
tecture of the central nervous system by replicating
the anatomy of gray matter and white matter path-
ways referred to as the “connectome”. Micro-TENNs
can be fabricated with a range of neuronal subtypes
and physical properties, yielding a controllable yet
biofidelic microenvironment for studying 3D neu-
ral networks in vitro. As such, micro-TENNs are
being developed in parallel as (1) self-contained,
bioengineered implants to reconstruct compromised
pathways in the brain, and (2) biofidelic test-beds for
studying various neuronal phenomena (e.g. growth,
synaptic integration, circuit development, pathologi-
cal responses) [1–5]. Towards the former, prior work
has shown that micro-TENNs are capable of survival,
maintenance of architecture, neurite outgrowth, and

host/implant synaptic integration out to at least 1
month following implant in adult rats [3–6].

To advance micro-TENNs’ capabilities as an in
vitro testbed and/or to rebuild the damaged con-
nectome, one of our design goals is to develop
a computational platform that can be used to
design and optimize micro-TENNs for specific
performance goals. To be able to investigate neu-
ronal growth, neurite extension, and the formation
of synaptic connectivity at the distal ends, we
need a simulation framework capable of gener-
ating large-scale unidirectional and bidirectional
axonal outgrowth with realistic morphologies. The
applications of this computational framework for
micro-TENNs include: (i) the ability to study
processes involved in outgrowth and structural inte-
gration in 3D microenvironments; (ii) aid in the
design and optimization of functional characteris-
tics and predict performance (e.g., output for a given
input); (iii) simulate detailed neuron morphologies
and anatomically-relevant neuronal-axonal networks
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to study connectome-level functional connectivity via
spiking or compartmental network modeling. Com-
bining the anatomical simulation results and the study
of functional connectivity will increase our abil-
ity to understand and predict the neurophysiological
characteristics and network-level activity in micro-
TENNs.

There are two major approaches to simulate
neuronal development: construction algorithms and
biologically-inspired growth processes [7]. Construc-
tion algorithms aim to reproduce the shape of real
dendritic trees from distributions of shape parame-
ters [8, 9]; however, this approach lacks the insight
into any underlying biophysical mechanisms, such as
the influences on morphological development caused
by different neuronal types [10], a neuron’s intracel-
lular environment and interaction with other neurons.
Stochastic growth models, which provide a descrip-
tion of the growth process based on probabilistic
growing events [11–14], are a popular approach
under construction algorithms. On the other hand,
biologically-inspired growth processes are based on
a description of the underlying biophysical mecha-
nisms of the dendritic development [10,15]; studies
have been conducted with various aspects of develop-
ment, such as cell migration [16], neurite extension
[17], growth cone steering [18, 19] and synapse for-
mation [20].

In this paper we present an ad-hoc, phenomenolog-
ical growth model built upon the diffusion principle,
which incorporates the stochastic process to repro-
duce the shape of micro-TENN tissue. In that sense
it belongs to the construction algorithms, however
it does not rely on experimentally determined shape
parameters. Our approach uses the 3D diffusion
equation imposed with various rules for individual
neuronal growth, such as the actions of neurite exten-
sion, branching, turning and aggregation/bundling.

2. Methods

2.1. Micro-TENN fabrication and experimental
measurements

Micro-TENNs were generated as previously
described [4]. Briefly, agarose (3% w/v) was cast
in a custom-designed acrylic mold to yield micro-
columns with an outer diameter of 345 or 398 �m
and inner diameter of 180 �m. Microcolumns were
UV-sterilized and cut to a specified length before
the lumen was filled with an ECM comprised of

rat tail collagen 1 (1 mg/mL) and mouse laminin
(1 mg/mL) adjusted to a pH of 7.2–7.4 (Reagent
Proteins, San Diego, CA). To create the neuronal
aggregates, embryonic day 18 (E18) cortical neu-
rons were isolated from rodents and dissociated.
The resultant single-cell suspensions were added
to custom PDMS pyramidal wells and centrifuged
at 200 x g for 5 minutes to force the cells into
spheroidal aggregates. Following 24 h incubation at
37°C/5% CO2, aggregates were seeded within the
microcolumns to generate unidirectional (with one
aggregate) and bidirectional (with one aggregate at
each end) micro-TENNs. Micro-TENNs were then
grown at 37°C/5% CO2 with half-media changes
every 48 hours. To fluorescently label aggregates,
adeno-associated virus 1 (AAV1) was sourced from
the Penn Vector Core (Philadelphia, PA), packaged
with the human synapsin 1 promoter and either green
fluorescent protein (GFP) or the red fluorescent pro-
tein mCherry, and added to the pyramidal wells
containing the aggregates (final titer: ∼ 3 × 1010).
Aggregates were kept at 37°C, 5% CO2 overnight
before being seeded in micro-columns as described.

During the design and early development of
the model, unidirectional and bidirectional micro-
TENNs were generated with approximately 15-30E3

neurons per aggregate and lengths ranging from
2.0-9.0 mm (n = 39), with growth rates analyzed as
described [5]. To identify aggregate-specific axons
over time, a set of 3.0mm-long, bidirectional “dual-
color” micro-TENNs were simultaneously generated
such that one aggregate expressed green fluores-
cent protein (GFP) while the opposing aggregate
expressed mCherry (n = 6). Finally, for quantitative
validation of the growth model, 2.0mm-long, unidi-
rectional micro-TENNs were transduced to express
GFP and generated with approximately 20E3 neurons
per aggregate (n = 6) or 8.0E3 neurons per aggre-
gate (n = 6) for characterization as described below.
Micro-TENNs were imaged under phase contrast
microscopy (magnification: 10x) at 1, 3, 5, 8, and
10 days in vitro (DIV) using a Nikon Eclipse Ti-S
microscope paired with a QIClick camera and NIS
Elements BR 4.13.00 (National Instruments). In addi-
tion to phase contrast microscopy, the bidirectional
dual-color micro-TENNs were imaged at 1, 2, 3, 5,
and 7 DIV using a Nikon A1RSI Laser Scanning
confocal microscope paired with NIS Elements AR
4.50.00.

To quantify micro-TENN growth rates over time,
the longest identifiable axons were measured from
phase images at each DIV using ImageJ (National
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Institutes of Health, MD). Lengths were measured
from the leading edge of the source aggregate (iden-
tified at 1 DIV) to the neurite tip, and growth
was measured until axons from the aggregate either
spanned the micro-TENN length (unidirectional) or
began to grow along axons from the opposing aggre-
gate (bidirectional). Growth rates were averaged
at each timepoint to obtain a growth profile for
unidirectional micro-TENNs with 20E3 and 8.0E3

neurons/aggregate. The peak growth rates for each
group were compared using an unpaired t-test, with
p < 0.05 set as the baseline for statistical significance.

To characterize axonal density with respect to
cell count, phase images of unidirectional micro-
TENNs with either 20E3 (n = 6) or 8.0E3 (n = 6)
neurons/aggregate at 5 DIV were imported into
ImageJ. 10- �m long rectangular regions of inter-
est (ROIs) spanning the inner diameter (final ROI
dimensions: 180 �m x 10 �m) were taken at 50% and
75% of the micro-TENN lengths. The axon density at
these two locations was quantified as the percentage
of the ROI populated by axons. Densities were aver-
aged for the 20E3 and 8.0E3 groups and compared
at each location via unpaired t-test with p < 0.05 as
the baseline for significance. All data presented as
mean ± s.e.m.

To characterize axon distribution, unidirectional
micro-TENNs were fabricated and labeled with GFP
(n = 5). At 10 DIV, micro-TENNs were gently drawn
into a 22-gauge needle and vertically injected into a
block of “brain phantom” agarose (0.6% w/v). Micro-
TENNs were injected such that the aggregate was
ventral with axon tracts projecting downward. Post-
injection, micro-TENNs were imaged on a Nikon
A1RMP+multiphoton confocal microscope paired
with NIS Elements AR 4.60.00 and a 16x immersion
objective. Micro-TENNs were imaged with a 960-
nm laser, with sequential 1.2 �m-thick slices taken
along the longitudinal axis (i.e. X-Y projections along
the micro-TENN length). Post-imaging, the X-Y pro-
jections were used to generate a 3D reconstruction
of the micro-TENN; cell bodies, axon bundles, and
single axons were then manually identified via co-
registration of the X-Y projections and 3D structure.

2.2. Computational model development

This framework aims to emulate the growth and
bifurcation of micro-TENN neurons by using simple
diffusion principles. It avoids most of the underly-
ing biological complexity (due to the lack of external
guiding molecular cues) by considering only a few

key parameters. Each tip of each neuron is considered
as a diffusion source in free space. The elongation
and the growth direction of each of the neurites in the
model are guided by the contribution of the concen-
tration gradients generated by of the rest of the neurite
tips. The motivation for using a concentration gradi-
ent to mimic the growth behavior of neurons comes
from our experimental observations and from vari-
ous approaches in the literature. Mathematically, the
concentration gradients help drive bundling, and from
our experiments we see that axons bundle together as
shown in Fig. 1. In addition, in the real brain, bundling
of axonal fiber tracts is shown by diffusion tensor
imaging [22]. The goal of micro-TENNs is to even-
tually be considered “replacement” fiber tracts that
could be implanted. In both cases of real fiber tracts
and micro-TENNs, bundling is observed suggesting
an attractive mechanism that we can capture using
a concentration gradient approach. Furthermore, it
is known that axons have growth cones which are
sensitive to various stimuli [23] that create attractive
forces. Our model is a phenomenological construct
of these ideas that run in a fast fashion ignoring the
detailed molecular aspects but focusing on captur-
ing the desired morphology. The bifurcation of the
neurites is assumed to be a stochastic process, i.e.,
branching is associated with a time dependent prob-
ability function at each node. All of the tips of the
neurite tree are assumed to participate in the exten-
sion and branching process; furthermore, extension
and branching of each node are modeled as indepen-
dent processes. This has computational advantages
such as improved speed and ability to parallelize on
a large scale.

The model uses a continuous space/discrete time
approach to allow freedom in the outgrowth direction
and elongation. Space is bounded by the inner diam-
eter of the hydrogel micro-column, the diameter and
length of the tubular hydrogels, 180 �m and 2 mm
respectively, are based on experiments previously
performed by the Cullen Lab [1, 3]. In the micro-
TENNs, axonal extension is measured approximately
every two days; as such, the size of the fixed time
interval of the model is 1% of this two-day interval
(i.e., 28.8 minutes). In each time step, each individ-
ual axonal tip may: (i) extend, (ii) bifurcate into two
daughter branches and (iii) change growth direction.
In the present implementation, the model uses fixed
time steps with functions built upon the diffusion
equation and concentration gradients for extension,
turning, and branching. The model is developed with
the following conditions: the extension rate and turn-
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ing direction depend on the concentration gradients
at the terminal segment of each axon, the extension
rate decreases exponentially to zero value [12] as the
neurites stop growing due to the limitation of space
and essential biochemical factors [14], and branch-
ing probabilities grow as a function of the simulation
time.

3. Extension, tuning and branching

3.1. Modeling setup: Diffusion equation and
concentration gradient

Many stochastic models of neuronal activity are
based on the theory of diffusion processes [24]. In our
growth model, the tips of the neurons are modeled as
diffusion sources in free space, assuming a constant
isotropic diffusion coefficient:

D∇2C = dC

dt
(1)

where D is the diffusion coefficient, C is the concen-
tration (non-dimensional), and t is time. The general
solution of the diffusion equation becomes:

C(x, y, z, t) =
(

1

(4πtD)2/2

) (
e
−
(

x2
4Dt

+ y2

4Dt
+ z2

4Dt

))

(2)

The sum of all concentration gradients at each neu-
rite tip is used to help guide the direction of growth
for the next time step.

3.2. Growth tip position

The coordinates at any given next step of a growth
tip (P2) are determined from the coordinates in the
previous step (P1), the outgrowth direction (D2), and
the extension rate (L); the new position in each time
interval is given by:

P2 = P1 + D2L (3)

this tip migration position cannot be accepted until
it satisfies the coordinate restrictions of radial con-
straint and overlap avoidance (explained below).

3.3. Direction of neurite outgrowth

The outgrowth of neurites is a complex process
that is far from being fully understood. In actual

biological processes, the outgrowth direction of neu-
rites depends on many intracellular and extracellular
cues, which may cause large fluctuations in outgrowth
directions [22, 23]. Our model assumes that the new
outgrowth direction depends on the previous out-
growth direction and on the concentration gradients
of the growth tips. For each growth tip, the concentra-
tion gradients are normalized, and the new outgrowth
direction is given by:

D2 = D1 + S1∇C + S2E1 (4)

where D1 is the previous direction vector, S1 is the
sensitivity to concentration gradients, ∇C is the nor-
malized concentration gradient, S2 is the sensitivity
to the direction perturbation, and E1 is a stochastic
direction perturbation term. The stochastic term E1 in
Equation 4 is introduced to cause small fluctuations,
alongside the gradients, in the growth direction. A
schematic to help visualize Equation 4 is shown in
Fig. 2a. Controlling this term in the simulation allows
influence of the magnitude of deviation of the growth
direction; therefore, the component in the axial direc-
tion of the cylindrical tube has the largest value, while
the components in the radial direction are relatively
small.

3.4. Rate of neurite extension

The rate of extension of a neurite (L) may vary
considerably and is determined both by the external
environment and by the internal state of the neurite
in the micro-TENNs [24–31]. In general, the exten-
sion rate decreases gradually with increasing distance
from the soma [15]; in our model, the descrip-
tion of neurite extension rate follows the trend of
experimental growth rate measured in unidirectional
micro-TENNs. In each time step, the elongation of a
single neurite is represented by the function:

L = At2 (
V0grad

∇C + v0E2
)

2− t
τ (5)

where v0grad
is the growth rate related to the gradi-

ents, v0 is the base extension rate and E2 is a second
random process used to cause fluctuation in v0; t is
the simulation time, τ controls decreasing speed of
the extension rate L and A is a scaling factor. This
function was selected phenomenologically in order to
capture the observed micro-TENN growth behavior,
i.e. initial growth increase followed by a growth slow-
down. The particular parameter values controlling the
extension rate L were selected through a parameter
search.
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3.5. Branching probability, rate of branching,
and growth rate after branching

Neurite branching patterns are complex and show
a large degree of variation in their shapes, random
branching on the segment indeed results in large and
characteristic variations in the structures of the tree;
as previous research has highlighted [12, 32], branch-
ing is assumed to occur exclusively at terminal nodes.
Our model describes branching as a stochastic pro-
cess: for each time step, for each of the terminal nodes
in the growing tree, a branching probability pbj to
form two new daughter nodes in a given time interval
is assigned. The probability of a branching event at
each given terminal node j is given by:

pbj =
(

1 − e
− t−tib

τb

)
Pb (6)

The time-dependent branching probability pbj of a
given terminal node j is dependent on several terms:
the steady state branching probability (Pb|t = ∞),
simulation time t, the branching time step tib, and a
branching time constant τb.

The latter equation assumes that the branching
probability of terminal nodes at each time step
remains constant for all tips but branching proba-
bilities are growing with the total simulation time;
such function was necessary to match the shape of
increasing number of dendritic terminal nodes during
outgrowth of the micro-TENNs. Whenever a branch-
ing event takes place, two daughter terminal nodes
are instantaneously added to the end of the existing
terminal segment [33], which then becomes an inter-
mediate segment. The stochastic process of branching
is also restricted by another random value E3; branch-
ing could only occur when both pbj and E3 are
greater than a certain value B, the value of B can be
determined by the branching probability from exper-
imental data.

The growth rate of the generated trees is closely
related with segment outgrowth direction and exten-
sion and we only consider the extension distance
in the axis direction as the growth distance; there-
fore, the growth rate is determined by the difference
between the z components of the nodes. In the model,
we force the growth cones to extend preferentially in
the axis direction and the turning is relatively small,
in this way the segment extension rate is the strongest
factor to determine the growth rate. Estimates of v0,
and τ were obtained from the experimental growth
rate and the experimental tuning of the elongation

parameters which involves a comparison of the exper-
imental and model segment extension rate.

As stated above, with the current implementation
the branching probability increases with simulation
time and the steady-state branching probability Pb

and time constant τb are supposed to be extracted
from experimental images. By controlling the values
of Pb and τb, we have control over the morphology of
the simulated neurites, since Pb controls the branch-
ing density and τb controls how early in the process
branching begins, e.g., in the extreme case of Pb = 0
we can generate a morphology with no branching.

4. Additional functions, parameters and
features

4.1. Radial constraint

Micro-TENNs are grown within miniature tubular
hydrogels experimentally, in the simulations the out-
growth process is also restricted within the tubular
space (in this particular case, 180 �m in diameter [1,
3]); however, the model allows different simulation
radii to be employed. At each time step, the radial
components of all the terminal nodes are tracked, if
a radial component of a given node does not satisfy
the tubular constraint, the node will be re-oriented to
stick on the tubular wall.

4.2. Overlap avoidance

The branches and extensions of neighboring neu-
rites often target a shared or adjacent position, i.e.,
many of the neurites are competing for space and
avoiding overlap. Space competing is achieved as a
result of the growth based on the concentration gradi-
ents explained above. At the same time, overlapping
is avoided by checking the distance from the new
positions to the surrounding existing segment tips;
the model re-orients the growth direction whenever
the extended position is sufficiently close to others.

4.3. Bundling and helicity

One more feature included in the model is the
capacity to accommodate fiber bundling. This is
achieved by including an attraction term , i.e., the
new position in each time interval becomes:

D2 = D1 + S1∇C + S2E1 + S3AT, (7)
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where S3 is a sensitivity to attraction parameter (val-
ues between zero and one) that controls the bundle
formation. The attraction term, AT, is a normalized
vector that points in the direction of the centroids of
all the tips within the radius of influence, RI. When
the parameter is activated the micro-TENNs are able
to form bundles. When the parameter is deactivated
the virtual micro-TENNs do not bundle. It is not a
static variable; it is a dynamic value that changes as
the micro-TENN grows depending on the location
of the centroid of the bundle within a certain RI. It
allows axons to skip from one bundle to another. It
also enables the center of mass of a bundle tip to move.
In order to construct the attraction term AT, we intro-
duced an attraction radius of influence (RI); every tip
that falls within this RI is attracted to the centroids
of all the tips that are within the RI. Larger values of
RI lead to the formation of fewer bundles and vice
versa, selection of different values of RI allows the
simulation of different morphologies with a differ-
ent number of bundles. The model naturally provides
an additional feature, tips belonging to a given bun-
dle that fall outside of the RI at a given time step can
form their own bundle, effectively allowing for a bun-
dle to split, such an effect is observed experimentally
(Fig. 1).

Helicity is another feature that was introduced to
the model aiming to reproduce observed experimen-
tal micro-TENN morphologies. Very often, single
axons and axonal bundles once reaching the inner
wall of the micro-column, form a helix (Fig. 1); our
model allows control over both the slope of the helix
formed by an axon (or axonal bundle), as well as its
helicity (handedness).

4.4. Parameter tuning

Finding a best fit of the model-generated neuronal
morphologies for an experimental data set requires
an iterative comparison of experimental and model
shape properties. When tuning the parameters of
the model, some can be directly related to proper-
ties of the experimental data or images and can be
obtained from them, e.g., the time step is selected
to be 0.02 days, based on actual experimental exten-
sion measurements (see Results section). Similarly,
parameters as v0grad

, v0, and τ, which predict the
growth rate in axis direction, are susceptible to the
same strategy. Noticeably, since v0 can be/is extracted
from the experimental data, the selection of the value
of the diffusion coefficient (D) is guided by the
restriction:

D ≤ 1

2

L2
o

�t
, (13)

where L0 = L(t = 0) is the initial extension.
Other parameters as τb, Pb and S3, govern

the branching and fully determine the topological
structure of the generated trees, they are directly
related to segment branching rate which can also
be inferred/estimated from the experimental obser-
vations.

Axon growth and bundling along the tube
Slices of the model-generated morphologies were

analyzed with ImageJ using the analyze tool after
contrast filter/tuning to count to axons and mea-
sure the occupied areas. Individual axon areas were
divided by the total area in each slice and the result-
ing ratios for each RI were analyzed as frequency
distributions.

Implementation, scaling and computational
performance

The code was implemented in Python 2.7-3, even
though Python is not recognized as a fast comput-
ing language the runtimes are not excessive and the
simulations can be performed on standard/modern
computers. The algorithm (Fig. 2b) employed by
our model is scalable; simulations were performed
for 100, 1000 and 10000 cells for the unidirectional
micro-TENN with diameter 180 �m and length 2 mm
with runtimes were 1.99, 28.93 and 1500.45 sec-
onds, respectively. The simulations were carried out
on a laptop (Windows 10 Enterprise 64, Intel i7-
7700HQ CPU @ 2.80 GHz, 2801 Mhz, 4 Cores,
16GB DDR3 RAM), all code with is freely available
at: https://github.com/PSUCompBio/GrowthModel.

5. Results

5.1. Examples of micro-TENNs morphologies

The model simulates satisfactorily the growth
processes for unidirectional and bidirectional micro-
TENNs when grown to 2000 �m. Variation of
model parameters like sensitivity to attraction (S3)
and radius of influence (RI) allows us to gener-
ate/reproduce different morphologies seen in experi-
mental setups. Figure 3a shows various unidirectional
morphologies modelled for micro-TENNs seeded
with 3000, 6500 and 10000 cells; it demonstrates
how different values of these parameters control

https://github.com/PSUCompBio/GrowthModel


92 T. Marinov et al. / A computational model of micro-TENNs

Fig. 2. a) Visualization of Equation 4 which shows how the outgrowth of neurites is implemented. The variables are defined in the text.
This controlling this term allows change in the magnitude of deviation of the growth direction. b) Pseudocode and schematic of the
code implementation requires an initial parameter specification; parameters as sensitivities (S1, Sd1), base growth rate (v0), growth rate
based on gradient strength (v0grad ), time constant for growth rate (tau), time constant for branching rate (taub), branching probability,
bundling (RI), helix formation (chi), total steps, number of cells, inner radius of micro-column among others; these are specified based on
experimental/known values. The algorithm then selects among four cases based on chi and bundle values, these cases are used to determine
positions after the initial positions. Once calculated, the positions are plotted for its visual inspection and files with coordinates are saved for
posterior visualization in Paraview.

the morphologies, e.g., S3 takes continuous values
between zero and one, with S3 = 0 corresponding
to no bundle formation and S3 = 1 corresponding to
tight bundle formation (Fig. 3b and 3a respectively).
Higher RIs show fewer bundles for each cell density
(Fig. 3a).

The case of bidirectional morphologies is pre-
sented in Fig. 5, S3 = 0 ensures no bundle formation
in spite of the denser setup (Fig. 5) while intermediate
values of S3 show not so compact bundles (Fig. 4).

5.2. Experimental calibration of axonal growth
rate

Growth rates were computed from the model
and compared to those measured from experimen-
tal images (Fig. 6a,b) of unidirectional micro-TENNs

of approximately 8000 and 20000 neurons; rates are
not statistically different (Fig. 6c,d). The optimized
parameters, v0 = 15, v0grad

= 0.008 and E2 (a ran-
dom uniform value between 0.8 and 1) provided an
excellent fit with the experimental data. The results
show that extension rates increase up to three DIV
and then decrease as the distance from the soma
augments, the same trend can be seen for both the
unidirectional and bidirectional growth rates (Fig.
6e,f).

Figure 7a shows a 3D-reconstruction of a unidirec-
tional micro-TENN at 10 DIV. Four corresponding
slices were extracted for cross-sectional compari-
son to the computed results. Figure 7b–e show each
slice marked with arrows to distinguish between neu-
ronal cell bodies, axon bundles, and single axons. In
order to compare morphologies, we use two model-
generated X-Y projections along the Z-axis (Fig. 8)
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Fig. 3. Example of unidirectional model-generated micro-TENN morphologies: (A) Twelve morphologies for micro-TENNs of length
L=2000 �m and radius R=180 �m, number of seeded cells 3000, 6500 and 10000, and RI=70, 80, 90 and 100 �m, respectively. S3 = 1
causes tight bundle formation. (B) S3 = 0 guarantees no bundle formation.

Fig. 4. Example of unidirectional model-generated micro-TENNs:
Micro-TENNs of length = 2000 �m and radius R = 180 �m, num-
ber of seeded cells 3000, 6500 and 10000, and RI = 90 �m. Here
S3 = 0.75, bundles are not compact.

that resulted from a micro-TENN simulation (inner
radius 180 �m, length of 2 mm, number of seeded
cells 20,000). The model generates realistic morphol-
ogy with single axons and axon bundles along the
inner wall comparable to the experimentally recon-
structed morphology in Fig. 7.

From different slices along the z-axis in our
simulations we analyzed the percentage of area cov-
ered in the slice which serves as descriptor of the
axon bundling along the tube. It should be noted
that according to the models, the highest average
size for the axons is reached between 660 �m and
990 �m in z-direction, i.e., where the bundles are
bigger along the tube. Experimental confirmation
is needed to test our observations. Different com-
binations of simulation parameters create particular
micro-TENN morphologies, in an attempt to qual-
itatively characterize them we measured the area
ratio of the bundle/micro-TENN cross sections at 5
equidistant z-values along the micro-TENN for 3 dif-
ferent RI (Fig. 9d,e,f). The resultant distribution for
each RI is distinct and allows qualitative comparison
between simulation morphology data and experimen-
tal microscopy micro-TENN data when it becomes
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Fig. 5. Example of bidirectional model-generated micro-TENNs:
Analogously to the unidirectional case, the model can gener-
ate bidirectional morphologies. The micro-TENNs have length
L = 2000 �m and radius R = 180 �m, the number of seeded cells
is 3000. Here S3 = 1 and RI= 90 �m shows bidirectional axonal
bundle formation (left), in the case S3 = 0 no bundles are formed
(right). Neuronal cell bodies (aggregate) are labeled on each end
but are hidden for clarity.

available. The most abundant type are the smaller
ratio areas (individual axons), both RI 50 and 70
have bigger counts of this type than RI 90; on the
other hand, RI 90 presents the bigger area ratios (bun-
dles). These results reflect the effect of RI in bundle
formation using our model.

6. Discussion

As a neural network model, micro-TENNs allow
systematic interrogation of different contributors
to neuronal growth and development in a three-
dimensional, anatomically-relevant environment. By
providing precise control of the neuronal subtypes
within the engineered aggregates, the extracellular
matrix and milieu, as well as the potential presence
of supporting glial cells, the micro-TENNs provide
an ideal platform for the evaluation of interplay
between intrinsic and extrinsic mechanisms of neu-
ronal growth and neurite extension. For instance, the
3D biomaterial columnar encasement provides an
unprecedented engineered environment to study the
multi-faceted and often synergistic contributions of

haptotactic [mediated by ECM (e.g., laminin, colla-
gen) and cell-surface ligands (e.g., cadherins, L1)],
chemotactic [mediated by growth factor gradients
(e.g., nerve growth factor, glial derived neurotrophic
factor) that can be attractive or repulsive], and
mechanotactic [dictated by substrate geometry (e.g.,
curvature) and mechanical properties (e.g., stiffness)]
on axonal outgrowth and pathfinding [34, 35]. To
date, micro-TENNs have been generated with lengths
ranging from 1–30 mm, and inner diameters as
small as 160 �m [4]. Moreover, the introduction of
“actuator proteins” such as channelrhodopsin-2 (a
light-sensitive ion channel for optically-induced neu-
ronal stimulation) and/or activity markers such as the
fluorescent calcium reporter GCaMP also provide a
range of techniques to both modulate and monitor
neuronal activity within the micro-TENN over time
[5]. This controllability makes micro-TENNs an ideal
test bed for eliciting and studying different neuronal
phenomena under a range of experimental conditions,
all within a three-dimensional architecture more sim-
ilar to the native brain than traditional 2D cultures or
randomly organized 3D cultures.

Existing models have been applied to study neu-
ronal development in vivo, generally in the presence
of molecular cues and under no specific geomet-
ric restrictions ]. Those conditions differ from the
experimental growth conditions of micro-TENNs, in
which some gradients of external molecular cues are
missing e.g., the matrix is not neural tissue, and the
growth space is a narrow tubular environment. More-
over, most of the existing models include complex
growth mechanisms, leading to large computational
cost. To compliment these previous efforts, there
is a need for computationally inexpensive models
(due to the large populations of neurons) capa-
ble of capturing the morphology of axonal growth
within geometrical restrictions, including important
behaviors/features as neurite branching and axonal
bundle formation/fasciculation as the one described
here.

The presented model is designed to capture some
of these important basic biological principles of neu-
ronal development and axonal outgrowth in vitro: the
competition for space and resources between growing
tips, the formation of bundles, chirality, the depen-
dence of branching probability on the growth time,
and the deceleration of the growth rate over time.
The growth rate values in our model successfully
reproduce those in experimental data and the imple-
mentation is a fast/computationally-inexpensive
ad-hoc stochastic process-based simulation frame-
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Fig. 6. Calibration of simulated growth rates in vitro. (A) Phase images of a unidirectional micro-TENN with approximately 8,000 neurons
at 1, 3, and 5 DIV. (B) Phase images of a unidirectional micro-TENN with approximately 20,000 neurons at 1, 3, and 5 DIV. Both
micro-TENN groups exhibited rapid axonal growth over the first few DIV. Scale bars: 100 �m. (C) Growth rates from both micro-TENN
groups at 1, 3, and 5 DIV. Micro-TENNs with ∼20,000 neurons/aggregate exhibited qualitatively faster growth rates than those with
∼8,000 neurons/aggregate, although there were no statistically significant differences in growth rates. (D) Axon density at 5 DIV across the
two groups at 50% and 75% along the micro-TENN length (as illustrated in (B)), quantified as the percentage of the microcolumn channel
occupied by axons. Micro-TENNs with ∼20,000 neurons/aggregate showed higher axon densities than those with ∼8,000 neurons/aggregate,
although this was only significant at 50% along the micro-TENN length (*** = p < 0.001). (E) Experimental versus model growth rate for
unidirectional micro-TENN with 8,000 neurons. (F) Experimental versus model growth rate for unidirectional micro-TENN with 20,000
neurons.

work for the generation of large-scale unidirectional
and bidirectional neuronal networks with realistic
neuronal-axonal morphologies. Micro-TENN design
and optimization can be assessed prior any exper-
iment with this tool. After fine-tuning of the
parameters described in the methods section, the sim-
ulations can help in the decision making for the
different experimental setups under study.

The main advantage of the model is its con-
ceptual simplicity. It is built on basic principles,
yet it can generate various complex morphologies
observed experimentally (Figs. 3–7) with only a few
parameters from de novo conditions. Another major
advantage is the computational speed; the solution
of the diffusion equation for each tip is explicit and
analytic, thus removing the necessity for a numerical
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Fig. 7. (A) 3D reconstruction of a unidirectional, GFP-positive micro-TENN at 10 DIV. (B–E) X–Y projections of the micro-TENN from
(A) at the sections outlined in red. Orientation of the z-axis (positive) is into the page. Neuronal cell bodies (arrows) can be seen near the
aggregate region in (B), from which axonal bundles (triangles) project and split into individual axons (caret). Scale bars: 200 �m (A); 50 �m
(B).

Fig. 8. Model generated morphology of a unidirectional micro-TENN. (A) X–Y projection at Z = 910 �m; (B) X–Y projection at Z =
1380 �m. Inner diameter 180 �m, length 2 mm and approximately 20,000 neurons.

solution for the concentration and the concentration
gradients. This makes the model fast and compu-
tationally cheap, particularly for a large number of
growing neurons. Furthermore, each growth tip repre-
sents a separate process, allowing for parallelization
and additional speed up of computational.

On the other hand, a limitation to the model is the
introduction of parameters that cannot be extracted
directly from experimental data, sometimes due to
the data resolution or simply to an inability of reli-

ably quantifying certain experimental aspects. The
parameter space they form has to be scanned for val-
ues that allow realistic neuronal morphologies. The
actual implementation lacks of chemical cues in the
unidirectional case, such cues are imperative to repro-
duce completely the experimental models; while the
model/implementation allows for additional attrac-
tion/repulsion and guidance terms to be introduced,
employing direct extrapolation from in vivo growth
models is challenging due to its chemically complex



T. Marinov et al. / A computational model of micro-TENNs 97

Fig. 9. Bundle %area coverage (circles) and average bundle size (triangles) as a function of length in the micro-TENN. (A) RI = 50; (B) RI
= 70; (C) RI = 90. Combined area ratio distributions from five z-cross sections from simulated microTENNs with (D) RI = 50, Ł RI = 70
and (F) RI = 90, respectively. The distinct distribution correspond to distinct microTENN morphologies.

Fig. 10. Growth pattern and synapses examples. Illustration of synaptic formation close to the cells aggregate. The spheres indicate the
synapses location. We consider that a synapse is formed when 2 fibers are closer than a threshold distance of 0.5 �m. Synapses occur close
to the aggregate (within 100 �m). The connectivity information is extracted for the spiking network simulation. (A) The output image of the
model: synaptic formation in bidirectional micro-TENNs without axonal bundles. (B) The output image of the model: synaptic formation in
bidirectional micro-TENNs with axonal bundles.

nature and the potential pitfalls derived form chemi-
cal kinetic/gradient theory.

6.1. Future work

One major objective of further building/developing
the Bidirectional Growth Model is to generate simula-
tions of detailed neuron growth patterns to ultimately
enable the study of functional connectivity that our
research group has begun [36]. For instance, these
neuronal growth patterns could be used as the input
of a spiking model to study the firing patterns within
micro-TENNs. The framework could also be used to
extract detailed connectivity information in scenarios
following implantation; patterns at the distal ends of
micro-TENNs upon integration with the host brain
neurons could be modeled/described/anticipated.

The neuronal growth patterns provide the informa-
tion for searching locations of synaptic connections
and help to establish the spiking network simu-
lation. In biological neuronal networks, synapses
form in regions where tissues are in sufficiently
close proximity and synaptic connectivity is esti-
mated (proximity criterion of 0.5 �m). According
to experimental design, synapses occur close to the
cells aggregates, which are in the 100 �m range
from each end of the micro-TENNs. Figures 10A/2B
give examples of the locations of these synaptic
sites where high connectivity is presented. Fur-
ther development of the model could introduce
additional guidance and attraction/repulsion molec-
ular cues, once such experimental information is
available, thereby systematically adding complexity
and the ability to capture synergistic and/or com-
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peting features of intrinsic and extrinsic growth
parameters.

7. Conclusion

The neuronal and axonal growth structures
obtained through this model provide a complete
growth and connectivity pattern within a custom
micro-tissue neural network. The model reproduces
both the micro-TENN architecture and the axonal
growth rate and distribution. This framework will
enable further assessment of structural and functional
connectivity, for instance an analysis of synaptic inte-
gration that happens close to the aggregate or even
outside the micro-column. The extracted information
of synaptic connectivity close to the aggregate and
the synapse at distal end of micro-TENNs will be
the topic of a future functional connectivity study.
We intend to build on this model in order to bet-
ter understand the spiking network properties of
micro-TENNs as so-called “living electrodes” for
neuromodulation as well as anatomically inspired
constructs for white matter pathway reconstruction.
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