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Mercury (Hg) is a global and persistent pollutant which can be methylated to more toxic forms 20 

(methylmercury; MeHg) in natural systems. Both forms pose a risk to humans and wildlife, and 21 

exposure often begins in aquatic environments. Therefore, quantifying aquatic concentrations 22 

and identifying source pathways is important for understanding biotic exposure. In this study, 23 

data from estuaries in the Northeast United States were combined to evaluate how point 24 

source contamination impacts the concentration and source dynamics of water column total 25 

and MeHg with an emphasis on sediment versus non-sediment sources. Partial least squares 26 

regression models were implemented to identify a set of variables most related to water 27 

column MeHg and total Hg (HgT) across the estuaries. The main findings suggest that 28 

contaminated sites have strong internal recycling of HgT that dominates over external inputs, 29 

and this leads to elevated concentrations of HgT and MeHg in the local water columns. 30 

However, HgT sources in uncontaminated estuarine systems have a strong connection to the 31 

local watershed with dissolved HgT linked to dissolved organic carbon, and particulate HgT 32 

linked to watershed land use and estuarine mixing. There was little correlative evidence that 33 

water column MeHg concentrations were linked to sediment in such systems, but unlike HgT, 34 

the concentrations were also not clearly linked to the watershed. Instead, in situ methylation of 35 

dissolved water column HgT appeared to dominate the MeHg source pathway. The results 36 

suggest that Hg point-source contaminated sites should be considered independently from 37 

non-contaminated sites in terms of management, and that land use plays an important indirect 38 

role in coastal MeHg dynamics.  39 

 40 
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1. Introduction 52 

Mercury (Hg) primarily exists as three intrinsically linked forms in the environment; inorganic 53 

Hg (iHgII) is the major parent species for methylmercury (MeHg) formation (Lexmond et al., 54 

1976), and iHgII is mostly deposited to ecosystems post atmospheric Hg0 oxidation (Lyman and 55 

Jaffe, 2012; Obrist et al., 2011b; Outridge et al., 2018). Point sources of iHgII from industrial 56 

activity are also significant in some areas (Hsu-Kim et al., 2018; Kocman et al., 2013). The most 57 

toxic form of Hg in the environment is MeHg due to its heightened propensity to bioaccumulate 58 

(Mason et al., 2012; Sunderland, 2007). The net transformation of iHgII to MeHg within, and 59 

delivery of MeHg to, coastal water columns controls the levels of MeHg exposure to aquatic 60 
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biota (Chen et al., 2014) and humans (Selin et al., 2010; Sunderland, 2007). Therefore, 61 

understanding how atmospheric/watershed sources and historic Hg point contamination 62 

impact coastal water column MeHg concentrations is important for understanding exposure 63 

under those different conditions. However, the complicated formation, transport, and 64 

degradation dynamics of MeHg combined with its strong relationship to HgII and dissolved 65 

organic carbon (DOC) (Bergamaschi et al., 2012; Grigal, 2002; Mitchell et al., 2012; Stoken et al., 66 

2016; Taylor et al., 2019; Turner et al., 2018) make identifying sources of MeHg in estuarine 67 

water columns challenging. Studies such as Balcom et al. (2015) and Jiang et al. (2017) have 68 

shown that contaminated sites do not follow Hg patterns observed in non-contaminated sites, 69 

but Taylor et al. (2019) showed that even when comparing only uncontaminated sites MeHg-70 

HgT-OC relationships are not consistent. Therefore, single correlation analyses do not give 71 

enough information towards the relative importance of multiple stressors that simultaneously 72 

influence HgT and MeHg concentrations in coastal systems. For this study, we utilized a 73 

multivariate, multi-watershed approach in order to overcome these limitations.  74 

Multi-watershed Hg source analyses are useful as they allow for the isolation of potentially 75 

universal ecosystem parameters predictive of MeHg concentrations rather than those which 76 

may be site specific. Multi-watershed analyses are used less frequently than single system 77 

studies but have been employed in different areas around the world (Balcom et al., 2015; Bravo 78 

et al., 2018; Chen et al., 2014; Driscoll et al., 2012; Grigal, 2002). For example, a latitudinal 79 

study in Europe (Bravo et al., 2018) led the authors to observe a pattern of elevated %MeHg in 80 

streams high in sulfate and autochthonous DOM, suggesting that MeHg production is in situ but 81 

tied to watershed land use. Balcom et al. (2015) focused on estuarine sediment MeHg sources. 82 
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They found that sediment alone cannot predict water column MeHg across sites sampled from 83 

the Northeastern United States, but the two compartments were linked at sites with high 84 

turbidity or historic contamination. They also observed tidal differences in MeHg 85 

concentrations at single sampling locations which they interpreted as being due to watershed 86 

inputs. However, their study lacked indices of in situ carbon levels and watershed land use that 87 

limited their data interpretation (Balcom et al. 2015). Understanding the relative importance of 88 

external inputs compared to internal processes provided the motivation for the analysis 89 

described here.   90 

The overarching aim of this study was to examine the impact of human activity on the 91 

concentration and sources of estuarine water column MeHg, with a focus on the importance of 92 

historic Hg contamination and watershed land use. The study combines four years’ worth of 93 

sediment, water column, and local watershed land use data from ten estuarine systems in the 94 

Northeast United States to answer three main questions: 1) Do the sources and controls on 95 

water column Hg and MeHg differ in Hg contaminated sites from non-contaminated sites? 2) 96 

When is sediment the dominant source of MeHg to coastal waters? and 3) Is there a common 97 

set of predicting variables for water column MeHg and Hg across a range of temperate 98 

estuaries? It is recognized that most earth systems have some degree of Hg contamination from 99 

atmospheric inputs and other remote sources, but, for simplicity, we use “contaminated” in this 100 

text to refer to point source contaminated sites and “uncontaminated” to refer to sites where 101 

Hg inputs are dominated by regional atmospheric Hg deposition. Correlation, principal 102 

component analysis (PCA), and partial least squares regression modeling (PLSRM) were tools 103 

used to visualize relationships in the data and select the statistically important drivers for water 104 
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column MeHg and total mercury (HgT) concentrations. The multi-estuary approach allowed us 105 

to identify key variables influencing the coastal Hg cycle, thus enhancing the understanding of 106 

the factors driving HgT and MeHg concentrations in estuarine waters. 107 

2. Methods 108 

2.1. Sampling locations  109 

 Water and sediment samples were collected from 10 estuarine ecosystems located 110 

along the northeast coast of the United States (Table 1, Fig. S1) between the years 2012 and 111 

2016. Data from 2012 were previously published in Buckman et al. (2017) and the 2013 data in 112 

Taylor et al. (2018). The 2015 and 2016 data have not been previously published except for the 113 

process focused studies of Seelen et al. (2018) and Mazrui et al. (2016). Fifty-five data points 114 

consisting of forty-one unique sites were included (Table 1). The discrepancy in the total 115 

numbers is due to seasonal sampling that took place at 11 sites in 2016 and three overlapping 116 

sites in 2013 and 2015. All samples were collected between May and September. In 2013 and 117 

2015, sites were selected along a latitudinal gradient with paired subsites of relatively high 118 

(HOC) and low (LOC) organic carbon sediment sampled in close proximity. These site 119 

designations were based on visual inspection (muddy versus sandy) rather than chemical 120 

analysis and so there are, for example, HOC sites in the Chesapeake Bay that have a lower %LOI 121 

than LOC sites in Maine (Table S2). Thus, this nomenclature reflects the differences between 122 

two sites in close proximity but not their sediment characteristics within the full dataset. In 123 

2012 and 2016, the sites were selected along salinity gradients of three estuaries, the Delaware 124 

River (2012), Berry’s Creek/Hackensack River (2016), and the Penobscot River Estuary (2016), 125 

with the latter two being mercury contaminated sites (Table 1). More site details are provided 126 
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in Table 1, which includes an indication of the contaminated sites, and the full dataset is shown 127 

in the Supporting Information (Table S2). The site selection and timespan of sampling may be 128 

specific to the region and season, but the consistency of the results to previous studies suggests 129 

this approach is highly informative for future research. 130 

2.2. Sample Collection 131 

Samples were collected from shore or small boat by hand using clean sampling techniques and 132 

processed within 12 hours of collection. Water was filtered using either 550 oC combusted 133 

quartz fiber filters (2012, 2013, 2016) or sequentially filtered using 20 µm nylon filters and 0.2 134 

µm polycarbonate filters cleaned with 2% hydrochloric acid (2015). The sequential filters were 135 

summed to calculate a bulk sample. The filters were stored frozen until analysis for the 136 

particulate HgT and MeHg datasets. Dissolved samples were collected after the quartz filter or 137 

0.2 µm polycarbonate filter into acid cleaned iChem bottles and preserved with 0.2% HCl if 138 

intended for HgT or combined MeHg and HgT analyses. Samples for only dissolved MeHg were 139 

preserved with 0.5% H2SO4. DOC samples were collected from the particulate Hg filtrate into 140 

muffled amber vials and nutrient samples into acid cleaned plastic centrifuge tubes; both were 141 

preserved by freezing. DOC flocculation was not observed in the water samples after freezing. 142 

It is recognized that estuarine conditions change over a tidal cycle which may impact Hg cycling 143 

(e.g. Bergamaschi et al., 2012; Pato et al., 2010). For this analysis, samples collected at high tide 144 

were favored. When a high tide sample was not available samples collected at rising tide were 145 

used (22% at rising tide in the Full Model with all sites included, 13% in the Reduced Model with 146 

the contaminated sites removed) (Table S2). The sediment sampling was conducted using a 147 
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push core or a surface grab sample with the top <4 cm considered as the surface. Sediment was 148 

collected sub-tidally near low tide, processed, and stored frozen. They were then freeze dried 149 

and homogenized prior to analysis. Between 2 and 9 sediment field replicates from a small area 150 

were collected per location and averaged for the statistical analysis. The years with more 151 

samples collected, 2015 and 2016, had slightly higher sample variance. For example, sites with 152 

n=3 sediment samples collected had an average of 30% variance in HgT concentrations whereas 153 

those with n>3 had 49% variance. However, in all cases the field replicates were collected in 154 

close proximity and the variance is similar to what has been found in other studies (e.g. (Bloom 155 

et al., 1999). The number of sediment samples collected and standard error for the sediment 156 

variables are given in Table S2. Water column field replicates were not collected, and therefore 157 

error is included only for the analyses. 158 

Land cover for each site’s sub-watershed was determined using hydrological unit code sub-159 

watershed (HUC-12) delineations in GIS based on the 2011 National Land Cover Database. Land 160 

cover in the HUC-12 system includes open water, perennial ice/snow, developed open space, 161 

developed low intensity, developed medium intensity, developed high intensity, barren land, 162 

deciduous forest, evergreen forest, mixed forest, shrub/ scrub, grassland/ herbaceous, 163 

pasture/hay, cultivated crops, woody wetlands and emergent herbaceous wetlands. For this 164 

analysis, the open water fraction was removed from the percent calculations. No perennial 165 

ice/snow was observed so it was not included. Barren and grassland were also omitted due to 166 

low presence (average less than 1.2%). Land cover categories were summed to generate fewer 167 

variables: here developed low = developed open space and developed low intensity; developed 168 

high = developed medium and high intensity; forest = deciduous, evergreen, mixed forest, and 169 
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shrub/scrub; agriculture = pasture/hay and cultivated crops; and wetland = woody and 170 

emergent herbaceous wetlands. Catchment size was also determined using the HUC 171 

delineation. Average monthly rainfall was determined using the modelmywatershed.org 172 

website which sources data from PRISM Climate Data (PRISM Climate Group, 2019).  173 

2.3. Sample Chemical Analysis  174 

This section is specific to the 2015 and 2016 datasets. The 2012 and 2013 analysis descriptions 175 

can be found in Buckman et al. (2017) and Taylor et al. (2019), respectively. Particulate and 176 

dissolved MeHg (pMeHg and dMeHg, respectively) samples were analyzed on a Tekran 2700 177 

Automated Methylmercury Analysis System following standard techniques (Hammerschmidt 178 

and Fitzgerald, 2006; Munson et al., 2014). Briefly, particulate samples were digested in 4.5N 179 

nitric acid overnight, neutralized with potassium hydroxide and acetate buffer, and ethylated 180 

using sodium tetraethylborate before separation by gas chromatography and cold vapor atomic 181 

fluorescence detection with calibration against a standard curve (Alfa Aesar CAS: 115–09–3, 182 

LOT: 1791821 spike recovery= 103±14%). Dissolved MeHg samples were analyzed similarly 183 

except the seawater was digested overnight in 1% H2SO4, and 2.5% L-ascorbic acid was added 184 

prior to ethylation (Munson et al., 2014) (Alfa Aesar CAS: 115–09–3, LOT: 1791821 spike 185 

recovery= 86±34%). The variability in the MeHg analysis is in part due to the variability when 186 

measuring low concentration samples; the samples were not corrected for spike recovery. 187 

MeHg was extracted from the bulk sediment via aqueous distillation (Hammerschmidt and 188 

Fitzgerald, 2001) and analyzed on the Tekran 2700, as described above (Alfa Aesar CAS: 115–189 
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09–3, LOT: 1791821 spike recovery= 114±8%). The methods are a modified version of EPA 190 

method 1630. 191 

HgT was analyzed on a Tekran 2600 by cold vapor atomic fluorescence spectrometry following 192 

EPA method 1631, refined by Hammerschmidt and Fitzgerald (2006). The particulate HgT 193 

(pHgT) sample filters were digested in 4.5N nitric acid with bromine monochloride (BrCl) for 16 194 

hrs, followed by hydroxylamine hydrochloride and stannous chloride additions before analysis. 195 

Calibration was against a standard curve and the results were spike corrected (J.T.Baker CAS: 196 

7732–16–5, Batch No: 0000127949 spike recovery= 121±2%). For some samples, the same filter 197 

was used for both pMeHg and pHgT, in which case the BrCl addition was made after the MeHg 198 

analysis was complete. Dissolved HgT (dHgT) analysis was similar to the particulate analysis, 199 

except only BrCl was added >16 hr for digestion prior to reduction for analysis. The samples 200 

were blank and spike corrected (J.T.Baker CAS: 7732–16–5, Batch No: 0000127949 spike 201 

recovery= 76±5%). Bulk sediment HgT was analyzed via a direct mercury analyzer: a DMA-80 at 202 

Umeå University (ARC-CNRC MESS-3 CRM recovery= 101±2%), and a DMA-80 and MA 3000 at 203 

the University of Connecticut (PACS-3 CRM recovery= 103±1%), depending the year sampled 204 

(EPA method 7473).  205 

Chlorophyll a (chl a) and phaeopigment (pha) concentrations were quantified from wet filters 206 

using fluorescence techniques after 90% acetone extraction and acidification for pha. DOC was 207 

analyzed on a Shimadzu TOC/TN analyzer (duplicate average RSD = 6.6% and 2.8%, 208 

respectively). Sediment bulk organic matter content was based on percent loss on ignition 209 
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(%LOI) when a known sample mass was burned for a minimum of 4 hours at 550°C (Dean, 210 

1974). 211 

2.4. Statistics  212 

The dataset consisted of measured and calculated Hg variables (dissolved and particulate HgT 213 

and MeHg, sediment bulk HgT and MeHg, %MeHg and partition coefficients (Kd)), ancillary 214 

variables (salinity, temp, conductivity, pH, DO, DOC, TSS and sediment %LOI), watershed 215 

characteristics (latitude, catchment size, rainfall) and land use (31 total) (Table S1). Data gaps 216 

due to lost or damaged samples were filled with the data average of other samples taken for 217 

this study from nearby sites (for instance, the average of upstream and downstream sites). The 218 

missing values represented <5% of each variable and are noted in Table S2. Below detection 219 

limit values were replaced with half the detection limit, as described by EPA methods (EPA, 220 

2000), which is valid when the BDL values are less than 15% of the dataset. The 2012 dataset, 221 

collected in the Delaware Bay, did not have pha data so values were estimated from the %pha 222 

from similar Delaware Bay sites (Gosnell et al., 2015) and make up 20% of the dataset. Below 223 

detection limit and estimated values are indicated in the data table (Table S2). The data 224 

normality was evaluated using the Shapiro-Wilks test. Most of the variables had a non-normal 225 

distribution and were normalized using Box-Cox normalization in Excel with the add-in real 226 

statistics resource pack. The Box-Cox lambda values were determined with the add-in package 227 

using the boxcoxlambda() function. Outliers were defined as values greater/less than 1.5 times 228 

the interquartile range and are referred to as either “elevated” or “low” in the text. 229 
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All sites were initially included for the statistical analyses, referred to as the Full Model 230 

throughout the text (55 individuals). The data were also evaluated with the contaminated sites 231 

removed (those with >400 ng/g sediment HgT), referred to as the Reduced Model (39 232 

individuals). The value of 400 ng/g was chosen as it represents the median value between the 233 

Effects Range Levels defined by the NOAA sediment quality guidelines for estuarine sediment 234 

(Long et al., 1995). Additionally, the value was between those sites that are known to be 235 

historically contaminated by point source inputs and those that are not (Fig. S3). All sites are 236 

listed in Table 1 and those that were considered contaminated are marked with an asterisk 237 

after the site code. There were not enough sites to run the contaminated sites independent of 238 

the uncontaminated sites. 239 

2.4.1. Linear Relationships   240 

Many single estuary studies have found strong and consistent linear relationships between Hg 241 

and carbon (OC) variables. Therefore, linear relationships between such variables (p-, d-, and 242 

sediment HgT and MeHg, DOC, %LOI) were tested on the log transformed Full and Reduced 243 

Datasets. The correlations were plotted in R (version 3.5.0) as an x, y function with a linear 244 

model correlation added (lm(y~x)). Correlation coefficients (r) were determined with cor{stats} 245 

in R (cor(x, y, method="pearson") and p values were determined with cor.test{stats}. The linear 246 

correlation and correlation statistical results were plotted together using the pairs{graphics} 247 

function in R, and symbols were added to the plot to represent various levels of significance 248 

(<0.001= ***, 0.001-0.01= **, 0.01-0.05= *, 0.05-0.1= ., and >0.1= blank).  249 
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General linear relationships between all variables were identified using a Pearson’s correlation 250 

matrix made with the corrplot library on the boxcox normalized datasets used in the PCA 251 

analysis. Only significant relationships are shown in the correlation matrices, with significance 252 

defined as p<0.01. The variables were arranged qualitatively by type and are consistent 253 

between the Full and Reduced Model for easy comparison.  254 

2.4.2. Principal Component Analysis.  255 

Principal component analyses (PCA) were used to visualize the relationships between all 256 

variables in the Full and Reduced datasets. All data included in the PCA were Box-Cox 257 

normalized and z-score standardized in Excel. The PCA was completed in R using the prcomp() 258 

function from the stats package and included 23 variables (Table S1, all but calculated Hg 259 

variables). The variables and individuals (sites) were plotted separately to help with data 260 

visualization (Abdi and Williams, 2010). The variables were plotted based on the correlation 261 

between each variable and the first and second principal components. Variables that are 262 

positively correlated group together, and those that are negatively correlated lie on opposite 263 

sides of the plot. Variables that lie further from the plot origin are better represented by the 264 

first and second components of the PCA. The PCA individuals (sites) are plotted based on their 265 

PC loadings. Individuals that are similar group together on the plot (Abdi and Williams, 2010).    266 

2.4.3. Partial Least Squares Regression Models  267 

Partial least squares regression models (PLSRM) were carried out using the 268 

mvr(method=oscorespls; orthogonal scores partial least squares) function within the pls 269 
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package in R. The results were cross validated (validation= ”LOO”) and the output evaluated 270 

using functions included in the statistical package including summary(), scores() and loadings(). 271 

21 variables were included in the MeHg PLSRM models. All MeHg variables were excluded from 272 

the HgT models since MeHg is a component of HgT (18 variables remained). The number of 273 

components used in the PLSRM was determined in R using the selectNcomp() function (Mevik 274 

and Wehrens, 2015). The final model had the fewest number of components without being 275 

significantly different than the reference model (p=0.01, method=randomization). The results 276 

were converted to Variable Influence on Projections (VIP) scores (Chong and Jun, 2005), and 277 

since the average of the squared VIP scores equals 1, variables with VIP scores greater than 1 278 

were considered highly influential (Chong and Jun, 2005). R2 values were used to indicate how 279 

much of the variability in the dependent variables was described by the PLSR models (Wold et 280 

al., 2001). 281 

3. Results 282 

3.1. Site Characteristics and Variable Concentration Ranges 283 

The sites included in this survey fall within three unique regions of watershed land-use: 284 

forested, developed, and agriculture/wetland (Fig S2). In general, the northern latitude sites 285 

have watersheds dominated by forests and shrub land with little urban development except for 286 

site A within the Penobscot River. The Berry’s Creek watershed in New Jersey is highly 287 

developed, as well as the sites along the Delaware River near Philadelphia, PA. The downstream 288 

Delaware Bay sites, away from Philadelphia, were characterized by agricultural land cover and 289 

wetlands with little urban development. Sites in Connecticut, as well as those from the 290 



15 
 

Chesapeake Bay in Maryland, fell closest to the center of the PCA diagram (Fig. S2), indicating a 291 

more mixed watershed land use signal. 292 

The sites sampled also encompassed a large range in Hg and C loading. The range, mean, 293 

median and standard deviation of all variables are given in Table S1. The water column and 294 

sediment MeHg (dMeHg= 0.002-1.49 ng/L, pMeHg= 0.10-22.58 ng/g, sediment MeHg= 0.01-295 

4.96 ng/g) and HgT (dHgT= 0.20-3.95 ng/L, pHgT= 1.87-721.0 ng/g, sediment HgT= 0.44-287.35 296 

ng/g) concentrations used in the reduced model are similar to those measured in previous 297 

estuarine studies along the NE coast of the United States (e.g. Balcom et al., 2015; Heyes et al., 298 

2006; Mason et al., 1999; Gosnell et al., 2015; Schartup et al., 2013) and other temperate 299 

regions, including San Francisco Bay (e.g. Conaway et al., 2003), Europe (e.g. Sweden; Jonsson 300 

et al., 2014) and Asia (e.g. China; Jiang et al., 2017). For sites without point source Hg 301 

contamination, sediment Hg levels are generally <200 ng/g (Table S2). Two sites in the 302 

Delaware River had sediment Hg between 200 and 300 ng/g. The concentrations measured at 303 

known point-source contaminated areas (dMeHg= 0.013-1.491 ng/L, pMeHg= 1.16-55.31 ng/g, 304 

sediment MeHg= 2.01-62.53 ng/g, dHgT= 0.91-11.86 ng/L, pHgT= 85.64-3433.35 ng/g, sediment 305 

HgT= 364.75-36034.13 ng/g) also agree with other studies at those sites (e.g. Cardona-marek et 306 

al., 2007; Merritt and Amirbahman, 2008; Gilmour et al., 2018; Yeager et al., 2018). The 307 

contaminated locations on the Penobscot River had values above 500 ng/g while the locations 308 

in the Hackensack River and Berry’s Creek ranged in concentrations from 142 to 36034 ng/g 309 

(Table S2). Dissolved MeHg concentrations were <0.25 ng/L for all sites except two non-310 

contaminated systems with elevated water column MeHg levels (i.e. Mount Desert Island (NEC-311 

H, NEC-L, BH-H, and BH-L) and Barn Island (BI-H and BI-L)), which is consistent with prior studies 312 
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(Balcom et al., 2015; Bank et al., 2007; Chen et al., 2014; Langer et al., 2001), and the 313 

contaminated sites.  314 

In general, Hg levels at the contaminated sites were elevated in the dataset. Sites within the 315 

Berry’s Creek System had elevated MeHg and HgT levels in the dissolved, particulate, and 316 

sediment phases, except for pMeHg at site 3A (Table S2). The Penobscot River had elevated 317 

sediment MeHg concentrations at sites M, O, and V. The only elevated water column variable 318 

found within the Penobscot was the suspended pHgT at A, which is a site upstream of a location 319 

of historical Hg release (site O). Sites from the northernmost sampled region in Maine, BH-H 320 

and -L on Mount Desert Island, had elevated water column p and dMeHg levels. Further, BH-L 321 

had elevated DOC and pha concentrations and BH-H had elevated sediment %LOI. BI, in CT, 322 

specifically for the 2013 field season, had elevated levels of dMeHg at the HOC site, as well as 323 

pMeHg, %MeHg (p- and d-), chl a and pha at both the HOC and LOC subsites. Notably, the non-324 

contaminated sites with elevated Hg levels also had elevated C proxy variables (specifically 325 

DOC, %LOI, chl a, and pha), whereas the contaminated sites were strictly elevated in Hg. SB 326 

(HOC and LOC) in the Delaware Bay had highly elevated DOC and TSS concentrations, but the 327 

sites were not elevated in HgT or MeHg. Other sites within the Delaware Lower Bay (WB and 328 

NB) had elevated TSS, which was consistent across sampling years (2012 and 2015).  329 

3.2. Statistical Relationships Among Variables 330 

Correlations used to evaluate relationships between variables are often shown to relate to each 331 

other within estuarine systems (HgT, MeHg, DOC, %LOI; Fig. 1 and 2). A select number of HgT 332 

and OC variables are plotted in the SI to show differences more clearly between the 333 
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contaminated and uncontaminated sites (Fig. S3). Overall, the Full Model (all sites included) had 334 

many more significant relationships than the Reduced Model, which excluded sites with 335 

sediment >400 ng/g DW to examine controls for uncontaminated locations. These differences 336 

were conceivably driven by the outliers at the contaminated sites. In fact, of the 28 337 

relationships explored, 24 relationships were significant (p<0.05) with 17 of those being highly 338 

significant (p<0.001). The only variable that did not consistently correlate with the other 339 

parameters in the Full dataset was DOC, which only correlated with the dHgT, dMeHg, and 340 

pMeHg (Fig. 1). The relationship between DOC and pMeHg likely reflects the strong correlation 341 

between dMeHg and pMeHg (r=0.76; p<0.001) rather than a direct relationship between DOC 342 

and pMeHg (r=0.38). The Reduced Model correlation matrix resulted in 14 significant 343 

relationships (p<0.05), with 7 being p<0.001 (Fig. 2). The only relationships that had higher 344 

regression coefficients in the reduced dataset were between DOC and dHgT (r=0.58 in the Full, 345 

and r=0.70 in the Reduced) and between %LOI and sediment HgT (r=0.63 in the Full, and r=0.65 346 

in the Reduced). Significant relationships (p<0.01) between all variables are shown in Fig. S5 for 347 

both the Full (Fig. S5a) and Reduced (Fig. S5b) Models and details of the correlation matrix are 348 

discussed in section 4.1. 349 

Principal component analyses were used to assess the more dynamic relationships between the 350 

variables (Figs. 3, 4, and S4). In the PCA plots the sites are colored by the system from which 351 

they were sampled, listed in Table 1, but note that the Penobscot Sites are grouped in the 352 

Reduced model. The groupings do not impact the results of the statistical analysis, only the 353 

visual outputs. Overall, the Full PCA Model (Fig. 3, and S4a) resulted in the majority of the data 354 

variance being described by positively correlated Hg variables, specifically pHgT and sediment 355 
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HgT followed by dHgT, pMeHg, and sediment MeHg along the first component (Dim1= 27.6%). 356 

Pha and latitude contributed most to the variance along the second component (Dim2 = 15.2%) 357 

and were negatively correlated to each other. The plot of Full Model individuals showed site 358 

separation with a lack of a consistent latitudinal or regional trend (Fig 3a). In the Reduced PCA 359 

Model (Fig. 4, and S4b), the main variables loading on the first component were pHgT, 360 

conductivity and salinity (Dim1= 23.1%), with pHgT negatively correlated to the other two, and 361 

the second component was driven by temperature and latitude (Dim2= 18.3%), which were 362 

negatively correlated. The individual locations showed system separation similar to the Full 363 

Model but with a more latitudinal trend, specifically separating the Chesapeake and Delaware 364 

systems from the rest along the second component. In both models, 5 components were 365 

needed to capture >75% of the variability in the dataset.  366 

3.3. Partial Least Squares Regression Model Results 367 

Partial Least Squares Regression (PLSR) models were run for MeHg and HgT in their dissolved 368 

and particulate phases, for the Full and Reduced Models. The number of components used in 369 

each model and the model fit results can be found in Table S3. The interpretation of the PLSRM 370 

result focuses on the most influential variables with VIP scores greater than 1 (Chong and Jun, 371 

2005). The Full Model and Reduced Model VIP scores are plotted against each other to 372 

graphically display how the results shift when the contaminated sites are removed (Fig. 5 and 373 

6). In each figure, the Full Model results are plotted on the x-axis and the Reduced Model 374 

results on the y-axis. A 1:1 line was drawn on the plots; variables that fall on the line have 375 
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similar VIP scores in both models. Variables that plot below the 1:1 line projected higher in the 376 

Full Model, and those above projected higher in the Reduced Model.  377 

The variables strongly influencing pHgT for the entire dataset included sediment HgT, % 378 

forest/shrub land cover, dHgT, chl a, salinity, % low developed land cover, conductivity, and 379 

rainfall (Fig. 5a). The Reduced Model differed from the Full Model with the most influential 380 

variable being catchment size, which was <1 in the Full Model, followed by conductivity, 381 

salinity, chl a, sediment HgT, % forested land cover, and rainfall. The % low developed land 382 

cover and dHgT were no longer important in the Reduced Model. The Full Model dHgT variables 383 

of importance were sediment HgT, DOC, pHgT, % forested land cover, sediment %LOI, and pha 384 

(Fig. 5b). The dHgT Reduced Model had the fewest predicted important variables (three) and 385 

was dominated by DOC (VIP>2), followed by % highly developed land use and pHgT. Few 386 

variables in both HgT model comparisons fell on the 1:1 line (y= 0.61x+0.31; R2=0.31 and y= 387 

0.53x+0.41; R2=0.27, respectively) indicating that HgT cycling dynamics in contaminated versus 388 

non-contaminated sites is more dissimilar than was found for MeHg.  389 

The most influential variables in the pMeHg Full Model included dHgT, dMeHg, and pHgT 390 

followed by sediment HgT, chl a, sediment MeHg, DOC, and % forested land cover (Fig. 6a). The 391 

Reduced Model results were similar to the full model except the VIP scores for sediment Hg and 392 

% forested land cover were below one, and pH and TSS scores exceeded one with similar VIP 393 

scores to DOC. The remaining five variables (dMeHg, dHgT, pHgT, chl a, and DOC) had similar 394 

VIP scores between the two models. Dissolved MeHg in the Full Model was strongly influenced 395 

by several variables as well, most strongly pMeHg and dHgT (VIP>2) followed by sediment %LOI, 396 
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DOC, pHgT, sediment HgT, sediment MeHg, catchment size and % agricultural land use (Fig. 6b). 397 

The dMeHg Reduced Model results were similar to the Full Model except the VIP scores for the 398 

sediment variables (MeHg and HgT), pHgT and catchment size were below one. Similar to 399 

pMeHg, pH was an important predictive variable only in the Reduced Model. Many of the 400 

dissolved and particulate MeHg variables fell near the 1:1 line, with an overall regression slope 401 

near 1 (y= 0.96x-0.02; R2= 0.74 and y=0.93x+0.04; R2= 0.70, respectively) suggesting MeHg 402 

cycling is similar between contaminated and uncontaminated sites. 403 

4. Discussion 404 

4.1. General Mercury Characteristics by Site 405 

It is known that Hg concentrations in estuarine waters are impacted by their local watershed 406 

and estuarine dynamics, and relationships between Hg concentrations and estuarine 407 

parameters have been used to identify Hg sources and mobility in aquatic systems. For 408 

instance, strong relationships between inorganic Hg and DOC/ TSS have been used to show the 409 

dominance of watershed HgT export to estuaries (Benoit et al., 1998; Grigal, 2002; Laurier et al., 410 

2003; Pato et al., 2010). Relationships have also been observed between estuarine Hg and local 411 

land use (Obrist et al., 2018),  the tidal stage (Balcom et al., 2015; Pato et al., 2010) and with 412 

the degree of Hg contamination (Jiang et al., 2017; Schaefer et al., 2004). MeHg sources to 413 

estuaries are generally more complex than HgT (Buckman et al., 2017; Chen et al., 2014; Choe 414 

and Gill, 2003). Sediments were once focused on as a dominant source of MeHg to the 415 

estuarine water column (Hammerschmidt et al., 2004; Hammerschmidt and Fitzgerald, 2008; 416 

Schartup et al., 2013), but more recent work has demonstrated that the link is not 417 
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straightforward (Balcom et al., 2015; Seelen et al., 2018; Shi et al., 2018). Rather, MeHg in 418 

estuarine waters may be more closely linked to water column production (Schartup et al., 419 

2015a) similar to the open ocean (Blum et al., 2013).  420 

In this study, the sites sampled generally fell within three distinct land use regions that had a 421 

latitudinal trend. Less developed watersheds were present in the northern part of the study 422 

region and more developed or agricultural watersheds were present in the south. The two 423 

sampled contaminated estuaries had unique watershed land-use; the Penobscot is dominantly 424 

forested, while the Berry’s Creek/ Hackensack watershed is predominantly developed. 425 

However, when analyzed together on a full variable, Full Model PCA plot (Fig. 3), the two 426 

contaminated sites fell into the same quadrant with only one other system suggesting the 427 

contaminated sites have similar qualities. The region that grouped closest to the contaminated 428 

sites were those from Mount Desert Island, Maine, which had elevated water column pMeHg 429 

and dMeHg coinciding with elevated DOC and %LOI, which is likely why it grouped with the 430 

contaminated sites. The high Hg/OC relationship observed at the contaminated sites, however, 431 

suggests that the Hg levels are unnatural and not due to DOC related transport from the 432 

watershed (Fig. S3).  433 

The co-export of HgT with organic matter from the watershed indicates that they are generally 434 

strongly linked in uncontaminated estuaries (Bergamaschi et al., 2012; Stoken et al., 2016). 435 

However, if one variable is altered significantly due to anthropogenic activity, the correlations 436 

will fall outside typical regression relationships (Jiang et al., 2017). Indeed, Hg/OC anomalies in 437 

sediment cores have been used to infer anthropogenic Hg contamination (e.g. Schartup et al., 438 
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2013). The contaminated sites here had sediment HgT varying by almost 5 orders of magnitude, 439 

but the sediment %LOI varied by only a factor of 40 (0.7 – 27%). Further, the HgT/%LOI was 440 

elevated relative to uncontaminated sites (Fig. S3) supporting their allocation as contaminated 441 

and not driven by OC export. The highly elevated sediment Hg concentrations were 442 

reciprocated by the water column, although there was a much smaller range of HgT and MeHg 443 

observed with concentrations ranging 3-4 orders of magnitude in the water.  444 

Correlation matrix plots between all variables in the Full (Fig. S5a) and Reduced (Fig. S5b) 445 

models exemplify the differences between the two datasets, and therefore inferred differences 446 

between contaminated and uncontaminated sites, with some interesting trends. Nearly all 447 

measured Hg variables correlated with the watershed land use variables in the Full dataset. 448 

However, we suggest these correlations are driven by the outliers and are not truly diagnostic 449 

of the influence of land use on the coastal Hg cycle. In contrast, at the uncontaminated sites, 450 

the relationships with watershed variables are similar to what other studies have found, such as 451 

forests slowing the movement of HgT from the watershed (Obrist et al., 2011a; Porvari et al., 452 

2003) and developed land increasing overland pHgT fluxes (Eckley and Branfireun, 2008; Hsu-453 

Kim et al., 2018). It is also noted that the correlations between calculated Hg variables (%MeHg 454 

and Kd) and the OC-related variables generally improved in the Reduced dataset compared to 455 

the Full Model. Such variables were not included in the multivariate analyses (PCA and PLSRM) 456 

to maintain variable independence. Total OC has been suggested as a proxy for net methylation 457 

assuming that demethylation is essentially constant (Lambertsson and Nilsson, 2006) which is 458 

not true at contaminated sites (Schaefer et al., 2004), supporting the stronger relationships in 459 

the Reduced Model. More detailed water column studies suggest that OC composition directly 460 
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impacts the %MeHg measured in riverine waters (Bravo et al., 2018), which is likely the case in 461 

the systems used for this analysis. Indeed, Schartup et al., (2015b) showed that the composition 462 

of DOC in estuarine systems influenced Hg reactivity and bioaccumulation into plankton, 463 

processes that could also impact %MeHg.  464 

Overall, contaminated sites were found to have unique properties from uncontaminated sites. 465 

However, it is recognized that the inclusion of contaminated sites in a multi-estuary analysis can 466 

help drive significant correlations, as was demonstrated in the correlation matrices of the Full 467 

and Reduced model (Figs. 1 and 2). Therefore, site selection is important when using 468 

correlation as a diagnostic tool, and contaminated sites should be considered independently 469 

from uncontaminated sites. While there were some general trends between Hg, OC, and land 470 

use variables observed in the correlation data, the relationship between them, especially at 471 

uncontaminated sites, is not well resolved by only correlation analysis. The following sections 472 

review more closely the correlation and multivariate analysis results that were used to better 473 

understand the complicated relationships between the sampled variables.  474 

4.2. Sediment Versus Watershed Inputs of HgT  475 

It is acknowledged that, in general, outliers should be excluded from statistical analyses. Their 476 

inclusion in this study was to specifically show how local contamination impacts coastal Hg 477 

cycling, and how different the results are when those driving variables are removed. Hg is highly 478 

particle reactive so its pollution legacy is largely preserved in coastal sediment, but is subject to 479 

continual internal recycling due to sediment resuspension (Pato et al., 2010; Seelen et al., 480 

2018). As such, its effects can remain long after primary sources stop discharging Hg. It is 481 
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apparent that sites with elevated sediment HgT concentrations impart a stronger linear 482 

relationship between the sediment and water column HgT across the sampled systems (Fig. 1) 483 

than when these sites are not included (Fig. 2). In fact, one of the strongest correlations found 484 

in the Full Hg and OC correlation matrix was between sediment HgT and pHgT (r = 0.78, 485 

p<0.001). There was also a significant correlation between sediment HgT and dHgT (r = 0.72, 486 

p<0.001), unlike in the reduced model (r = 0.28, p > 0.05), suggesting an overall elevation of Hg 487 

in water columns of contaminated systems. The anthropogenic driven elevation of dHgT at 488 

contaminated sites becomes very apparent in contaminated sites when evaluating the dHgT 489 

and DOC relationship, which was linear at the uncontaminated sites but exponential at 490 

contaminated sites (Fig. S3). 491 

Sediment HgT and pHgT were also significant in the Reduced Model although weaker (r = 0.43, 492 

p <0.01). We suggest the strong relationship in the reduced model reflects the capture of 493 

watershed derived particles before being transported offshore (Amos et al., 2014; Cossa et al., 494 

1997). The weakened relationship in the Reduced Model therefore suggests that continual 495 

inputs from the watershed dominate over resuspended input into uncontaminated systems 496 

(Seelen et al. 2018). In support of watershed inputs, the strong correlations between pHgT, 497 

watershed, and estuarine mixing variables (e.g. salinity, conductivity) (Fig. S5b) imply a riverine, 498 

and therefore watershed, input for pHgT at uncontaminated sites. The stronger correlation 499 

between dHgT and DOC in the reduced dataset implies that the watershed, not sediment, is 500 

also the most important source delivering dHgT to uncontaminated systems consistent with 501 

previous reports (Stoken et al., 2016).  502 
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The PCA analyses (Figs. 3, 4, and S4) also support a difference in Hg cycling between 503 

contaminated and uncontaminated systems, and specifically that the water column and 504 

sediments are more closely linked at contaminated sites. This conclusion is made by comparing 505 

the variables that load strongly in the Full and Reduced PCA analyses. Variance in the Full 506 

Model PCA was driven by the Hg variables overwhelming all other variables. The Reduced 507 

Model variance, however, was driven by a suite of variables along the first and second 508 

component with many of the Hg variables loading weakly (Fig. 4). These results suggest HgT at 509 

uncontaminated sites are driven by whole system dynamics rather than an obvious dominant 510 

source, as observed with the sediment source dominating at the contaminated sites. Therefore, 511 

while removal of local sediment may help mitigate Hg contamination at contaminated sites, Hg 512 

mitigation at other locations will require a more regional approach and consideration of the 513 

control of Hg inputs from the watershed. Overall, the need for five components to describe 514 

>75% of the data variability in the PCA analysis implies that the sites are too dissimilar to be 515 

explained satisfactorily using a principal component analysis for both the Full and Reduced 516 

models.  517 

4.3. Sediment Versus Watershed Inputs of MeHg 518 

Sediments have been focused on as a probable primary site for MeHg formation and release 519 

into coastal water columns due to their high methylation potential (Hammerschmidt and 520 

Fitzgerald, 2004). However, sediment-water exchange fluxes do not always reflect the 521 

underlying high sediment methylation rates (Monperrus et al., 2007; Seelen et al., 2018; Shi et 522 

al., 2018). Many studies have suggested that alternative sources of MeHg to the water column 523 
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may be more important than sediment seasonally (Gosnell et al., 2015; Monperrus et al., 2007), 524 

spatially (Buckman et al., 2017; Schartup et al., 2015a), and in terms of Hg bioavailability 525 

(Jonsson et al., 2017). Therefore, identifying where MeHg is being produced will help to better 526 

understand pathways of exposure. The data collected for this study did not specifically measure 527 

net MeHg formation or evaluate in greater detail the OC composition which has been shown to 528 

account for MeHg variability in sediment and aquatic environments (Bravo et al., 2017). 529 

Therefore, this section focuses on relationships between variables that can be used to infer the 530 

importance of sediment vs non-sediment MeHg sources to estuarine water columns. 531 

First, it is apparent that MeHg concentrations are more strongly correlated to the sediment and 532 

HgT variables in the Full Model (Fig. 1) than the Reduced (Fig. 2). In fact, the decoupling of the 533 

sediment-water column signal for Hg species from the Full to Reduced Model was most 534 

apparent for MeHg with a strong correlation between sediment MeHg and pMeHg in the Full 535 

Model (p<0.001), but no relationship in the Reduced. The sediment- water column relationship 536 

in the Full Model implies connectivity between those two pools in contaminated locations, 537 

although it is difficult to infer whether the measured water column MeHg was methylated in 538 

the sediment or the water column using correlation alone. In the Reduced Dataset (Fig. 2), the 539 

observed water column MeHg concentrations more strongly correlated with water column and 540 

watershed parameters (p<0.01) such as d- and pHgT, DOC/TSS, pH, and %Agricultural land use. 541 

The lack of relationship with the sediment does not necessarily imply that sediment does not 542 

contribute to observed water column MeHg concentrations, but, with the evaluation methods 543 

used here, the signal is weak or indirect. 544 
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MeHg concentrations are undoubtably related to HgT, with both dMeHg and pMeHg strongly 545 

correlated to dHgT in the Reduced dataset (r>0.6, p<0.001). However, the weakened 546 

relationships between HgT and MeHg in the Reduced Model suggests a nuanced link between 547 

these variables in typical estuarine systems. The lack of correlation between MeHg and 548 

parameters predicted to be coupled to HgT, for instance the weak correlation between dMeHg 549 

and DOC (r= 0.39, p<0.05) and between pMeHg and salinity, chl a, and sediments (p>0.05) 550 

suggest HgT and MeHg have different source/sink dynamics. The weak relationship of MeHg to 551 

DOC and sediments, which HgT are correlated to, further suggests that Hg methylation may be 552 

occurring in situ. Without more information on Hg sources and methylation potential in coastal 553 

waters, it is difficult to conclude with certainty where MeHg is formed. However, the data at 554 

hand suggest that HgT leaching from watersheds combined with DOC drive in situ methylation, 555 

which is likely a more dominant source of MeHg to water columns than sediment in typical 556 

northeast US estuaries. The current analysis offers only weak support for bulk sediment as an 557 

important source of MeHg to estuarine water columns, and further demonstrates that there 558 

are distinctly different MeHg sources for locally contaminated sites compared to those 559 

receiving a regional Hg input signal.  560 

4.4. Predictors for Water Column Mercury  561 

Being able to reduce a large set of ecosystem variables down to a few that best relate to Hg and 562 

MeHg concentrations in coastal waters can greatly help researchers in their effort to predict, 563 

monitor, model, and manage Hg movement through coastal ecosystems. This study utilized 564 

PLSRM to better understand the complex interactions between ecosystem variables and 565 
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HgT/MeHg. Our efforts suggest that dHgT is the most predictable Hg fraction due to its tight 566 

complexation with DOC. PHgT is the least predictable with many variables correlating to it and 567 

influencing its concentration. Both MeHg fractions are strongly linked to HgT and each other, 568 

and are the most similar between the Full and Reduced Models suggesting similar source 569 

dynamics. HgT and MeHg variable dynamics differ, but all HgT and MeHg concentrations are 570 

influenced by historic contamination when it is present. This next section discusses further the 571 

PLSRM results supporting these assessments. 572 

To reiterate, predictive, or highly correlative variables, were reduced from the full dataset using 573 

PLSRM. PLSRMs generate predictive variables for a specific dependent variable. The proxy used 574 

to determine which variables are important to predict the concentration of the Hg variables 575 

was VIP scores. Variables with VIP scores greater than one were considered strongly predictive 576 

and were focused on in this discussion. The PLSRM results were evaluated as a comparison 577 

between the Full and Reduced model. In theory, if Hg behaved the similarly in the full and 578 

reduced model the VIP scores would remain the same between model runs (variables would fall 579 

on the 1:1 line in Figs. 5 and 6). For MeHg, this was predominantly the case, but was not so for 580 

HgT. Overall, the VIP scores for HgT were quite different between the Full and Reduced Models 581 

in the particulate (Fig. 5a) and dissolved (Fig. 5b) phase suggesting that HgT cycling differs 582 

between contaminated and uncontaminated sites. The dHgT was overwhelmingly predicted by 583 

DOC in the Reduced Model, which is consistent with previous research suggesting mobilization 584 

of dHgT from the watershed by DOC (Grigal, 2002; Hsu-Kim et al., 2018; Taylor et al., 2019). In 585 

the Full dHgT Model, sediment HgT and DOC had similar VIP scores implying that legacy Hg 586 

impacts dHgT at contaminated locations, but these locations may also have important 587 
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watershed inputs. Particulate HgT and dHgT are strongly predictive of each other in their 588 

respective Full Models, indicating that partitioning is predictable at contaminated sites similar 589 

to the findings of Schartup et al., (2013). However, partitioning does not appear to be 590 

consistent across the uncontaminated sites suggesting that dHgT and pHgT have different 591 

source dynamics, with slow or kinetically hindered exchange between phases in typical 592 

estuarine environments.  593 

Overall, pHgT had the largest number of significantly predictive variables in the PLSR models 594 

and the largest shifts between the Full and Reduced Models (Fig. 5a). It was consistently 595 

predicted by proxies for estuarine mixing (salinity and conductivity), similar to the PCA results, 596 

as well as a proxy for biomass (chl a). The influence of sediment HgT was apparent in both 597 

models but to a greater degree in the Full Model. This reiterates the idea that sediment acts as 598 

a dominant pHgT source in contaminated sites overwhelming watershed inputs (Balcom et al., 599 

2015), but acts as a dominant sink in the Reduced model with watershed inputs overwhelming 600 

inputs from resuspension. The second scenario is likely to be true in most estuarine systems 601 

(Seelen et al., 2018), but not necessarily in areas of high bank erosion (Lawson et al., 2001) or 602 

turbidity (Balcom et al., 2015; Gosnell et al., 2015). The results of the HgT PLSRM suggest that 603 

pHgT is stochastic, influenced by the watershed, and linked to coastal sediment. However, dHgT 604 

is more predictable and strongly linked to DOC, except when sites are contaminated where 605 

sediment input becomes an important source.  606 

The water column pMeHg and dMeHg PLSRM results suggest that few variables are required to 607 

predict their concentrations, which remained similar in both the Full and Reduced Models (Fig. 608 
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6). This finding suggests that MeHg net production/cycling are similarly controlled between 609 

contaminated and uncontaminated sites. The MeHg forms were strongly linked to each other 610 

and to dHgT, as well as metrics for the organic material concentration (chl a, DOC, and %LOI). 611 

This finding supports the notion that dHgT is the precursor to MeHg, but the relationship 612 

depends on OC (Benoit et al., 2003), and that MeHg partitions predictably once formed. The 613 

only watershed land use variable with a VIP score greater than one for either MeHg form was 614 

%Agriculture for dMeHg. The link between MeHg and agricultural land use has been noted 615 

previously (Lawson et al., 2001; Shanley et al., 2005), but the significance is unclear and may be 616 

linked to nutrient inputs (Bonzongo et al., 2016). Sediment levels were only strongly predictive 617 

of water column MeHg in the Full Model, and sediment variables were consistently more 618 

strongly predictive for HgT than MeHg. The strong relationship with in situ variables, and lack of 619 

relationship to the watershed and sediment supports the premise that MeHg is dominantly 620 

formed in situ in the spring-summer when the samples were collected. Overall, the PLSRM 621 

results suggest that dMeHg and pMeHg have similar controls at contaminated and 622 

uncontaminated sites, except with the emergence of a stronger connectivity with the sediment 623 

in the Full model. These results suggest that remediation efforts should focus on sediment HgT. 624 

In uncontaminated locations, general reduction in Hg emissions and, as a result, watershed 625 

fluxes of Hg, would be beneficial. While this study has provided increased understanding for the 626 

region and the summer season, further evaluation is needed to extend the relationships to 627 

other seasons and locations. However, it is clear that future work should take care to 628 

differentiate contaminated from uncontaminated locations and to examine the primary 629 

relationships for each independently. Furthermore, we show that a more nuanced examination 630 
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can be elucidated from multi-variate analyses across a number of ecosystems than can be 631 

acquired from regression analysis alone.    632 

5. Conclusion 633 

The goal of this research was to better understand how Hg cycles through coastal 634 

environments, and especially what drives observed water column MeHg levels in temperate 635 

estuarine water columns. We found that coastal water column Hg concentrations are strongly 636 

impacted by historic contamination of Hg retained in coastal sediments, and the elevated HgT 637 

concentrations result in elevated MeHg levels. Sediments, therefore, are an important source 638 

of estuarine water column HgT and MeHg in the dissolved and particulate phase at contaminate 639 

sites. However, Hg sources differed in uncontaminated systems. Dissolved HgT co-export with 640 

DOC from the watershed controlled dHgT concentrations in the uncontaminated estuaries 641 

studied. Particulate HgT was more closely linked to physical estuarine properties (salinity and 642 

conductivity) and watershed variables (%forested land use, catchment size, and rainfall). This 643 

suggests that pHgT is dominantly sourced from the watershed in uncontaminated sites and is 644 

removed from the water column via sedimentation. Water column MeHg was more strongly 645 

linked to internal rather than external sources, including sediment production and flux. This 646 

conclusion is based on the weak predictiveness of sediments on the MeHg concentrations in all 647 

PLSRMs, strong MeHg partitioning observed in the water column, and the relationship between 648 

MeHg and dHgT and DOC. The similarities between the Full and Reduced models for both p- 649 

and dMeHg further suggests that their concentrations are similarly controlled in contaminated 650 

in uncontaminated sites. Overall, it is concluded that historically contaminated sites should be 651 
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considered unique from uncontaminated locations, and sediment should be focused on for 652 

remediation or mitigation where significant point source contamination persists. For regionally 653 

impacted watersheds, mitigation will need an understanding of the importance of watershed 654 

inputs, and not just rely on examination of the local sediment concentrations.  655 
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 913 

Figure 1. Full Model correlation matrix. The variable names are listed across the diagonals 914 
abbreviated as follows: methylmercury (MeHg), total Hg (HgT), bulk sediment (s-), particulate 915 
(p-), dissolved (d-), dissolved organic carbon (DOC), and % loss on ignition (LOI). In the lower 916 

left portion of the matrix the linear correlations are plotted. In the upper right portion of the matrix 917 
correlation coefficients are reported as well as symbols for significance as follows: <0.001= ***, 918 
0.001-0.01= **, 0.01-0.05= *, 0.05-0.1= ., and >0.1= blank. 919 

 920 
 921 
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 922 

Figure 2. Reduced Model correlation matrix. The variable names are listed across the diagonals 923 
abbreviated as follows: methylmercury (MeHg), total Hg (HgT), bulk sediment (s-), particulate 924 
(p-), dissolved (d-), dissolved organic carbon (DOC), and % loss on ignition (LOI). In the lower 925 

left portion of the matrix the linear correlations are plotted. In the upper right portion of the matrix 926 
correlation coefficients are reported as well as symbols for significance as follows: <0.001= ***, 927 
0.001-0.01= **, 0.01-0.05= *, 0.05-0.1= ., and >0.1= blank. 928 

 929 

 930 

 931 
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     932 

Figure 3. Plots of the first and second principal components derived from a principal component 933 
analysis of the Full dataset. Variables are plotted based on the correlation between each 934 

variable and components (a). The individuals (sites) are plotted based on their PC loadings (b).  935 
Each estuarine system is represented by a color as indicated in the legend, and each site is 936 
labelled on the plot.  937 

 938 
 939 
 940 

 941 

  942 

  943 

Figure 4. Plots of the first and second principal components derived from a principal component 944 
analysis of the Reduced dataset. Variables are plotted based on the correlation between each 945 

variable and components (a). The individuals (sites) are plotted based on their PC loadings (b).  946 
Each estuarine system is represented by a color as indicated in the legend, and each site is 947 
labelled on the plot. 948 
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 951 

 952 

Figure 5. Variable Influence on the Projection (VIP) scores for a) the particulate HgT and b) the 953 

dissolved HgT Full Model versus the Reduced Model with the contaminated sites removed. VIP 954 
scores greater than one are considered important; variables with VIP scores greater than one in 955 
both models fall in the upper right, red quadrant whereas those that are important only in the full 956 
model fall in the lower right, orange quadrant and those that only important in the reduced 957 

model fall in the upper left, purple quadrant. A 1:1 line is plotted as a dashed line, and the linear 958 
regression relationship is plotted as a solid line. 959 

 960 

 961 

Figure 6. Variable Influence on the Projection (VIP) scores for a) the particulate and b) the 962 
dissolved MeHg Full Model versus the Reduced Model with the contaminated sites removed. 963 
VIP scores greater than one are considered important; variables with VIP scores greater than 964 

one in both models fall in the upper right, red quadrant whereas those that are important only in 965 
the full model fall in the lower right, orange quadrant and those that only important in the 966 
reduced model fall in the upper right left, purple quadrant. A 1:1 line is plotted as a dashed line, 967 
and a linear regression relationship is plotted as a solid line.  968 
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 973 

Table 1. Site details including where and when each sample was collected.  974 

State System  Site Name Subsite 
Site 

Code 
Month Year Latitude Longitude 

DE Delaware River North Beach   NB July 2012 39.13 -74.89 

DE Delaware River Fortescue   FS July 2012 39.22 -75.17 

DE Delaware River Sea Breeze   SB July 2012 39.32 -75.32 

DE Delaware River Buttonwood   BW July 2012 39.46 -75.51 

DE Delaware River Pennsville Landfill   PL July 2012 39.64 -75.55 

DE Delaware River S. of Lukens   SL July 2012 39.67 -75.55 

DE Delaware River Luken's Marsh   LM July 2012 39.69 -75.54 

DE Delaware River Gen Chem   GC July 2012 39.80 -75.44 

DE Delaware River Timber Blvd   TB July 2012 39.88 -75.13 

DE Delaware River Penn Treaty   PT July 2012 39.97 -75.13 

MD Chesapeake Jefferson Patterson HOC JP-H July 2013 38.39 -76.51 

MD Chesapeake Jefferson Patterson LOC JP-L July 2013 38.39 -76.51 

MD Chesapeake Parker's Creek HOC PC-H July 2013 38.54 -76.53 

MD Chesapeake Parker's Creek LOC PC-L July 2013 38.54 -76.52 

CT Long Island Sound Goshen LOC GC-L August 2013 41.30 -72.12 

CT Long Island Sound Goshen HOC GC-H August 2013 41.31 -72.12 

CT Long Island Sound Barn Island LOC BI-L August 2013 41.34 -71.88 

CT Long Island Sound Barn Island HOC BI-H August 2013 41.34 -71.87 

ME Mt. Desert Island Bass Harbor LOC BH-L September 2013 44.25 -68.35 

ME Mt. Desert Island Bass Harbor HOC BH-H September 2013 44.25 -68.34 

ME Mt. Desert Island Northeast Creek HOC NEC-H September 2013 44.42 -68.33 

ME Mt. Desert Island Northeast Creek LOC NEC-L September 2013 44.43 -68.33 

DE Delaware River Slaughter Beach LOC SB-L July 2015 38.93 -75.31 

DE Delaware River Cedar Creek HOC SB-H July 2015 38.95 -75.32 

DE Delaware River Duck Creek HOC WB-H July 2015 39.33 -75.48 

DE Delaware River Woodland Beach LOC WB-L July 2015 39.33 -75.47 

CT Long Island Sound Goshen Cove HOC GC-H August 2015 41.31 -72.12 

CT Long Island Sound Barn Island LOC BI-L August 2015 41.34 -71.88 

CT Long Island Sound Barn Island HOC BI-H August 2015 41.34 -71.87 

ME Webhannet River Sea Mist HOC SM-H September 2015 43.29 -70.58 

ME Webhannet River Sea Mist LOC SM-L September 2015 43.30 -70.58 

ME Webhannet River Drake's Island LOC DI-L September 2015 43.32 -70.56 

ME Webhannet River Drake's Island HOC DI-H September 2015 43.33 -70.56 

NJ Hackensack River Veteran's Park   VP* July 2016 40.67 -74.13 

NJ Hackensack River Veteran's Park   VP* May 2016 40.67 -74.13 

NJ Hackensack River Rutkowski Park   RP July 2016 40.69 -74.11 

NJ Hackensack River Rutkowski Park   RP May 2016 40.69 -74.11 

NJ Hackensack River Laurel Hill   LH* July 2016 40.76 -74.09 

NJ Hackensack River Laurel Hill   LH* May 2016 40.76 -74.09 

NJ Berry's Creek Route 3 Underpass   3A* July 2016 40.81 -74.09 
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NJ Berry's Creek Route 3 Underpass   3A* May 2016 40.81 -74.09 

NJ Berry's Creek East Union   EU* July 2016 40.82 -74.09 

NJ Berry's Creek East Union   EU* May 2016 40.82 -74.09 

NJ Berry's Creek Stiletto's   ST* July 2016 40.83 -74.08 

NJ Berry's Creek Stiletto's   ST* May 2016 40.83 -74.08 

ME Penobscot Bay Moose Point   MP July 2016 44.43 -68.94 

ME Penobscot Bay Moose Point   MP May 2016 44.43 -68.94 

ME Penobscot River Verona   V* July 2016 44.57 -68.79 

ME Penobscot River Verona   V* May 2016 44.57 -68.79 

ME Penobscot River Marsh   M* July 2016 44.59 -68.86 

ME Penobscot River Marsh   M* May 2016 44.59 -68.86 

ME Penobscot River Orrington   O* July 2016 44.69 -68.82 

ME Penobscot River Orrington   O* May 2016 44.69 -68.82 

ME Penobscot Riverᶧ Above   A July 2016 44.76 -68.80 

ME Penobscot Riverᶧ Above   A May 2016 44.76 -68.80 

*Contaminated sites excluded from the Reduced Model           

ᶧConsidered the Penobscot Bay in the Reduced Model           
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