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Networks

This article demonstrates how water pumping in drinking water distribution networks
can be treated as a flexible load in the power distribution network.

By ANNA STUHLMACHER

ABSTRACT | Water pumping in drinking water distribution
networks (WDNs) can be treated as a flexible load in the power
distribution network (PDN). In this article, we formulate an opti-
mization problem to minimize the electricity costs associated
with pumping subject to WDN and PDN constraints. In practice,
both water and power demands are uncertain and pumps
should be scheduled to ensure that pump operation does
not violate either networks’ constraints for nearly all possible
uncertainty realizations. To address this problem, we formulate
a chance-constrained (CC) optimization problem that simulta-
neously determines pumping schedules along with the para-
meters of real-time control policies that can be used to respond
to water and power demand forecast errors. We use approxi-
mations and relaxations along with the scenario approach for
CC programming to reformulate the optimization problem into
a convex deterministic problem. We demonstrate the perfor-
mance of the approach through case studies and also explore
the impact of the relaxations, an approach to improve compu-
tational tractability, and tradeoffs associated with the way in
which we define the cost of real-time control actions. We find
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that optimal scheduling and real-time control of water pumping
can effectively manage water and power demand uncertainty,
meaning water demand is satisfied and both the WDN and
PDN operate within their limits; however, the approach is
conservative leading to high reliability at high cost.

KEYWORDS ! Chance-constrained (CC) programming; electric
power distribution networks (PDNs); water distribution net-
works (WDNs).

I.INTRODUCTION

There is growing interest in understanding the benefits and
drawbacks of optimizing operations across multiple cou-
pled critical infrastructure systems [1]. Potential benefits
include increased flexibility, sustainability, and reliability
as well as reduced capital and operational costs. However,
formulating and solving such an optimization problem
may be computationally taxing or intractable due to the
system’s scale and nonconvexity. A significant body of work
has demonstrated the benefits of optimizing multienergy
systems, for example, natural gas/grid networks [2] and
district heating/grid networks [3]. In the latter, both dis-
trict heating and electricity could be provided by a com-
bined heat and power plant, which is operated subject to
constraints from both the electricity distribution network
and the hot water network. Other types of water networks
are also strongly coupled with electricity networks. For
example, agricultural water pumps can be used within
demand response programs to provide economic benefits
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to and improve the reliability of the power system [4].
Drinking water and wastewater treatment plants have
also been used for demand response [5]. Using these
electricity-consuming water network assets to reduce the
cost and/or increase the reliability of power systems in
turn reduces the cost of water networks (via cheaper
electricity) and improves their reliability (via fewer pump-
ing/treatment outages that results from power outages).

In this article, we explore the coupling between the
water distribution network (WDN) and the power dis-
tribution network (PDN). Both distribution networks are
facing growing challenges. For example, the WDN requires
more energy-intensive methods for distributing drinking
water due to a shrinking freshwater supply and the PDN
is experiencing increasing levels of intermittent, uncertain
renewable energy resources such as solar photovoltaics
[6]. Additionally, both networks are facing increasing lev-
els of consumer demand. These two networks are intrinsi-
cally interdependent: water pumps in the WDN are loads
in the PDN and water storage tanks allow for shifting
pumping in time. Drinking and waste water networks
consume around 4% of the electricity use in the United
States, where a majority of that consumption (90%-99%)
is used for pumping [7]. Regionally, this percentage can
be considerably larger. For example, in California 19% of
all energy consumption goes to water-related uses [8].
Despite the WDN'’s significant energy consumption and
the inherent coupling of the WDN and PDN, the WDN is
usually treated as an uncontrollable load on the PDN.

Our goal is to develop operational and real-time control
strategies that use WDN water pumps and tanks to support
PDNs facing uncertainty from distributed energy resources,
which leads to uncertainty in net power demand. Specif-
ically, with increased penetrations of solar photovoltaics,
PDNs can experience unexpected net demand fluctuations
that cause voltage fluctuations, in some cases leading to
voltage problems. Flexible loads, like WDN pumps, can be
used to mitigate those problems, improving the reliability
of the PDN and in turn improving the reliability of the
WDN. Most urban WDNs have automated, computerized
supervisory control and data acquisition (SCADA) systems,
and are capable of fast operational control [7]. For exam-
ple, Pabi et al. [9] reported the results of a water treatment
plant with a SCADA system participating in a demand
response program; the plant was able to respond in sec-
onds. We formulate an optimization problem to schedule
pumping and tank levels subject to both WDN and PDN
constraints and considering uncertainty in both nodal net
power demands and the water demands. There are two
challenges to solving this problem. First, the networks
include nonlinear and nonconvex constraints. The second
challenge is how to handle the uncertainty. We address
the former by using convex approximations and relax-
ations, and provide a discussion on how they impact
the solution. We address the latter by developing affine
real-time control policies to respond to water and power
demand forecast errors and formulating the problem as a

chance-constrained (CC) optimization problem that jointly
solves for the WDN schedule and control policies’ para-
meters. Since these are critical infrastructure networks,
we care more about feasibility than minimizing costs,
and chance constraints allow us to achieve constraint
satisfaction at high probability levels. However, we also
acknowledge that a CC programming formulation has cer-
tain limitations and highlight these within this article.

Although related to the problem of optimizing district
heating/grid systems (see [3] and [10]-[14]), our problem
is different. Unlike problems that optimize the operation
of a centralized combined heat and power plant, our
problem optimizes resources (pumps and tanks) that may
be distributed across the WDN/PDN. Additionally, while
the goal of WDNs is to meet water demand, the goal
of district heating networks is to meet heat demand;
hot water and electricity may also be delivered but that
is not the primary goal of these networks. That means
optimizing district heating/grid systems requires modeling
additional components (e.g., heat exchangers, heat pump
units, and combined heat and power plants) and including
heat transfer constraints, which we do not consider here.
Furthermore, district heating networks are not geograph-
ically extensive due to high-investment cost and lossy
heat transport [13], while WDNs can be much larger.
However, the problems are similar in that both district
heating networks and WDNs must manage uncertainty.
Mancarella et al. [13] identified the need for more plan-
ning and operation research for heating-electricity systems
that include uncertainty. There is a similar gap in the
literature for WDN-PDN systems.

Our work builds on a significant body of research
on the optimal operation of WDNs. In most of the
work, the objective is to minimize operational costs
or improve water quality. Most articles solve determin-
istic problems. Solution approaches include the gra-
dient method [15], [16], linear approximations [17],
or genetic algorithms [18]. Ghaddar et al. [19] used a
Lagrangian decomposition to improve computation time
and Fooladivanda and Taylor [20] applied relaxations
and utilized distributed optimization to compute the
suboptimal operation. Mala-Jetmarova et al. [21] and
Ormsbee and Lansey [22] provided a literature review
on WDN operational control methodologies. Several arti-
cles consider uncertainty when optimizing the WDN’s
operation [23]-[25] and design [26]-[28]. Most of these
approaches use simplified WDN models.

There is also a substantial body of work on the
optimal operation of power networks; we refer the reader
to [29] for a comprehensive review. There is also work
on formulating and solving CC optimization programs for
power networks [30], [31] with control policies enabling
real-time response to forecast errors [32], [33].

There is growing interest in the integrated optimization
of water and power networks. In [34], a water-power flow
optimization problem and a distributed solution approach
are developed. Li et al. [35] applies relaxations and
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approximations to the water-power flow problem to pro-
vide demand response from agricultural irrigation systems.
In [36], the WDN responds to a signal from the PDN to
consume surplus energy at times of excess generation.
Oikonomou and Parvania [37] used multiple WDNs to
provide electricity-consumption flexibility to the power
transmission network. In all of these articles, consumer
water and power demand are assumed to be known.

To the best of our knowledge, there are no existing
approaches to optimize WDN operation subject to both
WDN and PDN constraints considering uncertainty, beyond
our preliminary work [38], [39]. In [38], we consid-
ered only water demand uncertainty while, in [39],
we considered only power demand uncertainty. In this
article, we consider both, allowing us to formulate
the complete problem and gain substantive additional
insights into the solutions of real-world problems.
Stuhlmacher and Mathieu [38] developed a first version of
a balancing control policy that adjusts pump flow rates
in real time to compensate water demand forecast error;
in this article, we extend the balancing control policy
to include actions from tanks. Also, in [38], we formu-
lated the problem as a nonconvex program and applied
a heuristic scenario-based approach to solve it, whereas in
this article we use convex approximations and relaxations
so that we can obtain probabilistic guarantees on the
solution generated by the scenario approach [40], though
the guarantees apply to the approximate/relaxed problem.
Stuhlmacher and Mathieu [39] developed a first version of
a corrective control policy that adjusts pump flow rates in
real time to respond to voltage violations; in this article,
we extend it to improve the computational tractability of
our solution approach.

The contributions of this article are: 1) the formulation
of an optimal multiperiod WDN operation and control
problem subject to WDN and PDN constraints and consid-
ering uncertainty in both water and power demand; 2) the
development of real-time control policies that adjust pump
flow rates in response to water and power demand forecast
error; 3) the reformulation of the problem into a convex
deterministic problem via convex approximations, convex
relaxations, and application of the scenario approach; and
4) case studies on a coupled WDN-PDN with pumps, tanks,
PDN unbalance, and significant water and power demand
uncertainty. Within the case studies, we explore the impact
of the approximations and relaxations, an approach to
improve computational tractability, and tradeoffs in the
way we define the cost of real-time control actions. Includ-
ing both the balancing and corrective control policies
enables us to analyze their relative importance and impact
on the optimal solution.

II. PROBLEM DESCRIPTION

Our goal is to minimize WDN electricity costs over a
scheduling horizon by choosing supply pump flow rates
and tank net outflows together with the parameters of
real-time control policies enabling response to water and
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power demand forecast errors. First, ignoring uncertainty,

we can formulate the deterministic optimization
problem as
. t
min Z F*(x)
teT
st.z21(x,€) =0, wvi(x,€) <0
2(x%,8) =0, v2(x,€) <0 (DD

where x are the decision variables including supply pump
flow rates and tank net outflows (defined later), and
¢ are the network parameters including the forecasted
water and power demand (also defined later). The cost in
discrete time period ¢ € 7 of duration AT is

VteT (1)

Flx) =Y (AT > (phy)

ecP Pped

where 7! is the actual or forecasted price of electricity
for pump e € P and p! , is the power consumption
of pump e on PDN phase ¢ € ® = {a,b,c}. Functions
z1(x,€) and v1(x, &) are the PDN’s equality and inequality
constraints, and z2(x,&) and wv2(x,£) are the WDN’s
equality and inequality constraints. In general, the problem
is nonconvex due to nonlinear and nonconvex WDN and
PDN constraints. The formulation assumes the WDN has
full knowledge of the PDN. While this may be unrealistic,
it is still valuable to solve this problem as it gives us
insights into the optimal solution achievable without
considering limitations on measurements, communication
systems, and information sharing by the PDN.

In this section, we first explain the PDN model that
defines 21 (x, &) and v1 (%, €), and then the WDN model that
defines z2(x, &) and v2(x, £). Then, we describe a number
of convex approximations and relaxations we use, resulting
in a convex deterministic problem. Finally, we describe
how we incorporate uncertainty, define the cost of flexi-
bility, and formulate our CC optimization problem.

A. PDN Model

The consumers and pumps are connected to a PDN
through a set of buses k& € K. The PDN equality constraints
z1(x,€) include the three-phase unbalanced ac power
flow equations

SR, Qlg"), Ve, ¢) =0 YieT (2

where P := [P, slkex.gce and Qf := [Qf ;. slrex oca
are vectors of the real and reactive power loads at each bus
and phase; V' := [V} slrex,oce and 6" := [0} slrex. gco

are vectors of the voltage magnitudes and angles at each
bus and phase; and p* = [p! 4lcep,sco and q' =
[¢¢ 4]eer.pco are vectors of the real and reactive pump
power consumption for each pump and phase, respectively.
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The load at each bus and phase is

. Pk.s + DL, if pump e connected to bus k
Plreo =19, ) (3)
Ph.és otherwise
. Ch.o + qb.4, if pump e connected to bus k
Quios =19 ., ) “4)
Chs otherwise

Vk € K, ¢ € ®,t € T, where p}, , and ¢}, , are network
parameters, specifically, the forecasted real and reactive
net load, that is, actual load minus distributed generation,
for example, from solar photovoltaics, at each bus, phase,
and time period. The PDN equality constraints also include

0o =0° 00, =—120°, 05.=120° VteT (5)
Vou=Vop=Voe=1pu VteT (6)

which specify that the substation (i.e., bus 0, without loss
of generality) has a fixed and balanced voltage.

The PDN inequality constraints v;(x,£) < 0 include
limits on the bus voltages’ magnitudes

VIS VE SV VEkeK, ped, teT  (T)

where V™" and V™ are the lower and upper voltage
magnitude limits at bus k. They can also include limits on
the apparent power flows along lines [ € £

(PL)’ 4+ (Q1s)° < (SM)? VieLped teT (8

where S"¢* is the apparent power flow limit for line / and
phase ¢.

We do not model existing voltage regulating equipment
(tap changing transformers, switched capacitors, etc.) as
it would introduce binary variables, making the problem
much harder to solve. Moreover, this allows us to explore
the impact of WDN actions alone on PDN voltage levels.
Future work will explore how best to model this equip-
ment in our formulation and how this equipment and
WDNs can work together to regulate voltages in the most
cost-effective manner.

B. WDN Model

We assume supply pump ON/OFF statuses are deter-
mined in advance of the scheduling horizon. We also
assume pipe water flows do not change direction during
the scheduling horizon. These assumptions are commonly
used in the literature (see [20], [34], [36], and [37]),
to eliminate the need for binary variables. Consequently,
we can formulate the WDN as a directed graph (N, &)
composed of a set of nodes A and a set of edges £. Nodes
can be categorized as junctions j € 7, reservoirs j € R,
or elevated storage tanks j € S, thatis, N = JURUS.
In this article, the main distinction between tanks and

t
H i
), t
Dlpe €y H;
>,
— \*,
C‘I \
hi
h
node i node j node k
At
t — It to_ i — gt
flj _Hi_He1 Xey — Xe _dj
Fig. 1. WDN visualization including elevation and hydraulic head

with respect to an elevation reference, flow rate, and head loss.
Example equations of conservation of hydraulic head (15) and
conservation of water (11) are included.

reservoirs is that tanks allow bidirectional flow whereas
reservoirs model the water supply source (i.e., treatment
plant clearwells). Water is pumped into elevated storage
tanks (e.g., during periods of low demand) so that the
tanks can release pressurized water using gravity at a later
time period (e.g., during periods of high demand). Edges
are pipes connecting the nodes; they can contain a supply
pump e € P or a pressure reducing valve e € V, that is,
(PUV) C N. The WDN can be described by its hydraulic
head H} at node j and the volumetric flow rate z! through
pipe e. Fig. 1 shows the relationships between elevation,
hydraulic head, flow rate, demand, and head loss along
two pipe segments.

1) Nodes, N: The hydraulic head H} at node j is com-
posed of the elevation h; and the pressure head. The WDN
nodal constraints are

A hy < HE <A™ 4 hy VjieN,teT ©)
Hj=h; VjeR, teT (10
Zajex’;:d§ VieJ, teT (11)
ec&
Hjt.’ou[:H;;&t-k%Zajexz Vjies, teT (12)
7 eceg

MM 4 hy < Hlgw <hT™ 4 h; VjieS teT (13)

where A" and A are the lower and upper pressure head
limits at node j. For tanks, these are set to the minimum
and maximum tank levels. Parameter d is the forecasted
water demand at junction j, ; is the cross-sectional area of
tank j, and aje € {0,1, —1} is an element in the node-edge
incidence matrix which describes the connection of edges
and nodes in the network. In (9), the hydraulic head at
each node is limited. We treat reservoirs R as infinite

sources with fixed pressure heads. Consequently in (10),
we set the hydraulic head equal to elevation without loss
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of generality. For junctions [, we ensure that the conser-
vation of water is satisfied. Therefore, in (11), the sum of
water entering and exiting a junction must equal the con-
sumer water demand dj. We model tanks S with separate
inflow and outflow pipes, where the inlet is at the top of
the tank and the outlet is at the bottom [41]. The inlet
is treated as a junction, where its head H} is computed
the same way as any junction (i.e., the upstream hydraulic
head minus the head loss through the connecting pipe,
described below). The outlet tank hydraulic head H} o is a
function of the previous period’s outlet tank hydraulic head
and the tank net inflow, as shown in (12). Equation (13)
limits the outlet head by the physical volume of the tank.
Since we do not want to simply deplete the tank over
the scheduling horizon, we constrain the final outlet tank
hydraulic head to be greater than or equal to the initial
outlet tank hydraulic head

t=|T| t=0
H 2 Hj,out-

Jout (14

2) Edges, £: We denote the frictional head loss along
pipe e as H! = — Y en @jeHj. The head loss equation
for each pipe is dependent on whether it contains a pump
or valve

e () Vee P, (15a)
H=! L VeeV, (15b)
ke (z)" Vee&\(PUV),  (15c)

Vt € 7. The first case corresponds to pipes containing
fixed speed pumps, where pump ¢’s hydraulic function .
is dependent on its flow rate x!. It is usually approximated
with a quadratic function. The second case corresponds
to pumps containing pressure reducing valves, where the
valve head loss L: > 0 is a decision variable. The third case
corresponds to pipes without a pump or valve, where k. is
the resistance coefficient for pipe e and n is the exponent.
Additionally, the pump flow rates are limited

g™ < gt <M VeeP, teT (16)

where ™" > 0 and 2™ are the lower and upper flow rate

limits for pump e. The power consumption of pump e is a
function of its head gain —H¢ and flow rate

pho=—PBsHlzl VeecP, ¢pcd tecT a7)

where 3,4 is a constant with units of kW/CMH - m that
both converts H!z! to units of power and assigns a
portion of the pump power consumption to each phase
¢, for example, one-third to each phase if the load
is balanced.

The WDN equality constraints are collected to form
z2(x,€) = 0 and the inequality constraints are collected
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to form va(x,£) < 0. The water decision variables are
T = [zz]ee&teﬂ’, H = [H;]jGN,tET; Hyye =
[Hf ouljes.ter, and L := [L]eev teT.

C. Deterministic Problem: Nonconvex
Formulation

Using the constraints defined in Sections II-A and II-B,
the full deterministic problem is given as

minZFt(Xl)
*oeT
s.t. (2) — (8)
(9) —(17) (D2)
where the decision variables are x1 = {z, H, Hou, L,

Pr,QL,V,0,p,q}. The problem is nonconvex.

D. Approximations and Relaxations

Since nonconvex problems can be difficult to solve,
we use convex approximations and relaxations to con-
vexify our formulation. For the PDN, we use a linearized
three-phase unbalanced power flow model for radial net-
works; however, our approach can easily be extended to
other convex PDN formulations, such as [42] and [43],
where [43] approximates system losses. The formulation
neglects the losses and assumes that the voltage unbalance
at each bus is small [44]

Yy =Y~ My, P, — Ni,Ql VkeK,teT (18)

P{=PL.+ > P, VEeK, teT (19)
n€ly

Qi =QLr+ Y Qu VkeK teT (20)
nely,

where Y} € R®*! contains the three-phase voltage magni-
tudes squared at bus k and time ¢, that is, Y}/ , = (V¥ ;)%
P! ¢ R**! and Q! € R**! contain the three-phase real
and reactive power flows entering bus k at time ¢; and
parameter matrices My, and Ny, are formed from the
line impedances. The set 7, contains all buses that are
connected directly downstream of bus k.

For the WDN, the head loss in pipes without pumps
or valves (15c), the pump hydraulic function (15a),
and the pump power consumption (17) are nonconvex.
Head loss is usually modeled with the Darcy—Weisbach or
Hazen-Williams formulas (see [45] for details). Both are
nonconvex. Using the approach from [35], we relax the
Darcy-Weisbach formula, in which n = 2, by replacing
(15¢) with its convex hull

H. > ke (28)® Vee&\(PUV), teT

> (21a)
HY <b24blal YeeE\(PUV), teT

(21b)
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| Por U+ ) b9 + bhx}
g B
< &
Y _
By Hext ke - (x¢)?
xt (CMH) xt (CMH)
Fig. 2. Convex hull for the pump power consumption (left) and

pipe head loss (right).

where ¢ and b! are parameters that provide the upper
bound for the convex hull. In Fig. 2 (right), we illustrate
the convex hull of the pipe head loss.

As mentioned, the pump hydraulic function (15a) is
usually approximated with a quadratic function; however,
the coefficient in front of the quadratic term is usually
small and negative [45]. Therefore, like [35], we neglect
the quadratic term since its contribution is small compared
to the linear term and approximate the pump hydraulic
function as

Al=—(ml+mlal) VeeP, teT  (22)

where m? and m! are parameters.

The pump power consumption is a quadratic function of
the flow rate z£. Since it is included in the linearized power
flow equations, it makes them nonconvex. Again, using the
approach from [35], we replace (17) with its convex hull

Y

—BeHlzt VeeP,gpcd teT (23a)
By (fO+flal) VeeP,pecd teT (23b)

t
pe,d)

t
pe,¢

IN

where f0 and f! are parameters that provide the upper
bound for the convex hull. In Fig. 2 (left), we illustrate
the convex hull for the pump power consumption. When
pumping costs are minimized subject to the pump power
consumption convex hull, the solution will lie on the lower
edge of the hull, that is, the original constraint.

E. Deterministic Problem: Convex Formulation

Assuming the PDN experiences voltage problems before
apparent power flows violate line limits, which is often the
case in radial distribution networks, we neglect the line
flow limits (8). Then, using the relaxations and approxima-
tions from Section II-D, we can formulate the deterministic
problem as a convex program

n;in F'(x2)
2 teT
s.t. (3) = (4),(7),(9) — (14)

(15b), (16), (18) — (23b) (D3)

where the decision variables are xo = {x,H, Hou, L,
P7Q7Y7p7 q}'

E Incorporating Uncertainty

Next, we consider water and power demand uncertainty.
We denote the water demand forecast error at junction j as
J; and the power demand forecast error at bus k, phase ¢
as pi.,. We develop control policies to adjust the supply
pump flow rates and the tank net outflows from their
scheduled operation in real time to balance the mismatch
in water supply and demand resulting from water demand
forecast error and to correct voltage constraint deviations
resulting from power demand forecast error. Note that
we do not apply control policies to booster pumps that
increase pressure head.

The balancing control policy adjusts pumping and tank
levels to compensate for water demand forecast error.
We also refer to it as the water control policy. We assume
the pumps receive a measurement of the total water
demand forecast error and change their flow rates from
their schedule by 7;, . as a function of the total error

Yjeqds
e =Chve Y d; VeeP, teT (24)
€T

where 7, . is a random variable and c}, . is a scalar water
control policy parameter associated with pump e and a
decision variable in our optimization problem. The tanks
are passive and adjust their net outflow by

Y =i =cu; Y di V€S teT
ec& €T

(25)

to compensate any water demand and supply mismatch,
where ¢}, ; is a scalar water control policy parameter
associated with tank j and a decision variable in our
optimization problem. Note that on the right side of the
equation we use subscript ¢ rather than j to sum over
the water demand forecast errors at all junctions since
subscript j is used elsewhere in the equation. To ensure
that the water supply equals the water demand we set

Zcﬁv’e—&-Zc‘tN’j:l VteT.

eeP JES

(26)

Our preliminary work [38] introduced a first version of
this control policy, but it did not consider storage tanks
or multiple time periods.

The corrective control policy adjusts pumping and tank
levels to compensate power demand forecast error when
there is a voltage constraint violation. We also refer to
it as the power control policy. We assume that pumps
receive notice of voltage constraint violations along with
measurements of the power demand forecast error for each
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bus and phase of the PDN. When violations occur, they
change their flow rates from their schedule by Zj . as a
function of the error vector p* := [p}, 4]rex, pco

Tpe=Cp.p' VYeeP, teT %))

where . is a random variable and Cj. is a power
control policy parameter row vector that relates the power
demand deviations at load bus k and phase ¢ to a change in
pump €’s flow rate. The latter is a decision variable in our
optimization problem. Note that (27) does not explicitly
control tank levels (recall that tanks do not consume power
so they have no direct impact on voltages); however,
tanks still compensate for deviations between water supply
and demand.

Our preliminary work [39] introduced (27) and found
that solving for power control policy parameters corre-
sponding to every load bus and phase was computationally
cumbersome. Therefore, in Section III-D, we explore the
impact of aggregating forecast errors over phases/buses,
which reduces the number of decision variables and there-
fore the size of the optimization problem. Stuhlmacher and
Mathieu [39] also explored use of the power control policy
for all power demand forecast errors versus only when
needed to correct a voltage constraint violation. While
always applying the power control policy would result in
unnecessary control actions, it would also eliminate the
need for real-time notice of voltage constraint violations.
Moreover, modeling the usage/nonusage of the power con-
trol policy in the optimization formulation requires intro-
duction of binary variables, which significantly increases
computation time [39]. It is also possible to formulate
the optimization problem assuming that the power control
policy is used for all power demand forecast errors, but
only apply it when needed. However, this may result
in a suboptimal policy. In this article, we formulate the
optimization problem assuming the power control policy is
used for all power demand forecast errors and also apply
it in this way.

For notational simplicity, we define the water control
policy parameter column vector, which includes all
pump and tank control policy parameters, as cl, :=
([cly,e]eep, [cw,jljes), where we use angle brackets to ver-
tically stack column vectors. We also define the power
control policy matrix C; = [Cj .lecer, which includes
all pumps. Note that the control policy parameters may
vary over the scheduling horizon. Both control policies
contribute to the total change in pump flow rate

T.=Twe+Tp. VeeP, teT. (28)

G. Flexibility Costs

Using pumps to respond to forecast errors in real time
would incur some cost, that is, more frequent changes in
output, larger changes in output, and/or faster changes
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in output would lead to more wear and tear on WDN
components, such as pumps and valves. We refer to this
cost as flexibility cost. However, it is not clear how best
to formulate that cost and so we explore several options.
We define the objective function of the CC optimization
problem as Y, ., (F*(x2) + gwGy + 9pGp), where gy G,
and gy G}, are flexibility cost functions associated with the
water and power control policies, respectively, and g, and
gp are weighting coefficients. The dimensions of g{, and gj
are chosen such that the terms g, G+, and g;G}, are scalars.
Three options for defining the flexibility cost follow.

1) Option 1: The flexibility costs are a function of
the squared norms of the water and power control
policy parameters

Gw,1 = llewll

Gé,l = ||C[t>||1%

(29)
(30)

Specifically, we use the squared Euclidean norm of the
water control policy parameter vector and the squared
Frobenius norm of the power control policy parameter
matrix. Therefore, Gf,; and G}, are scalars. Option 1
penalizes all parameters within the control policy to pre-
vent excessive control actions. For the water control policy,
this formulation spreads the control actions amongst the
pumps/tanks rather than using only a small subset of
pumps/tanks to compensate water demand deviations. For
the power control policy, the system is underdetermined,
that is, different choices of power control parameters can
achieve the same control action given the same power
demand forecast error. This formulation chooses the set of
parameters that minimizes their squared norm.

2) Option 2: The flexibility costs are a function of the
range of pump flow rate adjustments

Gf/v,Z = <W1fp,W7Wc71:n,w>
Glg,? = <W1fp,p7W5n,p>

€1y
(32

PUS|x1 3
where column vectors W, W, € RI7ZS™! define
the flexibility band around the scheduled flow rate for
water control policy actions and Wy, ,, Wi, € R
define the flexibility band for power control policy actions.
Specifically, Wi w, Wi Wipp, and Wy, , are decision
variables related to the control policies through the follow-
ing element-wise inequalities:

Wi S € Y di < Wi VteT 33)
i€
Wiy < Cpp' S W, VteT. (34)

In contrast to Option 1, Option 2 considers the largest
flow rate changes over all of the scenarios instead of
penalizing the control policy parameters, which may be
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more reasonable if pump wear-and-tear is related to the
magnitude of fast changes in flow rate.

3) Option 3: The flexibility costs are a function of the
range of pump power deviations, which is similar to speci-
fying reserve capacities in electric power systems

G = (Ripw: Rinw) 35)

Gp3 == (Ripp, Rinp) (36)

where column vectors Ripw, RS, € RI'*' define
the flexibility band around the scheduled pump power
consumption due to water control policy actions and
Ripp, Rap € R!71*! define the flexibility band for power
control policy actions. While we could specify these values
per phase, we make the realistic assumption that pumps
are balanced three-phase motors and power deviations are
identical in each phase. Therefore, Ry, w, Ry, ., Rip,p, and
Ry, , are identical for each phase, and so we do not spec-
ify the phase. Since the pump power consumption curve
(17) is monotonically increasing, the largest pump power
deviations occur with the largest flow rate adjustments.
Therefore, decision variables R{y, Ry, Rip,p, and R,

are directly related to Wypw, Wi, Wipp, and Wy, .,
that is
Rinw.e = Pe = De(we = Winw,.) Ve€P, teT (37
Rinpe = Pe = De(@c = Winp) Ye€P, teT (38
Ripwe = Po(xl + Wipwe) =Dt Ve€P, teT (39
Rippe = Pe(xt + Wippe) —pe Ve€P, teT  (40)

where the function p.(z!) returns the power consumption
of pump e for the flow rate zl. Again, since p! and
power deviations are identical in each phase, we do not
specify the phase. In contrast to Option 2, there is a
nonlinear mapping between the pump adjustments and
the flexibility cost, and so using this cost option makes
the problem more difficult to solve. Specifically, Option 3
requires (33), (34), and (37)-(40); however, the latter are
nonconvex. We replace them with their convex hulls as
in Section II-B; however, Ry, , and Ry, will be inexact,
leading to a reduced downward flexibility band.

We discuss the tradeoffs associated with these options
in Section III-E.

H. CC Optimization

To formulate the full CC optimization problem, we first
write the stochastic counterparts of the deterministic
equality constraints (3), (4), (10)-(12), (15b), (18)-(20),
and (22), and inequality constraints (7), (9), (13), (14),
(16), (21a), (21b), (23a), and (23b) replacing pfw with
pho + P, and db with db + di. For flexibility cost
Option 1, the full set of stochastic constraints comprise

these constraints along with (24), (25), (27), and (28).
Options 2 and 3 require additional constraints defined in
Section II-G. Eliminating the stochastic equality constraints
through substitutions into the stochastic inequality con-
straints, the stochastic inequality constraints can be put
into the form f(x2, cw, Cp, d, p) < 0 and then transformed
into a chance constraint

P(f (X2, ew,Cp,d, p) <0) > 1—e¢ 41

where the constraints should be satisfied jointly for a
probability level of at least 1 — ¢, where ¢ is the viola-
tion level. WDN constraints within the chance constraint
are the hydraulic head limits and pump flow rate limits.
Because tanks are passive, tanks act to maintain water
balance when pump flow rate limits are encountered.
PDN constraints within the chance constraint correspond
to the voltage limits. Therefore, the chance constraint
limits the probability of a hydraulic head, pump flow rate,
or voltage violation. Finally, we can write the CC optimiza-
tion problem. For example, for flexibility cost Option 1,
the problem is

min_ > (F'(xX2) + guu + 9pJp)
25N e T

s.t. (3) — (4),(7),(9) — (14)
(15b), (16), (18) — (23b)

(26), (41)
Gui< Juw VYteT
Gpa< Jy VteT (CCO)

where slack variables Jy, and J; are upper bounds on
the flexibility costs. Since these variables are minimized,
the optimal solution will be to set them equal to G,
and Gj.

We solve this problem using the scenario approach for
convex problems [40] for a number of reasons. First,
the uncertainty impacts the constraints in complex ways
and it is not clear how to analytically reformulate the
constraints using known uncertainty distributions. Second,
we are unlikely to know the uncertainty distributions in
practice and the scenario approach does not require this
information. Third, the scenario approach gives us a way to
enforce the constraints jointly, rather than individually as is
typical with approaches that rely on analytical formulation.
A drawback of the scenario approach is that it requires
a significant amount of data. Additionally, it is often very
conservative in practice [46], leading to empirical violation
probabilities much lower than the user-selected violation
level ¢ and, subsequently, higher costs. Specifically, in the
approach, the constraints are enforced for a large set
of uncertainty realizations resulting in a large convex
deterministic optimization problem. The number N of
scenarios required for probabilistic reliability guarantees is
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Fig. 3. Coupled PDN (left) and WDN (right). The dashed lines show
where the water supply pumps are connected to the PDN. The water
tank is passive. We show the single-phase equivalent PDN but we
used a three-phase unbalanced network model. The pumps are
modeled as balanced three-phase loads.

determined based on a user-selected violation level e and
confidence level v [40]

2 1
> — — +
N c <1Il 1/} 6)

(42)
where § is the number of decision variables in the opti-
mization problem. In our case, the probabilistic guarantees
apply to the convex (approximate and relaxed) problem,
not the nonconvex problem. While there are some related
approaches and results for nonconvex problems, they do
not appear to apply directly to the form of our nonconvex
problem. Further investigation of this issue is a subject for
future research.

III. CASE STUDIES

In our case studies, we use the coupled WDN and PDN
shown in Fig. 3, which we also used in [39]. We first
describe the setup and then present and interpret the
results. Additionally, we explore the impact of the convex
relaxations on the WDN constraints, an approach to reduce
the dimension of our power control policy parameters, and
the choice of the flexibility cost formulation.

A. Setup

The WDN was originally presented in [16]; it is based
on an actual WDN. We have modified it to include a cylin-
drical storage tank (25-m diameter, 30-m height, 30-m
elevation), removed the booster pump, and converted the
resistance coefficients from Hazen-Williams coefficients to
Darcy-Weisbach coefficients. We changed the elevations
at junction 6 and the reservoir upstream of pump 1 to
10 m and the minimum pressure heads at junctions 7 and
8 to 20 m. The pump hydraulic function coefficients are

ml_; = 75m and ml_; = 0.005 h/m? for pump 1 and
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m2_, = 90 m and m¢_, = 0.001 h/m? for pump 2. We set
By =2.322x 107°kW/CMH -m V¢ € &.

The unbalanced three-phase PDN uses the IEEE 13-bus
feeder topology, where the real power load and line
parameters are from [47]. We assume that all loads are
wye-connected and constant power. Consumer loads have
a 0.9 lagging power factor and pumps have a real-to-
reactive power ratio of 3 (i.e., a 0.949 lagging power
factor). The distributed load between buses 1 and 6 is
placed at bus 1. The minimum and maximum voltage limits
are 0.95 and 1.05 pu. We set the voltage at the feeder head
equal to 4.16 kV line-to-neutral. We assume the switch is
closed and ignore the voltage regulator, shunt admittances,
and the transformer between buses 4 and 5. Since we
have no voltage regulator, we add capacitive loads (i.e.,
reactive power injections) to increase the system voltages:
100 kVAr at bus 8, phase ¢, and 200 kVAr at bus 10,
all phases. For the base case power control policy, each
pump has 17 control policy parameters corresponding to
the number of buses and phases that have a load present.

We set the price of electricity to $100/MWh for all
pumps and time periods in the scheduling horizon. We set
the flexibility cost weighting coefficients gy, and gj to
1 or 1, where the latter is a row vector of ones and the
units are selected to ensure that the flexibility costs are in
$ (specifically, the units of gy, g5 are [$], [$-kW?/CMH?]
for Option 1; [$/CMH] for Option 2; and [$/kW] for
Option 3). We conduct a sensitivity analysis to study
the impact of varying gy and g; in Section III-E. Unless
otherwise stated, we use flexibility cost Option 1 to gen-
erate our results; however, Section III-E compares all
options. We set the chance constraint confidence level
¢ = 10" and vary e.

To generate water and power demand forecast error
scenarios, we draw samples from Gaussian probability
distributions that are truncated at three standard devia-
tions from the mean. For water demand forecast errors c:l;,
we use a mean of 0 and a standard deviation of 0.10d5.
For power demand forecast errors, we use a mean of 0
and a standard deviation of 0.04p}, ,. We do not model
correlations in water and power demand forecast error,
correlations across time, or correlations across space.
While we would not expect actual forecast errors to be
Gaussian and uncorrelated, these simplistic assumptions
allow us to demonstrate how the approach works. Impor-
tantly, the approach works for forecast errors following
any distribution and with any correlations; if sufficient
amounts of real data were available, we could use it
directly within our formulation.

We solve the problem with the JuMP package in Julia
using the Gurobi solver [48]. We use a 64-bit Intel i7 dual
core CPU at 3.40 GHz and 16-GB RAM.

To evaluate the reliability of our solutions, we use the
Monte Carlo method to test whether all WDN and PDN
constraints are satisfied for each of the 100 000 randomly
generated uncertainty realizations. We draw these realiza-
tions from the same water and power demand forecast
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Table 1 Case Studies

Case  Number of Demand Multipliers Required

Periods Water Power Scenarios
A 1 1.00 1.50 4,369
B 3 [1.00,1.00,1.00]  [1.50,1.50,1.50] 13,107
C 3 [1.00,0.85,0.65]  [1.50,1.45,1.35] 13,107

error probability distributions as we used to generate the
scenarios needed to reformulate the CC optimization prob-
lem. We use the realizations to compute the real-time con-
trol actions. The empirical violation probability is defined
as the percentage of realizations for which at least one
constraint is not satisfied.

B. Illustrative Results

We conduct three case studies described in Table 1.
The water and power demand multipliers are used to
modify the nominal water and power demands uniformly
across all junctions in the WDN and all buses in the PDN.
When expressed as a vector, each entry corresponds to one
time period. We also report the number of forecast error
scenarios required by the scenario approach when e = 5%.

Fig. 4 shows the pump/tank scheduled flow rates
corresponding to the CC problem (CCO) presented in
Section II-H versus the convex deterministic problem (D3)
presented in Section II-E for Case B, ¢ = 5% (left) and
Case C, ¢ = 5% (right). Case B has constant high water
and power demand whereas Case C has decreasing water
and power demand. The figure also shows the flow rate

Case B Case C
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= 200 200 |
S —— |
i I I e
&
0 0 ‘ ‘
1 2 3 1 2 3
= 200/ I 200! ]
g2
G R R NP
T 0 o l====- |
8 200 -200 ]
1 2 3 1 2 3
Time (h)

——Schedule - - Deterministic Power Control Policy Water Control Policy’

Fig. 4. Pump and tank schedules for Case B, ¢ — 5% (left) and
Case C, ¢ = 5% (right). Dark and light blue shading show the
flexibility bands around the scheduled flow rate associated with the
water and power control policy, respectively. The schedule obtained
from solving the deterministic problem is also shown.

flexibility bands associated with the water and power con-
trol policies, which can be calculated using (33) and (34),
respectively. The flexibility bands are set to the largest
pump flow adjustments and tank net outflow deviations
obtained by applying the control policies to the forecast
error scenarios used to solve (CCO). The empirical vio-
lation probabilities are 0.13% for Case B and 0.16% for
Case C, both much smaller than e.

We observe that the pump and tank schedules obtained
from (CCO) vary more from period to period than those
obtained from (D3). This is necessary to ensure that the
forecast error scenarios do not lead to violations of the
PDN constraints. Pump 1 is more efficient (and thus less
expensive) than pump 2. However, pump 1 is located
at bus 9, which is closer to its minimum voltage limit
than bus 4 (where pump 2 is located). In order to satisfy
the voltage constraints corresponding to the scenarios in
Case B, pump 1’s scheduled flow rate is lower than that
obtained from solving the deterministic problem while
pump 2’s scheduled flow rate is higher than that obtained
from solving the deterministic problem. This results in a
more expensive operating point.

In Case C, pump 1’s and the tank’s schedules vary
more from period to period than in Case B. Specifically,
in Case C, when the power demand is highest (period 1),
pumping is reduced and the tank is used to meet a sig-
nificant portion of the water demand in order to satisfy
the voltage constraints corresponding to the scenarios.
Later, when demands are lower, extra pumping is used
to refill the tank. In each period the system is operating
far from the PDN constraints; in the first period, this
is because of the reduction in pumping, and in subse-
quent periods, this is because of the reduction in water
and power demand. Therefore, the power control policy
parameters and associated flexibility bands are extremely
small. In contrast, in Case B, there is less opportunity for
pump load shifting and tank usage due to the high constant
demands. Furthermore, the optimal schedule results in
an operating point much closer to the PDN constraints,
requiring much larger power control policy parameters
and resulting in much larger flexibility bands. In both
cases, we find that the flexibility bands associated with
the water control policy remain approximately constant.
This is expected since the water control policy is balancing
water supply and demand.

Fig. 5 displays the pump flow rate adjustments from the
schedule for Case A, ¢ = 3%. They are obtained by apply-
ing the water control policy, power control policy, and both
control policies to the 100 000 water and power demand
forecast error realizations used to calculate the empirical
violation probabilities. We differentiate between actions
that: 1) satisfy WDN and PDN constraints; 2) satisfy WDN
constraints but violate PDN constraints; 3) satisfy PDN
constraints but violate WDN constraints; and 4) violate
both WDN and PDN constraints. The overall empirical
violation probability is 0.11%, which is much smaller than
the ¢ we have selected. Of the set of realizations that
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Fig. 5. Feasible and infeasible pump flow rate adjustments given

water and power demand uncertainty for Case A, ¢ = 3%.

violate any constraints, only 7.27% violate both WDN and
PDN constraints. From the figure, we can also see that
pump 1’s adjustments are usually larger than pump 2’s.
This is because its power control policy parameters are
larger (also visible in Fig. 4). Pump 1 has a more direct
impact on PDN constraint satisfaction since it is located
at bus 9, which is closer to its minimum voltage limit than
bus 4 (where pump 2 is located). To visualize this, in Fig. 6,
we plot the relative magnitude of each pump’s negative
power control policy parameters per bus and per phase
on the PDN’s three-phase voltage profile. The significant
voltage unbalance is due to uneven, heavy loading. The
power control policy generally contains both negative and
positive parameters. Given an increase in power demand,
a negative parameter reduces the pump’s flow rate and

g e
I I I I I I N I | I I
5 6 7 8 9 10 11 12
(Pump 1)
Bus

4
(Pump 2)

Fig. 6.
Case A, ¢ — 3%. The square markers at each bus and phase are
scaled according to the magnitude of the power control policy

Three-phase PDN voltage profile for the schedule in

parameters. The dark squares represent pump 1’s control policy
parameters. The overlaying light squares correspond to pump 2’s
control policy parameters.
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Fig. 7. Water control policy pump and tank contribution given:

1) only water demand uncertainty and 2) water and power demand
uncertainty for Case A, ¢ = 3%.

power consumption to respond to a minimum voltage
limit violation, while a positive parameter increases the
pump’s flow rate to maintain the water supply. Therefore,
by only showing the magnitude of the negative parameters,
we can see the buses and phases where an increase in
load is most likely to cause voltage limit violations, and
which pump needs to reduce its power consumption more.
We observe that pump 1’s negative parameters always
have a larger magnitude (and therefore a larger pump
flow rate adjustment) than pump 2’s negative parameters.
Additionally, the control policy parameters associated with
phase c are the largest since the voltages are close to the
minimum voltage limit on phase c.

Next, we investigate how the water control policy
parameters differ when we include only water demand
uncertainty versus both water and power demand uncer-
tainty. Fig. 7 shows the water control policy parameters
for Case A, ¢ = 3%. With only water demand uncer-
tainty, pump 1’s scheduled flow rate is higher than that
of pump 2 and pump 1 contributes more to balancing
water demand forecast error. However, with both water
and power demand uncertainty, the solution becomes more
conservative, that is, pump 1 reduces its flow rate and
its contribution to water balancing. In our case studies,
we find that power demand forecast error has a larger
impact on the optimal schedules; however, it may have a
larger or smaller impact than water demand forecast error
on real-time pump adjustments, as shown in Fig. 4.

C. Impact of Convex Approximations and
Relaxations

In this section, we first analyze the impact of: 1) the con-
vex hull relaxation of the pipe head loss equation; 2) the
approximate (linearized) pump hydraulic function; and
3) the convex hull relaxation of the pump power consump-
tion curve. Considering only water demand uncertainty,
we solve two variants of (CCO). The first one replaces the
pipe head loss convex hull (21a) and (21b) with the orig-
inal nonconvex head loss constraint (15¢) where n = 2.
The second one replaces the linearized pump hydraulic
function (22) with a quadratic one, where the quadratic
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Table 2 Relaxation and Approximation Comparison

Formulation Scheduled Flow Rate (CMH) Head (m) Tank Head (m)

Pump 1 Pump 2 1 2 3 4 5 6 7 8  Inlet  Outlet
(CCO) 248.80 171.20 4443 9517 9457 91.71 8993 2996 31.86 41.38 86.24  45.00
Quadratic pipe head loss equation 248.80 171.20 4448 95.17 94.64 92.88 9224 31.77 33.07 41.72 86.24  45.00
Quadratic pump hydraulic function = 248.88 171.12 4443 9488 94.09 9134 89.65 3051 32.65 4155 7947  45.00

coefficients for pumps 1 and 2 are —1.0941 x 10~* and
—1 x 107 h/m?, respectively. We solve both variants with
the scenario approach using the same number of scenarios
as needed for the convex formulation. However, since
neither variant is convex, the scenario approach solution
no longer comes with probabilistic guarantees.

Table 2 shows the scheduled pump flow rates and the
hydraulic heads for Case A, ¢ = 5% for (CCO) and both
variants. (CCO) finds the same scheduled pump flow rates
as the variant using the quadratic pipe head loss equation.
However, the hydraulic heads obtained using the quadratic
pipe head loss equation are all greater than or equal
to the heads found in (CCO) since the actual head loss
is the lower bound of the convex hull’s feasible region,
shown in Fig. 2. Since we are primarily concerned with
minimum hydraulic head limits, use of the convex hull
ensures that the solution does not violate those limits.
While the hydraulic heads found using the convex hull
of the pipe head loss are not exact, in our case studies
we found that we can recover the exact hydraulic heads;
however, this may not always be possible. Singh and
Kekatos [49] prove uniqueness of the water flow equations
for radial networks and certain meshed networks, for
example, WDNs that have meshed network sections that do
not contain pumps or valves, and meshed network sections
with pumps that are not in cycles. They recovered the
hydraulic heads by solving a convex energy minimization
problem given the pump flow rates. While their proof
does not extend to meshed networks containing pressure
reducing valves, like ours, the solutions to our case studies
appear unique and we are able to recover the heads
corresponding to the quadratic pipe head loss equation
in Table 2.

The linear pump hydraulic function overestimates the
head gain and power consumption of the pumps. As a
result, (CCO) overestimates hydraulic heads at junctions
downstream of pumps. Components such as storage tanks
and pressure reducing valves act as buffers, helping to
correct the downstream hydraulic heads. For example,
the outlet tank head is dependent on the tank water
level; even if there is a difference in the inlet hydraulic
head between (CCO) and the variant with the quadratic
pump hydraulic function, the outlet head is identical for
both formulations. We find that the formulations produce
similar scheduled pump flow rates and slightly different
hydraulic heads (Table 2). As expected, the inlet tank
head obtained using the quadratic pump hydraulic func-
tion is lower than that obtained from (CCO). The outlet
tank heads are identical. Additionally, the hydraulic heads
for junctions 2-5 are smaller when we use the quadratic

Table 3 Empirical Violation Probabilities for Convex and Nonconvex
Constraints

Case € Probability (%) Voltage Violations (pu)

(%) convex nonconvex minimum average

A 5 0.11 10.98  0.94717 0.94937
3 0.11 10.98  0.94717 0.94940

B 5 0.12 35.16  0.94693 0.94935
3 0.10 3429  0.94697 0.94937

C 5 0.13 541 094732 0.94943
3 0.05 423 0.94724 0.94944

pump hydraulic function since (CCO) overestimates pump
2’s head gain.

The convex hull relaxation of the pump power consump-
tion curve (23a) and (23b) does not impact the solution.
This is because, when minimizing the WDN’s electricity
cost, the solution will lie on the lower bound of the convex
hull, that is, the original constraint (17).

Lastly, we used the Monte Carlo method to evaluate
the performance of the solutions of (CCO) within both
the convexified network constraints and the original, non-
convex network constraints. Table 3 shows the empirical
violation probabilities for each case and violation level.
The nonconvex constraints are violated much more fre-
quently than the convex constraints. All scenarios that
violate the convex constraints also violate the nonconvex
constraints. The additional violations of the nonconvex
constraints are all voltage limit violations, indicating that
the WDN approximations and relaxations are reasonable
for this test system. We summarize the statistics of the
additional voltage violations in the last two columns of the
table, which show the minimum and average of the set of
voltages below the minimum voltage limit corresponding
to scenarios that violate the nonconvex constraints, but
not the convex constraints. The minimum is just below
the 0.95-pu minimum voltage limit indicating that the
convex PDN model slightly overestimates the minimum
voltages, as also shown in Fig. 8. We find that the differ-
ence between the actual voltage and the voltage calculated
using the convex model (again, considering only the volt-
ages that violate the nonconvex constraints, but not the
convex constraints) is always less than or equal to 0.33%.
Therefore, a simple way to cope with this issue would be
to heuristically adjust the minimum voltage limit in the
convex formulation to 0.955 pu. Alternatively, one could
use a more accurate convex PDN power flow model, for
example, one that includes loss approximations. For exam-
ple, using the linearized, unbalanced three-phase power
flow formulation with approximated losses from [43]
instead of the lossless formulation from [44] on Case A,
e = 5%, and with the power demand multiplier reduced
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Fig. 8.
corresponding to the approximate, convex power flow model and

Comparison of the three-phase PDN voltage profile

the original, nonconvex power flow model for a scenario in Case A,
e =5%.

from 1.500 to 1.465, we find that the empirical nonconvex
violation probability decreases from 5.354% to 0.210%.
Note that we reduced the multiplier because Case A was
tuned to represent extreme conditions and so the prob-
lem was infeasible with the power flow formulation with
approximated losses.

These observations call attention to the fact that our
approach gives us no insights into or way to manage the
magnitude or duration of constraint violations. This is a
drawback of the type of chance constraint we are using.
In our future work, we plan to explore alternative formu-
lations that allow us to model and control constraint viola-
tions in a way that better matches the application-specific
needs of the system, for example, allowing deviations but
assigning a cost related to the magnitude of the deviation,
or allowing deviations for limited time duration.

D. Simplifying the Power Control Policy

In this section, we investigate the impact of reducing the
number of power control policy parameters to improve the
computational tractability of our approach. The power con-
trol policy (27) uses a separate control policy parameter for
each bus and phase with a load present, resulting in up to
3|K| power control policy parameters. We refer to this as
the base case. Here, we explore associating control policy
parameters with groups of buses, for example, all buses on
a lateral. To compute the control action, the control policy
parameter is multiplied by the sum of power demand
forecast errors in that group. With fewer control policy
parameters, we need fewer scenarios since the number
of scenarios is a function of the number of decision vari-
ables; this improves the computational tractability of the
approach. Furthermore, this approach requires fewer mea-
surements and a simpler communication systems, which
would reduce the implementation costs. We consider two
simplifications referred to as simplification 1 (S1) and
simplification 2 (S2). Fig. 9 shows the groups of buses,
referred to as zones, used for S1 and S2. We do not group
phases. For example, in S2 there are two zones but six
control policy parameters, one for each phase in each zone.
We solve the base case and cases corresponding to both
simplifications for Case A using flexibility cost Option 2 and
considering only power demand uncertainty. We choose
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flexibility cost Option 2 instead of Option 1 so that the
flexibility costs are comparable across the cases. Flexibility
cost Option 1 uses the Frobenius norm of the power control
policy parameter matrix, which is a different size in each
case, meaning the costs are not comparable across cases.

Table 4 shows the results including the number of
power control policy parameters per pump and the num-
ber of scenarios for different values of e. The table also
reports the solver time, the energy cost associated with
the schedule, the flexibility cost associated with the power
demand control policy, and the empirical violation prob-
ability. As expected, the solver time generally decreases
with fewer zones, meaning fewer decision variables and
fewer scenarios. We expect the reduction in solver time
would be more important in larger networks and/or for
problems with longer scheduling horizons. Investigating
other methods to improve the computational tractability
of our approach is an area of future work.

In this case study, we find that S1 and S2 generally have
lower empirical violation probabilities and higher objective
costs than the base case. The base case has more degrees
of freedom than S1 or S2, and so it is less conservative
and lower cost. The control policy parameters associated
with the simplifications cause coarser, larger, and more
costly adjustments, which are more likely to be feasible
against unseen scenarios. All cases have empirical violation
probabilities much lower than ¢, demonstrating that the
scenario approach is conservative, which is typical [46].
Furthermore, all approaches produce the same schedule
and energy costs. The base case has the lowest flexibility
cost (i.e., it makes the smallest pump/tank adjustments to
respond to power demand forecast errors) while satisfying
the desired violation level ¢, and therefore it exhibits the
best cost/performance tradeoff.

E. Comparison of Flexibility Cost Formulations

In this section, we explore the advantages and disadvan-
tages of the three flexibility cost formulations presented in

118 % 12 €

=+ Zones for Simplification 1 (S1)
Zones for Simplification 2 (S2)

Fig. 9. Grouping of buses associated with power control policy
parameters for simplification 1 (S1) and simplification 2 (S2).
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Table 4 Power Control Policy Simplification Results

Zones Parameters per Pump € (%) Scenarios Solver Time (s) Energy Cost ($) Flexibility Cost Violation Probability (%)

Base Case 9 17 10 2,145 18.48 25.304 142.211 0.131
5 4,289 29.95 25.304 145.581 0.116

3 7,148 68.89 25.304 154.412 0.080

S1 4 9 10 1,825 7.49 25.304 155.925 0.135
5 3,649 16.50 25.304 156.346 0.098

3 6,081 29.83 25.304 158.751 0.056

S2 2 6 10 1,705 4.32 25.304 160.558 0.081
5 3,409 14.47 25.304 162.684 0.066

3 5,681 20.71 25.304 163.400 0.064

Table 5 Flexibility Cost Comparison

Option  Simplification  Solver Time (s) Energy Cost ($) Scheduled Flow Rate (CMH)  Flexibility Cost ~ Violation Probability (%)
Pump 1 Pump 2 Water ~ Power
1 Base Case 38.04 25.64 77.55 342.34 0.34 1.19 0.109
S1 17.95 24.82  160.01 259.99 0.33 1.24 0.044
2 Base Case 52.52 2528 113.62 306.38 130.20 177.00 0.216
S1 32.75 2526 115.64 304.36 14335 177.00 0.175
3 Base Case 252.28 2531 11095 309.06 0  76.54 0.117
S1 73.29 2531 110.95 309.06 0 8232 0.096

Section II-G. We evaluate each flexibility cost formulation
using Case A, ¢ = 5% and present the results in Table 5
for both the base case and simplification S1. We report
the solver time, energy costs associated with the schedule,
the scheduled flow rates, the flexibility costs associated
with the water control policy and the power control policy,
and the empirical violation probabilities, which are all
much lower than e.

Option 1 has the smallest solver time, but it is diffi-
cult to interpret the flexibility costs and determine the
weighting coefficients g, and g such that the flexibility
costs can be fairly compared against the energy costs. Fur-
thermore, as mentioned above, the flexibility costs are not
comparable across simplifications. In Table 5, we observe
that the water flexibility cost is approximately 1/3,
which implies that the three pumps/tanks were used
approximately equally to compensate water demand fore-
cast error, which is a direct result of the flexibility
cost formulation.

In Fig. 10, we show how the choice of water and power
flexibility cost weighting coefficients impact the scheduled

energy cost, Gy, ;, and G} ; for Case A, e = 5%. Compar-
ing the left and right plots, we see that as g increases,
the scheduled energy cost increases and G}, ; decreases.
This tradeoff is intuitive: as power flexibility becomes more
expensive relative to the scheduled energy cost, G} ; is
reduced but the schedule becomes more expensive. The
water flexibility cost weighting coefficient g, has a negli-
gible impact on the scheduled energy cost and Gj, ;, and
a small impact on Gy, in Option 1. There are several
reasons for this. The first is that the magnitude of Gy, ;
is small relative to the other costs in the objective function.
The second is that the water flexibility cost has a limited
range given the nature of the water control policy and
Option 1. Since the water control policy splits the response
between two pumps and one tank, the feasible range of
Gy is [(1/3),1], where Gy, ; = (1/3) when the split is
equal. Changes in Gy, ; depend upon the magnitude of
gw relative to gp, for example, Gy, ; is large when g} is
large relative to g,. This sensitivity analysis highlights that
the weighting coefficients would need to be tuned for the
system of interest.

Scheduled Energy Cost [$] Gty -] 1 [CMH?/kW?)
5 . 0.39 5
a 4 25.5 o 0.38 o . 35
= = = 3.0
@) O 0.37 ) :
o3 a a3
> 25.0 > 0.56 = 2.5
2402 o ad 2
® » 0.35 & 2.0
wal 24.5 s wal
= = 0.34 = 1.5
e —
0 0
0 2 4 4 0 2
g [8] G [8] G [8]

Fig. 10. Sensitivity analysis showing how the scheduled energy cost, GW 1» and G::, 1 change when varying the weighting coefficients gsl, [$]

and g§ [$ - kW?2/CMH?] for Case A, ¢ = 5%, and flexibility cost Option 1.
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Option 2 provides more intuition on the flexibility costs,
which are based on the largest pump flow rate adjustment
required to address the scenarios needed for the scenario
approach. For example, in Table 5, we can see that the
power control policy produces larger maximum flow rate
deviations than the water control policy, for both the base
case and S1. Similar to Option 1, it is difficult to determine
weighting coefficients that allows us to fairly compare
flexibility costs to energy costs.

Option 3 uses the largest increase and decrease in pump
power consumption from the scheduled consumption to
define the flexibility costs. An advantage of this approach
is that the flexibility cost and the energy cost are both a
function of pump power consumption. However, there are
two disadvantages to this approach. First, Option 3 has
the largest solver time. Second, Rg,, and Ry, will be
inexact when using convex hulls, leading to a reduced
downward flexibility band. Unlike the other flexibility cost
options, Option 3 does not include tank flexibility costs
since only pumps consume power. Therefore, the water
control policy relies solely on the tank to balance water
demand, and the water flexibility cost is 0, as shown
in Table 5. By not including tank flexibility costs, there is
no way to specify additional opportunity costs. However,
tanks may be best equipped to respond to water demand
forecast error since their purpose is to hedge against water
demand variability [41].

Based on these results, it is not clear which flexibility
cost option is best; however, Option 2 seems to exhibit
good tradeoffs between tractability and interpretability.
Also, in contrast to Option 3, it gives us a way to include
the flexibility cost of the tanks.

IV. CONCLUSION

In this article, we formulated a CC water pumping prob-
lem subject to WDN and PDN constraints given water
and power demand uncertainty. We developed power and
water control policies that can be used in real time to
respond to forecast errors. Control policy parameters are
included as decision variables in the CC optimization
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