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Compressed Super-Resolution of Positive Sources
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Abstract—Atomic norm minimization is a convex optimization
framework to recover point sources from a subset of their low-
pass observations, or equivalently the underlying frequencies of
a spectrally-sparse signal. When the amplitudes of the sources
are positive, a positive atomic norm can be formulated, and exact
recovery can be ensured without imposing a separation between
the sources, as long as the number of observations is greater than
the number of sources. However, the classic formulation of the
atomic norm requires to solve a semidefinite program involving
a linear matrix inequality of a size on the order of the signal
dimension, which can be prohibitive. In this letter, we introduce a
novel “compressed” semidefinite program, which involves a linear
matrix inequality of a reduced dimension on the order of the num-
ber of sources. We guarantee the tightness of this program under
certain conditions on the operator involved in the dimensionality
reduction. Finally, we apply the proposed method to direction
finding over sparse arrays based on second-order statistics and
achieve significant computational savings.

Index Terms—Atomic norm minimization, positive sources,
sparse arrays, dimensionality reduction.

I. INTRODUCTION

S
UPER-RESOLUTION [1]–[3] is a signal processing prob-
lem aiming at recovering point sources from their low-pass

observations. It finds broad applications in applied science from
the estimation of the direction of arrivals of far-fields signals
in classical array processing, to reverting the distortions intro-
duced by the imperfection of the measurement device in modern
imaging modalities.

Algorithms based on convex optimization [3]–[5] have been
recently proposed to solve the super-resolution problem without
discretizing the grid [6]–[8]. Among those, this letter focuses on
atomic norm minimization (ANM, a.k.a. total variation mini-
mization) [5], which proposes to localize the point sources from
the output of a semidefinite program (SDP) [9]–[26]; see [2] for
a recent overview. ANM inherits well-established advantages of
convex estimators, such as amenability to performance analysis
and robustness to the presence of noise. It is also a versatile
framework that can easily be adapted to fit new measurement
models not directly handled by classical approaches [27]–[30].
Additionally, ANM is agnostic to the model order. However,
the computational complexity of ANM, essentially driven by
the size of the SDP, limits its scalability and remains the most
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prohibitive drawback for practical implantation of this method
to real-time systems.

In many imaging applications such as fluorescence mi-
croscopy [31], the point sources are positive, which is a prior
that can be leveraged to improve performance [32]–[37]. In
particular, no separation between positive sources is necessary
to guarantee the success of atomic norm minimization as long as
the number of observations is greater than the number of sources.
In this letter, we propose to solve the super-resolution problem of
positive sources using a “compressed” ANM algorithm, which
only involves a linear matrix inequality (LMI) of dimension on
the order of the number of point sources, instead of the signal
length. We guarantee exact reconstruction using the proposed
algorithm under certain conditions on the operator involved
in the dimensionality reduction, which may lead to significant
computational savings. As an illustration, we apply the proposed
algorithm in the context of direction finding over sparse arrays
from the second-order statistics [38]–[42]. Finally, numerical
experiments are provided to demonstrate the effectiveness of
the proposed algorithm. Our work is related to the compressed
ANM proposed in [43], [44], but focuses on the positive case
where we provide guarantees without imposing any separation
condition on the sources.

II. PROBLEM FORMULATION AND BACKGROUNDS

Let a(τ) ∈ C
N be the discrete complex exponential vector

a(τ) = [1, ei2πτ , . . . , ei2π(N−1)τ ]� for τ ∈ [0, 1). Consider a
discrete signal x� = [x�

0, . . . , x
�
N−1] ∈ C

N modeled as a sparse
positive combination of elements of the form a(τ), i.e.,

x� =

p∑

k=1

c�ka(τ
�
k ), (1)

for some source locations {τ�k}
p
k=1 ⊂ [0, 1) and some positive

amplitudes {c�k}
p
k=1 ∈ R

+. The goal of super-resolution is to
recover the parameters {τ�k}, {c�k} from possibly a subset of
entries of x� given by x�

Ω = PΩx
�, where PΩ ∈ C

|Ω|×N is the
matrix that only retains the entries indexed in the subset Ω ⊆
{0, . . . , N − 1}. The problem is in general ill-posed, in the sense
that there could be infinitely many possible configurations of
parameters {τk}, {ck} that are consistent with the observations.
Therefore, it is natural to seek for the sparse decomposition (1)
that contains the smallest number of point sources.

The atomic norm [45] is a general framework to promote
sparse solutions to linear inverse problems. Given a generic
atomic set A ⊂ C

N , the atomic norm ‖x‖A � inft>0{x ∈ tA}
of a vector x ∈ C

N is defined by the Minkowski functional of
the set A evaluated at x.1 Let T (x) be the Hermitian Toeplitz
matrix whose first column is x. Specializing the atomic set to

1Here, the atomic norm should be interpreted broadly as a pseudo-norm since
it may not be a norm when A is not centrally symmetric.
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the set of unphased complex exponential vector, i.e., A+ =
{a(τ) | τ ∈ [0, 1)}, the atomic norm simplifies to [2]

‖x‖A+ = inf

{
∑

k

ck | x =
∑

k

cka(τk), ck > 0

}

=

{
Re(x0) if T (x) � 0

+∞ otherwise.
(2)

The decomposition x =
∑

k cka(τk) that attains the infimum
in the first equality of (2) is called the atomic decomposition.
Of particular interest, it is known that for any vector x� of the
form (1), as long as p < N , its atomic decomposition perfectly
recovers the sparse decomposition (1) and, therefore, provides a
means to recover{c�k},{τ�k} [46]. The tightness of the atomic de-
composition holds without imposing any separation between the
positive point sources, which leads to better resolution than the
case of signed amplitudes, where a separation is necessary [47],
[48].

Given partial observationx�
Ω, one can recover the ground truth

signal x� by solving the ANM problem as

x̂ANM := argmin
x∈CN

‖x‖A+ s.t. xΩ = x�
Ω

= argmin
x∈CN

Re(x0) s.t. xΩ = x�
Ω and T (x) � 0. (ANM)

This approach is guaranteed to yield a perfect reconstruction
of x� as long as p < |Ω|, without any need for randomness of
the observation set Ω [37]. However, from the computational
perspective, (ANM) involves an LMI of dimension N , which in
practice may be prohibitive to solve.

III. MAIN RESULTS

Inspired by [43], [44], we propose a novel approach to re-
duce the computational complexity of (ANM) by projecting
the positivity constraint T (x) � 0 to a lower dimension. Con-
sider a matrix M ∈ C

M×N with M ≤ N and full rank, i.e.,
rank(M) = M . The compressed positive ANM program is
given by

x̂C-ANM := argmin
x∈CN

Re(x0)

s.t. xΩ = x�
Ω and MT (x)MH � 0. (C-ANM)

Note that the compressed SDP (C-ANM) now contains an LMI
of dimension M ≤ N . An immediate question arising from the
definition of (C-ANM) concerns its tightness, i.e., the conditions
under which its solution uniquely recovers x� and its sparse
decomposition. Similar to many linear inverse problems, the
tightness of (C-ANM) is related to the existence of a so-called
dual certificate: an element lying in the dual feasible set and
attaining the optimum of the cost function. Lemma 1 character-
izes the dual certificate conditions that certify the tightness of
(C-ANM), whose proof is given in Appendix A.

Lemma 1 (Dual certificate): Suppose there exists a trigono-
metric polynomial Q(τ) :=

∑N−1
n=0 qne

−i2πnτ with coefficient
vector q = [q0, . . . , qN−1]

� ∈ C
N such that

1) Q(τ) 
= 1.
2) The equality 1− Re(Q(τ)) = 0 holds for τ ∈ {τ�k}

p
k=1.

3) The coefficient vector q verifies qΩc = 0.
4) There exists a countable collection of trigonometric

polynomials {Pi(t)}i with coefficients pi ∈ span(MH)
such that 1− Re(Q(τ)) =

∑
i |Pi(τ)|

2 ≥ 0 for all
τ ∈ [0, 1).

Then, x̂C-ANM = x� is the unique solution of (C-ANM).
From Lemma 1, it suffices to construct a trigonometric poly-

nomial Q(τ) verifying specific conditions to conclude on the
tightness of the compressed SDP (C-ANM). The essential dif-
ference between the conditions for (C-ANM) stated in Lemma
1, and those for (ANM) [5] on the dual certificate is in the
fourth assumption. Herein, the polynomial 1− Re(Q(τ)) must
have a sum-of-squares (SOS) structure over a low-dimensional
subspace of trigonometric polynomials whose coefficients lie in
the span ofMH, also called the sparse-SOS condition. Note that,
in the absence of compression (i.e. M = I), the sparse-SOS
assumption always holds as a consequence of the Fejér-Riesz
theorem [49].

A natural question is then: how to design the matrix M that
verifies Lemma 1? In the sequel, we focus on a specific design
and discuss its tightness. Let I be a subset of {0, . . . , N − 1}
with {0} ∈ I and cardinalityM = |I|, and we denote by ∂I the
set of the positive pairwise differences of elements in I, given
by

∂I = {j | j = i1 − i2 ≥ 0, (i1, i2) ∈ I × I} . (3)

LetM = P I ∈ C
M×N be the subsampling matrix selecting the

elements whose indices belong to I. Theorem 2 states that with
this choice of M , (C-ANM) is tight if ∂I ⊆ Ω and the number
of sources p < M . The proof is given in Appendix B.

Theorem 2 (Exact reconstruction): Let I ⊆ {0, . . . , N − 1}
be a subset of cardinalityM = |I| verifying 0 ∈ I and ∂I ⊆ Ω.
Moreover, suppose that p < M . Then for the choice M = P I ,
x̂C-ANM = x� is the unique solution of (C-ANM).

Theorem 2 suggests that the computational complexity can
be significantly reduced, where the LMI has a dimension on the
order of the number of sources p. For example, consider the case
will full observation, i.e., Ω = {0, . . . , N − 1}. Then, Theorem
2 guarantees the compressed ANM (C-ANM) is exact for any
I as long as |I| > p and 0 ∈ I. As another example, when
Ω = {0, . . . , p}, choosing I = Ω also reduces the complexity
significantly to the order of p.

IV. APPLICATION: DIRECTION FINDING IN SPARSE ARRAYS

In this section, we illustrate the applicability of Theorem 2 for
direction finding in sparse arrays from second-order statistics
[38], [42], which is a problem of great interest in the array
processing literature, as this approach allows the recovery of
more sources than the number of antennas, and offers better
resolution than its first-order counterpart. We show in particular
that (C-ANM) can be applied to reduce the computational com-
plexity of ANM-based recovery, where (C-ANM) can recover
the sources by involving an LMI of the size equal to the number
of sources, instead of the size of the aperture.

A. Exact Recovery With Infinite Snapshots

We start by introducing some notation. Let J be the set of
integer indices corresponding to the location of the antennas in
a linear sparse array. The aperture of J is assumed to be N ,
so that J can be embedded in a uniform array of N elements,
i.e., J ⊆ {0, . . . , N − 1} and {0, N − 1} ∈ J . We denote by
Ω = ∂J the set of the positive indices of the difference co-array,
where ∂J is given as in (3).

At the time instance � = 1, . . . , L, the noiseless received sig-
nal u�

� ∈ C
M is modeled as u�

� = P J

∑p
k=1 c

�
k,�a(τ

�
k ) +w�,
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TABLE I
RUNTIMES OF THE (ANM) AND (C-ANM) ALGORITHMS OVER CANTOR

ARRAYS OF DIFFERENT ORDERS. BOTH ALGORITHMS ARE IMPLEMENTED VIA

MATLAB USING THE MOSEK SOLVER IN CVX [51]. WE FIX p = 8 IN THE

EXPERIMENTS, THE RESULTS ARE AVERAGED OVER 50 TRIALS

for some zero-mean c�k,� ∈ C, and w� ∈ C
|J | is a white addi-

tive noise with zero-mean and variance σ2, which is assumed
known. If the sources are incoherent, i.e., obey the second-order
statistical property:

E

[
c�k,�c

�
k′,�′

]
=

{
η2k, if˜k = k′, � = �′

0, otherwise
, (4)

then the covariance matrix Σ
�
J = E[u�

� (u
�
� )

H] writes

Σ
�
J = P JΣ

�P H

J + σ2I |J |, (5)

where Σ
� =

∑p
k=1 η

2
ka(τk)a(τk)

H is a positive semidefinite
Hermitian Toeplitz matrix corresponding the covariance of the
observations gathered on the full uniform array {0, . . . , N − 1},
andI |J | is an identity matrix of size |J |. Denote byx� ∈ C

N the
first column ofΣ�, wherex� =

∑p
k=1 η

2
ka(τ

�
k ) is a sparse posi-

tive linear combination of p discrete complex exponentials, with
frequencies {τ�k} encoding the location of the sources. From (5),
identifying and rearranging the entries of Σ�

J − σ2I |J | in the
coordinates (i1, i2) ∈ ∂J then equivalently give the observation
model x�

Ω = PΩx
�. Theorem 2 then applies, and the sources

can be exactly recovered by applying (C-ANM) on the vector
x�
Ω. This yields the following corollary.
Corollary 3 (Exact recovery over sparse arrays): If J ⊆

{0, . . . , N − 1} is a sparse array with M = |J | elements and
{0, N − 1} ∈ J . If p < M , then {τ�1 , . . . , τ

�
p } can be exactly

recovered using (C-ANM) with M = P J .
Corollary 3 ensures that (C-ANM) returns the sources by

solving an SDP with LMI of size M = |J |, while proceeding
to the full-dimensional ANM (ANM) would require to solve an
SDP with LMI of size N , equal to the length of the full array.
Therefore, the proposed compressed approach can bring an
order-of-magnitude reduction in the computational complexity
of the problem for appropriate choices of the array and the
compression operator. As an example, the benefits are well high-
lighted when considering the Cantor arrays, which are complete
sparse arrays constructed through a fractal process, see [50] for
an introduction.

Example 4 (Cantor arrays): IfJ ⊆ {0, . . . , N − 1} is a Can-
tor set, and if p < |J | = M , then we can recover the spikes by
solving a semidefinite program involving a linear matrix inequal-
ity of dimension M = N log(2)/ log(3) 
 N0.62. Experimental
runtimes of algorithms (ANM) and (C-ANM) are compared in
Table I for different size of Cantor sets.

In addition, it is worth to pay attention to a particular category
of sparse arrays, which are called complete, that the difference
co-array has no holes, i.e., ∂J = {0, . . . , N − 1}. In that case,
Theorem 2 guarantee that running (C-ANM) with any compres-
sion matrixM = P I such thatJ ⊆ I would guarantee an exact
recovery of at most |I| − 1 sources. Hence, there is a trade-off

Fig. 1. Empirical localization of the sources using a Cantor array from the
second order statistics. The picks of the dual polynomials returned by (C-ANM-
Noisy) when M = I (ANM), and M = P J (C-ANM) provide an estimate of
the ground truth sources. In those settings, N = 28, |J | = 16, p = 8. We take
L = 100 snapshots, and SNR is −5 dB.

between the compression ratio of the LMI in (C-ANM) and the
number of sources that can effectively be recovered.

B. Recovery Under a Finite Number of Snapshots

In practice, the exact covariance Σ
�
J in (5) is imperfectly

known, as the number of snapshots L is finite. The empirical
covariance of the received signalsΣJ = 1

L

∑L
�=1 u

�
� (u

�
� )

H pro-
vides a more accurate estimate of Σ�

J as L increases. Denote by
yΩ ∈ C

|J | the noisy estimate ofx�
Ω obtained fromΣJ − σ2I |J |

in a similar manner as earlier. To adapt to this uncertainty, we
formulate the atomic norm denoiser [10] by adding a data fidelity
term to the cost function of (C-ANM),

x̂λ := argmin
x∈CN

1

2
‖xΩ − yΩ‖

2
2 + λRe(x0)

s.t. MT (x)MH � 0. (C-ANM-Noisy)

where λ > 0 is a regularization parameter.
In Fig. 1, we compare the localization of the sources using a

sparse array from L = 100 snapshots using (C-ANM-Noisy) in
the absence of compression (M = I) which corresponds to the
original ANM method, and using a compression matrix M =
P J . We pick a Cantor array with aperture N = 28 and M = 16
elements. The ground truth signal x� impinging on the array
is formed by p = 8 incoherent sources with equal unit power
η2k = 1. The signal-to-noise ratio (SNR) is defined as SNR =∑p

k=1 η
2
k/σ

2 and is set to−5 dB. The sources are identified from
the dual solution of (C-ANM-Noisy), namely, by identifying the
peaks of the dual polynomial Re(Q(τ)) = Re(a(τ)Hq), where
q ∈ C

N is the solution to the dual program of (C-ANM-Noisy)
[2]. It can be seen that the compressed ANM approach is able to
recover the direction-of-arrivals at a much lower computational
complexity.

V. CONCLUSION

In this letter, we showed that super-resolution of point sources
can be solved using a compressed ANM algorithm with much
lower computational complexity, provided an application of this
results to direction finding over sparse arrays. For future work,
we aim to study the performance of the compressed ANM in the
noisy setting, where it is expected that the compression leads to
interesting statistical-computational trade-offs [52].
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APPENDIX

A. Proof of Lemma 1

The Lagrange dual program of (C-ANM) reads

argmax
q∈CN ,S∈CM×M

Re 〈xΩ, qΩ〉

s.t. S � 0, qΩc = 0, T ∗(MHSM) +Kq = e0, (6)

where T ∗ : C
N×N → C

N is the adjoint to the Toeplitz Her-
mitian operator T and is given for any H by T ∗(H)j =∑N−j

�=1 Hj+�,�, and K ∈ C
N×N is the diagonal matrix K =

diag(1, 1
2 , . . . ,

1
2 ). Suppose there exists q that verifies the hy-

potheses of Lemma 1. Since pi ∈ span(MH), there exists
ui ∈ C

M such that pi = MHui for all i.
a) Tightness: We start by showing that x� is a solution to (C-

ANM). First, asQ(τ) 
= 1, there exists some i such thatPi(τ) 
=
0, and consequentlypi 
= 0. SinceM is full rank by assumption,
this implies that ui 
= 0 for some i.

Next, the equality 1− Re(Q(τ)) =
∑

i |Pi(τ)|
2 holds for

any τ ∈ [0, 1) if and only if

e0 −Kq = T ∗

(
∑

i

pip
H
i

)
= T ∗

(
∑

i

MHuiu
H
i M

)

= T ∗

(
MH

(
∑

i

uiu
H
i

)
M

)
= T ∗

(
MHSM

)
, (7)

where we letS =
∑

i uiu
H
i � 0 in the last equality. As qΩc = 0

by assumption, it is evident that the pair (q,S) is in the feasible
set of the dual problem (6). Evaluating the dual cost function at
(q,S) yields

Re 〈xΩ, qΩ〉 = Re 〈x�
Ω, qΩ〉 = Re 〈x�, q〉

=

p∑

k=1

c�k Re
(
a(τ�k )

Hq
)
=

p∑

k=1

c�k Re (Q(τ�k ))

=

p∑

k=1

c�k = ‖x�‖A+ . (8)

By strong duality, x� is a solution of (C-ANM).
b) Uniqueness: We now prove that x� is the unique solu-

tion to (C-ANM). Suppose that x̃ ∈ C
N is a solution to (C-

ANM), and let x̃ =
∑p̃

k=1 c̃ka(τ̃k) an atomic decomposition

with ‖x̃‖A+ =
∑p̃

k=1 c̃k. Since x̃ is a solution, we also have
that ‖x̃‖A+ = ‖x�‖A+ and x̃Ω = x�

Ω.
Denote by R ⊂ [0, 1) the set of the roots to the equation 1−

Re(Q(τ)) = 0. As Q(τ) is not the constant polynomial equal
to one, the set R is finite and we have |R| ≤ N − 1. By strong
duality, we can further write

p̃∑

k=1

c̃k = ‖x̃‖A+ = Re 〈xΩ, qΩ〉 = Re 〈x̃Ω, qΩ〉 = Re 〈x̃, q〉

=

p̃∑

k=1

c̃k Re
(
a(τ̃k)

Hq
)
=

p̃∑

k=1

c̃k Re (Q(τ̃k)) . (9)

We conclude using the positivity of the c̃ks that Re(Q(τ̃k)) = 1

for k = 1, . . . p̃, and therefore that {τ̃k}
p̃
k=1 ⊆ R. Let V Ω ∈

C
|Ω|×|R| be the matrix whose column are elements of the form

a(τ) with τ ∈ R. We have that x�
Ω = V Ωc

� and x̃ = V Ωc̃ for
some c�, c̃ ∈ C

|R| with ‖c�‖1 = ‖c̃‖1 = ‖x�‖A+. We conclude
using the uniqueness of the solution to the positive linear pro-
gram [32]

ĉ := argmin
c∈C|R|

‖c‖1 such that c ≥ 0 and V Ωc = x�
Ω, (10)

that ĉ = c� = c̃, and consequently that x̃ = x�. We conclude
that x� is the unique solution to (C-ANM). �

B. Proof of Theorem 2

In view of Lemma 1, it suffices to show the existence of
a trigonometric polynomial Q(τ) verifying the conditions of
Lemma 1 for the compression matrix M = P I .

Denote the Vandermonde matrix A = [a(τ1), . . . ,a(τp)] ∈

C
N×p. As long as p < M , the matrix V = AHP H

I ∈ C
p×M

has a non-trivial nullspace. Denote by u ∈ ker(V ) a non-zero
element of this nullspace. We have that

V u = AHP H

Iu = 0.

Let p = P H

Iu, and P (τ) be the trigonometric poly-
nomial P (τ) =

∑N−1
n=0 pke

−i2πnt. Moreover, let Q(τ) =∑N−1
n=0 qke

i2πnt be such that

1− Re(Q(τ)) = |P (τ)|2 , ∀τ ∈ [0, 1), (11)

which holds if and only if the vector q ∈ C
N satisfies

e0 −Kq = T ∗(ppH). (12)

We now verify that Q(τ) meets the conditions of Lemma 1.
1) Since V e0 = AHP H

I e0 = AHe0 
= 0, which follows by
0 ∈ ∂I , the vector u is not collinear to e0. Thus p is not
collinear to e0 and as K is a diagonal matrix, from (12)
we have

q = K−1
(
e0 − T ∗(ppH)

)
, (13)

is also not collinear to e0. It follows that Q(τ) 
= 1.
2) By the assumption u ∈ ker(V ), we have that for all k =

1, . . . , p,

1− Re(Q(τ�k )) = |P (τ�k )|
2

= a(τ�k )
HppHa(τ�k )

= a(τ�k )
HP H

Iuu
HP Ia(τ

�
k )

= eH
kV uuHV Hek = 0.

3) As p ∈ span(P H

I ) is supported over I, the vector
T ∗(ppH) is supported over ∂I. Since 0 ∈ ∂I , the vector
e0, and the difference T ∗(ppH)− e0 are also supported
over ∂I. SinceK−1 is a diagonal matrix, it leaves the sup-
port of the subvectors invariant by multiplication. By (13),
q is supported over ∂I. By the assumption of Theorem 2,
we have ∂I ⊆ Ω, hence Ωc ⊆ ∂Ic, and we conclude that
qΩc = 0.

4) Finally, (11) holds by construction with p ∈ span(P H

I ),
thus Q(τ) is sparse-SOS over span(P H

I ).
Invoking Lemma 1 concludes the proof of Theorem 2. �
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