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Abstract

Coresets are modern data-reduction tools that are widely used in data analysis to improve
efficiency in terms of running time, space and communication complexity. Our main result is
a fast algorithm to construct a small coreset for k-MEDIAN in (the shortest-path metric of) an
excluded-minor graph. Specifically, we give the first coreset of size that depends only on k, € and
the excluded-minor size, and our running time is quasi-linear (in the size of the input graph).

The main innovation in our new algorithm is that is iterative; it first reduces the n input
points to roughly O(logn) reweighted points, then to O(loglogn), and so forth until the size
is independent of n. Each step in this iterative size reduction is based on the importance
sampling framework of Feldman and Langberg (STOC 2011), with a crucial adaptation that
reduces the number of distinct points, by employing a terminal embedding (where low distortion
is guaranteed only for the distance from every terminal to all other points). Our terminal
embedding is technically involved and relies on shortest-path separators, a standard tool in
planar and excluded-minor graphs.

Furthermore, our new algorithm is applicable also in Euclidean metrics, by simply using
a recent terminal embedding result of Narayanan and Nelson, (STOC 2019), which extends
the Johnson-Lindenstrauss Lemma. We thus obtain an efficient coreset construction in high-
dimensional Euclidean spaces, thereby matching and simplifying state-of-the-art results (Sohler
and Woodruff, FOCS 2018; Huang and Vishnoi, STOC 2020).

In addition, we also employ terminal embedding with additive distortion to obtain small
coresets in graphs with bounded highway dimension, and use applications of our coresets to
obtain improved approximation schemes, e.g., an improved PTAS for planar k-MEDIAN via a
new centroid set.
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1 Introduction

Coresets are modern tools for efficient data analysis that have become widely used in theoretical
computer science, machine learning, networking and other areas. This paper investigates coresets
for the metric k-MEDIAN problem that can be defined as follows. Given an ambient metric space
M = (V,d) and a weighted set X C V with weight function w : X — R4, the goal is to find a set
of k centers C' C V that minimizes the total cost of connecting every point to a center in C"

cost(X,C) := Z w(z) - d(z,C),

zeX

where d(z,C) := minyec d(z,y) is the distance to the closest center. An e-coreset for k-MEDIAN
on X is a weighted subset D C X, such that

vC CV,|C| =k, cost(D,C) € (1 t¢) - cost(X,C).

We note that many papers study a more general problem, (k, z)-CLUSTERING, where inside the
cost function each distance is raised to power z. We focus on k-MEDIAN for sake of exposition, but
most of our results easily extend to (k, z)-CLUSTERING.

Small coresets are attractive since one can solve the problem on D instead of X and, as a
result, improve time, space or communication complexity of downstream applications [LBK13,
LFKF17, FSS20]. Thus, one of the most important performance measures of a coreset D is its
size, i.e., the number of distinct points in it, denoted ||Dl|o."! Har-Peled and Mazumdar [HMO04]
introduced the above definition and designed the first coreset for k-MEDIAN in Euclidean spaces
(V = R™ with ¢3 norm), and since their work, designing small coresets has become a flourish-
ing research direction, including not only k-MEDIAN and (k, z)-CLUSTERING e.g. [HK07, Che09,
LS10, FL11, SW18, HV20, FSS20], but also many other important problems, such as subspace
approximation/PCA [FFS06, FMSW10, FSS20], projective clustering [FL11, VX12, FSS20], re-
gression [MJF19], density estimation [KL19, PT19], ordered weighted clustering [BJKW19], and
fair clustering [SSS19, HJV19].

Many modern coreset constructions stem from a fundamental framework proposed by Feld-
man and Langberg [FL11], extending the importance sampling approach of Langberg and Schul-
man [LS10]. In this framework [FL11], the size of an e-coreset for k-MEDIAN is bounded by
O(poly(k/e) - sdim), where sdim is the shattering (or VC) dimension of the family of distance
functions. For a general metric space (V,d), a direct application of [FL11] results in a coreset of
size Oy ¢(log|V]), which is tight in the sense that in some instances, every coreset must have size
Q(log|V|) [BBHT20].Therefore, to obtain coresets of size independent of the data set X, we have
to restrict our attention to specific metric spaces, which raises the following fundamental question.

Question 1.1. Identify conditions on a data set X from metric space (V,d) that guarantee the
existence (and efficient construction) of an e-coreset for k-MEDIAN of size O, (1) ?

This question has seen major advances recently. Coresets of size independent of X (and V)
were obtained, including efficient algorithms, for several important special cases: high-dimensional
Euclidean spaces [SW18, FKW19, HV20] (i.e., independently of the Euclidean dimension), metrics
with bounded doubling dimension [HJLW18], and shortest-path metric of bounded-treewidth graphs
[BBH'20].

'For a weighted set X, we denote by || X||o the number of distinct elements, by || X||: its total weight.



1.1 Owur Results

Overview We make significant progress on this front (Question 1.1) by designing new coresets for
k-MEDIAN in three very different types of metric spaces. Specifically, we give (i) the first O, 1 (1)-
size coreset for excluded-minor graphs; (ii) the first O ;(1)-size coreset for graphs with bounded
highway dimension; and (iii) a simplified state-of-the-art coreset for high-dimensional Euclidean
spaces (i.e., coreset-size independent of the Euclidean dimension with guarantees comparable to
[HV20] but simpler analysis.)

Our coreset constructions are all based on the well-known importance sampling framework
of [FL11], but with subtle deviations that introduce significant advantages. Our first technical idea
is to relax the goal of computing the final coreset in one shot: we present a general reduction that
turns an algorithm that computes a coreset of size O(poly(k/€)log | X|p) into an algorithm that
computes a coreset of size O(poly(k/e)). The reduction is very simple and efficient, by straightfor-
ward iterations. Thus, it suffices to construct a coreset of size O(poly(k/e)log || X||op). We construct
this using the importance sampling framework [FL11], but applied in a subtly different way, called
terminal embedding, in which distances are slightly distorted, trading accuracy for (hopefully) a
small shattering dimension. It still remains to bound the shattering dimension, but we are now
much better equipped — we can distort the distances (design a new embedding or employ a known
one), and we are content with dimension bound Oy, ((log || X||o), instead of the usual O, ((1).

We proceed to present each of our results and its context-specific background, see also Table 1
for summary, and then describe our techniques at a high-level in Section 1.2.

Table 1: our results of e-coresets for k-MEDIAN in various types of metric spaces M (V,d) with
comparison to previous works. By graph metric, we mean the shortest-path metric of an edge-
weighted graph G = (V| E). Corollary 4.18 (and [HV20]) also work for general (k, z)-CLUSTERING,
but we list the result for k-MEDIAN (z = 1) only.

Metric space Coreset size” Reference
General metrics O(e %klog|V|) [FL11]
Bounded treewidth O:(E_2k73) [BBH™20]
Graph metrics Excluding a fixed minor O(ek?) Corollary 4.2
Bounded highway dimension O(k® (log(1/¢)) ) Corollary 4.25
. n Dimension-dependent O(E_Zk:m) [FL11]
Euclidean K Dimension-free O(e™*k) [HV20], Corollary 4.18

Coresets for Clustering in Graph Metrics k-MEDIAN clustering in graph metrics, i.e. shortest-
path metric of graphs, is a central task in data mining of spatial networks (e.g., planar networks
such as road networks) [SL97, YMO04], and has applications in various location optimization prob-
lems, such as placing servers on the Internet [LGIT99, JJJT00] (see also a survey [TFL83]), and in
data analysis methods [RMJ07, CZQ"08]. We obtain new coresets for excluded-minor graphs and
new coresets for graphs of bounded highway dimension. The former generalize planar graphs and
the latter capture the structure of transportation networks.

2Throughout, the notation O(f) hides poly log f factors, and O, (f) hides factors that depend on m.



Coresets for Excluded-minor Graphs A minor of graph G is a graph H obtained from G
by a sequence of edge deletions, vertex deletions or edge contractions. We are interested in graphs
G that exclude a fixed graph H as a minor, i.e., they do not contain H as a minor. Excluded-
minor graphs have found numerous applications in theoretical computer science and beyond and
they include, for example, planar graphs and bounded-treewidth graphs. Besides its practical
importance, k-MEDIAN in planar graphs received significant attention in approximation algorithms
research [Tho05, CKM19, CPP19]. Our framework yields the first e-coreset of size Oy (1) for
k-MEDIAN in excluded-minor graphs, see Corollary 4.2 for details. Such a bound was previously
known only for the special case of bounded-treewidth graphs [BBH20]. We stress that our technical
approach is significantly different from [BBH™20]; we introduce a novel iterative construction and a
relaxed terminal embedding of excluded-minor graph metrics (see Section 1.2), and overall bypass
bounding the shattering dimension by O(1) (which is the technical core in [BBH™20]).

Coresets for Graphs with Bounded Highway Dimension Due to the tight relation to
road networks, graphs of bounded highway dimension is another important family for the study
of clustering in graph metrics. The notion of highway dimension was first proposed by [AFGW10]
to measure the complexity of transportation networks such as road networks and airline networks.
Intuitively, it captures the fact that going from any two far-away cities A and B, the shortest
path between A and B always goes through a small number of connecting hub cities. The formal
definition of highway dimension is given in Definition 4.20, and we compare related versions of
definitions in Remark 4.21. The study of highway dimension was originally to understand the
efficiency of heuristics for shortest path computations [AFGW10], while subsequent works also
study approximation algorithms for optimization problems such as TSP, Steiner Tree [FFKP18§]
and k-MEDIAN [BKS18]. We show the first coreset for graphs with bounded highway dimension,
and as we will discuss later it can be applied to design new approximation algorithms. The formal
statement can be found in Corollary 4.25.

Coresets for High-dimensional Euclidean Space The study of coresets for k-MEDIAN (and
more generally (k, z)-CLUSTERING) in Euclidean space R™ spans a rich line of research. The first
coreset for k-MEDIAN in Euclidean spaces, given by [HMO04], has size O(ke™™logn) where n =
| X1, and the logn factor was shaved by a subsequent work [HK07]. The exponential dependence
on the Euclidean dimension m was later improved to poly(km/¢) [LS10], and to O(km/e?) [FL11].
Very recently, the first coreset for k-MEDIAN of size poly(k/e), which is independent of the Euclidean
dimension m,? was obtained by [SW18] (see also [FKW19]).* This was recently improved in [HV20],
which designs a (much faster) near-linear time construction for (k,z)-CLUSTERING, with slight
improvements in the coreset size and the (often useful) additional property that the coreset is a
subset of X. Our result extends this line of research; an easy application of our new framework
yields a near-linear time construction of coreset of size poly(k/€), which too is independent of the
dimension m. Compared to the state of the art [HV20], our result achieves essentially the same
size bound, while greatly simplifying the analysis. A formal statement and detailed comparison
with [HV20] can be found in Corollary 4.18 and Remark 4.19.

Applications: Improved Approximation Schemes We apply our coresets to design approx-
imation schemes for k-MEDIAN in shortest-path metrics of planar graphs and graphs with bounded

3Dimension-independent coresets were obtained earlier for Euclidean k-MEANS [BFL16, FSS20], however these do
not apply to k-MEDIAN.
“The focus of [SW18] is on k-MEDIAN, but the results extend to (k, z)-CLUSTERING.



highway dimension. In particular, we give an FPT-PTAS, parameterized by k and ¢, in graphs
with bounded highway dimension (Corollary 5.2), and a PTAS in planar graphs (Corollary 5.9).
Both algorithms run in time near-linear in |V|, and improve previous results in the corresponding
settings.

The PTAS for k-MEDIAN in planar graphs is obtained using a new centroid-set result. A
centroid set is a subset of V' that contains centers giving a (1 + €)-approximate solution. We obtain
centroid sets of size independent of the input X in planar graphs, which improves a recent size
bound (log |[V])?(1/€) [CPP19], and moreover runs in time near-linear in |V/|. This centroid set can
be found in Theorem 5.4.

1.2 Technical Contributions

Iterative Size Reduction This technique is based on an idea so simple that it may seem too
naive: Basic coreset constructions have size Oy ((logn), so why not apply it repeatedly, to obtain
a coreset of size Oy ¢(loglogn), then Oy (logloglogn) and so on? One specific example is the size
bound O(e 2klogn) for a general n-point metric space [FL11], where this does not work because
n = |V is actually the size of the ambient space, irrespective of the data set X. Another example
is the size bound O(e™"klog n) for Euclidean space R™ [HMO04], where this does not work because
n = || X1 is the total weight of the data points X, which coresets do not reduce (to the contrast,
they maintain it). These examples suggest that one should avoid two pitfalls: dependence on V'
and dependence on the total weight.

We indeed make this approach work by requiring an algorithm A that constructs a coreset of
size O(log || X o), which is data-dependent (recall that || X || is the number of distinct elements in a
weighted set X). Specifically, we show in Theorem 3.1 that, given an algorithm A that constructs
an €'-coreset of size O(poly(k/€')log || X||o) for every ¢ and X C V, one can obtain an e-coreset of
size poly(k/e) by simply applying A iteratively. It follows by setting €’ carefully, so that it increases
quickly and eventually ¢ = O(e). See Section 3.1 for details.

Not surprisingly, the general idea of applying the sketching/coreset algorithm iteratively was
also used in other related contexts (e.g. [LMP13, CW15, MSSW18]). Moreover, a related two-
step iterative construction was applied in a recent coreset result [HV20]. Nevertheless, the exact
implementation of iterative size reduction in coresets is unique in the literature. As can be seen
from our results, this reduction fundamentally helps to achieve new or simplified coresets of size
independent of data set. We expect the iterative size reduction to be of independent interest to
future research.

Terminal Embeddings To employ the iterative size reduction, we need to construct coresets of
size poly(k/e) -log || X |lo. Unfortunately, a direct application of [FL11] yields a bound that depends
on the number of vertices |V|, irrespective of X. To bypass this limitation, the framework of [FL11]
is augmented (in fact, we use a refined framework proposed in [FSS20]), to support controlled
modifications to the distances d(-, -). As explained more formally in Section 3.2, one represents these
modifications using a set of functions F = {f, : V — Ry | x € X}, that corresponds to the modified
distances from each z, i.e., fy(-) +> d(z,-). Many previous papers [LS10, FL11, BFL16, FSS20]
work directly with the distances and use the function set F = {f;(-) = d(x,-) | x € X}, or a more
sophisticated but still direct variant of hyperbolic balls (where each f, is an affine transformation
of d(z,-)). A key difference is that we use a “proxy” function set F, where each f;(-) ~ d(z,).
This introduces a tradeoff between the approximation error (called distortion) and the shattering
dimension of F (which controls the number of samples), and overall results in a smaller coreset.
Such tradeoff was first used in [HJLW18] to obtain small coresets for doubling spaces, and was



recently used in [HV20] to reduce the coreset size for Euclidean spaces. This proxy function set
may be alternatively viewed as a terminal embedding on X, in which both the distortion of distances
(between X and all of V') and the shattering dimension are controlled.

We then consider two types of terminal embeddings F. The first type (Section 3.3) maintains
(1 + e)-multiplicative distortion of the distances. When this embedding achieves dimension bound
O(poly(k/e)log || X||o), we combine it with the aforementioned iterative size reduction, to further
reduce the size to be independent of X. It remains to actually design embeddings of this type,
which we achieve (as explained further below), for excluded-minor graphs and for Euclidean spaces,
and thus we overall obtain O, ;(1)-size coresets in both settings. Our second type of terminal em-
beddings F (Section 3.4) maintains additive distortion on top of the multiplicative one. We design
embeddings of this type (as explained further below) for graphs with bounded highway dimension;
these embeddings have shattering dimension poly(k/e), and thus we overall obtain O y(1)-size
coresets even without the iterative size reduction. We report our new terminal embeddings in
Table 2.

Table 2: New terminal embeddings F for different metrics spaces. The reported distortion bound
is the upper bound on f,(c), in addition to the lower bound f,(c) > d(x,c). The embeddings of
graphs with bounded highway dimension, called here “highway graphs” for short, are defined with
respect to a given S C V' (see Lemma 4.22).

Metric space Dimension sdimy,,x(F) Distortion Result
Euclidean ON(e_2 log [| X o) (I14+¢€)-d(z,c) Lemma 4.16
Excluded-minor graphs  O(e~21log || X |o) (I1+¢€)-d(z,c) Lemma 4.1
Highway graphs O(|§|CUos(1/e))) (14+¢€)-d(z,c) +€e-d(x,S) Lemma 4.22

Terminal Embedding for Euclidean Spaces Our terminal embedding for Euclidean spaces
is surprisingly simple, and is a great showcase for our new framework. In a classical result [FL11],
it has been shown that sdimpax(F) = O(m) for Euclidean distance in R™ without distortion. On
the other hand, we notice a terminal embedding version of Johnson-Lindenstrauss Lemma was
discovered recently [NN19]. Our terminal embedding bound (Lemma 4.16) follows by directly
combining these two results, see Section 4.3 for details.

We note that without our iterative size reduction technique, plugging in the recent termi-
nal Johnson-Lindenstrauss Lemma [NN19] into classical importance sampling frameworks, such
as [FL11, FSS20] does not yield any interesting coreset. Furthermore, the new terminal Johnson-
Lindenstrauss Lemma was recently used in [HV20] to design coresets for high-dimensional Euclidean
spaces. Their size bounds are essentially the same as ours, however they go through a complicated
analysis to directly show a shattering dimension bound poly(k/e). This complication is not nec-
essary in our method, because by our iterative size reduction it suffices to show a very loose
Ok.e(log || X|lop) dimension bound, and this follows immediately from the Johnson-Lindenstrauss
result.

Terminal Embedding for Excluded-minor Graphs The technical core of the terminal em-
bedding for excluded-minor graphs is how to bound the shattering dimension. In our proof, we
reduce the problem of bounding the shattering dimension into finding a representation of the dis-
tance functions on X x V as a set of min-linear functions. Specifically, we need to find for each x



a min-linear function g, : R®* — R of the form g¢,(t) = min;<;<s{a;t; + b;}, where s = O(log || X||o),
such that Ve € V, there is t € R® with d(z,c) = g.(t).

The central challenge is how to relate the graph structure to the structure of shortest paths
d(z,c). To demonstrate how we relate them, we start with discussing the simple special case of
bounded treewidth graphs. For bounded treewidth graphs, the vertex separator theorem is applied
to find a subset P C V, through which the shortest path x ~~ y has to pass. This translates into
the following

d(z,¢) = min{d(,p) +d(p,c)},

and for each € X, we can use this to define the desired min-linear function g, (d(p1,c), ..., d(pm,c))
= d(z,c), where we write P = {p1,...,Dm}-

However, excluded-minor graphs do not have small vertex separator, and we use the shortest-
path separator [Tho04, AGO6] instead. Now assume for simplicity that the shortest paths = ~ ¢
all pass through a fixed shortest path [. Because [ itself is a shortest path, we know

Vee X,ceV, d(z,c)= minl{d(az,ul) + d(ur, u2) + d(ug, c)}.

u1,Uu2€

Since | can have many (i.e. w(log||X||o)) points, we need to discretize I by designating poly(e~!)
portals PL on [ for each x € X (and similarly P! for ¢ € V). This only introduces (1 + €) distortion
to the distance, which we can afford.

Then we create d, : | — R, to approximate d(z,u)’s, using distances from z to the portals
P! (and similarly for d(c,u)). Specifically, for the sake of presentation, assume P. = {p1, p2,p3}
(p1 < p2 < p3), interpret [ as interval [0,1), then for u € [0,p1), define d/ (u) = d(x,0), for
u € [p1,p2), define d,(u) = d(z, p1), and so forth. Hence, each d/(-) is a piece-wise linear function
of O(|PL|) pieces (again, similarly for d’(-)), and this enables us to write

d(z,c) = d(x,c):== min {d}(u1) + d(u1,u2) + d.(us)}.
uy,u2€PLUP! r ¢

Therefore, it suffices to find a min-linear representation for d'(z,-) for x € X. However, the
piece-wise linear structure of d), creates extra difficulty to define min-linear representations. To see
this, still assume P! = {p1,p2,p3}. Then to determine d’,(u) for u € P. U P!, we not only need
to know d(zx,p;) for p; € Pgﬁ, but also need to know which sub-interval [p;, p;+1) that u belongs to.
(That is, if u € [p1,p2), then d.(u) = d(x,p;).) Hence, in addition to using distances {c} x P! as
variables of g,, the relative ordering between points in P.U P! is also necessary to evaluate d'(z, c).

Because ¢ € V' can be arbitrary, we cannot simply “remember” the ordering in g,. Hence, we
“guess” this ordering, and for each fixed ordering we can write g, as a min-linear function of few
variables. Luckily, we can afford the “guess” since |P. U P!| = poly(e~!) which is independent of

X. A more detailed overview can be found in Section 4.1.

Terminal Embedding for Graphs with Bounded Highway Dimension In addition to
a (1 + €) multiplicative error, the embedding for graphs with bounded highway dimension also
introduces an additive error. In particular, for a given S C V, it guarantees that

Vee X,ceV, dx,c) < fzlc) < (1+¢€)-d(z,c) +e€-d(x,S5).

This terminal embedding is a direct consequence of a similar embedding from graphs with bounded
highway dimension to graphs with bounded treewidth [BKS18], and a previous result about the



shattering dimension for graphs with bounded treewidth [BBH'20]. In our applications, we will
choose S to be a constant approximate solution® C* to k-MEDIAN. So the additive error becomes
€ - d(z,C*). In general, this term can still be much larger than d(z,c), but the collectively error
in the clustering objective is bounded. This observation helps us to obtain a coreset, and due to
the additional additive error, the shattering dimension is already independent of X and hence no
iterative size reduction is necessary.

1.3 Related Work

Approximation algorithms for metric k-MEDIAN have been extensively studied. In general metric
spaces, it is NP-hard to approximate k-MEDIAN within a 1 + % factor [JMS02], and the state of
the art is a (2.675 + €)-approximation [BPR*14]. In Euclidean space R™, k-MEDIAN is APX-hard
if both k& and the dimension m are part of the input [GI03]. However, PTAS’s do exist if either k
or dimension m is fixed [HM04, ARR98, CKM19, FRS19].

Tightly related to coresets, dimensionality reduction has also been studied for clustering in
Fuclidean spaces. Compared with coresets which reduce the data set size while keeping the dimen-
sion, dimensionality reduction aims to find a low-dimensional representation of data points (but not
necessarily reduce the number of data points). As a staring point, a trivial application of Johnson-
Lindenstrauss Lemma [JL.84] yields a dimension bound O(e~2logn) for (k,z)-CLUSTERING. For
k-MEANS with 1+ ¢ approximation ratio, [CEM*15] showed an O(k/€?) dimension bound for data-
oblivious dimension reduction and an O(k/e) bound for the data-dependent setting. Moreover, the
same work [CEMT15] also obtained a data-oblivious O(e 2log k) dimension bound for k-MEANS
with approximation ratio 9+ ¢. Very recently, [BBCA*19] obtained an O(e~%(log k +loglog n)) di-
mension bound for k-MEANS and [MMR19] obtained an O(e~%log £) bound for (k, 2)-CLUSTERING.
Both of them used data-oblivious methods and have approximation ratio 1 4+ €. Dimensionality
reduction techniques are also used for constructing dimension-free coresets in Euclidean spaces
[SW18, BBCAT19, HV20, FSS20].

2 Preliminaries

Notations Let V¥ :={C C V :|C| < k} denote the collection of all subsets of V of size at most
k. © For integer n,i > 0, let log(i) n denote the i-th iterated logarithm of n, i.e. log(l) n := logn and
log®¥ n = log(log(i_l) n) (i > 2). Define log* n as the number of times the logarithm is iteratively
applied before the result is at most 1, i.e. log*n :=0if n < 1 and log*n = 1+ log*(logn) if n > 1.
For a weighted set .S, denote the weight function as wg : S — Ry. Let OPT,(X) be the optimal
objective value for (k,z)-CLUSTERING on X, and we call a subset C' C V an («, 3)-approximate
solution for (k,z)-CLUSTERING on X if |C| = ak and cost.(X,C) := Y .y wx(z) - (d(z,C))* <
B-OPT,(X).

Functional Representation of Distances We consider sets of functions F from V to R;.
Specifically, we consider function sets F = {f, : V — Ry | z € X} that is indexed by the weighted
data set X C V, and intuitively f,(-) is used to measure the distance from x € X to a point in V.
Because we interpret f,’s as distances, for a subset C' C V| we define f,(C) := min.cc f(C), and

5in fact, a bi-criteria approximation suffices.
6Strictly speaking, V* is the collection of all ordered k-tuples of V, but here we use it to denote the subsets. Note
that tuples may contain repeated elements so the subsets in V* are of size at most k.



define the clustering objective accordingly as

cost,(F,C) := Z wr(fz) - (f=(C))7.

fz€F

In fact, in our applications, we will use f,(y) as a “close” approximation to d. We note that this
functional representation is natural for k-Clustering, since the objective function only uses distances
from X to every k-subset of V only. Furthermore, we do not require the triangle inequality to hold
for such functional representations.

Shattering Dimension For ¢ € V,r > 0, define Br(c,r) := {f € F : f(c) < r}. We emphasize
that ¢ is from the ambient space V in addition to the data set X. Intuitively, Bx(c,r) is the ball
centered at ¢ with radius r when the f functions are used to measure distances. For example,
consider X =V and let f,(-) := d(z,-) for x € V. Then Br(c,r) = {fs € F : d(c,x) < r}, which
corresponds to the metric ball centered at ¢ with radius r.

We introduce the notion of shattering dimension in Definition 2.1. In fact, the shattering
dimension may be defined with respect to any set system [Har11], but we do not need this generality
here and thus we consider only the shattering dimension of the “metric balls” system.

Definition 2.1 (Shattering Dimension [Harll]). Suppose F is a set of functions from V to R..
The shattering dimension of F, denoted as sdim(F), is the smallest integer ¢, such that for every
H C F with |H| > 2,

VHCF.|H| 22, [{Buler):ceVr>0} <[H[" (1)

The shattering dimension is tightly related to the well-known VC-dimension [VCT71], and they
are equal to each other up to a logarithmic factor [Harll, Corollary 5.12, Lemma 5.14]. In our
application, we usually do not use sdim(F) directly. Instead, given a point weight v : X — R, we
define F, := {f, - v(x) | z € X}, and then consider the maximum of sdim(F,) over all possible v,
defined as sdimpax(F) := max,. x g, sdim(F,).

3 Framework

We present our general framework for constructing coresets. Our first new idea is a generic reduc-
tion, called iterative size reduction, through which it suffices to find a coreset of size O(log || X||o)
only in order to get a coreset of size independent of X. This general reduction greatly simplifies
the coreset construction, and in particular, as we will see, “old” techniques such as importance
sampling gains new power and becomes useful for new settings such as excluded-minor graphs.

Roughly speaking, the iterative size reduction turns a coreset construction algorithm A(X]¢)
with size O(poly(e~1k) - log || X||o) into a construction A’(X, €) with size poly(e~'k). To define A’,
we simply iteratively apply A, i.e. X; := A(X;_1,€;), and terminate when || X;||o does not decrease.
However, if A is applied for ¢ times in total, the error of the resulted coreset is accumulated as
2221 ;. Hence, to make the error bounded, we make sure ¢; > 2¢;_1 and ¢, = O(e), so 2321 € =
O(€). Moreover, our choice of ¢; also guarantees that || X;||o is roughly poly(e~*k-log®™ || X||o). Since
log® || X ||o decreases very fast with respect to i, || X;|jo becomes poly(e~1k) in about ¢ = log* || X||o
iterations. The detailed algorithm A’ can be found in Algorithm 1, and we present the formal
analysis in Theorem 3.1.

To construct the actual coresets which is to be used with the reduction, we adapt the importance
sampling method that was proposed by Feldman and Langberg [FL11]. In previous works, the size



of the coresets from importance sampling is related to the shattering dimension of metric balls
system (i.e. in our language, it is the shattering dimension of F = {d(z,-) | x € X}.) Instead of
considering the metric balls only, we give a generalized analysis where we consider a general set of
“distance functions” F that has some error but is still “close” to d. The advantage of doing so is
that we could trade the accuracy with the shattering dimension, which in turn reduces the size of
the coreset.

We particularly examine two types of such functions F = {f, : V. — R, | x € X }. The first type
F introduces a multiplicative (1+¢) error to d, i.e. Vx € X,c € V, d(x,¢c) < fo(c) < (1+¢€)-d(z,c).
Such a small distortion is already very helpful to obtain an O(log || X||o) shattering dimension for
minor-free graphs and Euclidean spaces. In addition to the multiplicative error, the other type of
F introduces a certain additive error, and we make use of this to show O(k) shattering dimension
bound for bounded highway dimension graphs and doubling spaces. In this section, we will discuss
how the two types of function sets imply efficient coresets, and the dimension bounds for various
metric families will be analyzed in Section 4 where we also present the coreset results.

3.1 Iterative Size Reduction

Theorem 3.1 (Iterative Size Reduction). Let p > 1 be a constant and let M be a family of metric
spaces. Assume A(X,k,z,€,0, M) is a randomized algorithm that constructs an e-coreset of size
e Ps(k)logétlog || X|lo for (k,z)-CLUSTERING on every weighted set X C V and metric space
M(V,d) € M, for every z > 1,0 < €,0 < %, running in time T(|| X o, k, 2, €, 6, M) with success
probability 1 — 6. Then algorithm A (X, k, z,¢€,0, M), stated in Algorithm 1, computes an e-coreset
of size O(e Ps(k)log6~1) for (k,z)-CLUSTERING on every weighted set X C V and metric space

M(V,d) € M, for every z>1,0 <€, < i, in time

O(T(| X [lo, k. 2, O(e/(log [| X o) *), O(8/ | X [lo), M) - Tog" || X o),

and with success probability 1 — 9.

Algorithm 1 Iterative size reduction A'(X, k, z,¢€, 6, M)

Require: algorithm A(X, k, z,¢€,0, M) that computes an e-coreset for (k,z)-CLUSTERING on X
with size e Ps(k)log 6~ log || X||o and success probability 1 — 4.

1:let Xo := X, and let ¢ be the largest integer such that log® VX[, >

max{20e"s(k)log §~1, p2°1}

fori=1,---,tdo
let ¢ := ¢/(log® || Xlo)7, & := 6/|| Xi—1]lo
let X; := A(X;_1,k,2,¢;,0;, M)

end for

Xir1 = A(Xy, k, 2,€,0, M)

return X,

Proof. For the sake of presentation, let n := || X||o, s := s(k), and " := se ?log d~!. We start with
proving in the following that X; is an O(e)-coreset of X with size max{160000I'%, 20T p323+3} with
probability 1 — O(J).



Let a; := || X;]lo. Then by definition of X,
a; = se; loga;_1log §; !
= se; "loga;—1(loga;—1 + log 5_1)
< s¢; Plog 6 (log a;—1)? (2)
where the inequality is by loga;_1 + logd~! < loga;_1 - log §~!, which is equivalent to (loga;_ | —

1)(log 61 — 1) > 1 and the latter is true because a; 1 > ¢ ? > ¢! >4 and § < %.

Next we use induction to prove that a; < 20" log 5_1(log(i) n)3 for all i = 1,...,t. This is true
for the base case when i = 1, since a; < se; ”logd~t(logn)? < I'(logn)® < 20I'(logn)3. Then
consider the inductive case ¢ > 2 and assume the hypothesis is true for i — 1. We have

a; < se;” log 5 '(loga;—1)* by (2)
=Tlog™ n - (log a;_1)? by definition of ¢;
< T'log® n - (log(20 (log "~ n)3))? by induction hypothesis
=T log(’ n - (log(20T) + 31log® n)?
< T'log™ n - (2(log(201))? + 18(log™ n)?) by (a+ b)? < 2a® + 2b*

3

< 20F(log(’) n)°,

where the last inequality follows from the fact that 10g(20r) < log(log(i_l) n) = log(i) n,byi<t
and the definition of t. Hence we conclude a; < 20T'(log” n)3. This in particular implies that
a; < 200 (log®™ )3, and by definition of ¢, we have log'¥) n < max{20T, p2°1}. Hence,

a; < max{160000I'*, 200" p323 3},

By the guarantee of A, we know that X; is a II!_; (1 + ¢;)-coreset for X. Note that a > 2”loga
for every a > p2°*!, so we have €;41 > 2¢; for i < t, which implies that 25:1 €; < 2¢;. Hence we
conclude that

t
2
I (14 ¢) < exp Z € | <exp(2e) <exp 761 < exp(2e) <1+ 10e,
(log n)#

i=1

where the second last inequality follows from log(t) n = log(log(t_l) n) > log(p2°*™t) > 1 for p > 1,
and the last inequality follows by the fact that exp(2¢) < 1+ 10e for € € (0,1). For the failure
probability, we observe that a;—1 > ¢, i 1> log(l_l) n, hence §; = ij < log%l)n’ and the total

failure probability is

1
< <
25 5 < logn ot g1 n) <0(9),

where again we have used log*=" n > p2°t1 > 4, by definition of t and p > 1.

Therefore, X; is an O(¢)-coreset of X with size max{160000I'*, 20T p323°*3} with probability 1—
O(9). Finally, in the end of algorithm A", we apply A again on X; with parameter € and d to obtain
an O(e)-coreset of X with size s~ log § ! log(max{160000I'%, 20T p3237*3}) = O(se~Plog 6~ ') with
probability 1 — O(9).

To see the running time, we note that t = O(log*n), and we run A for ¢ + 1 times. Moreover,
since €¢; > €; and §; > 41, the running time of each call of A is at most T'(|| X]||o, k, 2, €1, 01, M).
This completes the proof of Theorem 3.1. O

10



3.2 Importance Sampling

We proceed to design the algorithm A required by Theorem 3.1. It is based on the importance
sampling algorithm introduced by [LS10, FL11], and at a high level consists of two steps:

1. Computing probabilities: for each x € X, compute p, > 0 such that >~y p, = 1.

2. Sampling: draw N (to be determined later) independent samples from X, each drawn from

the distribution (p, : € X), and assign each sample z a weight —t}f (2)

v to form a coreset D.

The key observation in the analysis of this algorithm is that the sample size N, which is also the
coreset size || D||o, is related to the shattering dimension (see Definition 2.1) of a suitably defined set
of functions [FL11, Theorem 4.1]. The analysis in [FL11] has been subsequently improved [BFL16,
F'SS20], and we make use of [FSS20, Theorem 31], restated as follows.

Lemma 3.2 (Analysis of Importance Sampling [FSS20]). Fiz z > 1, 0 < € < %, an integer k > 1

and a metric space (V,d). Let X CV have weights wx : V — Ry and let F:={f,:V - Ry |z €

X} be a corresponding set of functions with weights wr(f;) = wx(x). Suppose {0, }rex satisfies
F wx (z) - (f2(C))*

Ve e X, o, >0, := max
TP TR cevk cost,(F,0)

and set a suitable
N = O(e 20 x (k - sdimpay (F) - log(sdimpyax (F)) - log o x + log ),
where ox =) x 0z and

sdimmax(F) := max sdim (F,), Foi={fz-v(r)|ze X}

’UZX—)R+

Then the weighted set D of size ||[Dl]lg = N returned by the above importance sampling algorithm
satisfies, with high probability 1 — ¢,

VC e VE, Y wp(a)- (f2(C))7 € (1£¢) - cost.(F,C).

zeD

Remark 3.3. We should explain how [FSS20, Theorem 31] implies Lemma 3.2. First of all, the
bound in [FSS20] is with respect to VC-dimension, and we transfer to shattering dimension by
losing a logarithmic factor (see Section 2 for the relation between VC-dimension and shattering
dimension). Another main difference is that the functions therein are actually not from V to R..
For F = {f,:V = Ry | x € X}, they consider F* := {f,(C) = mincec{f:(c)} | z € X}, and their
bound on the sample size is

N = O(e 20 x (sdimpmax (F¥) - log o x + log ).

The notion of balls and shattering dimension they use (for F*) is the natural extension of our
Definition 2.1 (from functions on V to functions on V*), where a ball around C € V¥ is Bx(C,r) =
{fe € F: f(C) <r}, and (1) is replaced by

{By(C,r):C eV r>0} < |H.

Our Lemma 3.2 follows from [FSS20, Theorem 31] by using the fact sdim(F*) < k - sdim(F)
from [FL11, Lemma 6.5].
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Terminal Embeddings. As mentioned in Section 1, F in Lemma 3.2 corresponds to the distance
function d, i.e., f.(-) = d(z,-), and Lemma 3.2 is usually applied directly to the distances, i.e., on
a function set F = {f,(-) = d(z,-) | x € X}. In our applications, we instead use Lemma 3.2 with a
“proxy” function set F that is viewed as a terminal embedding on X, in which both the distortion
of distances (between X and all of V') and the shattering dimension are controlled.

We consider two types of terminal embeddings F. The first type (Section 3.3) maintains (1+¢)-
multiplicative distortion of the distances, and achieves dimension bound O(poly(k/e) log || X ||0), and
the other type of F (Section 3.4) maintains additive distortion on top of the multiplicative one, but
then the dimension is reduced to poly(k/e). In what follows, we discuss how each type of terminal
embedding is used to construct coresets.

3.3 Coresets via Terminal Embedding with Multiplicative Distortion
The first type of terminal embedding distorts distances between V' and X multiplicatively, i.e.,
Vee X,ceV, d(z,c) < fz(c) < (1+4¢€) d(z,c). (3)

This natural guarantee works very well for (k,z)-CLUSTERING in general. In particular, using
such F in Lemma 3.2, our importance sampling algorithm will produce (with high probability) an
O(ze)-coreset for (k,z)-CLUSTERING.

Sensitivity Estimation. To compute a coreset using Lemma 3.2 we need to define, for every

r e X,
(f=(C))*
%2 =% CI*]%E%/};c cost,(F,C)

The quantity O’m}— , usually called the sensitivity of point x € X with respect to F [LS10, FL11]J;
essentially measures the maximal contribution of x to the clustering objective over all possible cen-
ters C C V. Since f,(y) approximates d(x,y) by (3), it actually suffices to estimate the sensitivity

with respect to d instead of F, given by
x wx (z) - (d(z,C))*

= . 4
T gg\% cost, (X, C) )

Even though computing o exactly seems computationally difficult, we shown next (in Lemma 3.4)
that a good estimate can be efficiently computed given an (O(1), O(1))-approximate clustering. A
weaker version of this lemma was presented in [VX12] for the case where X has unit weights, and
we extend it to X with general weights. We will need the following notation. Given a subset
C C V, denote the nearest neighbor of x € X, i.e., the point in C' closest to x with ties broken
arbitrarily, by NN (z) := argmin{d(z,y) : y € C'}. The tie-breaking guarantees that every x has
a unique nearest neighbor, and thus NN¢(.) partitions X into |C| subsets. The cluster of x under
C' is then defined as C(z) := {2/ € X : NN¢g(2') = NNg(z)}.

Lemma 3.4. Fiz z > 1, an integer k > 1, and a weighted set X. Given C** € V¥ that is an
(o, B)-approzimate solution for (k,z)-CLUSTERING on X, define for every x € X,

apxX . v () - (d(z,C?P¥))* 1
o 1= wx () <COStZ(X70apX) +wX(CapX($))>.

Then o3 > Q(o3/(82%)) for all z € X, and oF* :=> v o5 <1+ ak.

12



Before proving this lemma, we record the following approximate triangle inequality for distances
raised to power z > 1.

Claim 3.5. For all z,2',y € V we have d*(z,y) < 2°7! - [d*(x,2') + d*(z', y)].

Proof of Claim 3.5. We first use the triangle inequality,
d*(z,y) < [d(z,2") + d(2’, y))*

and since a — a* is convex (recall z > 1), all a,b > 0 satisfy (%)

< 22_1[dz(a;,a:') + d* (2, y)).
The claim follows. O

Proof of Lemma 3.4. Given C*, we shorten the notation by setting p := NN¢apx, and let X?P* be
the weighted set obtained by mapping all points of X by p. Formally, X?P* := {u(z) : z € X}
where every y € X?P* has weight wxapx(y) := erX:u(m):y wx (z). Then obviously

Ve e X, wx(C*"(x)) = Z wx (2') = wxapx (u()).

x'eCaPx(x)

Upper bound on ¢%*. Using the above,

S o S (2, p(a)) 1
Z Z x( <cost (X, Capx) * wX@X(M(@)) 7

zeX reX

and we can bound

Z wx () - p—

z€X yeXapx

1
= > wxem(y) ——— < ¢ < ak,
-

apx

and we conclude that oy~ <1+ ak, as required.

Lower bound on o3 (relative to ¢%). Aiming to prove this as an upper bound on %, consider
for now a fixed C' € V¥. We first establish the following inequality, that relates the cost of X2 to
that of X.

cost, (XX, C Z wxarx(y) - d*(y, C)
yEXapx
= 3 wx (@) & (u(), C)
rzeX
< 971 Z wX(a:) . [dz(u(x)yx) + dz(x7 C)] by Claim 3.5
zeX
= 277 [cost. (X, C*P¥) + cost. (X, O)] as C*" is (, f)-approximation
< 2'2_1(5 +1) - cost, (X, C). (5)

Now aiming at an upper bound on ¢, observe that

¢(X,0) o1, [dz(fvau(fv)) +d*(u(x), C)

lai .
cost,(X,C) — cost, (X, C) by Claim 3.5 (6)
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and let us bound each term separately. For the first term, since C?P* is an («, §)-approximation,

@z, p@) g @ p(2)
cost,(X,C) =" cost,(X,Capx)’
The second term is
d*(p(x), C) a1 (), C0)
L S R A At ek VA
cost,(X,C) — (6+1)2 cost, (Xapx () by (5)
- d*(p(x), C)
=(B+1)2=7 1.
( ) > yexans Wxaex(y) - d*(y, O)
1
<@B+1)27t —————.
A v 1E3)
Plugging these two bounds into (6), we obtain
dz(x7 C) 2z—2 dz(x7 :u(x)) 1 2z—2 ngx
Bl Sk e . — Lo
cost,(X,C) — (B+1)2 cost, (X, CaPX)  wxapx (u(a:))] (B+1)2 wx (x)

Using the definition in (4), we conclude that (8 + 1)22*72. 03" > ¢%, which completes the proof of
Lemma 3.4. O

Conclusion. Our importance sampling algorithm for this type of terminal embedding is listed
in Algorithm 2. By a direct combination of Lemma 3.2 and Lemma 3.4, we conclude that the
algorithm yields a coreset, which is stated formally in Lemma 3.6.

Algorithm 2 Coresets for (k, z)-CLUSTERING for F with multiplicative distortion

: compute an (O(1),O(1))-approximate solution C*P* for (k, z)-CLUSTERING on X

. for each x € X, let 0, := wx(x) - <Cii(tf&azzgi) + wX(Cipx(x))> > as in Lemma 3.4

yex %y
s draw N = O (6_222%- (zk log k - sdimpax (F) + log %)) independent samples from X, each
from the distribution (p, : z € X) > sdimy,x as in Lemma 3.2

let D be the set of samples, and assign each x € D a weight wp(x) := “;;—g\:f)

: return the weighted set D

1
2
3: for each x € X, let p, := >
4

SR

Lemma 3.6. Fiz 0 < ¢,§ < %, z > 1, an integer k > 1, and a metric space M(V,d). Given a
weighted set X CV and respective F = {f, : V = Ry | x € X} such that

Vee X,ceV, d(z,c) < fo(c) < (1+e€)-d(x,c),
Algorithm 2 computes a weighted set D C X of size

Do = O (e722%%k (2klog k - sdimpax (F) + log 3)) ,
that with high probability 1 — 0 is an e-coreset for (k,z)-CLUSTERING on X.

The running time of Algorithm 2 is dominated by the sensitivity estimation, especially line 1
which computes an (O(1),O(1))-approximate solution. In Lemma 3.7 we present efficient imple-
mentations of the algorithm, both in metric settings and in graph settings.
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Lemma 3.7. Algorithm 2 can be implemented in time O(K|| X |lo) if it is given oracle access to
the distance d, and it can be implemented in time O(|E|) if the input is an edge-weighted graph
G = (V,E) and M is its shortest-path metric.

Proof. The running time is dominated by Step 1 which requires an (O(1), O(1))-approximation in
both settings. For the metric setting where oracle access to d is given, [MP04] gave an O(k|X||o)
algorithm for both k-MEDIAN (z = 1) and k-MEANS (z = 2), and it has been observed to work for
general z in a recent work [HV20].

For the graph setting, Thorup [Tho05, Theorem 20] gave an (2,12 + o(1))-approximation for
graph k-MEDIAN in time O(|E|), such that the input points are unweighted. Even though not
stated in his result, we observe that his approach may be easily modified to handle weighted inputs
as well, and we briefly mention the major changes.

e Thorup’s first step [Tho05, Algorithm D] is to compute an (O(log [V]), O(1))-approximation
F' by successive uniform independent sampling. This can be naturally modified to sampling
proportional to the weights of the input points.

e Then, the idea is to use the Jain-Vazirani algorithm [JVO1] on the bipartite graph F' x X. To
make sure the running time is O(|V|), the edges of I x X sub-sampled by picking, for each

x € X, only O(1) neighbors in F. This sampling is oblivious to weights, and hence still goes
through. Let the sampled subgraph be G'.

e Finally, the Jain-Vazirani algorithm is applied on G’ to obtain the final (2,12 + o(1))-
approximation. However, we still need to modify Jain-Vazirani to work with weighted inputs.
Roughly, Jain-Vazirani algorithm is a primal-dual method, so the weights are easily incorpo-
rated to the linear program, and the primal-dual algorithm is naturally modified so that dual
variables are increased at a rate that is proportional to their weight in the linear program.

After obtaining C*P*, the remaining steps of Algorithm 2 trivially runs in time O(k|| X ||o) when
oracle access to d is given. However, for the graph setting, the trivial implementation of Step 2 which
requires to compute costy (X, C**) needs to run O(k‘) single-source-shortest-paths from points in
C®* and this leads to a running time O(k|V]). In fact, as observed in [Tho05, Observation 1],
only one single-source-shortest-path needs to be computed, by running Dijkstra’s algorithm on a
virtual point g which connects to each point in C?P* to xy with 0 weight.

This completes the proof of Lemma 3.7. O

3.4 Coresets via Terminal Embedding with Additive Distortion

The second type of embedding has, in addition to the above (1 4 €)-multiplicative distortion, also
an additive distortion. Specifically, we assume the function set F = Fg is defined with respect to
some subset S C V and satisfies

Vee X,ceV, d(x,c) < fzlc) < (1+e¢€)-d(z,c) +e€-d(x,S5).

The choice of S clearly affects the dimension sdimp,ax(Fs), but let us focus now on the effect on
the clustering objective, restricting our attention henceforth only to the case z = 1 (recalling that
cost; = cost). Suppose we pick S := C?* where C* is an («, §)-approximation for k-MEDIAN.
Then even though the additive error for any given z,y might be very large, it will preserve the

k-MEDIAN objective for X, because
VC e VE, cost(X,C) < cost(F,C) < (1+¢€) - cost(X,C) + € - cost(X, C¥¥)
< (1+ (B + 1)e) - cost(X,C). (7)
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However, this does not immediately imply a coreset for k-MEDIAN, because we need an analogous
bound, but for D instead of X (recall that D is computed by importance sampling with respect to
F). In particular, using Lemma 3.2 and (7) we get one direction (with high probability)

VO eV, > wp(a)- fo(C) = (1 —€) - cost(F,C) > (1—€) > cost(X,C),
zeD

however in the other direction we only have

VC eV, > wp(x)- f2(C) < (1+e€) - cost(D,X) +e- Y wp(x) - d(z, C*™),
zeD xeD
where the term ) _pwp(x) - d(z, C**) remains to be bounded.
This term ) ., wp(z) - d(x, C**) can be viewed as a weak coreset guarantee which preserves
the objective cost(X,-) on C?P* only. Fortunately, because C®P* is fixed before the importance
sampling, our algorithm may be interpreted as estimating a fixed sum

cost(X, C*P¥) = Z wx (z) - d(z, C)
reX

using independent samples in D, i.e., by the estimator ) ., wp(z) - d(xz, C*?*). And now Hoeffd-
ing’s inequality shows that for large enough N, this estimator is accurate with high probability.

We present our new algorithm in Algorithm 3, which is largely similar to Algorithm 2, except
for a slightly larger number of samples N and some hidden constants. Hence, its running time is
similar to Algorithm 2, as stated in Corollary 3.8 for completeness. Its correctness requires new
analysis and is presented in Lemma 3.9.

Algorithm 3 Coresets for k-MEDIAN on F with additive distortion
1: compute an (O(1),O(1))-approximate solution C*P* for k-MEDIAN on X

X d 7Cvapx
2: for each z € X, let 03" := wx (x) - (Cosifx,mﬁx) + wX(Calxpx(x)))

> as in Lemma 3.4

3: for each z € X, let p, := %
yeX Ty
4: draw N := O (e_2k: (k:log k - sdimpax (Feoarx ) + log %) + k% log %) independent samples from X,
each from the distribution (p, : z € X) > sdimpax as in Lemma 3.2, and Feapx as in (8)
5: for each z in the sample D assign weight wp(x) := “;;g\f)

6: return the weighted set D

Corollary 3.8. Algorithm 5 can be implemented in time O(K|| X ||o) if it is given oracle access to
the distance d, and in time O(|V| + |E|) if the input is an edge-weighted graph G = (V, E) and M
1s its shortest-path metric.

Lemma 3.9. Fiz 0 < ¢,0 < %, an integer k > 1, and a metric space M (V,d). Given a weighted
set X CV, and an (O(1),0(1))-approzimate solution C*** € V¥ for k-MEDIAN on X, suppose
Foawx ={f, : V = Ry |z € X} satisfies

Vee X,ceV, dz,c) < fu(c) <(1+e€)-d(z,c)+e-d(x,CP); (8)
then Algorithm 38 computes a weighted set D C X of size
|D]lo = O (e %k (klog k - sdimpax(Foaex) + log 1) + k*log 1),
that with high probability 1 — § is an e-coreset for k-MEDIAN on X.

Proof. Suppose C** ¢ V* is an (a, )-approximate solution for a, 3 = O(1). Observe that (8)
implies (7), and write F = Fgapx for brevity.
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Sensitivity Analysis. We would like to employ Lemma 3.2. Observe that o3"* in Algorithm 3
is the same, up to hidden constants, as in Algorithm 2, hence the upper bound ai(px <1+ ak
follows immediately from Lemma 3.4. We also need to prove that o3™* > Q(o7) for all z € X,
where 07 = max ey % Once again, we aim to prove this as an upper bound on o7 .
Fix € X, and let C™* € V* be a maximizer in the definition of ¢ (which clearly depends

on x). Then

L wx(a) (€™
cost(F, Cmax)
< wx(x) - [(1+¢€) - d(z, C™) 4 € - d(z, C*P¥)]
- cost (X, Cmax)
N wx (x) - d(z, C*P*
<(1+¢€)-05+e€- C(Est)(X,(CmaX) )
wx (z) - d(x, C*PX)
cost(X, Capx)
< (1+4¢€) oy + Pe-odPx. as defined in line 2

by (8) and (7)

as defined in (4)

<(l4¢€) o5+ pPe- as C*P* is (q, B)-approximation

Combining this with our bound o} < O(f) - 05> from Lemma 3.4 (recall z = 1), we conclude that

ol <O(B) - o?Px.

Overall Error Bound. Recall our goal is to prove that with probably at least 1 — §, the output
D is a coreset, i.e.,

VC e VE,  cost(D,C) € (1+ O(fe)) - cost(X, C). (9)

Applying Lemma 3.2 with our choice of IV in line 4 of the algorithm, we know that with probability
at least 1 — /2,

VC eVE, > wp(x)- f2(C) € (1£€) - cost(F,C) (10)
zeD
We claim, and will prove shortly, that with probability at least 1 — /2,
Z wp(z) - d(x, C?P*) < 2. cost(X, C*P¥). (11)
zeD

Using this claim, we complete the proof as follows. By a union bound, with probability at least
1 — 4, both (10) and (11) hold. In this case, for all C' € V*, one direction of (9) follows easily

cost(D, C) Z wp(z by (8)
zeD

< (1+e€)-cost(F,C) by (10)

< (1+0O((Be)) - cost(X, C). by (7)
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For the other direction of (9), which crucially rely on (11), we have

cost(X, C) < cost(F,C) by (7)
1
< 1_c Z wp (@) - f2(C) by (10)
zeD
1 + apx
< . -cost(D,C) + ;)wp d(x, C?PX) by (8)
< 1 re cost(D,C) + | - cost (X, CPX), by (11)
—€ —€

and finally using that C?P* is («, )-approximation and some rearrangement, we get that cost(X, C') <
(14 O(Be)) cost(D, C).

It remains to prove our claim, i.e., that (11) holds with high probability. This follows by a
straightforward application of Hoeffding’s Inequality. To see this, define for each 1 < z < N the
random variable Y; := %, where x is the i-th sample in line 4, and let Y := 5 Z]\i
Then

Y = 3 wp(e) -, 0,
xeD
and its expectation is E[Y] = E[Y1] = "y wx(x) - d(z, C*P*) = cost(X, C?P¥).

Now observe that the random variables Y; are independent, and use Lemma 3.4 to bound each

of them by

wx (z) - dz, C*P)

0<Y; = apX/O_apX

< (1+ ak) - cost(xz, C**) = (1 + ak) E[Y].

Hence, by Hoeffding’s Inequality

2
Vi>0, Pr[Y —E[Y]>{] <exp (‘ ( +ZJZ;E[Y])2>

and for t = E[Y] and a suitable N > Q(a?k?log 1), we conclude that Pr [V > 2E[Y]] < §/2. This
proves the claim and completes the proof of Lemma 3.9. O

4 Coresets

We now apply the framework developed in Section 3 to design coresets of size independent of
X for various settings, including excluded-minor graphs (in Section 4.1), high-dimensional Eu-
clidean spaces (in Section 4.3), and graphs with bounded highway dimension (in Section 4.4). Our
workhorse will be Lemma 3.6 and Lemma 3.9, which effectively translate a terminal embedding F
with low distortion on X x V and low shattering dimension sdimy,,x into an efficient algorithm to
construct a coreset whose size is linear in sdimypayx (F).

We therefore turn our attention to designing various terminal embeddings. For excluded-minor
graphs, we design a terminal embedding F with multiplicative distortion 1 4 € of the distances,
and dimension sdimpyax(F) = O(poly(k/e) - log || X||o). For Euclidean spaces, we employ a known
terminal embedding with similar guarantees. In both settings, even though the shattering dimension
depends on || X]|o, it still implies coresets of size independent of X by our iterative size reduction
(Theorem 3.1). We thus obtain the first coreset (of size independent of X and V') for excluded-minor
graphs (Corollary 4.2), and a simpler state-of-the-art coreset for Euclidean spaces (Corollary 4.18).
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We also design a terminal embedding for graphs with bounded highway dimension (formally
defined in Section 4.4). This embedding has an additive distortion (on top of the multiplicative
one), but its shattering dimension is independent of X, hence the iterative size reduction is not
required. We thus obtain the first coreset (of size independent of X and V') for graphs with bounded
highway dimension (Corollary 4.25).

4.1 Excluded-minor Graphs

Our terminal embedding for excluded-minor graphs is stated in the next lemma. Previously, the
shattering dimension of the shortest-path metric of graphs excluding a fixed graph Hy as a minor
was studied only for unit point weight, for which Bousquet and Thomassé [BT15] proved that
F ={d(z,-) | # € X} has shattering dimension sdim(F) = O(|Hy|). For arbitrary point weight,
i.e., sdimpyay (F), it is still open to get a bound that depends only on |Hy|, although the special case
of bounded treewidth was recently resolved, as Baker et al. [BBH'20], proved that sdimyax(F) =
O(tw(@)) where tw(G) denotes the treewidth of the graph G. Note that both of these results use
no distortion of the distances, i.e., they bound F = {d(z,-) | x € X}. Our terminal embedding
handles the most general setting of excluded-minor graphs and arbitrary point weight, although it
bypasses the open question by allowing a small distortion and dependence on X.

Lemma 4.1 (Terminal Embedding for Excluded-minor Graphs). For every edge-weighted graph
G = (V, E) that excludes some fized minor and whose shortest-path metric is denoted as M = (V,d),
and for every weighted set X C V, there exists a set of functions F := {f, : V - Ry |z € X}
such that

Vee X,ceV, d(z,c) < fz(c) < (1+4€)-d(x,c),

and sdimpyay(F) = O(e72) -log || X lo-

Let us present now an overview of the proof of Lemma 4.1, deferring the full details to Sec-
tion 4.2. Our starting point is the following approach, which was developed in [BBH'20] for
bounded-treewidth graphs. (The main purpose is to explain how vertex separators are used as por-
tals to bound the shattering dimension, but unfortunately additional technical details are needed.)
The first step in this approach reduces the task of bounding the shattering dimension to counting
how many distinct permutations of X one can obtain by ordering the points of X according to their
distance from a point ¢, when ranging over all ¢ € V. An additional argument uses the bounded
treewidth to reduce the range of ¢ from all of V to a subset V C V, that is separated from X by
a vertex-cut P C V of size ]I:’] = O(1). This means that every path, including the shortest-path,
between every x € X and every c € V must pass through P, therefore

d(z,c) = min{d(z,p) + d(p,c) : p € P},

and the possible orderings of X are completely determined by these values. The key idea now is
to replace the hard-to-control range of ¢ € V with a richer but easier range of \]5\ = O(1) real
variables. Indeed, each d(z,-) is captured by a min-linear function, which means a function of
the form min; a;y; + b; with real variables {y;} that represent {d(p,c)} .p and fixed coefficients

{a;,b;}. Therefore, each d(x,-) is captured by a min-linear function g, : RIPI — R, and these
functions are all defined on the same |13| = O(1) real variables. In this representation, it is easy
to handle the point weight v : X — R, (to scale all distances from x), because each resulting
function v(z) - g, is still min-linear. Finally, the number of orderings of the set {g,},cx of min-
linear functions, is counted using the arrangement number for hyperplanes, which is a well-studied
quantity in computational geometry.
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To extend this approach to excluded-minor graphs (or even planar graphs), which do not admit
small vertex separators, we have to replace vertex separators with shortest-path separators [Tho04,
AGO6]. In particular, we use these separator theorem to partition the whole graph into a few parts,
such that each part is separated from the graph by only a few shortest paths, see Lemma 4.5 for
planar graphs (which is a variant of a result known from [EKM14]) and Lemma 4.12 for excluded-
minor graphs. However, the immediate obstacle is that while these separators consist of a few
paths, their total size is unbounded (with respect to X'), which breaks the above approach because
each min-linear function has too many variables. A standard technique to address this size issue
is to discretize the path separator into portals, and reroute through them a shortest-path from
each x € X to each ¢ € V. This step distorts the distances, and to keep the distortion bounded
multiplicatively by 1 + €, one usually finds inside each separating shortest-path [, a set of portals
P, C 1 whose spacing is at most € - d(z,c). However, d(z,c) could be very small compared to the
entire path [, hence we cannot control the number of portals (even for one path [).

Vertex-dependent Portals In fact, all we need is to represent the relative ordering of {d(z, ) :
x € X} using a set of min-linear functions over a few real variables, and these variables do not
have to be the distance to fized portals on the separating shortest paths. (Recall this description is
eventually used by the arrangement number of hyperplanes to count orderings of X.) To achieve
this, we first define vertez-dependent portals P! with respect to a separating shortest path [ and
a vertex ¢ € V (notice this includes also P for z € X). and then a shortest path from = € X to
¢ € V passing through [ is rerouted through portals P! U P!, as follows. First, since [ is itself a
shortest path, d(z, ¢) = miny, y,ei{d(x,u1) +d(u1,u2) +d(uz, c)}. Observe that d(u;,us) is already
linear, because one real variable can “capture” a location in [, hence we only need to approximate
d(xz,u1) and d(c,uz). To do so, we approximate the distances from ¢ to every vertex on the path [,
i.e., {d(c,u)}, ¢, using only the distances from c to its portal set P, i.e., {d(c,p)},cpt. Moreover,
between successive portals this approximate distance is a linear function, and it actually suffices
to use |P!| = poly(1/e) portals, which means that d(c,u) can be represented as a piece-wise linear
function in poly(1/e) real variables.

Note that the above approach ends up with the minimum of piece-wise linear (rather than
linear) functions, which creates extra difficulty. In particular, we care about the relative ordering
of {d(z,-) : x € X} over all ¢ € V, and to evaluate d(x,c) we need the pieces that ¢ and = generate,
i.e., information about P! U PL. Since the number of ¢ € V is unbounded, we need to “guess” the
structure of Pcl, specifically the ordering between the portals in Pcl and those in P:f:. Fortunately,
since every |P!| < poly(1/e), such a “guess” is still affordable, and this would prove Lemma 4.1.

Corollary 4.2 (Coresets for Excluded-Minor Graphs). For every edge-weighted graph G = (V, E)
that excludes a fized minor, every 0 < €,0 < 1/2 and integer k > 1, k-MEDIAN of every weighted
set X CV (with respect to the shortest path metric of G) admits an e-coreset of size O(e*k*log %)

Furthermore, such a coreset can be computed in time O(|E|) with success probability 1 — 6.

Proof. By combining Lemma 3.6, Lemma 3.7 with our terminal embedding from Lemma 4.1, we
obtain an efficient algorithm for constructing a coreset of size O(e~%k?log || X ||o). This size can be
reduced to the claimed size (and running time) using the iterative size reduction of Theorem 3.1. [

Remark 4.3. This result partly extends to (k,z)-CLUSTERING for all z > 1. The importance
sampling algorithm and its analysis are immediate, and in particular imply the existence of a
coreset of size O(e_4k2 log%). However we rely on known algorithm for z = 1 in the step of
computing an approximate clustering (needed to compute sampling probabilities).
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4.2 Proof of Lemma 4.1

For the sake of presentation, we start with proving the planar case, since this already requires most
of our new technical ideas. The statement of terminal embedding for planar graphs is as follows,
and how the proof can be modified to work for the minor-excluded case is discussed in Section 4.2.1.

Lemma 4.4 (Terminal Embedding for Planar Graphs). For every edge-weighted planar graph
G = (V,E) whose shortest path metric is denoted as M = (V,d) and every weighted set X C V,
there exists a set of functions F = Fx :={fz : V = Ry | x € X} such that for every x € X, and
ceV, fule) € (1 +e)-d(z,c), and sdimpyay(F) = O(e~2)log || X |o-

By definition, sdimmax(F) = max,.x—r, (Fy), so it suffices to bound sdim(F,) for every wv.
Also, by the definition of sdim, it suffices to prove for every H C F, with |H| > 2,

{Bu(e,r) s c € Vir = 0}] < poly(]|X]lo) - [#|7( ) 5 1XTo.

Hence, we fix some v : X — Ry and H C F, with [#| > 2 throughout the proof.

General Reduction: Counting Relative Orderings For % C F and c € V, let ¢/ be the
permutation of H ordered by v(z) - fy(c) in non-decreasing order and ties are broken arbitrarily.
Then for a fixed ¢ € V' and very r > 0, the subset By(c,r) C H is exactly the subset defined by
some prefix of o’*. Hence,

{Bu(c,r):ceV,r >0} < |H|- HO‘Z{ cce VY.
Therefore, it suffices to show
[{olt s c € VY| < poly([|X]|o) - [#]00 ) el XTo.

Hence, this reduces the task of bounding of shattering dimension to counting the number of relative
orderings of {v(zx) - f.(c) | z € X}.

Next, we use the following structural lemma for planar graphs to break the graph into few parts
of simple structure, so we can bound the number of permutations for ¢ coming from each part. A
variant of this lemma has been proved in [EKM14], where the key idea is to use the interdigitating
trees. For completeness, we give a full proof of this lemma in Appendix A.

Lemma 4.5 (Structural Property of Planar Graphs, see also [EKM14]). For every edge-weighted
planar graph G = (V,E) and subset S C V, V can be broken into parts 11 := {V;}; with |II| =
poly(|S]) and U, V; =V, such that for every V; € II,

2. there exists a collection of shortest paths P; in G with |P;| = O(1) and removing the vertices
of all paths in P; disconnects V; from V \ V; (points in V; are possibly removed).

Furthermore, such I1 and the corresponding shortest paths P; for Vi € II can be computed in O(|V])

time” .

"This lemma is used only in the analysis in this section, but the running time is relevant when this lemma is used
again in Section 5.
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Applying Lemma 4.5 with S = X (noting that S is an unweighted set), we obtain IT = {V;},
with [TI| = poly(||X]||o), such that each part V; € II is separated by O(1) shortest paths P;. Then

‘{JZ'L rceV}H < Z ‘{UZ{ ce Vi
V;ell

Hence it suffices to show for every V; € 11, it holds that
‘{UZ{ ‘ce VzH < |7_[|O~(6*2)10g|IX||0‘ (12)

Since |J; Vi =V, it suffices to define functions f,(-) for ¢ € V; for every i independently. Therefore,
we fix V; € II throughout the proof. In the following, our proof proceeds in three parts. The first
defines functions f,(-) on V;, the second analyzes the distortion of f,’s, and the final part analyzes
the shattering dimension.

Part I: Definition of f, on V; By Lemma 4.5 we know |V; N X| = O(1). Hence, the “simple”
case is when = € V; N T, for which we define f,(-) := d(z,-).

Otherwise, x € X \ V;. Write P; := {P;};. Since P;’s are shortest paths in G, and removing P;
from G disconnects V; from V' \ V;, we have the following fact.

Fact 4.6. For c € V; and x € X \'V;, there exists P; € P; and /a2’ € P}, such that d(c,x) =
d(e,d) +d(d,2") 4+ d(2', x).
Let dj(c,x) be the length of the shortest path from c to x that uses at least one point in P;.
For each P; € P;, we will define f7 : V; — R4, such that fi(c) is within (1 +€) - dj(c, x), and let
fale) = poin fi(c) c
Hence, by Fact 4.6, the guarantee that flle)e 1+e)- dj(c,x) implies fy(c) € (1 x¢€)-d(x,c), as
desired. Hence we focus on defining f7 in the following.

Defining ffc : Vi = Ry Suppose we fix some P; € P;, and we will define f% (c), for ¢ € V;. By
Fact 4.6 and the optimality of shortest paths, we have
dj(z,c) = minp {d(e,d) +d(c,2") +d(2,x)}.

c .z’ eP;
For every y € V, we will define ZZ : Pj — R4 such that lé(y’) € (1+e)-d(y,y) for every y € Pj.
Then, we let

flle) == min {I(c) +d(c,a") + (")},
i

c,x'eP,

and this would imply f2(c) € (1+e) -dj(z,c). So it remains to define ZZ : P — Ry forevery y € V.

Defining 7 : P; - Ry Fix y € V and we will define 1 (y') for every i € P;. Pick h, € P; that
satisfies d(y, hy) = d(y, P;). Since P; is a shortest path, we interpret P; as a segment in the real
line. In particular, we let the two end points of P; be 0 and 1, and P; is a (discrete) subset of [0, 1].

Define a,b € P; such that a < hy, < b are the two furthest points on the two sides of h on P; that

satisfy d(hy,a) < M and d(hy,b) < %. Then construct a sequence of points a = g1 < ¢o...
in the following way. For ¢t = 1,2, ..., if there exists u € (¢;, 1] N P; such that d(g;,u) > €- d(y, hy),
then let ¢iy1 be the smallest such u; if such v does not exist, then let ¢;4+1 := b and terminate.
Essentially, this breaks P; into segments of length € - d(y, hy), except that the last one that ends

with b may be shorter. Denote this sequence as @y := (¢1 = a,...,¢m = b).
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Claim 4.7. For every y €V, |Q,| = O(e?).
Proof. By the definition of @, for 1 <t <m — 2, d(q¢, ¢t+1) > € - d(y, hy). On the other hand, by
the definition of a and b, d(q1, ¢n) = d(a,b) < O(d(y’ehy)). Therefore, |Qy| < O(e72), as desired. O

Definition of f, on V;: Recap Define

d(hy,y') ity <a=qory >b=qm
L) = dy.a) fa<y <qal<t<m (13)
d(ya Qm) if y’ =b= qm

where h, € Pj, Qy = {q¢:}+ C P;. To recap,
o if x € X NV, then fy(c) :=d(z,c);

e otherwise x € X \ Vi, fi(c) := minp,ep, fi(c), where

fi(e) = min {I(c) +d(c,2") + (=)} (14)
c,x'eP;
Finally,
i :
fz(c) ngel%@ fl(c), Ve e V. (15)

Part II: Distortion Analysis The distortion of I’s is analyzed in the following Lemma 4.8, and
the distortion for f, follows immediately from the above definitions.

Lemma 4.8. For every Pj € P, y eV, y' € P, B(y) € (1£¢)-d(y, ).

Proof. If 3y = q,, = b, by definition (y') = d(y,qm) = d(y,y'). Then consider the case when
Yy <a=gqory >b=qn.

B(y') = d(hy,y)

S d(y/7 y) :l: d(y7 hy)
€ d(y/7 y) te- d(y/7 hy),

where the last 1nequahty follows from d(y’, hy) > Ay, hy) This implies d(y,y') € (1 +€) - E(y/).
Otherwise, ¢; < v’ < q;41 for some 1 <t < m. By the definition of ¢;’s and the definition of A,

d(y,y') € d(y,q:) £ d(qs,y")
€ d(y,qt) e d(y, hy)
€d(y,q) £ e-dy,y)
el () +e-d(y,y),

which implies (y') € (1% €) - d(y,y/). This finishes the proof of Lemma 4.8. O
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Part ITI: Shattering Dimension Analysis Recall that we fixed v : X — R, and ‘H C F, with
|H| > 2. Now we show

{oX:ceVi}| < |0 g lIX o (16)

Let H := {z : v(x) - f € H}, so |[H| = |H|. Recall that |V; N X| = O(1) by Lemma 4.5, so
|V; M H| = O(1). Hence, if we could show

{0l : ce Vi}| < N(|HJ)
for H such that H N'V; = (), then for general H,
{0l c e ViY| < N(H| — [V;n H|) - [H|MD < N(|H|) - 17O,

Therefore, it suffices to show (16) under the assumption that H NV; = 0.
In the following, we will further break V; into |H |O(572) parts, such that for each part V', f, on
V’ may be alternatively represented as a min-linear function.

Lemma 4.9. Let u = |P;|. There exists a partition I’ of V;, such that the following holds.
1. |0| < |H|OE ),

2. VV' €T, Vx € H, there exists g, : R® — R, where s = 0(6_2), such that g, is a minimum
of O(e~*u) linear functions on R®, and for every ¢ € V', there exists y € R® that satisfies

f:c(c) = g:c(y)

Proof. Before we actually prove the lemma, we need to examine f% (c) and ZZ more closely. Suppose
some P; € P; is fixed. Recall that for y € V,y' € P; (defined in (13)),

d(hy,y') ity <a=qory >b=qm
D) =<dy,a) ifa<y<q,1<t<m
d(ya Qm) if y’ =b= qm

where hy, € P;, Q, = {¢:}+ C P;. Hence, for every y, l; is a piece-wise linear function with
O(|Qy]) = O(e72) (by Claim 4.7) pieces, where the transition points of I, are @, U {0,1} (noting
that d(hy,y’) is linear since hy,y’ € P;).
Using that [’s are piece-wise linear, we know for c € V;,x € X \ 'V},
fi(c) = minp {L() +d(c,2") + (2} defined in (14)
c,x'eP;

= min {B() +d(d, ') + i (")} as [’s are piece-wise linear
C’vm,EQcUQzU{Ovl}

Hence, to evaluate fi(c) we only need to evaluate () and B(z') at ¢, 2" € Q.U Q. U{0,1}, and
in particular we need to find the piece in IZ and I3 that every ¢, 2’ € Q.UQ,U{0,1} belong to, and
then evaluate a linear function. Precisely, the piece that every ¢/, 2’ belongs to is determined by
the relative ordering of points @, U Q. (recalling that they are from P;). Thus, the pieces are not
only determined by x, but also by ¢ which is the variable, and this means without the information
about the pieces, f, cannot be represented as a min-linear function g,. Therefore, the idea is to
find a partition I" of V;, such that for ¢ in each part V' € T, the relative ordering of Q. with respect
to {Q. : © € H} is the same. We note that we need to consider the ordering of (). with respect to
all Q,’s, because we care about the relative orderings of all f,’s.
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Defining I' For 1 < j <wu,ceV, let 7 be the ordering of Q). with respect to UyeH Q, on P;.
Here, an ordering of Q). with respect to <Uy€ % Qy> is defined by their ordering on P; which is
interpreted as the real line. In our definition of I', we will require each part V’ € T to satisfy that

Ve € V', the tuple of orderings_(Tcl, ..., 7%) remains the same. That is, V; is partitioned according

to the joint relative ordering 7¢’s on all shortest paths P; € P;.
Formally, for 1 < j < u, let A7 := {7 : ¢ € V;} be the collection of distinct ordering 77 on P;
over points ¢ € V;. Define

A=A x ... x A¥

as the tuples of 7;’s for 1 < j < u (here, the x operator is the Cartesian product). For (7y,...,7,) €
A, define

Vi(n"""r“) ={ceVi:(tl=m)A .. AT =7}

C

as the subset of V; such that the ordering 7 for each 1 < 7 < u agrees with the given tuple. Finally,
we define the partition as

I:= {Vi(ﬁ""’m) (71,0, Tu) € A}

Bounding |[I'| By Claim 4.7, we know |Qy| = O(e72) for every y € V. Hence,
O (e72|H|). Therefore, for every j € [u],

e 2 €2

Uyerr @ =

Therefore,
. e—2 ~. _
D) < <y M| < O (M) < O,

as desired.

Defining g, By our definition of T', we need to define g, for each V' € T'. Now, fix tuple
(11,...,74) € A, so the part corresponds to this tuple is V'’ = Vi(n"“’m), and we will define g, with
respect to such V'. Similar to the definition of f,’s (see (15)), we define g, : R® — R, to have the

form

— min o (v).
9:(y) lglelgigx(y)

Then, for 1 < j < u, € H, define ¢} : R® — R of s := O(e~2) variables (q1, ..., qm,d(c,q1), ...,
d(¢,qm), he) for g; € Q., such that

I(q1, - qm.d(c,q1),...,d(c,qm), he) = i V() +d(d, ")+ (")},
92(q1s - gm, d(c, q1) (¢, qm), he) cf,x/eQﬁﬁlélzu{o,l}{c(cH (c,a") + 13(2)}

We argue that for every 1 < j < u, gg; may be viewed as a minimum of O(e~%) linear functions
whose variables are the same with that of gJ.
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e Linearity. Suppose ¢ € V', and fix ¢,z € Q.U Q, U {0,1}. By the above discussions,
I2(¢) could take values only from {d(c,q;) : ¢; € Q.} U {d(he,c)}. Since Vg; € Q., d(c,q;)
is a variable of 'gg;, and d(h¢, ) = |he — (/| is linear and that h. is also a variable of gg(;, we
conclude that IZ(c) may be written as a linear function of the same set of variables of gi. By
a similar argument, we have the same conclusion for 1. Therefore, I1(¢') + d(c/, 2') + (')
may be written as a linear function of (qi,...,Gm,d(c,q1),...,d(c,qm), he).

e Number of linear functions. By Claim 4.7, we have
eV, Q) =0(),
hence |Q.UQ,U{0,1}| = O(e~2). Therefore, there are O(e~*) pairs of ¢, 2’ € Q.UQ,U{0, 1}.

Therefore, item 2 of Lemma 4.9 follows by combining this with the definition of g,. We completed
the proof of Lemma 4.9. O

Now suppose I' is the one that is guaranteed by Lemma 4.9. Since

‘{O'Z1£ cce Vil < Z HO‘Z{ cce V'Y
Vier

and
[P < B[O < (D, (17)
where the last inequality is by Lemma 4.5 (recalling u = |P;|), it suffices to show for every V' € T,
{o i c e V'}| < |H[OL ) og X0, (18)

Fix some V' € T'. By Lemma 4.9, for every x € H there exists a min-linear function g, : R —
R, (s = O(e2))), such that for every c € V', there exists y € R* that satisfies f,(c) = g.(y). For
y € R® define Wf as a permutation of H that is ordered by ¢, (y) in non-increasing order and ties
are broken in a way that is consistent with ¢. Then

HUZ{“ cce V' < |{7T§I ry e R} (19)

We make use of the following lemma to bound the number of permutations Wf . The lemma relates
the number of relative orderings of g,’s to the arrangement number in computational geometry.

Lemma 4.10 (Complexity of Min-linear Functions [BBH"20]). Suppose there are m functions
g1y gm from R® to R, such that Vi € [m], g; is of the form

gi(x) := min{g;;(x)},
JElt]
where g;; is a linear function. For x € R®, let m, be the permutation of [m] ordered by g;(x). Then,
Hmp sz € R} < (mt)9®),

Applying Lemma 4.10 on g,’s for # € H with parameters s = O(e 2), t = O(e *u) =
O (e *log || X||o) and m = [H|, we obtain

Hﬂ_é{ Ly € Rs}‘ <0 (6_1’H’ log ”XHO)O(572) < ‘H‘O(572)~log“X”0' (20)

Thus, (18) is implied by combining (20) with (19). Finally, we complete the proof of Lemma 4.4
by combining the above three parts of the arguments.
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4.2.1 From Planar to Minor-excluded Graphs

The strategy for proving the minor-excluded case is similar to the planar case. Hence, we focus on
presenting the major steps and highlight the differences, while omitting repetitive arguments. The
terminal embedding lemma that we need to prove is restated as follows.

Lemma 4.11 (Restatement of Lemma 4.1). For every edge-weighted graph G = (V, E) whose
shortest path metric is denoted as M = (V,d), and every weighted set X C V, given that G
excludes some fixed minor, there exists a set of functions F := {f, : V — Ry | ©z € X} such that
for everyxz € X, andc €V, d(z,c) < fuo(c) < (1+¢€)-d(x,c), and sdimpay (F) = O(e2) -log || X |o-

Similar to the planar case, we fix v: X — R4 and H C F, with || > 2 throughout the proof.
Then ¢! is defined the same as before, and it suffices to prove

[{o™ - c € VY| < poly(|| X|lo) - [#[O ) oslIXllo,

Next, we used a structural lemma to break V into several parts where each part is separated
by a few shortest paths. In the planar case, we showed in Lemma 4.5 that the number of parts
is O(||X|lo), and only O(1) separating shortest paths in G are necessary. However, the proof of
Lemma 4.5 heavily relies on planarity, and for minor-excluded graphs, we only manage to prove
the following weaker guarantee.

Lemma 4.12 (Structural Property of Minor-excluded Graphs). Given edge-weighted graph G =
(V,E) that excludes a fized minor, and a subset S C V, there is a collection I1 := {V;}; of V' with
[II| = poly(|S|) and \J; Vi =V such that for every V; € 11 the following holds.

1. |SNV;|=0(Q).
2. There exists an integer t; and t; groups of paths Pi, ... ,Pfi in G, such that

(a) |Uj=, Pj| = O(log |S])

(b) removing the vertices of all paths in U?:l 73;- disconnects V; from V \'V; in G (possibly
removing points in V;)

(c) for1 <j § t;, let G; be the sub-graph QfG formed by removz’nglall paths in Pi, ... ,77;:_1
(define G{ = G), then every path in P; is a shortest path in G.

The lemma follows from a recursive application of the balanced shortest path separator theorem
in [AG06, Theorem 1], stated as follows.

Lemma 4.13 (Balanced Shortest Path Separator [AG06]). Given edge-weighted graph G = (V, E)
that excludes a fized minor with non-negative vertex weight®, there is a set of vertices S C 'V, such
that

1. S=PiUPyU... where P; is a set of shortest paths in the graph formed by removing Uj<i P;
2. 3. |Pi| = O(1), where the hidden constant depends on the size of the excluded minor

3. the weight of every component in the graph formed by removing S from G is at most half the
weight of V.

8[AGO67 Theorem 1] only states the special case with unit vertex weight, while the general weighted version was
discussed in a note of the same paper.
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Proof of Lemma 4.12. Without loss of generality, we assume G is a connected graph. We will
apply Lemma 4.13 on G recursively to define the partition II and the groups of shortest paths
{77;- }; associated with the parts. The detailed procedure, called DEF-II, is defined in Algorithm 4.
We assume there is a global I" initialized as I' = () which is constructed throughout the execution
of the recursive algorithm. The execution of the algorithm starts with DEF-II(G, 0, S).

Roughly, the procedure DEF-II takes a sub-graph G’, a set sep = {P;}; of groups of paths and
S as input, such that G’ corresponds to a component in a graph formed by removing all paths in
sep from G. The procedure execute on such G’ and find shortest paths in G’ using Lemma 4.13.
The found shortest paths are segmented (with respect to S) and added to the collection II. Then
the found shortest paths are removed from G’ to form a new graph G”. Components in G” that
contain less than 2 points in S are made new parts in II, and the procedure DEF-II is invoked
recursively on other components in G”.

Algorithm 4 Procedure DEF-II(G' = (V' E’), sep, S)
1: apply Lemma 4.13 on graph G’ with vertex weight 1 if x € V/ N S and 0 otherwise, and let P
be the set of shortest paths in G’ guaranteed by the lemma.

2: for P € P do

3: interpret P as interval [0,1], list SN P ={z1,...,2p}and 0 <z <... <z, <1

4: segment P into sub-paths P’ = {[0, x1], [x1,z2], ..., [¥m, 1]}

5: for P' € P/ do

6: include P’ in II, and define the set of associated groups of shortest paths as sep U { P’}
7 end for

8: end for

9: let G” be the graph formed by removing all paths in P, and let C = {C;}; be its components
10: include the union of all components with no intersection with S as a single part in II, and define

the set of associated groups of paths as sep U P
11: for C; € C do
12: if |C; N S| =1 then

13: include C; as a new part in I, and define the set of associated groups of paths as sepUP

14: else if |C; N S| > 2 then

15: call DEF-II(G"[C;], sep U {P}, S) > G"[C;] is the induced sub-graph of G” on vertex
set C;

16: end if

17: end for

By construction and Lemma 4.13, it is immediate that Jy. .y Vi = V, and item 2.(b), 2.(c) also
follows easily. To see item 1, we observe that we have two types of V;’s in II. One is from the
shortest paths P (Line 6), and because of the segmentation, the intersection with S is at most 2.
The other type is the components in G” whose intersection with S is by definition at most 1 (Line
10, 13). Therefore, it remains to upper bound |II|, and show item 2.(a) which requires a bound of
‘U§i:1 Pi| = O(log|S|) for all V; € II.

First, we observe that at any execution of Gen-II, it is always the case that 0 < |sep| < O(log|S]),
because Lemma 4.13 guarantees the weight of every component in G” is halved. This also implies
that the total number of executions of GEN-II is poly(|S|). Therefore, VV; € II, |U§-i:1 73]’| <
O(log|S|), which proves item 2.(a).

Bounding |II|] Observe that there are three places where we include a part V; in II, and we let
II; be the subset of those included at Line 6, Il be those included at Line 10, and IlI3 be those
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included at Line 13. Then |II| < |I1;] + |[IIo| + |IT3].

If V; € II;, then V; is a sub-path of some P € P, where P is defined at Line 1. We observe
that the number of all V; € II; such that V; NS # 0, i.e. |{V; € I} : V; NS # 0}, is at most
O(|S]). This is because we remove paths P € P in every recursion, which means any point in S
can only participate in at most one such P during the whole execution, and hence any point in S
can intersect at most two sub-paths V; € II; such that V; NS # () (because |V; N S| < 2 by the
segmentation at Line 4). On the other hand, if V; € I} and V; N S = (), then no segmentation was
performed and V; = P for P at Line 2. Therefore, the number of such V;’s is bounded by the total
number of execution of DEF-II multiplied by the size of P at Line 2, which is at most poly(]S]).
Therefore, we conclude that |II;| = poly(|S|).

Finally, since every V; € II3 satisfies |V; N S| = 1 (at Line 12 and 13), and we observe that
subsets in II3 are disjoint, so we immediately have |II3] = O(|S]). For I, we note that only one
Vi € Il could be included in each execution of DEF-II, so |[IIz| = poly(|S]).

We conclude the proof of Lemma 4.12 by combining all the above discussions. U

As before, we still apply the Lemma 4.12 with S = X (which is unweighted set) to obtain
' = {V;}; with |II] = O(poly(]|X||o)), and it suffices to prove for each V; € II

{oM e e V)| < |H|OC D es X0,

To proceed, we fix V; and define functions f,(-) for ¢ € V;. However, compared with Lemma 4.5,
the separating shortest paths in Lemma 4.12 are not from the original graph G, but is inside some
sub-graph generated by removing various other separating shortest paths. Also, the number of
shortest paths in the separator is increased from O(1) to O(log || X||o)-

Hence, we need to define f,’s with respect to the new structure of the separating shortest paths.
Suppose {Pi,... ,Pgi} is the t; groups of paths guaranteed by Lemma 4.12. Also as in the lemma,
suppose G; is the sub-graph of G formed by removing all paths in P, ... ,77;»_1 (define G} = G).
For1 <j<t¢, Pe€ 73; and z,y € V, let df(:z:,y) denote the length of the shortest path from x
to y using edges in G; and uses at least one point of P. Then, analogue to Fact 4.6, we have the
following lemma.

Lemma 4.14. For c€ V; and x € V \'V;, there exists 1 < j <t;, P € P; and ,x’' € P, such that
d(c,x) = df (c,d) +db (¢, 2') + df (/).

Proof. First, we observe that the shortest path ¢ ~» x has to intersect (at a vertex of) at least one
path contained in {77]2 };, because removing U;'i:1 P; disconnects V; from V' \ V;. Suppose jy is the
smallest j such that ¢ ~» x intersects a shortest path in Ps, and let P € P be any intersected path
in Pj .

Then, this implies that (the edge set of) ¢ ~» z is totally contained in sub-graph G, since G
is formed by removing only groups P; with j < jo which do not intersect ¢ ~» . Hence, we have
d(c,x) = dG;_O (¢, x), where dGéo is the shortest path metric in sub-graph Gj . By Lemma 4.12, P is
a shortest path in G§‘07 so ¢ ~ x has to cross P at most once, which implies there exists ¢, 2’ € P,
such that d(z,¢) = df (¢,¢) + df (¢, 2) + df (2, x), as desired. O

Using Lemma 4.14 and by the optimality of the shortest path, we conclude that

Vee Vi,z € X, d(c,x) = min min min {df(c, )+ df(c’,:z:/) + df(x/,:n)}.

lsjsti pep} c',a’€P

29



Then, for each 1 < j < t;, path P € 77;-, we use the same way as in the planar case to define the
approximate distance function [ to approximate df (y,y) for y € V and ¢y € P. The f, is then
defined similarly, and the distortion follows by a very similar argument as in Lemma 4.8.

The analysis of shattering dimension is also largely the same as before, except that the definition
of u in the statement of Lemma 4.9 is slightly changed because of the new structural lemma. The
new statement is presented as follows, and the proof of it is essentially as before.

Lemma 4.15. Let u = ]U;’Zl 77;] There exists a partition I' of V;, such that the following holds.
1. 0| < |H|OE D),

2. YV' €T, Vo € H, there exists g, : R® — R, where s = O(e~2), such that g, is a minimum
of O(e=*u) linear functions on R®, and for every ¢ € V', there exists y € R® that satisfies

fm(c) = gm(y)

We apply the lemma with the new bound of u = ]U?Zl 77;] = O(log || X|l0) (by Lemma 4.12),
and the bound in (18) is increased to

0| < |H|O€ D < | g0 leg Xl

Finally, to complete the proof of Lemma 4.1, we again use Lemma 4.10 on each V' € T to conclude
the desired shattering dimension bound.

4.3 High-Dimensional Euclidean Spaces

We present a terminal embedding for Euclidean spaces, with a guarantee that is similar to that of
excluded-minor graphs. For these results, the ambient metric space (V,d) of all possible centers is
replaced by a Euclidean space.’

Lemma 4.16. For every e € (0,1/2) and finite weighted set X C R™, there exists F = {fy : R™ —
Ry |z € X} such that

Vr e X,ce R™, |z —cll2 < fz(c) < (1 +¢€)||z — cllo,
and sdimpyax (F) = O(e~2log || X ||o)-

Proof. The lemma follows immediately from the following terminal version of the Johnson-Lindenstrauss
Lemma [JL84], proved recently by Narayanan and Nelson [NN19].

Theorem 4.17 (Terminal Johnson-Lindenstrauss Lemma [NN19]). For every ¢ € (0,1/2) and
finite S C R™, there is an embedding g : S — R for t = O(e~%1og|S|), such that

Vee Sy e R,z —ylz2 < llg(z) —g(W)llz < (1 + e)llz = yll2-

Given X C R™, apply Theorem 4.17 with S = X (as an unweighted set), and define for
every z € X the function f.(c) := |lg(z) — g(c)||]2. Then F = {f, | * € X} clearly satisfies the
distortion bound. The dimension bound follows by plugging ¢t = O(e=2log || X||o) into the bound
sdimpax (F) = O(t) known from [FL11, Lemma 16.3].10 O

Tt is easily verified that as long as X is finite, our entire framework from Section 3 extends to V = R™ with
l2 norm. For example, all maximums (e.g., in Lemma 3.2) are well-defined by using compactness arguments on a
bounding box.

9The following is proved in [FL11, Lemma 16.3]. For every S C R, the function set H := {h, | x € S} given by
hz(y) = ||z — yl|2, has shattering dimension sdimmax(H) = O(t).
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Corollary 4.18 (Coresets for Euclidean Spaces). For every 0 < €,§ < 1/2, z > 1, and integers
k,m > 1, Euclidean (k,z)-CLUSTERING of every weighted set X C R"™ admits an e-coreset of size
O(e72%k2log L). Furthermore, such a coreset can be computed™ in time O (k|| X |lom) with success
probability 1 — 4.

Proof. By combining Lemma 3.6, Lemma 3.7 with our terminal embedding from Lemma 4.16, we
obtain an efficient algorithm for constructing a coreset of size O(e~42%k? log || X ||o). This size can be
reduced to the claimed size (and running time) using the iterative size reduction of Theorem 3.1. [

Remark 4.19 (Comparison to [HV20]). For (k, z)-CLUSTERING in Euclidean spaces, our algorithms
can also compute an e-coreset of size O(e~9(#)k), which offers a different parameters tradeoff than
Corollary 4.18. This alternative bound is obtained by simply replacing the application of Lemma 3.2
(which is actually from [FSS20]) with [HV20, Lemma 3.1] (which itself is a result from [FL11],
extended to weighted inputs).

Our two coreset size bounds are identical to the state-of-the-art bounds proved by Huang and
Vishnoi [HV20] (in the asymptotic sense). Their analysis is different, and bounds sdimy,,y inde-
pendently of X using a dimensionality-reduction argument for clustering objectives. In contrast,
we require only a loose bound sdimuy..(F) = O(poly(e~!) - log || X||g), which follows immediately
from [NN19], and the coreset size is then reduced iteratively using Theorem 3.1, which simplifies
the analysis greatly.

4.4 Graphs with Bounded Highway Dimension

The notion of highway dimension was proposed by Abraham, Fiat, Goldberg, and Werneck [AFGW10]
to measure the complexity of road networks. Motivated by the empirical observation that a shortest
path between two far-away cities always passes through a small number of hub cities, the high-
way dimension is defined, roughly speaking, as the maximum size of a hub set that meets every
long shortest path, where the maximum is over all localities of all distance scale. Several slightly
different definitions of highway dimension appear in the literature, and we use the one proposed
in [FFKP18].

Definition 4.20 (Highway Dimension [FFKP18]). Fix some universal constant p > 4. The highway
dimension of an edge-weighted graph G = (V, E), denoted hdim(G), is the smallest integer ¢ such
that for every r > 0 and = € V, there is a subset S C B(z, pr) with |S| < t, such that S intersects
every shortest path of length at least r all of whose vertices lie in B(z, pr).

Remark 4.21. This version generalizes the original one from [AFGW10] (and also the subsequent
journal version [ADF16]), and it was shown to capture a broader range of real-world transporta-
tion networks [FFKP18]. We also note that the version in [ADF*16] is stronger than the notion
of doubling dimension [GKLO03], however, the version that we use (from [FFKP18]) is not. In par-
ticular, it means that the previous coreset result for doubling metrics [HJLW18] does not apply to
our case.

Unlike the excluded-minor and Euclidean cases mentioned in earlier sections, our coresets for
graphs with bounded highway dimension are obtained using terminal embeddings with an additive
distortion.

"'We assume that evaluating ||z — y||2 for z,y € R™ takes time O(m).
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Lemma 4.22. Let G = (V,E) be an edge-weighted graph and denote its shortest-path metric by
M(V,d). Then for every 0 < e < 1/2, weighted set X C V and an (unweighted) subset S C V,
there exists Fs = {fy : V — Ry | x € X} such that

Vee X,ceV, d(z,c) < f.(c) < (1+e€)-d(z,c)+e-d(x,95),

and sdimpy,ax(Fs) = (|S] + hdim(g))O(log(l/E))'

Proof. We rely on an embedding of graphs with bounded highway dimension into graphs with
bounded treewidth, as follows.

Lemma 4.23 ([BKS18]). For every 0 < e < 1/2, edge-weighted graph G = (V,E) of highway
dimension h, and S C V., there exists a graph G' = (V', E') of treewidth tw(G') = (|S|+h)OUosl/)
and a mapping ¢ : V — V' such that

Ve,y €V, dg(x,y) <de(9(x),¢(y)) < (1 +€) - da(z,y) + € min{d(z, 5),d(y, S)}-

We now apply on G’ (the graph produced by Lemma 4.23), the following result from [BBH" 20,
Lemma 3.5], which produces the function set Fs we need for our proof.

Lemma 4.24 ([BBH'20]). Let G = (V, E) be an edge-weighted graph, and denote its shortest-path
metric by M(V,d). Then for every weighted set X C V', the function set F = {d(x,-) | x € X} has
sdimpax (F) = O(tw(Q)), where tw(G) is the treewidth of G.

Notice that we could also apply on G’ our own Lemma 4.1, because bounded-treewidth graphs
are also excluded-minor graphs, however Lemma 4.24 has better dependence on tw(G) and also
saves a poly(1/e) factor. This concludes the proof of Lemma 4.22. O

Corollary 4.25 (Coresets for Graphs with Bounded Highway Dimension). For every edge-weighted
graph G = (V, E), 0 < €,0 < 1/2, and integer k > 1, k-MEDIAN of every weighted set X CV (with
respect to the shortest path metric of G) admits an e-coreset of size O((k-+hdim(G))C00s(1/€)) log ).
Furthermore, it can be computed in time O(|E|) with success probability 1 — 6.

Proof. By combining Lemma 3.9, Corollary 3.8 with our terminal embedding from Lemma 4.22,
we obtain an efficient also for constructing a coreset of the said size. Notice that we do not need
to apply the iterative size reduction (Theorem 3.1) because sdimyx is independent of X, thanks
to the additive error. O

5 Applications: Improved Approximation Schemes for k-Median

In this section, we apply coresets to design approximation schemes for k-MEDIAN in shortest-path
metrics of planar graphs and graphs with bounded highway dimension. In particular, we give an
FPT-PTAS, parameterized by k and €, for k~-MEDIAN in graphs with bounded highway dimension,
and a PTAS for k-MEDIAN in planar graphs. Both algorithms run in time near-linear in |V| and
improve state of the art results.
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FPT-PTAS An e-coreset D reduces the size of the input data set X while approximately pre-
serving the cost for all clustering centers. Intuitively, in order to find a (14 €)-approximate solution,
it suffices to solve the problem on D instead of X. However, solving the problem on D does not
necessarily imply a PTAS for X because the optimal center C' maybe contain element from the
ambient space V, and thus would require enumerating all center sets from V* making this approach
prohibitively expensive. Instead, we enumerate all k-partitions of D and find an optimal center
for each part. This simple idea implies an FPT-PTAS for k-MEDIAN and it can be implemented
efficiently if the coreset size is independent of the input X. We formalize this idea in Section 5.1.

Centroid Set The aforementioned simple idea of enumerating all k-partitions of the coreset has
exponential dependence in k, and hence is not useful for PTAS. Precisely, the bottleneck is that
the set of potential centers, which is V, is not reduced. To reduce the potential center set, we
consider centroid set that was first introduced by [Mat00] in the Euclidean setting, and later has
been extended to other settings, e.g., doubling spaces [HJLW18]. A centroid set is a subset of V'
that contains a (1 + €)-approximate solution. We obtain centroid sets of size independent of the
input X for planar k-MEDIAN, improving the recent bound of (log ]V!)Eio(l) from [CPP19]. The
formal statement of our result for the centroid set can be found in Section 5.2.

PTAS for Planar k-Median The aforementioned improvement for centroid sets immediately
implies improved PTAS for k-MEDIAN. Indeed, a (1 + €)-approximation for the centroid set is
as well a (1 + O(e))-approximation for the original data set. Specifically, we apply our cen-
troid set to speedup a local search algorithm [CKM19] for planar k-MEDIAN, and our result is

a PTAS that runs in time O ((k‘e_l)(o(l) ]V\) which is near-linear in |V|. This improves a previous

PTAS [CKM19] whose running time is k°(W|V|€ 7", and an FPT-PTAS [CPP19] whose running
time is 20(ke *log(ke"1))|17|0() | Details of the PTAS can be found in Section 5.3.

o(1)

5.1 FPT-PTAS

We state our FPT-PTAS as a general reduction. Specifically we show that if a graph family admits
a small e-coreset then it also admits an efficient FPT-PTAS.

Lemma 5.1. Let G be family of graphs. Suppose for 0 < € < %, integer k > 1, every graph
G = (V,E) € G and every weighted set X C V', there is an e-coreset D = D(G, X) for k-MEDIAN
on X in the shortest-path metric of G. Then there exists an algorithm that for every 0 < e < %,
integer k > 1 and G € G computes a (1 + €)-approzimate solution for k-MEDIAN on any weighted
set X CV in time O(KIPGXlo|y)).

Proof. The algorithm finds an optimal solution for the weighted instance defined by D. This
optimal solution is a (1 + €)-approximate solution for k-MEDIAN on the original data set X since
D is an e-coreset.

To find the optimal solution for k-MEDIAN on D we enumerate all k-clusterings (i.e. k-
partitions) C = {C4,...,Cx} of D. For each part C; we find an optimal center ¢; € V that
minimizes the cost of part C;, i.e. mingev ) ,cc, wp(z)-d(z,¢;). The optimal solution is the
k-center set that achieves the minimum total cost over all such k-clusterings of D.

To implement this algorithm efficiently, we first pre-compute all distances between point in D
and points in V. This can be done in time O(||D||o|V]) using e.g. Dijkstra’ algorithm. Using the
pre-computed distances, we can find, in O(|V]) time, the optimal center for any fixed set C' C D.
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Since there are k parts Ci,...,Ck and since there are klIPllo possible partitions, the total running
time is O (k**IIPlo|V7]). This completes the proof. O

FPT-PTAS for Graphs with Bounded Highway Dimension Combining Lemma 5.1 with
Corollary 4.25, we obtain an FPT-PTAS for k-MEDIAN in graphs of bounded highway dimension.
Compared with the previous bound |V|?M) . f(e, k, hdim(G)) from [BKS18, Theorem 2], our result
runs in time near-linear in |V| which is a significant improvement. Moreover, our algorithm is based
on straightforward enumeration while [BKS18] is based on dynamic programming.

Corollary 5.2. There is an algorithm that for every 0 < e < %, integer k > 1, every edge-weighted
graph G = (V, E), computes a (1 + €)-approzimate solution for k-MEDIAN on every weighted set

~ . ozl
X C V with constant probability, running in time O <|V| . f(kthdim(G) O e )).
Similarly, plugging Corollary 4.2 into Lemma 5.1 yields an FPT-PTAS for k-MEDIAN in planar

graphs. We do not state this result here because the improved PTAS in the following section has
a better running time.

5.2 Centroid Sets

The focus of the section is to present an improved centroid set that will be combined with a local
search algorithm to yield a better PTAS. As already mentioned, a centroid set is a subset of points
that contains a near-optimal solution. The formal definition is given below, and our centroid set is
presented in Theorem 5.4.

Definition 5.3 (Centroid Set). Given a metric space M (V,d) and weighted set X C V, a set of
points S C V is an e-centroid set for (k, z)-CLUSTERING on X if there is a center set C' € S* such
that cost,(X,C) < (1+¢€)- OPT,(X).

Theorem 5.4. There is an algorithm that computes an e-centroid set D of size
_ —2
ID]lo = (1) poly (|| X o),

for every 0 < € < %, every planar graph G = (V, E) and weighted subset X C V', running in time
O((e™1)° poly (|| X [lo)|V]).

First of all, we show there is a near-optimal solution C* such that the distance from every
center in C* to X can only belong to poly(||X|lo) number of distinct distance scales. This is
an essential property to achieve centroid sets of size independent of V. Specifically, consider the
pairwise distance between points in X, and assume they are sorted as

di <dy <...<dp,
where m = (”)g"o). We prove the following lemma.

Lemma 5.5. For every e € (0,1/2), there is a k-subset C C V¥ and an assignment 7 : X — C,
such that

> wx (@) - d(z, w(z)) < (14 2€) - OPT(X), (21)
zeX
and for every x € X, d(z,m(x)) belongs to an interval I := [ed;, d;/€] for some j =1,...,m. In

particular, C is a (1 + 2¢)-approzimation to k-MEDIAN on X.
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Proof. Let C* = {c},...,¢f} C V be the optimal solution to k-MEDIAN on X, and we will de-
fine C' by “modifying” C*. Let C} C X be the corresponding cluster of ¢/ and define cost} :=
Zmec; wx (x) - d(z,c}) to be the cost contributed by C}.

The proof strategy goes as follows. We examine ¢} € C* one by one. For each ¢}, we will define
¢; € C as some point in C, and the assignment 7 assigns every point in C to ¢;. To bound the
cost, we will prove » - wx(z) - d(z,c;) < (1 + 2¢) - cost} for each i, and this implies (21).

Now fix some 7. If ci*Z satisfies for every z € X, there is some 1 < j < m such that d(z,c)
belongs to Z; = [edj, e~1d;], then we include ¢; := ¢} to C, and for all z € Cf, let 7(z) := ¢}. Since
the center ¢ is included in C' as is, the cost corresponding to C} is not changed.

Otherwise, there is some & € X such that for every 1 < j < m, either d(Z,c¢}) < ed; or
d(#,¢f) > e 1d;. Then we pick any such Z, let ¢; := 2, and define for each z € Cf, n(x) := &. We
note that for every z’ € X, d(&,2’) equals some d; by definition, so d(Z,z') = d; € Z;.

Hence, it remains to prove that the cost is still bounded, i.e. erC; wx (z) - d(z, &) < (14 2e¢) -
cost}, and we prove it by showing Vo € C*, d(x,2) < (1 + 2¢) - d(x, ;). Observe that d(x, ) = d;
for some j, so depending on whether d(%,c}) < ed; or d(&,c}) > e 1d; we have two cases.

o Ifd(z,c}) < ed; = ed(x, &), then by triangle inequality, d(z, £) < d(z, c)+d(c;, &) < d(z, cf)+

ed(z, &), hence d(z,2) < Td(z,cf) < (1 + 2¢)d(z, ¢f) when € € (0,1/2).

e Otherwise, d(#,¢}) > e 1d;, by triangle inequality, d(z,¢}) > d(#,c}) — d(z, %) > =¢d(z, 2),

which implies d(z, %) < =2d(z,¢}) < (1 +€)d(x, c;) when € € (0,1/2).
This completes the proof. O

Proof of Theorem 5.4. Suppose C* is an optimal solution. Our general proof strategy is to find a
point ¢ that is sufficiently close to ¢ for very center point ¢ € C*. Specifically, consider a center
point ¢ € C*, and let z. € X be the closest point to it. We want to guarantee that there always
exists some ¢ in the centroid set, such that d(c,¢’) < e-d(c,x.), and this would imply the error
guarantee of the centroid set by triangle inequality.

Since we can afford (1 + €)-multiplicative error, we round the distances to the nearest power of
(1 + €). Furthermore, we can assume without loss of generality that C* is the (1 + €)-approximate
solution claimed by Lemma 5.5, Then by Lemma 5.5, any distance d(c,x) for ¢ € C* and z € X
has to lie in some interval Z; = [ed};, e_ldj], and because of the rounding of distances, the distances
on C* x X have to take from a set {ry,...,7:}, where t = poly(e~!|| X||o).

However, C* is not known by the algorithm, and we have to “guess” ¢ and /. Specifically we
enumerate over all points x € X which corresponds to the nearest point of ¢, and connection costs
r € {ry,...,r¢} corresponding to d(x, c), where ¢ is some imaginary center in C*. To implement this
efficiently, we pre-process the distances on V' x X using O(]|X||o) runs of Dijkstra’s algorithm in
time O([|X||o|V]), and then 7;’s are enumerated in O(t) time.

Then to find ¢/, a naive approach is to add an er-net of B(x,r) into D. The problem is that
there may be too many points in the e-net, so we need to use the structure of the graph to construct
the net more carefully, and we make use of Lemma 4.5 which is restated as follows.

Lemma 5.6 (Restatement of Lemma 4.5). For every edge-weighted planar graph G = (V, E) and
subset S CV, V can be broken into parts I1 := {V;}; with |II| = poly(|S|) and |, Vi =V, such that
for every V; € 11,

2. there exists a collection of shortest paths P; in G with |P;| = O(1) and removing the vertices
of all paths in P; disconnects V; from V' \'V; (points in V; are possibly removed).
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Furthermore, such T1 and the corresponding shortest paths P; for Vi € II can be computed in O(|V])
time.

Apply Lemma 5.6 with (unweighted) S = X to compute parts II and the corresponding shortest
paths P; := {P;}; for each V; € II, in O(|V|) time. Then, apart from enumerating z, and 7, we
further enumerate the set V; € II. For each P]Z € P;, we let Q; = P]Z N B(ze, e 'r + 7). Observe
that P; is a path, so by triangle inequality Qz- is contained in a segment of length O(e~'r) of
Pj’ We further find an er-net'? R; for Q; which is of size O(¢~2). Finally, we let R; := U; R;-
denote the union of net points in all the shortest paths in P;, and R} := R; U (X N'V;) as the set
with X N'V; included in R;. By Lemma 5.6, we know | X NV;| = O(1). Write R, = {y1,...,Ym}-
We consider the set of possible distance tuples to R}, i.e. for a point x, we consider the vector
(A, 1), -, d(, ym).

To restrict the number of possible distance tuples, we need to carefully discretize the distances
so that the distances only come from a small ground set.

e For y € X NV, because of Lemma 5.5, we can discretize and assume d(x,y) from {ry, ..., }.

e For y € R;, we note that we will only use d(z,y) such that d(z,y) = O(r/e), so we only
need to take d(x,y) from {0, er,2er, ..., (72 4+ 5)er} (noting that here we use an er additive
stepping).

Since |R;| = O(e72) and |X NV;| = O(1), there are (e72)°( )t many possible tuples.

For every tuple (ay,...,am), we find an arbitrary point 2’ in V; N B(xz.,r) (if it exists) that
realizes the distance tuple to R} when rounding to the closest discretized distance, i.e. d'(z/,v;) = a;
for 1 < i < m where d’ is the discretized distance, and add 2’ into D.

In total, we have added (¢2)0( ) tOW poly([| X]o) = (e~ 1)°C€ ) poly(||X|lo) points into D, as
desired. This whole process of enumerating V;, computing er-nets and finding point 2’ for each
tuple can be implemented in time O((e1)°€ ) poly (|| X||o)|V]).

Error Analysis We will prove D is indeed an e-centroid set. Consider the solution C* =
{c1,...,cx} and the corresponding assignment 7 guaranteed by Lemma 5.5. Suppose C* clusters
X into {CT,...,C}} by the arrangement m. We will prove the following claim.

Claim 5.7. For every 1 <1 < k, there exists cg € D such that
Yy € CF, d(y,c;) < (1+0(e)) - d(y, ci), (22)

where CF C X is the cluster of X corresponding to ¢; € C*.

Suppose the above claim is true, then we define a k-subset C' := {c},..., ¢}, and it implies
that cost(X,C") < (1 + O(e)) - cost(X,C*). Hence, it remains to prove Claim 5.7,

Proof of Claim 5.7. Fix 1 < i < k. We start with defining ¢,. Suppose z., € X is the closest point
to ¢; and let r; := d(x,,c;). Let V; € II such that ¢; € V}, and consider the moment that our
algorithm enumerates x.,, r; and Vj;. By construction, we have the following fact.

Fact 5.8. There exists some point ¢ € D such that

1. d(ze,, ) <y

2 For p > 0 and some subset W C V, a p-net is a subset Y C V such that Va,y € Y, d(x,y) > p and Vo € W
there is y € Y with d(z,y) < p.
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2. for every y € Ry, if d(ci,y) < (€72 +4)ery, then d(c,y) € d(c;,y) & er;
3. for everyy € X NV, d(c,y) € (1 £e€)-d(ci,y).

We pick ¢ as any of such ¢ in Fact 5.8.

Now we analyze the error. Fix y € CF. We note that the R] that we pick only covers an
O(e~'r;) range, so even though ¢, approximate ¢; on the distance tuples, it cannot directly imply
the distance from ¢ to all other points in C} is close to that from ¢;, and we need the following
argument.

o If d(y,c;) > e 'r;, then y is far away and d(y, c) cannot be handled by the distance tuples.
However, we observe that in this case d(c¢;, ;) is small relative to d(y, ¢;). In particular, we
have d(c;, ;) < d(¢;, xe;) + d(c, zc;) < 2r;. Hence, it implies

d(y7 C;) < d(y7 Ci) + d(ci7 C;) < d(y7 Ci) +2r; < (1 + 26) ' d(y7 Ci)‘
e Otherwise, d(y, c;) < e 'r;, and we will use that ¢; and ¢; are close with respect to the tuple

distance, and use the separating shortest paths P; (recalling that V; € II is the part that ¢;
belongs to).

— If y € Vj}, then y belongs to the set R;- and d(c},y) belongs to one of the distance tuples
(recalling that y € C¥ C X). Hence, by the guarantee of the distance tuples, ¢, satisfies
d(y, c;) = d(y, ci).

— Otherwise, y ¢ V;. Then the shortest path y ~» ¢; has to pass through at least one of the
shortest paths in P;. Now suppose Plj € P; is the separating shortest path that shortest
path y ~ ¢; passes through. Since d(y, c;) < e 17, we have y € B(xe,, ¢ 'r; +7;). Since
Plj is a shortest path in G, y ~» ¢; can only cross it once.

Hence, there is v/, 9" € Q{ such that
d(y,ci) = d(y,y') +d(y'.y") +d(y", c:).

Since R{ is an er;-net of Q7, by triangle inequality, we know there exists 2/, 2" € le such
that

d(ya Z/) + d(Z/, Z//) + d(Z//, Ci) < d(yv Ci) + 4€ri-

Since d(2”,¢;) < d(y,c;) + der; < (€72 + 4)er;, by Fact 5.8 we know that d(z2”,c}) <
d(Z",¢;) + er;. Finally, by triangle inequality, we have,

d(y,c;) < d(y,2') +d(<,2") + d(2", ¢j) < d(y, c;) + O(ery),
Observe that by definition d(y, ¢;) > d(x4,,¢;) = r;, so we conclude that
d(y, c;) < d(y, c;) + O(ery) < (14 0(e)) - d(y, ci).
This completes the proof of Claim 5.7.

This completes the proof of Theorem 5.4
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5.3 Improved PTAS’s for Planar k-Median

Recently, [CKM19] showed the local search algorithm that swaps e 9 points in the center set in
each iteration yields a 1+ e approximation for k-MEDIAN in planar and the more general excluded-
minor graphs. We use the centroid set and coreset to speedup this algorithm, and we obtain the
following PTAS.

Corollary 5.9. There is an algorithm that for every 0 < e < %, integer k > 1 and every edge-
weighted planar graph G = (V, E), computes a (1+ €)-approzimate solution for k-MEDIAN on every
weighted set X CV with constant probability, running in time O((e_lk)(o(l) V).

As noted by [HJLW18] and [FRS19], the potential centers that the local search algorithm should
consider can be reduced using an e-centroid set, but to make the local search terminate properly,
we also need to evaluate the objective value accurately in each iteration , which means we also need
a coreset. Hence, we start with constructing a coreset using Corollary 4.2, and then extend it to
be a centroid set using Theorem 5.4.

Proof of Corollary 5.9. Construct an e-coreset S of size poly(e k) using Corollary 4.2, and apply
Theorem 5.4 with X = S to obtain an e-centroid set S’ of size (6—1)0(6*2)]{:0(1)' Then the algorithm
constructs a weighted set D that consists of SUS’, and the weights of points z € S is set to wg(z),
and those z € S\ S has weight 0. It is immediate that D is both an e-coreset and an e-centroid
set, whose size is || Do = (e71)9 k(). We pre-process the pairwise distance in D x D using
Dijkstra’s algorithm. The overall running time for all these steps is O((e_l)(o(l) KOW V).

We next use D to accelerate [CKM19, Algorithm 1]. The algorithm first defines an initial center
set C' to be an arbitrary subset of D. Then in each iteration, the algorithm enumerates C’ € DF
that is formed by swapping at most e () points in D from C. Update C := C” if some C’ has cost
cost(D,C") < (1 — ‘—‘E/‘) -cost(D, (), and terminate otherwise. The running time for each iteration
is (e k) 7",

By [CKM19], the algorithm always finds a (1 + €)-solution when it terminates, and the number
of iterations is at most e~!|V| until termination. Therefore, the total running time is bounded by
O((e‘lk‘)eio(l) -|V]). This completes the proof. O
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Appendices

A  Proof of Lemma 4.5

Lemma A.1 (restatement of Lemma 4.5). For every edge-weighted planar graph G = (V, E) and
subset S CV, V' can be broken into parts I1 := {V;}; with |II| = poly(|S|) and |J, Vi =V, such that
for every V; € 11,

1. 15nVil = 0(1),

2. there exists a collection of shortest paths P; in G with |P;| = O(1) and removing the vertices
of all paths in P; disconnects V; from V' \'V; (points in V; are possibly removed).

Furthermore, such I1 and the corresponding shortest paths P; for Vi € II can be computed in O(|V])
time.

The proof of Lemma 4.5 is based on the following property of general trees. We note that
the special case when R = T was proved in [EKM14, Lemma 3.1] and our proof is based on it.
Nonetheless, we provide the proof for completeness.

Lemma A.2. Let T be a tree of degree at most 3 and let R be a subset of nodes in T. There is a
partition of the nodes of T with poly(|R|) parts, such that each part is a subtree of T that contains
O(1) nodes of R and has at most 4 boundary edges'® connecting to the rest of T. Such partition
can be computed in time O(|T|), where |T| is the number of nodes in T.

Proof. We give an algorithm to recursively partition T in a top-down manner. The recursive
algorithm takes a subtree T” as input, and if |[T" N R| > 4, it chooses an edge e from 7" and run
recursively on the two subtrees 7] and T that are formed by removing e from 7”. Otherwise, the
algorithm simply declares the subtree 77 a desired part and terminate, if |T" N R| < 4. Next, we
describe how e is picked provided that |7" N R| > 4.

If 7" has at most 3 boundary edges, we pick an edge e € T” such that each of the two subtrees
T{, T4 formed by removing e satisfies 2|7" N R| < IT;NR| < 2IT"N R, for j = 1,2. By a standard
application of the balanced separator theorem (see e.g. Lemma 1.3.1 of [KM12]), such edge always
exists and can be found in time O(|T”]).

Now, suppose T" has exactly 4 boundary edges. Then we choose an edge e € T’, such that
each of the two subtrees 7] and 7% formed by removing e has at most 3 boundary edges. Such e
must exist because the maximum degree is at most 3, and such e may be found in time O(|T"|) as
well. To see this, suppose the four endpoints (in 7") of the four boundary edges are a, b, c,d. It is
possible that they are not distinct, but they can have a multiplicity of at most 2 because otherwise
the degree bound 3 is violated. If any point has a multiplicity 2, say a and b, then it has to be

13Here a boundary edge is an edge that has exactly one endpoint in the subtree.
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a leaf node in T” (again, because of the degree constraint), and we can pick the unique tree edge
in 7" connecting a as our e. Now we assume the four points are distinct, and consider the unique
paths Py, P, that connect a,b and ¢, d respectively. If P, and P, intersect, then the intersection
must contain an edge as otherwise the intersections are at nodes only which means each of them
have degree at least 4, a contradiction. Hence, we pick the intersecting edge as our e. Finally, if
P, and P, are disjoint, we consider the unique path P that connects a and ¢, and we pick edge
e := ¢’ in P3 that is outside both P; and P» to separate a and b from ¢ and d.

We note that there are no further cases regarding the number of boundary edges of T”, since in
the case of 4 boundaries edges, both 7] and T} have at most 3 boundary edges and it reduces to
the first case.

It remains to analyze the size of the partition. By the property of balanced separator, we
know that such recursive partition has O(log|R|) depth. Hence the total number of subtrees is
20(og [R) — poly(|R|). Finally, we note that in each level of depth, we scan the whole tree once, so
the running time is upper bounded By O(log|R|) - |T| = O(|T)). O

Proof of Lemma 4.5. We assume G is triangulated, since otherwise we can triangulate G and assign
weight +o00 to the new edges so that the shortest paths are the same as before. Let T' be a shortest
path tree of G from an arbitrary root vertex. Let G* be the planar dual of G. Let T™* be the set
of edges e of G* such that the corresponding edge of e in G is not in T. Indeed, T and T* are
sometimes called interdigitating trees, and it is well known that T* is a spanning tree of G* (see
e.g. [KM12]).

Choose R* to be the set of faces that contain at least one point from S. We apply Lemma A.2 on
R = R* and T = T™* to obtain IT*, the collection of resulted subtrees of T*. Then |II*| = poly(]S]),
and each part C* in IT* is a subset of faces in G such that only O(1) of these faces contain some
point in S on their boundaries. For a part C* in IT*, let V(C*) be the set of vertices in G that
are contained in the faces in C*. Recall that G is triangulated, so each face can only contain O(1)
vertices from S on its boundary. Therefore, for each part C* in IT*, |C* N S| = O(1).

Still by Lemma A.2, each part C* in IT* corresponds to a subtree in 7™, and it has at most 4
boundary edges connecting to the rest of 7*. By the well-known property of planar duality (see
e.g. [KM12]), each C* is bounded by the fundamental cycles in T of the boundary edges. We
observe that the vertices of a fundamental cycle lie on 2 shortest paths in G via the least common
ancestor in T' (recalling that T is the shortest path tree). So by removing at most 8 shortest paths
in G, V(C*) is disconnected from V' \ V(C*) for every C* € II*.

Therefore, we can choose II := {V(C*) : C* € IT*}. For the running time, we note that both the
triangulation and the algorithm in Lemma A.2 run in O(|V|) time. This completes the proof. [
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