
ar
X

iv
:2

00
4.

07
71

8v
2

 [c
s.D

S]
 1

5
Ju

l 2
02

0

Coresets for Clustering in Excluded-minor Graphs and Beyond

Vladimir Braverman∗ Shaofeng H.-C. Jiang† Robert Krauthgamer† Xuan Wu∗

Abstract

Coresets are modern data-reduction tools that are widely used in data analysis to improve
efficiency in terms of running time, space and communication complexity. Our main result is
a fast algorithm to construct a small coreset for k-Median in (the shortest-path metric of) an
excluded-minor graph. Specifically, we give the first coreset of size that depends only on k, ǫ and
the excluded-minor size, and our running time is quasi-linear (in the size of the input graph).

The main innovation in our new algorithm is that is iterative; it first reduces the n input
points to roughly O(log n) reweighted points, then to O(log logn), and so forth until the size
is independent of n. Each step in this iterative size reduction is based on the importance
sampling framework of Feldman and Langberg (STOC 2011), with a crucial adaptation that
reduces the number of distinct points, by employing a terminal embedding (where low distortion
is guaranteed only for the distance from every terminal to all other points). Our terminal
embedding is technically involved and relies on shortest-path separators, a standard tool in
planar and excluded-minor graphs.

Furthermore, our new algorithm is applicable also in Euclidean metrics, by simply using
a recent terminal embedding result of Narayanan and Nelson, (STOC 2019), which extends
the Johnson-Lindenstrauss Lemma. We thus obtain an efficient coreset construction in high-
dimensional Euclidean spaces, thereby matching and simplifying state-of-the-art results (Sohler
and Woodruff, FOCS 2018; Huang and Vishnoi, STOC 2020).

In addition, we also employ terminal embedding with additive distortion to obtain small
coresets in graphs with bounded highway dimension, and use applications of our coresets to
obtain improved approximation schemes, e.g., an improved PTAS for planar k-Median via a
new centroid set.

∗Johns Hopkins University. Email: {vova@cs.jhu.edu, xwu71@jh.edu}
†Weizmann Institute of Science. Work partially supported by ONR Award N00014-18-1-2364, the Israel Sci-

ence Foundation grant #1086/18, and a Minerva Foundation grant. Part of this work was done while some
of the authors were visiting the Simons Institute for the Theory of Computing. Email: {shaofeng.jiang,
robert.krauthgamer}@weizmann.ac.il

http://arxiv.org/abs/2004.07718v2

1 Introduction

Coresets are modern tools for efficient data analysis that have become widely used in theoretical
computer science, machine learning, networking and other areas. This paper investigates coresets
for the metric k-Median problem that can be defined as follows. Given an ambient metric space
M = (V, d) and a weighted set X ⊆ V with weight function w : X → R+, the goal is to find a set
of k centers C ⊆ V that minimizes the total cost of connecting every point to a center in C:

cost(X,C) :=
∑

x∈X

w(x) · d(x,C),

where d(x,C) := miny∈C d(x, y) is the distance to the closest center. An ǫ-coreset for k-Median

on X is a weighted subset D ⊆ X, such that

∀C ⊆ V, |C| = k, cost(D,C) ∈ (1 ± ǫ) · cost(X,C).

We note that many papers study a more general problem, (k, z)-Clustering, where inside the
cost function each distance is raised to power z. We focus on k-Median for sake of exposition, but
most of our results easily extend to (k, z)-Clustering.

Small coresets are attractive since one can solve the problem on D instead of X and, as a
result, improve time, space or communication complexity of downstream applications [LBK13,
LFKF17, FSS20]. Thus, one of the most important performance measures of a coreset D is its
size, i.e., the number of distinct points in it, denoted ‖D‖0.1 Har-Peled and Mazumdar [HM04]
introduced the above definition and designed the first coreset for k-Median in Euclidean spaces
(V = R

m with ℓ2 norm), and since their work, designing small coresets has become a flourish-
ing research direction, including not only k-Median and (k, z)-Clustering e.g. [HK07, Che09,
LS10, FL11, SW18, HV20, FSS20], but also many other important problems, such as subspace
approximation/PCA [FFS06, FMSW10, FSS20], projective clustering [FL11, VX12, FSS20], re-
gression [MJF19], density estimation [KL19, PT19], ordered weighted clustering [BJKW19], and
fair clustering [SSS19, HJV19].

Many modern coreset constructions stem from a fundamental framework proposed by Feld-
man and Langberg [FL11], extending the importance sampling approach of Langberg and Schul-
man [LS10]. In this framework [FL11], the size of an ǫ-coreset for k-Median is bounded by
O(poly(k/ǫ) · sdim), where sdim is the shattering (or VC) dimension of the family of distance
functions. For a general metric space (V, d), a direct application of [FL11] results in a coreset of
size Ok,ǫ(log |V |), which is tight in the sense that in some instances, every coreset must have size
Ω(log |V |) [BBH+20].Therefore, to obtain coresets of size independent of the data set X, we have
to restrict our attention to specific metric spaces, which raises the following fundamental question.

Question 1.1. Identify conditions on a data set X from metric space (V, d) that guarantee the
existence (and efficient construction) of an ǫ-coreset for k-Median of size Oǫ,k(1)?

This question has seen major advances recently. Coresets of size independent of X (and V)
were obtained, including efficient algorithms, for several important special cases: high-dimensional
Euclidean spaces [SW18, FKW19, HV20] (i.e., independently of the Euclidean dimension), metrics
with bounded doubling dimension [HJLW18], and shortest-path metric of bounded-treewidth graphs
[BBH+20].

1For a weighted set X, we denote by ‖X‖0 the number of distinct elements, by ‖X‖1 its total weight.

1

1.1 Our Results

Overview We make significant progress on this front (Question 1.1) by designing new coresets for
k-Median in three very different types of metric spaces. Specifically, we give (i) the first Oǫ,k(1)-
size coreset for excluded-minor graphs; (ii) the first Oǫ,k(1)-size coreset for graphs with bounded
highway dimension; and (iii) a simplified state-of-the-art coreset for high-dimensional Euclidean
spaces (i.e., coreset-size independent of the Euclidean dimension with guarantees comparable to
[HV20] but simpler analysis.)

Our coreset constructions are all based on the well-known importance sampling framework
of [FL11], but with subtle deviations that introduce significant advantages. Our first technical idea
is to relax the goal of computing the final coreset in one shot: we present a general reduction that
turns an algorithm that computes a coreset of size O(poly(k/ǫ) log ‖X‖0) into an algorithm that
computes a coreset of size O(poly(k/ǫ)). The reduction is very simple and efficient, by straightfor-
ward iterations. Thus, it suffices to construct a coreset of size O(poly(k/ǫ) log ‖X‖0). We construct
this using the importance sampling framework [FL11], but applied in a subtly different way, called
terminal embedding, in which distances are slightly distorted, trading accuracy for (hopefully) a
small shattering dimension. It still remains to bound the shattering dimension, but we are now
much better equipped — we can distort the distances (design a new embedding or employ a known
one), and we are content with dimension bound Ok,ǫ(log ‖X‖0), instead of the usual Ok,ǫ(1).

We proceed to present each of our results and its context-specific background, see also Table 1
for summary, and then describe our techniques at a high-level in Section 1.2.

Table 1: our results of ǫ-coresets for k-Median in various types of metric spaces M(V, d) with
comparison to previous works. By graph metric, we mean the shortest-path metric of an edge-
weighted graph G = (V,E). Corollary 4.18 (and [HV20]) also work for general (k, z)-Clustering,
but we list the result for k-Median (z = 1) only.

Metric space Coreset size2 Reference

General metrics Õ(ǫ−2k log |V |) [FL11]

Graph metrics
Bounded treewidth Õ(ǫ−2k3) [BBH+20]

Excluding a fixed minor Õ(ǫ−4k2) Corollary 4.2

Bounded highway dimension Õ(kO(log(1/ǫ))) Corollary 4.25

Euclidean R
m Dimension-dependent Õ(ǫ−2km) [FL11]

Dimension-free Õ(ǫ−4k) [HV20], Corollary 4.18

Coresets for Clustering in Graph Metrics k-Median clustering in graph metrics, i.e. shortest-
path metric of graphs, is a central task in data mining of spatial networks (e.g., planar networks
such as road networks) [SL97, YM04], and has applications in various location optimization prob-
lems, such as placing servers on the Internet [LGI+99, JJJ+00] (see also a survey [TFL83]), and in
data analysis methods [RMJ07, CZQ+08]. We obtain new coresets for excluded-minor graphs and
new coresets for graphs of bounded highway dimension. The former generalize planar graphs and
the latter capture the structure of transportation networks.

2Throughout, the notation Õ(f) hides poly log f factors, and Om(f) hides factors that depend on m.

2

Coresets for Excluded-minor Graphs A minor of graph G is a graph H obtained from G
by a sequence of edge deletions, vertex deletions or edge contractions. We are interested in graphs
G that exclude a fixed graph H as a minor, i.e., they do not contain H as a minor. Excluded-
minor graphs have found numerous applications in theoretical computer science and beyond and
they include, for example, planar graphs and bounded-treewidth graphs. Besides its practical
importance, k-Median in planar graphs received significant attention in approximation algorithms
research [Tho05, CKM19, CPP19]. Our framework yields the first ǫ-coreset of size Ok,ǫ(1) for
k-Median in excluded-minor graphs, see Corollary 4.2 for details. Such a bound was previously
known only for the special case of bounded-treewidth graphs [BBH+20]. We stress that our technical
approach is significantly different from [BBH+20]; we introduce a novel iterative construction and a
relaxed terminal embedding of excluded-minor graph metrics (see Section 1.2), and overall bypass
bounding the shattering dimension by O(1) (which is the technical core in [BBH+20]).

Coresets for Graphs with Bounded Highway Dimension Due to the tight relation to
road networks, graphs of bounded highway dimension is another important family for the study
of clustering in graph metrics. The notion of highway dimension was first proposed by [AFGW10]
to measure the complexity of transportation networks such as road networks and airline networks.
Intuitively, it captures the fact that going from any two far-away cities A and B, the shortest
path between A and B always goes through a small number of connecting hub cities. The formal
definition of highway dimension is given in Definition 4.20, and we compare related versions of
definitions in Remark 4.21. The study of highway dimension was originally to understand the
efficiency of heuristics for shortest path computations [AFGW10], while subsequent works also
study approximation algorithms for optimization problems such as TSP, Steiner Tree [FFKP18]
and k-Median [BKS18]. We show the first coreset for graphs with bounded highway dimension,
and as we will discuss later it can be applied to design new approximation algorithms. The formal
statement can be found in Corollary 4.25.

Coresets for High-dimensional Euclidean Space The study of coresets for k-Median (and
more generally (k, z)-Clustering) in Euclidean space R

m spans a rich line of research. The first
coreset for k-Median in Euclidean spaces, given by [HM04], has size O(kǫ−m log n) where n =
‖X‖1, and the log n factor was shaved by a subsequent work [HK07]. The exponential dependence
on the Euclidean dimension m was later improved to poly(km/ǫ) [LS10], and to O(km/ǫ2) [FL11].
Very recently, the first coreset for k-Median of size poly(k/ǫ), which is independent of the Euclidean
dimension m,3 was obtained by [SW18] (see also [FKW19]).4 This was recently improved in [HV20],
which designs a (much faster) near-linear time construction for (k, z)-Clustering, with slight
improvements in the coreset size and the (often useful) additional property that the coreset is a
subset of X. Our result extends this line of research; an easy application of our new framework
yields a near-linear time construction of coreset of size poly(k/ǫ), which too is independent of the
dimension m. Compared to the state of the art [HV20], our result achieves essentially the same
size bound, while greatly simplifying the analysis. A formal statement and detailed comparison
with [HV20] can be found in Corollary 4.18 and Remark 4.19.

Applications: Improved Approximation Schemes We apply our coresets to design approx-
imation schemes for k-Median in shortest-path metrics of planar graphs and graphs with bounded

3Dimension-independent coresets were obtained earlier for Euclidean k-Means [BFL16, FSS20], however these do
not apply to k-Median.

4The focus of [SW18] is on k-Median, but the results extend to (k, z)-Clustering.

3

highway dimension. In particular, we give an FPT-PTAS, parameterized by k and ǫ, in graphs
with bounded highway dimension (Corollary 5.2), and a PTAS in planar graphs (Corollary 5.9).
Both algorithms run in time near-linear in |V |, and improve previous results in the corresponding
settings.

The PTAS for k-Median in planar graphs is obtained using a new centroid-set result. A
centroid set is a subset of V that contains centers giving a (1+ ǫ)-approximate solution. We obtain
centroid sets of size independent of the input X in planar graphs, which improves a recent size
bound (log |V |)O(1/ǫ) [CPP19], and moreover runs in time near-linear in |V |. This centroid set can
be found in Theorem 5.4.

1.2 Technical Contributions

Iterative Size Reduction This technique is based on an idea so simple that it may seem too
naive: Basic coreset constructions have size Ok,ǫ(log n), so why not apply it repeatedly, to obtain
a coreset of size Ok,ǫ(log log n), then Ok,ǫ(log log log n) and so on? One specific example is the size
bound O(ǫ−2k log n) for a general n-point metric space [FL11], where this does not work because
n = |V | is actually the size of the ambient space, irrespective of the data set X. Another example
is the size bound O(ǫ−mk log n) for Euclidean space R

m [HM04], where this does not work because
n = ‖X‖1 is the total weight of the data points X, which coresets do not reduce (to the contrast,
they maintain it). These examples suggest that one should avoid two pitfalls: dependence on V
and dependence on the total weight.

We indeed make this approach work by requiring an algorithm A that constructs a coreset of
size O(log ‖X‖0), which is data-dependent (recall that ‖X‖0 is the number of distinct elements in a
weighted set X). Specifically, we show in Theorem 3.1 that, given an algorithm A that constructs
an ǫ′-coreset of size O(poly(k/ǫ′) log ‖X‖0) for every ǫ′ and X ⊆ V , one can obtain an ǫ-coreset of
size poly(k/ǫ) by simply applying A iteratively. It follows by setting ǫ′ carefully, so that it increases
quickly and eventually ǫ′ = O(ǫ). See Section 3.1 for details.

Not surprisingly, the general idea of applying the sketching/coreset algorithm iteratively was
also used in other related contexts (e.g. [LMP13, CW15, MSSW18]). Moreover, a related two-
step iterative construction was applied in a recent coreset result [HV20]. Nevertheless, the exact
implementation of iterative size reduction in coresets is unique in the literature. As can be seen
from our results, this reduction fundamentally helps to achieve new or simplified coresets of size
independent of data set. We expect the iterative size reduction to be of independent interest to
future research.

Terminal Embeddings To employ the iterative size reduction, we need to construct coresets of
size poly(k/ǫ) · log ‖X‖0. Unfortunately, a direct application of [FL11] yields a bound that depends
on the number of vertices |V |, irrespective of X. To bypass this limitation, the framework of [FL11]
is augmented (in fact, we use a refined framework proposed in [FSS20]), to support controlled
modifications to the distances d(·, ·). As explained more formally in Section 3.2, one represents these
modifications using a set of functions F = {fx : V → R+ | x ∈ X}, that corresponds to the modified
distances from each x, i.e., fx(·) ↔ d(x, ·). Many previous papers [LS10, FL11, BFL16, FSS20]
work directly with the distances and use the function set F = {fx(·) = d(x, ·) | x ∈ X}, or a more
sophisticated but still direct variant of hyperbolic balls (where each fx is an affine transformation
of d(x, ·)). A key difference is that we use a “proxy” function set F , where each fx(·) ≈ d(x, ·).
This introduces a tradeoff between the approximation error (called distortion) and the shattering
dimension of F (which controls the number of samples), and overall results in a smaller coreset.
Such tradeoff was first used in [HJLW18] to obtain small coresets for doubling spaces, and was

4

recently used in [HV20] to reduce the coreset size for Euclidean spaces. This proxy function set
may be alternatively viewed as a terminal embedding on X, in which both the distortion of distances
(between X and all of V) and the shattering dimension are controlled.

We then consider two types of terminal embeddings F . The first type (Section 3.3) maintains
(1 + ǫ)-multiplicative distortion of the distances. When this embedding achieves dimension bound
O(poly(k/ǫ) log ‖X‖0), we combine it with the aforementioned iterative size reduction, to further
reduce the size to be independent of X. It remains to actually design embeddings of this type,
which we achieve (as explained further below), for excluded-minor graphs and for Euclidean spaces,
and thus we overall obtain Oǫ,k(1)-size coresets in both settings. Our second type of terminal em-
beddings F (Section 3.4) maintains additive distortion on top of the multiplicative one. We design
embeddings of this type (as explained further below) for graphs with bounded highway dimension;
these embeddings have shattering dimension poly(k/ǫ), and thus we overall obtain Oǫ,k(1)-size
coresets even without the iterative size reduction. We report our new terminal embeddings in
Table 2.

Table 2: New terminal embeddings F for different metrics spaces. The reported distortion bound
is the upper bound on fx(c), in addition to the lower bound fx(c) ≥ d(x, c). The embeddings of
graphs with bounded highway dimension, called here “highway graphs” for short, are defined with
respect to a given S ⊆ V (see Lemma 4.22).

Metric space Dimension sdimmax(F) Distortion Result

Euclidean O(ǫ−2 log ‖X‖0) (1 + ǫ) · d(x, c) Lemma 4.16

Excluded-minor graphs Õ(ǫ−2 log ‖X‖0) (1 + ǫ) · d(x, c) Lemma 4.1

Highway graphs O(|S|O(log(1/ǫ))) (1 + ǫ) · d(x, c) + ǫ · d(x, S) Lemma 4.22

Terminal Embedding for Euclidean Spaces Our terminal embedding for Euclidean spaces
is surprisingly simple, and is a great showcase for our new framework. In a classical result [FL11],
it has been shown that sdimmax(F) = O(m) for Euclidean distance in R

m without distortion. On
the other hand, we notice a terminal embedding version of Johnson-Lindenstrauss Lemma was
discovered recently [NN19]. Our terminal embedding bound (Lemma 4.16) follows by directly
combining these two results, see Section 4.3 for details.

We note that without our iterative size reduction technique, plugging in the recent termi-
nal Johnson-Lindenstrauss Lemma [NN19] into classical importance sampling frameworks, such
as [FL11, FSS20] does not yield any interesting coreset. Furthermore, the new terminal Johnson-
Lindenstrauss Lemma was recently used in [HV20] to design coresets for high-dimensional Euclidean
spaces. Their size bounds are essentially the same as ours, however they go through a complicated
analysis to directly show a shattering dimension bound poly(k/ǫ). This complication is not nec-
essary in our method, because by our iterative size reduction it suffices to show a very loose
Ok,ǫ(log ‖X‖0) dimension bound, and this follows immediately from the Johnson-Lindenstrauss
result.

Terminal Embedding for Excluded-minor Graphs The technical core of the terminal em-
bedding for excluded-minor graphs is how to bound the shattering dimension. In our proof, we
reduce the problem of bounding the shattering dimension into finding a representation of the dis-
tance functions on X × V as a set of min-linear functions. Specifically, we need to find for each x

5

a min-linear function gx : Rs → R of the form gx(t) = min1≤i≤s{aiti + bi}, where s = O(log ‖X‖0),
such that ∀c ∈ V , there is t ∈ R

s with d(x, c) = gx(t).
The central challenge is how to relate the graph structure to the structure of shortest paths

d(x, c). To demonstrate how we relate them, we start with discussing the simple special case of
bounded treewidth graphs. For bounded treewidth graphs, the vertex separator theorem is applied
to find a subset P ⊆ V , through which the shortest path x y has to pass. This translates into
the following

d(x, c) = min
p∈P

{d(x, p) + d(p, c)},

and for each x ∈ X, we can use this to define the desired min-linear function gx(d(p1, c), . . . , d(pm, c))
= d(x, c), where we write P = {p1, . . . , pm}.

However, excluded-minor graphs do not have small vertex separator, and we use the shortest-
path separator [Tho04, AG06] instead. Now assume for simplicity that the shortest paths x c
all pass through a fixed shortest path l. Because l itself is a shortest path, we know

∀x ∈ X, c ∈ V, d(x, c) = min
u1,u2∈l

{d(x, u1) + d(u1, u2) + d(u2, c)}.

Since l can have many (i.e. ω(log ‖X‖0)) points, we need to discretize l by designating poly(ǫ−1)
portals P l

x on l for each x ∈ X (and similarly P l
c for c ∈ V). This only introduces (1 + ǫ) distortion

to the distance, which we can afford.
Then we create d′x : l → R+ to approximate d(x, u)’s, using distances from x to the portals

P l
x (and similarly for d(c, u)). Specifically, for the sake of presentation, assume P l

x = {p1, p2, p3}
(p1 ≤ p2 ≤ p3), interpret l as interval [0, 1), then for u ∈ [0, p1), define d′x(u) = d(x, 0), for
u ∈ [p1, p2), define d′x(u) = d(x, p1), and so forth. Hence, each d′x(·) is a piece-wise linear function
of O(|P l

x|) pieces (again, similarly for d′c(·)), and this enables us to write

d(x, c) ≈ d′(x, c) := min
u1,u2∈P l

x∪P
l
c

{d′x(u1) + d(u1, u2) + d′c(u2)}.

Therefore, it suffices to find a min-linear representation for d′(x, ·) for x ∈ X. However, the
piece-wise linear structure of d′x creates extra difficulty to define min-linear representations. To see
this, still assume P l

x = {p1, p2, p3}. Then to determine d′x(u) for u ∈ P l
x ∪ P l

c , we not only need
to know d(x, pi) for pi ∈ P l

x, but also need to know which sub-interval [pi, pi+1) that u belongs to.
(That is, if u ∈ [p1, p2), then d′x(u) = d(x, p1).) Hence, in addition to using distances {c} × P l

c as
variables of gx, the relative ordering between points in P l

x ∪P l
c is also necessary to evaluate d′(x, c).

Because c ∈ V can be arbitrary, we cannot simply “remember” the ordering in gx. Hence, we
“guess” this ordering, and for each fixed ordering we can write gx as a min-linear function of few
variables. Luckily, we can afford the “guess” since |P l

x ∪ P l
c | = poly(ǫ−1) which is independent of

X. A more detailed overview can be found in Section 4.1.

Terminal Embedding for Graphs with Bounded Highway Dimension In addition to
a (1 + ǫ) multiplicative error, the embedding for graphs with bounded highway dimension also
introduces an additive error. In particular, for a given S ⊆ V , it guarantees that

∀x ∈ X, c ∈ V, d(x, c) ≤ fx(c) ≤ (1 + ǫ) · d(x, c) + ǫ · d(x, S).

This terminal embedding is a direct consequence of a similar embedding from graphs with bounded
highway dimension to graphs with bounded treewidth [BKS18], and a previous result about the

6

shattering dimension for graphs with bounded treewidth [BBH+20]. In our applications, we will
choose S to be a constant approximate solution5 C⋆ to k-Median. So the additive error becomes
ǫ · d(x,C⋆). In general, this term can still be much larger than d(x, c), but the collectively error
in the clustering objective is bounded. This observation helps us to obtain a coreset, and due to
the additional additive error, the shattering dimension is already independent of X and hence no
iterative size reduction is necessary.

1.3 Related Work

Approximation algorithms for metric k-Median have been extensively studied. In general metric
spaces, it is NP-hard to approximate k-Median within a 1 + 2

e factor [JMS02], and the state of
the art is a (2.675 + ǫ)-approximation [BPR+14]. In Euclidean space R

m, k-Median is APX-hard
if both k and the dimension m are part of the input [GI03]. However, PTAS’s do exist if either k
or dimension m is fixed [HM04, ARR98, CKM19, FRS19].

Tightly related to coresets, dimensionality reduction has also been studied for clustering in
Euclidean spaces. Compared with coresets which reduce the data set size while keeping the dimen-
sion, dimensionality reduction aims to find a low-dimensional representation of data points (but not
necessarily reduce the number of data points). As a staring point, a trivial application of Johnson-
Lindenstrauss Lemma [JL84] yields a dimension bound O(ǫ−2 log n) for (k, z)-Clustering. For
k-Means with 1+ ǫ approximation ratio, [CEM+15] showed an O(k/ǫ2) dimension bound for data-
oblivious dimension reduction and an O(k/ǫ) bound for the data-dependent setting. Moreover, the
same work [CEM+15] also obtained a data-oblivious O(ǫ−2 log k) dimension bound for k-Means

with approximation ratio 9 + ǫ. Very recently, [BBCA+19] obtained an Õ(ǫ−6(log k+ log log n)) di-
mension bound for k-Means and [MMR19] obtained an O(ǫ−2 log k

ǫ) bound for (k, z)-Clustering.
Both of them used data-oblivious methods and have approximation ratio 1 + ǫ. Dimensionality
reduction techniques are also used for constructing dimension-free coresets in Euclidean spaces
[SW18, BBCA+19, HV20, FSS20].

2 Preliminaries

Notations Let V k := {C ⊆ V : |C| ≤ k} denote the collection of all subsets of V of size at most
k. 6 For integer n, i > 0, let log(i) n denote the i-th iterated logarithm of n, i.e. log(1) n := log n and
log(i) n := log(log(i−1) n) (i ≥ 2). Define log⋆ n as the number of times the logarithm is iteratively
applied before the result is at most 1, i.e. log⋆ n := 0 if n ≤ 1 and log⋆ n = 1 + log⋆(log n) if n > 1.
For a weighted set S, denote the weight function as wS : S → R+. Let OPTz(X) be the optimal
objective value for (k, z)-Clustering on X, and we call a subset C ⊆ V an (α, β)-approximate
solution for (k, z)-Clustering on X if |C| = αk and costz(X,C) :=

∑
x∈X wX(x) · (d(x,C))z ≤

β · OPTz(X).

Functional Representation of Distances We consider sets of functions F from V to R+.
Specifically, we consider function sets F = {fx : V → R+ | x ∈ X} that is indexed by the weighted
data set X ⊆ V , and intuitively fx(·) is used to measure the distance from x ∈ X to a point in V .
Because we interpret fx’s as distances, for a subset C ⊆ V , we define fx(C) := minc∈C fx(C), and

5in fact, a bi-criteria approximation suffices.
6Strictly speaking, V k is the collection of all ordered k-tuples of V , but here we use it to denote the subsets. Note

that tuples may contain repeated elements so the subsets in V k are of size at most k.

7

define the clustering objective accordingly as

costz(F , C) :=
∑

fx∈F

wF (fx) · (fx(C))z .

In fact, in our applications, we will use fx(y) as a “close” approximation to d. We note that this
functional representation is natural for k-Clustering, since the objective function only uses distances
from X to every k-subset of V only. Furthermore, we do not require the triangle inequality to hold
for such functional representations.

Shattering Dimension For c ∈ V, r ≥ 0, define BF (c, r) := {f ∈ F : f(c) ≤ r}. We emphasize
that c is from the ambient space V in addition to the data set X. Intuitively, BF (c, r) is the ball
centered at c with radius r when the f functions are used to measure distances. For example,
consider X = V and let fx(·) := d(x, ·) for x ∈ V . Then BF (c, r) = {fx ∈ F : d(c, x) ≤ r}, which
corresponds to the metric ball centered at c with radius r.

We introduce the notion of shattering dimension in Definition 2.1. In fact, the shattering
dimension may be defined with respect to any set system [Har11], but we do not need this generality
here and thus we consider only the shattering dimension of the “metric balls” system.

Definition 2.1 (Shattering Dimension [Har11]). Suppose F is a set of functions from V to R+.
The shattering dimension of F , denoted as sdim(F), is the smallest integer t, such that for every
H ⊆ F with |H| ≥ 2,

∀H ⊆ F , |H| ≥ 2, |{BH(c, r) : c ∈ V, r ≥ 0}| ≤ |H|t. (1)

The shattering dimension is tightly related to the well-known VC-dimension [VC71], and they
are equal to each other up to a logarithmic factor [Har11, Corollary 5.12, Lemma 5.14]. In our
application, we usually do not use sdim(F) directly. Instead, given a point weight v : X → R+, we
define Fv := {fx · v(x) | x ∈ X}, and then consider the maximum of sdim(Fv) over all possible v,
defined as sdimmax(F) := maxv:X→R+ sdim(Fv).

3 Framework

We present our general framework for constructing coresets. Our first new idea is a generic reduc-
tion, called iterative size reduction, through which it suffices to find a coreset of size O(log ‖X‖0)
only in order to get a coreset of size independent of X. This general reduction greatly simplifies
the coreset construction, and in particular, as we will see, “old” techniques such as importance
sampling gains new power and becomes useful for new settings such as excluded-minor graphs.

Roughly speaking, the iterative size reduction turns a coreset construction algorithm A(X, ǫ)
with size O(poly(ǫ−1k) · log ‖X‖0) into a construction A′(X, ǫ) with size poly(ǫ−1k). To define A′,
we simply iteratively apply A, i.e. Xi := A(Xi−1, ǫi), and terminate when ‖Xi‖0 does not decrease.
However, if A is applied for t times in total, the error of the resulted coreset is accumulated as∑t

i=1 ǫt. Hence, to make the error bounded, we make sure ǫi ≥ 2ǫi−1 and ǫt = O(ǫ), so
∑t

i=1 ǫi =

O(ǫ). Moreover, our choice of ǫi also guarantees that ‖Xi‖0 is roughly poly(ǫ−1k ·log(i) ‖X‖0). Since
log(i) ‖X‖0 decreases very fast with respect to i, ‖Xi‖0 becomes poly(ǫ−1k) in about t = log⋆ ‖X‖0
iterations. The detailed algorithm A′ can be found in Algorithm 1, and we present the formal
analysis in Theorem 3.1.

To construct the actual coresets which is to be used with the reduction, we adapt the importance
sampling method that was proposed by Feldman and Langberg [FL11]. In previous works, the size

8

of the coresets from importance sampling is related to the shattering dimension of metric balls
system (i.e. in our language, it is the shattering dimension of F = {d(x, ·) | x ∈ X}.) Instead of
considering the metric balls only, we give a generalized analysis where we consider a general set of
“distance functions” F that has some error but is still “close” to d. The advantage of doing so is
that we could trade the accuracy with the shattering dimension, which in turn reduces the size of
the coreset.

We particularly examine two types of such functions F = {fx : V → R+ | x ∈ X}. The first type
F introduces a multiplicative (1+ ǫ) error to d, i.e. ∀x ∈ X, c ∈ V , d(x, c) ≤ fx(c) ≤ (1+ ǫ) ·d(x, c).
Such a small distortion is already very helpful to obtain an O(log ‖X‖0) shattering dimension for
minor-free graphs and Euclidean spaces. In addition to the multiplicative error, the other type of
F introduces a certain additive error, and we make use of this to show O(k) shattering dimension
bound for bounded highway dimension graphs and doubling spaces. In this section, we will discuss
how the two types of function sets imply efficient coresets, and the dimension bounds for various
metric families will be analyzed in Section 4 where we also present the coreset results.

3.1 Iterative Size Reduction

Theorem 3.1 (Iterative Size Reduction). Let ρ ≥ 1 be a constant and let M be a family of metric
spaces. Assume A(X, k, z, ǫ, δ,M) is a randomized algorithm that constructs an ǫ-coreset of size
ǫ−ρs(k) log δ−1 log ‖X‖0 for (k, z)-Clustering on every weighted set X ⊆ V and metric space
M(V, d) ∈ M, for every z ≥ 1, 0 < ǫ, δ < 1

4 , running in time T (‖X‖0, k, z, ǫ, δ,M) with success
probability 1 − δ. Then algorithm A′(X, k, z, ǫ, δ,M), stated in Algorithm 1, computes an ǫ-coreset
of size Õ(ǫ−ρs(k) log δ−1) for (k, z)-Clustering on every weighted set X ⊆ V and metric space
M(V, d) ∈ M, for every z ≥ 1, 0 < ǫ, δ < 1

4 , in time

O(T (‖X‖0, k, z,O(ǫ/(log ‖X‖0)
1
ρ), O(δ/‖X‖0),M) · log⋆ ‖X‖0),

and with success probability 1 − δ.

Algorithm 1 Iterative size reduction A′(X, k, z, ǫ, δ,M)

Require: algorithm A(X, k, z, ǫ, δ,M) that computes an ǫ-coreset for (k, z)-Clustering on X
with size ǫ−ρs(k) log δ−1 log ‖X‖0 and success probability 1 − δ.

1: let X0 := X, and let t be the largest integer such that log(t−1) ‖X‖0 ≥
max{20ǫ−ρs(k) log δ−1, ρ2ρ+1}

2: for i = 1, · · · , t do

3: let ǫi := ǫ/(log(i) ‖X‖0)
1
ρ , δi := δ/‖Xi−1‖0

4: let Xi := A(Xi−1, k, z, ǫi, δi,M)
5: end for
6: Xt+1 := A(Xt, k, z, ǫ, δ,M)
7: return Xt+1

Proof. For the sake of presentation, let n := ‖X‖0, s := s(k), and Γ := sǫ−ρ log δ−1. We start with
proving in the following that Xt is an O(ǫ)-coreset of X with size max{160000Γ4 , 20Γρ323ρ+3} with
probability 1 −O(δ).

9

Let ai := ‖Xi‖0. Then by definition of Xi,

ai = sǫ−ρ
i log ai−1 log δ−1

i

= sǫ−ρ
i log ai−1(log ai−1 + log δ−1)

≤ sǫ−ρ
i log δ−1(log ai−1)

2 (2)

where the inequality is by log ai−1 + log δ−1 ≤ log ai−1 · log δ−1, which is equivalent to (log ai−1 −
1)(log δ−1 − 1) ≥ 1 and the latter is true because ai−1 ≥ ǫ−ρ ≥ ǫ−1 ≥ 4 and δ < 1

4 .

Next we use induction to prove that ai ≤ 20Γ log δ−1(log(i) n)3 for all i = 1, . . . , t. This is true
for the base case when i = 1, since a1 ≤ sǫ−ρ

1 log δ−1(log n)2 ≤ Γ(log n)3 ≤ 20Γ(log n)3. Then
consider the inductive case i ≥ 2 and assume the hypothesis is true for i− 1. We have

ai ≤ sǫ−ρ
i log δ−1(log ai−1)

2 by (2)

= Γ log(i) n · (log ai−1)
2 by definition of ǫi

≤ Γ log(i) n · (log(20Γ(log(i−1) n)3))2 by induction hypothesis

= Γ log(i) n · (log(20Γ) + 3 log(i) n)2

≤ Γ log(i) n · (2(log(20Γ))2 + 18(log(i) n)2) by (a + b)2 ≤ 2a2 + 2b2

≤ 20Γ(log(i) n)3,

where the last inequality follows from the fact that log(20Γ) ≤ log(log(i−1) n) = log(i) n, by i ≤ t
and the definition of t. Hence we conclude ai ≤ 20Γ(log(i) n)3. This in particular implies that
at ≤ 20Γ(log(t) n)3, and by definition of t, we have log(t) n < max{20Γ, ρ2ρ+1}. Hence,

at ≤ max{160000Γ4, 20Γρ323ρ+3}.

By the guarantee of A, we know that Xt is a Πt
i=1(1 + ǫi)-coreset for X. Note that a ≥ 2ρ log a

for every a ≥ ρ2ρ+1, so we have ǫi+1 ≥ 2ǫi for i ≤ t, which implies that
∑t

i=1 ǫi ≤ 2ǫt. Hence we
conclude that

Πt
i=1(1 + ǫi) ≤ exp

(
t∑

i=1

ǫi

)
≤ exp(2ǫt) ≤ exp

(
2ǫ

(log(t) n)
1
ρ

)
≤ exp(2ǫ) ≤ 1 + 10ǫ,

where the second last inequality follows from log(t) n = log(log(t−1) n) ≥ log(ρ2ρ+1) ≥ 1 for ρ ≥ 1,
and the last inequality follows by the fact that exp(2ǫ) ≤ 1 + 10ǫ for ǫ ∈ (0, 1). For the failure
probability, we observe that ai−1 ≥ ǫ−ρ

i−1 ≥ log(i−1) n, hence δi = δ
ai−1

≤ δ
log(i−1) n

, and the total

failure probability is

t∑

i=1

δi ≤ δ

(
1

n
+

1

log n
+ · · · +

1

log(t−1) n

)
≤ O(δ),

where again we have used log(t−1) n ≥ ρ2ρ+1 ≥ 4, by definition of t and ρ ≥ 1.
Therefore, Xt is an O(ǫ)-coreset of X with size max{160000Γ4, 20Γρ323ρ+3} with probability 1−

O(δ). Finally, in the end of algorithm A′, we apply A again on Xt with parameter ǫ and δ to obtain
an O(ǫ)-coreset of X with size sǫ−ρ log δ−1 log(max{160000Γ4, 20Γρ323ρ+3}) = Õ(sǫ−ρ log δ−1) with
probability 1 −O(δ).

To see the running time, we note that t = O(log⋆ n), and we run A for t + 1 times. Moreover,
since ǫi ≥ ǫ1 and δi ≥ δ1, the running time of each call of A is at most T (‖X‖0, k, z, ǫ1, δ1,M).
This completes the proof of Theorem 3.1.

10

3.2 Importance Sampling

We proceed to design the algorithm A required by Theorem 3.1. It is based on the importance
sampling algorithm introduced by [LS10, FL11], and at a high level consists of two steps:

1. Computing probabilities: for each x ∈ X, compute px ≥ 0 such that
∑

x∈X px = 1.

2. Sampling: draw N (to be determined later) independent samples from X, each drawn from

the distribution (px : x ∈ X), and assign each sample x a weight wX(x)
px·N

to form a coreset D.

The key observation in the analysis of this algorithm is that the sample size N , which is also the
coreset size ‖D‖0, is related to the shattering dimension (see Definition 2.1) of a suitably defined set
of functions [FL11, Theorem 4.1]. The analysis in [FL11] has been subsequently improved [BFL16,
FSS20], and we make use of [FSS20, Theorem 31], restated as follows.

Lemma 3.2 (Analysis of Importance Sampling [FSS20]). Fix z ≥ 1, 0 < ǫ < 1
2 , an integer k ≥ 1

and a metric space (V, d). Let X ⊆ V have weights wX : V → R+ and let F := {fx : V → R+ | x ∈
X} be a corresponding set of functions with weights wF (fx) = wX(x). Suppose {σx}x∈X satisfies

∀x ∈ X, σx ≥ σF
x := max

C∈V k

wX(x) · (fx(C))z

costz(F , C)
,

and set a suitable

N = O(ǫ−2σX(k · sdimmax(F) · log(sdimmax(F)) · log σX + log 1
δ)),

where σX :=
∑

x∈X σx and

sdimmax(F) := max
v:X→R+

sdim (Fv) , Fv := {fx · v(x) | x ∈ X}.

Then the weighted set D of size ‖D‖0 = N returned by the above importance sampling algorithm
satisfies, with high probability 1 − δ,

∀C ∈ V k,
∑

x∈D

wD(x) · (fx(C))z ∈ (1 ± ǫ) · costz(F , C).

Remark 3.3. We should explain how [FSS20, Theorem 31] implies Lemma 3.2. First of all, the
bound in [FSS20] is with respect to VC-dimension, and we transfer to shattering dimension by
losing a logarithmic factor (see Section 2 for the relation between VC-dimension and shattering
dimension). Another main difference is that the functions therein are actually not from V to R+.
For F = {fx : V → R+ | x ∈ X}, they consider Fk := {fx(C) = minc∈C{fx(c)} | x ∈ X}, and their
bound on the sample size is

N = Õ(ǫ−2σX(sdimmax(Fk) · log σX + log 1
δ)).

The notion of balls and shattering dimension they use (for Fk) is the natural extension of our
Definition 2.1 (from functions on V to functions on V k), where a ball around C ∈ V k is BF (C, r) =
{fx ∈ F : fx(C) ≤ r}, and (1) is replaced by

∣∣∣{BH(C, r) : C ∈ V k, r ≥ 0}
∣∣∣ ≤ |H|t.

Our Lemma 3.2 follows from [FSS20, Theorem 31] by using the fact sdim(Fk) ≤ k · sdim(F)
from [FL11, Lemma 6.5].

11

Terminal Embeddings. As mentioned in Section 1, F in Lemma 3.2 corresponds to the distance
function d, i.e., fx(·) = d(x, ·), and Lemma 3.2 is usually applied directly to the distances, i.e., on
a function set F = {fx(·) = d(x, ·) | x ∈ X}. In our applications, we instead use Lemma 3.2 with a
“proxy” function set F that is viewed as a terminal embedding on X, in which both the distortion
of distances (between X and all of V) and the shattering dimension are controlled.

We consider two types of terminal embeddings F . The first type (Section 3.3) maintains (1+ǫ)-
multiplicative distortion of the distances, and achieves dimension bound O(poly(k/ǫ) log ‖X‖0), and
the other type of F (Section 3.4) maintains additive distortion on top of the multiplicative one, but
then the dimension is reduced to poly(k/ǫ). In what follows, we discuss how each type of terminal
embedding is used to construct coresets.

3.3 Coresets via Terminal Embedding with Multiplicative Distortion

The first type of terminal embedding distorts distances between V and X multiplicatively, i.e.,

∀x ∈ X, c ∈ V, d(x, c) ≤ fx(c) ≤ (1 + ǫ) d(x, c). (3)

This natural guarantee works very well for (k, z)-Clustering in general. In particular, using
such F in Lemma 3.2, our importance sampling algorithm will produce (with high probability) an
O(zǫ)-coreset for (k, z)-Clustering.

Sensitivity Estimation. To compute a coreset using Lemma 3.2 we need to define, for every
x ∈ X,

σx ≥ σF
x = max

C∈V k

wX(x) · (fx(C))z

costz(F , C)
.

The quantity σF
x , usually called the sensitivity of point x ∈ X with respect to F [LS10, FL11];

essentially measures the maximal contribution of x to the clustering objective over all possible cen-
ters C ⊆ V . Since fx(y) approximates d(x, y) by (3), it actually suffices to estimate the sensitivity
with respect to d instead of F , given by

σ⋆
x := max

C∈V k

wX(x) · (d(x,C))z

costz(X,C)
. (4)

Even though computing σ⋆
x exactly seems computationally difficult, we shown next (in Lemma 3.4)

that a good estimate can be efficiently computed given an (O(1), O(1))-approximate clustering. A
weaker version of this lemma was presented in [VX12] for the case where X has unit weights, and
we extend it to X with general weights. We will need the following notation. Given a subset
C ⊆ V , denote the nearest neighbor of x ∈ X, i.e., the point in C closest to x with ties broken
arbitrarily, by NNC(x) := arg min{d(x, y) : y ∈ C}. The tie-breaking guarantees that every x has
a unique nearest neighbor, and thus NNC(.) partitions X into |C| subsets. The cluster of x under
C is then defined as C(x) := {x′ ∈ X : NNC(x′) = NNC(x)}.

Lemma 3.4. Fix z ≥ 1, an integer k ≥ 1, and a weighted set X. Given Capx ∈ V k that is an
(α, β)-approximate solution for (k, z)-Clustering on X, define for every x ∈ X,

σapx
x := wX(x) ·

(
(d(x,Capx))z

costz(X,Capx)
+

1

wX(Capx(x))

)
.

Then σapx
x ≥ Ω(σ⋆

x/(β22z)) for all x ∈ X, and σapx
X :=

∑
x∈X σapx

x ≤ 1 + αk.

12

Before proving this lemma, we record the following approximate triangle inequality for distances
raised to power z ≥ 1.

Claim 3.5. For all x, x′, y ∈ V we have dz(x, y) ≤ 2z−1 · [dz(x, x′) + dz(x′, y)].

Proof of Claim 3.5. We first use the triangle inequality,

dz(x, y) ≤ [d(x, x′) + d(x′, y)]z

and since a 7→ az is convex (recall z ≥ 1), all a, b ≥ 0 satisfy (a+b
2)z ≤ az+bz

2 , hence

≤ 2z−1[dz(x, x′) + dz(x′, y)].

The claim follows.

Proof of Lemma 3.4. Given C∗, we shorten the notation by setting µ := NNCapx , and let Xapx be
the weighted set obtained by mapping all points of X by µ. Formally, Xapx := {µ(x) : x ∈ X}
where every y ∈ Xapx has weight wXapx(y) :=

∑
x∈X:µ(x)=y wX(x). Then obviously

∀x ∈ X, wX(Capx(x)) =
∑

x′∈Capx(x)

wX(x′) = wXapx(µ(x)).

Upper bound on σapx
X . Using the above,

σapx
X =

∑

x∈X

σapx
x =

∑

x∈X

wX(x) ·

(
dz(x, µ(x))

costz(X,Capx)
+

1

wXapx(µ(x))

)
,

and we can bound

∑

x∈X

wX(x) ·
1

wXapx(µ(x))
=

∑

y∈Xapx

wXapx(y) ·
1

wXapx(y)
≤ ‖Capx‖0 ≤ αk,

and we conclude that σapx
X ≤ 1 + αk, as required.

Lower bound on σapx
x (relative to σ⋆

x). Aiming to prove this as an upper bound on σ⋆
x, consider

for now a fixed C ∈ V k. We first establish the following inequality, that relates the cost of Xapx to
that of X.

costz(Xapx, C) =
∑

y∈Xapx

wXapx(y) · dz(y,C)

=
∑

x∈X

wX(x) · dz(µ(x), C)

≤ 2z−1
∑

x∈X

wX(x) · [dz(µ(x), x) + dz(x,C)] by Claim 3.5

= 2z−1 · [costz(X,Capx) + costz(X,C)] as Capx is (α, β)-approximation

≤ 2z−1(β + 1) · costz(X,C). (5)

Now aiming at an upper bound on σ⋆
x, observe that

dz(X,C)

costz(X,C)
≤ 2z−1 ·

[
dz(x, µ(x)) + dz(µ(x), C)

costz(X,C)

]
by Claim 3.5 (6)

13

and let us bound each term separately. For the first term, since Capx is an (α, β)-approximation,

dz(x, µ(x))

costz(X,C)
≤ β ·

dz(x, µ(x))

costz(X,Capx)
.

The second term is

dz(µ(x), C)

costz(X,C)
≤ (β + 1)2z−1 ·

dz(µ(x), C)

costz(Xapx, C)
by (5)

= (β + 1)2z−1 ·
dz(µ(x), C)∑

y∈Xapx wXapx(y) · dz(y,C)

≤ (β + 1)2z−1 ·
1

wXapx(µ(x))
.

Plugging these two bounds into (6), we obtain

dz(x,C)

costz(X,C)
≤ (β + 1)22z−2 ·

[dz(x, µ(x))

costz(X,Capx)
+

1

wXapx(µ(x))

]
= (β + 1)22z−2 ·

σapx
x

wX(x)
.

Using the definition in (4), we conclude that (β + 1)22z−2 · σapx
x ≥ σ⋆

x, which completes the proof of
Lemma 3.4.

Conclusion. Our importance sampling algorithm for this type of terminal embedding is listed
in Algorithm 2. By a direct combination of Lemma 3.2 and Lemma 3.4, we conclude that the
algorithm yields a coreset, which is stated formally in Lemma 3.6.

Algorithm 2 Coresets for (k, z)-Clustering for F with multiplicative distortion

1: compute an (O(1), O(1))-approximate solution Capx for (k, z)-Clustering on X

2: for each x ∈ X, let σx := wX(x) ·
(

(d(x,Capx))z

costz(X,Capx) + 1
wX(Capx(x))

)
⊲ as in Lemma 3.4

3: for each x ∈ X, let px := σx∑
y∈X σy

4: draw N := O
(
ǫ−222zk ·

(
zk log k · sdimmax(F) + log 1

δ

))
independent samples from X, each

from the distribution (px : x ∈ X) ⊲ sdimmax as in Lemma 3.2

5: let D be the set of samples, and assign each x ∈ D a weight wD(x) := wX(x)
pxN

6: return the weighted set D

Lemma 3.6. Fix 0 < ǫ, δ < 1
2 , z ≥ 1, an integer k ≥ 1, and a metric space M(V, d). Given a

weighted set X ⊆ V and respective F = {fx : V → R+ | x ∈ X} such that

∀x ∈ X, c ∈ V, d(x, c) ≤ fx(c) ≤ (1 + ǫ) · d(x, c),

Algorithm 2 computes a weighted set D ⊆ X of size

‖D‖0 = O
(
ǫ−222zk

(
zk log k · sdimmax(F) + log 1

δ

))
,

that with high probability 1 − δ is an ǫ-coreset for (k, z)-Clustering on X.

The running time of Algorithm 2 is dominated by the sensitivity estimation, especially line 1
which computes an (O(1), O(1))-approximate solution. In Lemma 3.7 we present efficient imple-
mentations of the algorithm, both in metric settings and in graph settings.

14

Lemma 3.7. Algorithm 2 can be implemented in time Õ(k‖X‖0) if it is given oracle access to
the distance d, and it can be implemented in time Õ(|E|) if the input is an edge-weighted graph
G = (V,E) and M is its shortest-path metric.

Proof. The running time is dominated by Step 1 which requires an (O(1), O(1))-approximation in
both settings. For the metric setting where oracle access to d is given, [MP04] gave an Õ(k‖X‖0)
algorithm for both k-Median (z = 1) and k-Means (z = 2), and it has been observed to work for
general z in a recent work [HV20].

For the graph setting, Thorup [Tho05, Theorem 20] gave an (2, 12 + o(1))-approximation for
graph k-Median in time Õ(|E|), such that the input points are unweighted. Even though not
stated in his result, we observe that his approach may be easily modified to handle weighted inputs
as well, and we briefly mention the major changes.

• Thorup’s first step [Tho05, Algorithm D] is to compute an (Õ(log |V |), O(1))-approximation
F by successive uniform independent sampling. This can be naturally modified to sampling
proportional to the weights of the input points.

• Then, the idea is to use the Jain-Vazirani algorithm [JV01] on the bipartite graph F ×X. To
make sure the running time is Õ(|V |), the edges of F ×X sub-sampled by picking, for each
x ∈ X, only Õ(1) neighbors in F . This sampling is oblivious to weights, and hence still goes
through. Let the sampled subgraph be G′.

• Finally, the Jain-Vazirani algorithm is applied on G′ to obtain the final (2, 12 + o(1))-
approximation. However, we still need to modify Jain-Vazirani to work with weighted inputs.
Roughly, Jain-Vazirani algorithm is a primal-dual method, so the weights are easily incorpo-
rated to the linear program, and the primal-dual algorithm is naturally modified so that dual
variables are increased at a rate that is proportional to their weight in the linear program.

After obtaining Capx, the remaining steps of Algorithm 2 trivially runs in time Õ(k‖X‖0) when
oracle access to d is given. However, for the graph setting, the trivial implementation of Step 2 which
requires to compute cost1(X,Capx) needs to run Õ(k) single-source-shortest-paths from points in
Capx, and this leads to a running time Õ(k|V |). In fact, as observed in [Tho05, Observation 1],
only one single-source-shortest-path needs to be computed, by running Dijkstra’s algorithm on a
virtual point x0 which connects to each point in Capx to x0 with 0 weight.

This completes the proof of Lemma 3.7.

3.4 Coresets via Terminal Embedding with Additive Distortion

The second type of embedding has, in addition to the above (1 + ǫ)-multiplicative distortion, also
an additive distortion. Specifically, we assume the function set F = FS is defined with respect to
some subset S ⊆ V and satisfies

∀x ∈ X, c ∈ V, d(x, c) ≤ fx(c) ≤ (1 + ǫ) · d(x, c) + ǫ · d(x, S).

The choice of S clearly affects the dimension sdimmax(FS), but let us focus now on the effect on
the clustering objective, restricting our attention henceforth only to the case z = 1 (recalling that
cost1 = cost). Suppose we pick S := Capx where Capx is an (α, β)-approximation for k-Median.
Then even though the additive error for any given x, y might be very large, it will preserve the
k-Median objective for X, because

∀C ∈ V k, cost(X,C) ≤ cost(F , C) ≤ (1 + ǫ) · cost(X,C) + ǫ · cost(X,Capx)

≤ (1 + (β + 1)ǫ) · cost(X,C). (7)

15

However, this does not immediately imply a coreset for k-Median, because we need an analogous
bound, but for D instead of X (recall that D is computed by importance sampling with respect to
F). In particular, using Lemma 3.2 and (7) we get one direction (with high probability)

∀C ∈ V k,
∑

x∈D

wD(x) · fx(C) ≥ (1 − ǫ) · cost(F , C) ≥ (1 − ǫ) ≥ cost(X,C),

however in the other direction we only have

∀C ∈ V k,
∑

x∈D

wD(x) · fx(C) ≤ (1 + ǫ) · cost(D,X) + ǫ ·
∑

x∈D

wD(x) · d(x,Capx),

where the term
∑

x∈D wD(x) · d(x,Capx) remains to be bounded.
This term

∑
x∈D wD(x) · d(x,Capx) can be viewed as a weak coreset guarantee which preserves

the objective cost(X, ·) on Capx only. Fortunately, because Capx is fixed before the importance
sampling, our algorithm may be interpreted as estimating a fixed sum

cost(X,Capx) =
∑

x∈X

wX(x) · d(x,Capx)

using independent samples in D, i.e., by the estimator
∑

x∈D wD(x) · d(x,Capx). And now Hoeffd-
ing’s inequality shows that for large enough N , this estimator is accurate with high probability.

We present our new algorithm in Algorithm 3, which is largely similar to Algorithm 2, except
for a slightly larger number of samples N and some hidden constants. Hence, its running time is
similar to Algorithm 2, as stated in Corollary 3.8 for completeness. Its correctness requires new
analysis and is presented in Lemma 3.9.

Algorithm 3 Coresets for k-Median on F with additive distortion

1: compute an (O(1), O(1))-approximate solution Capx for k-Median on X

2: for each x ∈ X, let σapx
x := wX(x) ·

(
d(x,Capx)

cost(X,Capx) + 1
wX(Capx(x))

)
⊲ as in Lemma 3.4

3: for each x ∈ X, let px := σapx
x∑

y∈X σapx
y

4: draw N := O
(
ǫ−2k

(
k log k · sdimmax(FCapx) + log 1

δ

)
+ k2 log 1

δ

)
independent samples from X,

each from the distribution (px : x ∈ X) ⊲ sdimmax as in Lemma 3.2, and FCapx as in (8)

5: for each x in the sample D assign weight wD(x) := wX(x)
pxN

6: return the weighted set D

Corollary 3.8. Algorithm 3 can be implemented in time Õ(k‖X‖0) if it is given oracle access to
the distance d, and in time Õ(|V | + |E|) if the input is an edge-weighted graph G = (V,E) and M
is its shortest-path metric.

Lemma 3.9. Fix 0 < ǫ, δ < 1
2 , an integer k ≥ 1, and a metric space M(V, d). Given a weighted

set X ⊆ V , and an (O(1), O(1))-approximate solution Capx ∈ V k for k-Median on X, suppose
FCapx = {fx : V → R+ | x ∈ X} satisfies

∀x ∈ X, c ∈ V, d(x, c) ≤ fx(c) ≤ (1 + ǫ) · d(x, c) + ǫ · d(x,Capx); (8)

then Algorithm 3 computes a weighted set D ⊆ X of size

‖D‖0 = O
(
ǫ−2k

(
k log k · sdimmax(FCapx) + log 1

δ

)
+ k2 log 1

δ

)
,

that with high probability 1 − δ is an ǫ-coreset for k-Median on X.

Proof. Suppose Capx ∈ V k is an (α, β)-approximate solution for α, β = O(1). Observe that (8)
implies (7), and write F = FCapx for brevity.

16

Sensitivity Analysis. We would like to employ Lemma 3.2. Observe that σapx
x in Algorithm 3

is the same, up to hidden constants, as in Algorithm 2, hence the upper bound σapx
X ≤ 1 + αk

follows immediately from Lemma 3.4. We also need to prove that σapx
x ≥ Ω(σF

x) for all x ∈ X,

where σF
x = maxC∈V k

wX(x)·fx(C)
cost(F ,C) . Once again, we aim to prove this as an upper bound on σF

x .

Fix x ∈ X, and let Cmax ∈ V k be a maximizer in the definition of σF
x (which clearly depends

on x). Then

σF
x =

wX(x) · fx(Cmax)

cost(F , Cmax)

≤
wX(x) · [(1 + ǫ) · d(x,Cmax) + ǫ · d(x,Capx)]

cost(X,Cmax)
by (8) and (7)

≤ (1 + ǫ) · σ⋆
x + ǫ ·

wX(x) · d(x,Capx)

cost(X,Cmax)
as defined in (4)

≤ (1 + ǫ) · σ⋆
x + βǫ ·

wX(x) · d(x,Capx)

cost(X,Capx)
as Capx is (α, β)-approximation

≤ (1 + ǫ) · σ⋆
x + βǫ · σapx

x . as defined in line 2

Combining this with our bound σ⋆
x ≤ O(β) · σapx

x from Lemma 3.4 (recall z = 1), we conclude that
σF
x ≤ O(β) · σapx.

Overall Error Bound. Recall our goal is to prove that with probably at least 1− δ, the output
D is a coreset, i.e.,

∀C ∈ V k, cost(D,C) ∈ (1 ±O(βǫ)) · cost(X,C). (9)

Applying Lemma 3.2 with our choice of N in line 4 of the algorithm, we know that with probability
at least 1 − δ/2,

∀C ∈ V k,
∑

x∈D

wD(x) · fx(C) ∈ (1 ± ǫ) · cost(F , C) (10)

We claim, and will prove shortly, that with probability at least 1 − δ/2,

∑

x∈D

wD(x) · d(x,Capx) ≤ 2 · cost(X,Capx). (11)

Using this claim, we complete the proof as follows. By a union bound, with probability at least
1 − δ, both (10) and (11) hold. In this case, for all C ∈ V k, one direction of (9) follows easily

cost(D,C) ≤
∑

x∈D

wD(x) · fx(C) by (8)

≤ (1 + ǫ) · cost(F , C) by (10)

≤ (1 + O((βǫ)) · cost(X,C). by (7)

17

For the other direction of (9), which crucially rely on (11), we have

cost(X,C) ≤ cost(F , C) by (7)

≤
1

1 − ǫ
·
∑

x∈D

wD(x) · fx(C) by (10)

≤
1 + ǫ

1 − ǫ
· cost(D,C) +

ǫ

1 − ǫ
·
∑

x∈D

wD(x) · d(x,Capx) by (8)

≤
1 + ǫ

1 − ǫ
· cost(D,C) +

2ǫ

1 − ǫ
· cost(X,Capx), by (11)

and finally using that Capx is (α, β)-approximation and some rearrangement, we get that cost(X,C) ≤
(1 + O(βǫ)) cost(D,C).

It remains to prove our claim, i.e., that (11) holds with high probability. This follows by a
straightforward application of Hoeffding’s Inequality. To see this, define for each 1 ≤ i ≤ N the
random variable Yi := wX(x)·d(x,Capx)

px
, where x is the i-th sample in line 4, and let Y := 1

N

∑N
i=1 Yi.

Then
Y =

∑

x∈D

wD(x) · d(x,Capx),

and its expectation is E[Y] = E[Y1] =
∑

x∈X wX(x) · d(x,Capx) = cost(X,Capx).
Now observe that the random variables Yi are independent, and use Lemma 3.4 to bound each

of them by

0 ≤ Yi =
wX(x) · d(x,Capx)

σapx
x /σapx

X

≤ (1 + αk) · cost(x,Capx) = (1 + αk)E[Y].

Hence, by Hoeffding’s Inequality

∀t > 0, Pr [Y − E[Y] > t] ≤ exp

(
−

2Nt2

((1 + αk)E[Y])2

)

and for t = E[Y] and a suitable N ≥ Ω(α2k2 log 1
δ), we conclude that Pr

[
Y > 2E[Y]

]
≤ δ/2. This

proves the claim and completes the proof of Lemma 3.9.

4 Coresets

We now apply the framework developed in Section 3 to design coresets of size independent of
X for various settings, including excluded-minor graphs (in Section 4.1), high-dimensional Eu-
clidean spaces (in Section 4.3), and graphs with bounded highway dimension (in Section 4.4). Our
workhorse will be Lemma 3.6 and Lemma 3.9, which effectively translate a terminal embedding F
with low distortion on X × V and low shattering dimension sdimmax into an efficient algorithm to
construct a coreset whose size is linear in sdimmax(F).

We therefore turn our attention to designing various terminal embeddings. For excluded-minor
graphs, we design a terminal embedding F with multiplicative distortion 1 + ǫ of the distances,
and dimension sdimmax(F) = O(poly(k/ǫ) · log ‖X‖0). For Euclidean spaces, we employ a known
terminal embedding with similar guarantees. In both settings, even though the shattering dimension
depends on ‖X‖0, it still implies coresets of size independent of X by our iterative size reduction
(Theorem 3.1). We thus obtain the first coreset (of size independent of X and V) for excluded-minor
graphs (Corollary 4.2), and a simpler state-of-the-art coreset for Euclidean spaces (Corollary 4.18).

18

We also design a terminal embedding for graphs with bounded highway dimension (formally
defined in Section 4.4). This embedding has an additive distortion (on top of the multiplicative
one), but its shattering dimension is independent of X, hence the iterative size reduction is not
required. We thus obtain the first coreset (of size independent of X and V) for graphs with bounded
highway dimension (Corollary 4.25).

4.1 Excluded-minor Graphs

Our terminal embedding for excluded-minor graphs is stated in the next lemma. Previously, the
shattering dimension of the shortest-path metric of graphs excluding a fixed graph H0 as a minor
was studied only for unit point weight, for which Bousquet and Thomassé [BT15] proved that
F = {d(x, ·) | x ∈ X} has shattering dimension sdim(F) = O(|H0|). For arbitrary point weight,
i.e., sdimmax(F), it is still open to get a bound that depends only on |H0|, although the special case
of bounded treewidth was recently resolved, as Baker et al. [BBH+20], proved that sdimmax(F) =
O(tw(G)) where tw(G) denotes the treewidth of the graph G. Note that both of these results use
no distortion of the distances, i.e., they bound F = {d(x, ·) | x ∈ X}. Our terminal embedding
handles the most general setting of excluded-minor graphs and arbitrary point weight, although it
bypasses the open question by allowing a small distortion and dependence on X.

Lemma 4.1 (Terminal Embedding for Excluded-minor Graphs). For every edge-weighted graph
G = (V,E) that excludes some fixed minor and whose shortest-path metric is denoted as M = (V, d),
and for every weighted set X ⊆ V , there exists a set of functions F := {fx : V → R+ | x ∈ X}
such that

∀x ∈ X, c ∈ V, d(x, c) ≤ fx(c) ≤ (1 + ǫ) · d(x, c),

and sdimmax(F) = Õ(ǫ−2) · log ‖X‖0.

Let us present now an overview of the proof of Lemma 4.1, deferring the full details to Sec-
tion 4.2. Our starting point is the following approach, which was developed in [BBH+20] for
bounded-treewidth graphs. (The main purpose is to explain how vertex separators are used as por-
tals to bound the shattering dimension, but unfortunately additional technical details are needed.)
The first step in this approach reduces the task of bounding the shattering dimension to counting
how many distinct permutations of X one can obtain by ordering the points of X according to their
distance from a point c, when ranging over all c ∈ V . An additional argument uses the bounded
treewidth to reduce the range of c from all of V to a subset V̂ ⊂ V , that is separated from X by
a vertex-cut P ⊂ V of size |P̂ | = O(1). This means that every path, including the shortest-path,
between every x ∈ X and every c ∈ V̂ must pass through P̂ , therefore

d(x, c) = min{d(x, p) + d(p, c) : p ∈ P̂},

and the possible orderings of X are completely determined by these values. The key idea now is
to replace the hard-to-control range of c ∈ V̂ with a richer but easier range of |P̂ | = O(1) real
variables. Indeed, each d(x, ·) is captured by a min-linear function, which means a function of
the form mini aiyi + bi with real variables {yi} that represent {d(p, c)}p∈P̂ and fixed coefficients

{ai, bi}. Therefore, each d(x, ·) is captured by a min-linear function gx : R|P̂ | → R+, and these
functions are all defined on the same |P̂ | = O(1) real variables. In this representation, it is easy
to handle the point weight v : X → R+ (to scale all distances from x), because each resulting
function v(x) · gx is still min-linear. Finally, the number of orderings of the set {gx}x∈X of min-
linear functions, is counted using the arrangement number for hyperplanes, which is a well-studied
quantity in computational geometry.

19

To extend this approach to excluded-minor graphs (or even planar graphs), which do not admit
small vertex separators, we have to replace vertex separators with shortest-path separators [Tho04,
AG06]. In particular, we use these separator theorem to partition the whole graph into a few parts,
such that each part is separated from the graph by only a few shortest paths, see Lemma 4.5 for
planar graphs (which is a variant of a result known from [EKM14]) and Lemma 4.12 for excluded-
minor graphs. However, the immediate obstacle is that while these separators consist of a few
paths, their total size is unbounded (with respect to X), which breaks the above approach because
each min-linear function has too many variables. A standard technique to address this size issue
is to discretize the path separator into portals, and reroute through them a shortest-path from
each x ∈ X to each c ∈ V . This step distorts the distances, and to keep the distortion bounded
multiplicatively by 1 + ǫ, one usually finds inside each separating shortest-path l, a set of portals
Pl ⊂ l whose spacing is at most ǫ · d(x, c). However, d(x, c) could be very small compared to the
entire path l, hence we cannot control the number of portals (even for one path l).

Vertex-dependent Portals In fact, all we need is to represent the relative ordering of {d(x, ·) :
x ∈ X} using a set of min-linear functions over a few real variables, and these variables do not
have to be the distance to fixed portals on the separating shortest paths. (Recall this description is
eventually used by the arrangement number of hyperplanes to count orderings of X.) To achieve
this, we first define vertex-dependent portals P l

c with respect to a separating shortest path l and
a vertex c ∈ V (notice this includes also P l

x for x ∈ X). and then a shortest path from x ∈ X to
c ∈ V passing through l is rerouted through portals P l

x ∪ P l
c , as follows. First, since l is itself a

shortest path, d(x, c) = minu1,u2∈l{d(x, u1)+d(u1, u2)+d(u2, c)}. Observe that d(u1, u2) is already
linear, because one real variable can “capture” a location in l, hence we only need to approximate
d(x, u1) and d(c, u2). To do so, we approximate the distances from c to every vertex on the path l,
i.e., {d(c, u)}u∈l, using only the distances from c to its portal set P l

c , i.e., {d(c, p)}p∈P l
c
. Moreover,

between successive portals this approximate distance is a linear function, and it actually suffices
to use |P l

c | = poly(1/ǫ) portals, which means that d(c, u) can be represented as a piece-wise linear
function in poly(1/ǫ) real variables.

Note that the above approach ends up with the minimum of piece-wise linear (rather than
linear) functions, which creates extra difficulty. In particular, we care about the relative ordering
of {d(x, ·) : x ∈ X} over all c ∈ V , and to evaluate d(x, c) we need the pieces that c and x generate,
i.e., information about P l

c ∪ P l
x. Since the number of c ∈ V is unbounded, we need to “guess” the

structure of P l
c , specifically the ordering between the portals in P l

c and those in P l
x. Fortunately,

since every |P l
c | ≤ poly(1/ǫ), such a “guess” is still affordable, and this would prove Lemma 4.1.

Corollary 4.2 (Coresets for Excluded-Minor Graphs). For every edge-weighted graph G = (V,E)
that excludes a fixed minor, every 0 < ǫ, δ < 1/2 and integer k ≥ 1, k-Median of every weighted
set X ⊆ V (with respect to the shortest path metric of G) admits an ǫ-coreset of size Õ(ǫ−4k2 log 1

δ).

Furthermore, such a coreset can be computed in time Õ(|E|) with success probability 1 − δ.

Proof. By combining Lemma 3.6, Lemma 3.7 with our terminal embedding from Lemma 4.1, we
obtain an efficient algorithm for constructing a coreset of size Õ(ǫ−4k2 log ‖X‖0). This size can be
reduced to the claimed size (and running time) using the iterative size reduction of Theorem 3.1.

Remark 4.3. This result partly extends to (k, z)-Clustering for all z ≥ 1. The importance
sampling algorithm and its analysis are immediate, and in particular imply the existence of a
coreset of size Õ(ǫ−4k2 log 1

δ). However we rely on known algorithm for z = 1 in the step of
computing an approximate clustering (needed to compute sampling probabilities).

20

4.2 Proof of Lemma 4.1

For the sake of presentation, we start with proving the planar case, since this already requires most
of our new technical ideas. The statement of terminal embedding for planar graphs is as follows,
and how the proof can be modified to work for the minor-excluded case is discussed in Section 4.2.1.

Lemma 4.4 (Terminal Embedding for Planar Graphs). For every edge-weighted planar graph
G = (V,E) whose shortest path metric is denoted as M = (V, d) and every weighted set X ⊆ V ,
there exists a set of functions F = FX := {fx : V → R+ | x ∈ X} such that for every x ∈ X, and
c ∈ V , fx(c) ∈ (1 ± ǫ) · d(x, c), and sdimmax(F) = Õ(ǫ−2) log ‖X‖0.

By definition, sdimmax(F) = maxv:X→R+(Fv), so it suffices to bound sdim(Fv) for every v.
Also, by the definition of sdim, it suffices to prove for every H ⊆ Fv with |H| ≥ 2,

|{BH(c, r) : c ∈ V, r ≥ 0}| ≤ poly(‖X‖0) · |H|Õ(ǫ−2) log ‖X‖0 .

Hence, we fix some v : X → R+ and H ⊆ Fv with |H| ≥ 2 throughout the proof.

General Reduction: Counting Relative Orderings For H ⊆ F and c ∈ V , let σH
c be the

permutation of H ordered by v(x) · fx(c) in non-decreasing order and ties are broken arbitrarily.
Then for a fixed c ∈ V and very r ≥ 0, the subset BH(c, r) ⊆ H is exactly the subset defined by
some prefix of σH

c . Hence,

|{BH(c, r) : c ∈ V, r ≥ 0}| ≤ |H| ·
∣∣{σH

c : c ∈ V }
∣∣ .

Therefore, it suffices to show

∣∣{σH
c : c ∈ V }

∣∣ ≤ poly(‖X‖0) · |H|Õ(ǫ−2) log ‖X‖0 .

Hence, this reduces the task of bounding of shattering dimension to counting the number of relative
orderings of {v(x) · fx(c) | x ∈ X}.

Next, we use the following structural lemma for planar graphs to break the graph into few parts
of simple structure, so we can bound the number of permutations for c coming from each part. A
variant of this lemma has been proved in [EKM14], where the key idea is to use the interdigitating
trees. For completeness, we give a full proof of this lemma in Appendix A.

Lemma 4.5 (Structural Property of Planar Graphs, see also [EKM14]). For every edge-weighted
planar graph G = (V,E) and subset S ⊆ V , V can be broken into parts Π := {Vi}i with |Π| =
poly(|S|) and

⋃
i Vi = V , such that for every Vi ∈ Π,

1. |S ∩ Vi| = O(1),

2. there exists a collection of shortest paths Pi in G with |Pi| = O(1) and removing the vertices
of all paths in Pi disconnects Vi from V \ Vi (points in Vi are possibly removed).

Furthermore, such Π and the corresponding shortest paths Pi for Vi ∈ Π can be computed in Õ(|V |)
time7.

7This lemma is used only in the analysis in this section, but the running time is relevant when this lemma is used
again in Section 5.

21

Applying Lemma 4.5 with S = X (noting that S is an unweighted set), we obtain Π = {Vi}i
with |Π| = poly(‖X‖0), such that each part Vi ∈ Π is separated by O(1) shortest paths Pi. Then

∣∣{σH
c : c ∈ V }

∣∣ ≤
∑

Vi∈Π

∣∣{σH
c : c ∈ Vi}

∣∣.

Hence it suffices to show for every Vi ∈ Π, it holds that
∣∣{σH

c : c ∈ Vi}
∣∣ ≤ |H|Õ(ǫ−2) log ‖X‖0 . (12)

Since
⋃

i Vi = V , it suffices to define functions fx(·) for c ∈ Vi for every i independently. Therefore,
we fix Vi ∈ Π throughout the proof. In the following, our proof proceeds in three parts. The first
defines functions fx(·) on Vi, the second analyzes the distortion of fx’s, and the final part analyzes
the shattering dimension.

Part I: Definition of fx on Vi By Lemma 4.5 we know |Vi ∩X| = O(1). Hence, the “simple”
case is when x ∈ Vi ∩ T , for which we define fx(·) := d(x, ·).

Otherwise, x ∈ X \ Vi. Write Pi := {Pj}j . Since Pj ’s are shortest paths in G, and removing Pi

from G disconnects Vi from V \ Vi, we have the following fact.

Fact 4.6. For c ∈ Vi and x ∈ X \ Vi, there exists Pj ∈ Pi and c′, x′ ∈ Pj , such that d(c, x) =
d(c, c′) + d(c′, x′) + d(x′, x).

Let dj(c, x) be the length of the shortest path from c to x that uses at least one point in Pj .

For each Pj ∈ Pi, we will define f j
x : Vi → R+, such that f j

x(c) is within (1 ± ǫ) · dj(c, x), and let

fx(c) := min
Pj∈Pi

f j
x(c), ∀c ∈ Vi.

Hence, by Fact 4.6, the guarantee that f j
x(c) ∈ (1 ± ǫ) · dj(c, x) implies fx(c) ∈ (1 ± ǫ) · d(x, c), as

desired. Hence we focus on defining f j
x in the following.

Defining f j
x : Vi → R+ Suppose we fix some Pj ∈ Pi, and we will define f j

x(c), for c ∈ Vi. By
Fact 4.6 and the optimality of shortest paths, we have

dj(x, c) = min
c′,x′∈Pj

{d(c, c′) + d(c′, x′) + d(x′, x)}.

For every y ∈ V , we will define ljy : Pj → R+ such that ljy(y′) ∈ (1 ± ǫ) · d(y, y′) for every y′ ∈ Pj .
Then, we let

f j
x(c) := min

c′,x′∈Pj

{ljc(c
′) + d(c′, x′) + ljx(x′)},

and this would imply f j
x(c) ∈ (1± ǫ) ·dj(x, c). So it remains to define ljy : Pj → R+ for every y ∈ V .

Defining ljy : Pj → R+ Fix y ∈ V and we will define ljy(y′) for every y′ ∈ Pj . Pick hy ∈ Pj that
satisfies d(y, hy) = d(y, Pj). Since Pj is a shortest path, we interpret Pj as a segment in the real
line. In particular, we let the two end points of Pj be 0 and 1, and Pj is a (discrete) subset of [0, 1].

Define a, b ∈ Pj such that a ≤ hy ≤ b are the two furthest points on the two sides of h on Pj that

satisfy d(hy, a) ≤ d(y,hy)
ǫ and d(hy, b) ≤

d(y,hy)
ǫ . Then construct a sequence of points a = q1 ≤ q2 . . .

in the following way. For t = 1, 2, . . ., if there exists u ∈ (qt, 1] ∩ Pj such that d(qt, u) > ǫ · d(y, hy),
then let qt+1 be the smallest such u; if such u does not exist, then let qt+1 := b and terminate.
Essentially, this breaks Pj into segments of length ǫ · d(y, hy), except that the last one that ends
with b may be shorter. Denote this sequence as Qy := (q1 = a, . . . , qm = b).

22

Claim 4.7. For every y ∈ V , |Qy| = O(ǫ−2).

Proof. By the definition of Qy, for 1 ≤ t ≤ m− 2, d(qt, qt+1) > ǫ · d(y, hy). On the other hand, by

the definition of a and b, d(q1, qm) = d(a, b) ≤ O(
d(y,hy)

ǫ). Therefore, |Qy| ≤ O(ǫ−2), as desired.

Definition of fx on Vi: Recap Define

ljy(y′) :=





d(hy , y
′) if y′ < a = q1 or y′ > b = qm

d(y, qt) if qt ≤ y′ < qt+1, 1 ≤ t < m

d(y, qm) if y′ = b = qm

(13)

where hy ∈ Pj , Qy = {qt}t ⊂ Pj . To recap,

• if x ∈ X ∩ Vi, then fx(c) := d(x, c);

• otherwise x ∈ X \ Vi, fx(c) := minPj∈Pi
f j
x(c), where

f j
x(c) := min

c′,x′∈Pj

{ljc(c
′) + d(c′, x′) + ljx(x′)}. (14)

Finally,

fx(c) := min
Pj∈Pi

f j
x(c), ∀c ∈ Vi. (15)

Part II: Distortion Analysis The distortion of l’s is analyzed in the following Lemma 4.8, and
the distortion for fx follows immediately from the above definitions.

Lemma 4.8. For every Pj ∈ Pi, y ∈ V , y′ ∈ Pj, l
j
y(y′) ∈ (1 ± ǫ) · d(y, y′).

Proof. If y′ = qm = b, by definition ljy(y′) = d(y, qm) = d(y, y′). Then consider the case when
y′ < a = q1 or y′ > b = qm.

ljy(y′) = d(hy, y
′)

∈ d(y′, y) ± d(y, hy)

∈ d(y′, y) ± ǫ · d(y′, hy),

where the last inequality follows from d(y′, hy) >
d(y,hy)

ǫ . This implies d(y, y′) ∈ (1 ± ǫ) · ljy(y′).
Otherwise, qt ≤ y′ < qt+1 for some 1 ≤ t < m. By the definition of qt’s and the definition of hy,

d(y, y′) ∈ d(y, qt) ± d(qt, y
′)

∈ d(y, qt) ± ǫ · d(y, hy)

∈ d(y, qt) ± ǫ · d(y, y′)

∈ ljy(y′) ± ǫ · d(y, y′),

which implies ljy(y′) ∈ (1 ± ǫ) · d(y, y′). This finishes the proof of Lemma 4.8.

23

Part III: Shattering Dimension Analysis Recall that we fixed v : X → R+ and H ⊆ Fv with
|H| ≥ 2. Now we show

∣∣{σH
c : c ∈ Vi}

∣∣ ≤ |H|Õ(ǫ−2) log ‖X‖0 . (16)

Let H := {x : v(x) · fx ∈ H}, so |H| = |H|. Recall that |Vi ∩ X| = O(1) by Lemma 4.5, so
|Vi ∩H| = O(1). Hence, if we could show

∣∣{σH
c : c ∈ Vi}

∣∣ ≤ N(|H|)

for H such that H ∩ Vi = ∅, then for general H,

∣∣{σH
c : c ∈ Vi}

∣∣ ≤ N(|H| − |Vi ∩H|) · |H|O(|Vi∩H|) ≤ N(|H|) · |H|O(1).

Therefore, it suffices to show (16) under the assumption that H ∩ Vi = ∅.

In the following, we will further break Vi into |H|Õ(ǫ−2) parts, such that for each part V ′, fx on
V ′ may be alternatively represented as a min-linear function.

Lemma 4.9. Let u = |Pi|. There exists a partition Γ of Vi, such that the following holds.

1. |Γ| ≤ |H|Õ(ǫ−2)·u.

2. ∀V ′ ∈ Γ, ∀x ∈ H, there exists gx : Rs → R+ where s = O(ǫ−2), such that gx is a minimum
of O(ǫ−4u) linear functions on R

s, and for every c ∈ V ′, there exists y ∈ R
s that satisfies

fx(c) = gx(y).

Proof. Before we actually prove the lemma, we need to examine f j
x(c) and ljy more closely. Suppose

some Pj ∈ Pi is fixed. Recall that for y ∈ V, y′ ∈ Pj (defined in (13)),

ljy(y′) :=





d(hy , y
′) if y′ < a = q1 or y′ > b = qm

d(y, qt) if qt ≤ y′ < qt+1, 1 ≤ t < m

d(y, qm) if y′ = b = qm

where hy ∈ Pj , Qy = {qt}t ⊂ Pj . Hence, for every y, ljy is a piece-wise linear function with

O(|Qy|) = O(ǫ−2) (by Claim 4.7) pieces, where the transition points of ljy are Qy ∪ {0, 1} (noting
that d(hy, y

′) is linear since hy, y
′ ∈ Pj).

Using that l’s are piece-wise linear, we know for c ∈ Vi, x ∈ X \ Vi,

f j
x(c) = min

c′,x′∈Pj

{ljc(c
′) + d(c′, x′) + ljx(x′)} defined in (14)

= min
c′,x′∈Qc∪Qx∪{0,1}

{ljc(c
′) + d(c′, x′) + ljx(x′)}. as l’s are piece-wise linear

Hence, to evaluate f j
x(c) we only need to evaluate ljc(c′) and ljx(x′) at c′, x′ ∈ Qc ∪Qx ∪ {0, 1}, and

in particular we need to find the piece in ljc and ljx that every c′, x′ ∈ Qc∪Qx∪{0, 1} belong to, and
then evaluate a linear function. Precisely, the piece that every c′, x′ belongs to is determined by
the relative ordering of points Qx ∪Qc (recalling that they are from Pj). Thus, the pieces are not
only determined by x, but also by c which is the variable, and this means without the information
about the pieces, fx cannot be represented as a min-linear function gx. Therefore, the idea is to
find a partition Γ of Vi, such that for c in each part V ′ ∈ Γ, the relative ordering of Qc with respect
to {Qx : x ∈ H} is the same. We note that we need to consider the ordering of Qc with respect to
all Qx’s, because we care about the relative orderings of all fx’s.

24

Defining Γ For 1 ≤ j ≤ u, c ∈ Vi, let τ jc be the ordering of Qc with respect to
⋃

y∈H Qy on Pj .

Here, an ordering of Qc with respect to
(⋃

y∈H Qy

)
is defined by their ordering on Pj which is

interpreted as the real line. In our definition of Γ, we will require each part V ′ ∈ Γ to satisfy that
∀c ∈ V ′, the tuple of orderings (τ1c , . . . , τ

u
c) remains the same. That is, Vi is partitioned according

to the joint relative ordering τ jc ’s on all shortest paths Pj ∈ Pi.

Formally, for 1 ≤ j ≤ u, let Λj := {τ jc : c ∈ Vi} be the collection of distinct ordering τ jc on Pj

over points c ∈ Vi. Define

Λ := Λ1 × . . .× Λu

as the tuples of τj ’s for 1 ≤ j ≤ u (here, the × operator is the Cartesian product). For (τ1, . . . , τu) ∈
Λ, define

V
(τ1,...,τu)
i := {c ∈ Vi : (τ1c = τ1) ∧ . . . ∧ (τuc = τu)}

as the subset of Vi such that the ordering τ jc for each 1 ≤ j ≤ u agrees with the given tuple. Finally,
we define the partition as

Γ := {V
(τ1,...,τu)
i : (τ1, . . . , τu) ∈ Λ}.

Bounding |Γ| By Claim 4.7, we know |Qy| = O(ǫ−2) for every y ∈ V . Hence,
∣∣∣
⋃

y∈H Qy

∣∣∣ =

O
(
ǫ−2|H|

)
. Therefore, for every j ∈ [u],

|Λj | ≤

(
O(ǫ−2|H|)

O(ǫ−2)

)
= O

(
ǫ−1|H|

)O(ǫ−2)
.

Therefore,

|Γ| ≤ Π1≤j≤u|Λ
j | ≤ O

(
ǫ−1|H|

)O(ǫ−2u)
≤ |H|Õ(ǫ−2)·u,

as desired.

Defining gx By our definition of Γ, we need to define gx for each V ′ ∈ Γ. Now, fix tuple

(τ1, . . . , τu) ∈ Λ, so the part corresponds to this tuple is V ′ = V
(τ1,...,τu)
i , and we will define gx with

respect to such V ′. Similar to the definition of fx’s (see (15)), we define gx : Rs → R+ to have the
form

gx(y) := min
Pj∈Pi

gjx(y).

Then, for 1 ≤ j ≤ u, x ∈ H, define gjx : Rs → R of s := O(ǫ−2) variables (q1, . . . , qm, d(c, q1), . . . ,
d(c, qm), hc) for qi ∈ Qc, such that

gjx(q1, . . . , qm, d(c, q1), . . . , d(c, qm), hc) = min
c′,x′∈Qc∪Qx∪{0,1}

{ljc(c
′) + d(c′, x′) + ljx(x′)}.

We argue that for every 1 ≤ j ≤ u, gjx may be viewed as a minimum of O(ǫ−4) linear functions
whose variables are the same with that of gjx.

25

• Linearity. Suppose c ∈ V ′, and fix c′, x′ ∈ Qc ∪ Qx ∪ {0, 1}. By the above discussions,
ljc(c′) could take values only from {d(c, qi) : qi ∈ Qc} ∪ {d(hc, c

′)}. Since ∀qi ∈ Qc, d(c, qi)
is a variable of gjx, and d(hc, c

′) = |hc − c′| is linear and that hc is also a variable of gjx, we
conclude that ljc(c′) may be written as a linear function of the same set of variables of gjx. By
a similar argument, we have the same conclusion for ljx. Therefore, ljc(c′) + d(c′, x′) + ljx(x′)
may be written as a linear function of (q1, . . . , qm, d(c, q1), . . . , d(c, qm), hc).

• Number of linear functions. By Claim 4.7, we have

∀y ∈ V, |Qy| = O(ǫ−2),

hence |Qc∪Qx∪{0, 1}| = O(ǫ−2). Therefore, there are O(ǫ−4) pairs of c′, x′ ∈ Qc∪Qx∪{0, 1}.

Therefore, item 2 of Lemma 4.9 follows by combining this with the definition of gx. We completed
the proof of Lemma 4.9.

Now suppose Γ is the one that is guaranteed by Lemma 4.9. Since

∣∣{σH
c : c ∈ Vi}

∣∣ ≤
∑

V ′∈Γ

∣∣{σH
c : c ∈ V ′}

∣∣

and

|Γ| ≤ |H|Õ(ǫ−2)·u ≤ |H|Õ(ǫ−2), (17)

where the last inequality is by Lemma 4.5 (recalling u = |Pi|), it suffices to show for every V ′ ∈ Γ,

∣∣{σH
c : c ∈ V ′}

∣∣ ≤ |H|Õ(ǫ−2) log ‖X‖0 . (18)

Fix some V ′ ∈ Γ. By Lemma 4.9, for every x ∈ H there exists a min-linear function gx : Rs →
R+ (s = O(ǫ−2))), such that for every c ∈ V ′, there exists y ∈ R

s that satisfies fx(c) = gx(y). For
y ∈ R

s define πH
y as a permutation of H that is ordered by gx(y) in non-increasing order and ties

are broken in a way that is consistent with σ. Then
∣∣{σHv

c : c ∈ V ′}
∣∣ ≤

∣∣{πH
y : y ∈ R

s}
∣∣ . (19)

We make use of the following lemma to bound the number of permutations πH
y . The lemma relates

the number of relative orderings of gx’s to the arrangement number in computational geometry.

Lemma 4.10 (Complexity of Min-linear Functions [BBH+20]). Suppose there are m functions
g1, . . . , gm from R

s to R, such that ∀i ∈ [m], gi is of the form

gi(x) := min
j∈[t]

{gij(x)},

where gij is a linear function. For x ∈ R
s, let πx be the permutation of [m] ordered by gi(x). Then,

|{πx : x ∈ R
s}| ≤ (mt)O(s).

Applying Lemma 4.10 on gx’s for x ∈ H with parameters s = O(ǫ−2), t = O(ǫ−4u) =
O
(
ǫ−4 log ‖X‖0

)
and m = |H|, we obtain

∣∣{πH
y : y ∈ R

s}
∣∣ ≤ O

(
ǫ−1|H| log ‖X‖0

)O(ǫ−2)
≤ |H|Õ(ǫ−2)·log ‖X‖0 . (20)

Thus, (18) is implied by combining (20) with (19). Finally, we complete the proof of Lemma 4.4
by combining the above three parts of the arguments.

26

4.2.1 From Planar to Minor-excluded Graphs

The strategy for proving the minor-excluded case is similar to the planar case. Hence, we focus on
presenting the major steps and highlight the differences, while omitting repetitive arguments. The
terminal embedding lemma that we need to prove is restated as follows.

Lemma 4.11 (Restatement of Lemma 4.1). For every edge-weighted graph G = (V,E) whose
shortest path metric is denoted as M = (V, d), and every weighted set X ⊆ V , given that G
excludes some fixed minor, there exists a set of functions F := {fx : V → R+ | x ∈ X} such that
for every x ∈ X, and c ∈ V , d(x, c) ≤ fx(c) ≤ (1+ ǫ) ·d(x, c), and sdimmax(F) = Õ(ǫ−2) · log ‖X‖0.

Similar to the planar case, we fix v : X → R+ and H ⊆ Fv with |H| ≥ 2 throughout the proof.
Then σH

c is defined the same as before, and it suffices to prove

|{σH
c : c ∈ V }| ≤ poly(‖X‖0) · |H|Õ(ǫ−2) log ‖X‖0 .

Next, we used a structural lemma to break V into several parts where each part is separated
by a few shortest paths. In the planar case, we showed in Lemma 4.5 that the number of parts
is O(‖X‖0), and only O(1) separating shortest paths in G are necessary. However, the proof of
Lemma 4.5 heavily relies on planarity, and for minor-excluded graphs, we only manage to prove
the following weaker guarantee.

Lemma 4.12 (Structural Property of Minor-excluded Graphs). Given edge-weighted graph G =
(V,E) that excludes a fixed minor, and a subset S ⊆ V , there is a collection Π := {Vi}i of V with
|Π| = poly(|S|) and

⋃
i Vi = V such that for every Vi ∈ Π the following holds.

1. |S ∩ Vi| = O(1).

2. There exists an integer ti and ti groups of paths Pi
1, . . . ,P

i
ti in G, such that

(a) |
⋃ti

j=1P
i
j | = O(log |S|)

(b) removing the vertices of all paths in
⋃ti

j=1P
i
j disconnects Vi from V \ Vi in G (possibly

removing points in Vi)

(c) for 1 ≤ j ≤ ti, let G
i
j be the sub-graph of G formed by removing all paths in Pi

1, . . . ,P
i
j−1

(define Gi
1 = G), then every path in Pi

j is a shortest path in Gi
j .

The lemma follows from a recursive application of the balanced shortest path separator theorem
in [AG06, Theorem 1], stated as follows.

Lemma 4.13 (Balanced Shortest Path Separator [AG06]). Given edge-weighted graph G = (V,E)
that excludes a fixed minor with non-negative vertex weight8, there is a set of vertices S ⊆ V , such
that

1. S = P1 ∪P2 ∪ . . . where Pi is a set of shortest paths in the graph formed by removing
⋃

j<i Pj

2.
∑

i |Pi| = O(1), where the hidden constant depends on the size of the excluded minor

3. the weight of every component in the graph formed by removing S from G is at most half the
weight of V .

8[AG06, Theorem 1] only states the special case with unit vertex weight, while the general weighted version was
discussed in a note of the same paper.

27

Proof of Lemma 4.12. Without loss of generality, we assume G is a connected graph. We will
apply Lemma 4.13 on G recursively to define the partition Π and the groups of shortest paths
{Pi

j}j associated with the parts. The detailed procedure, called DEF-Π, is defined in Algorithm 4.
We assume there is a global Γ initialized as Γ = ∅ which is constructed throughout the execution
of the recursive algorithm. The execution of the algorithm starts with DEF-Π(G, ∅, S).

Roughly, the procedure DEF-Π takes a sub-graph G′, a set sep = {Pj}j of groups of paths and
S as input, such that G′ corresponds to a component in a graph formed by removing all paths in
sep from G. The procedure execute on such G′ and find shortest paths in G′ using Lemma 4.13.
The found shortest paths are segmented (with respect to S) and added to the collection Π. Then
the found shortest paths are removed from G′ to form a new graph G′′. Components in G′′ that
contain less than 2 points in S are made new parts in Π, and the procedure DEF-Π is invoked
recursively on other components in G′′.

Algorithm 4 Procedure DEF-Π(G′ = (V ′, E′), sep, S)

1: apply Lemma 4.13 on graph G′ with vertex weight 1 if x ∈ V ′ ∩ S and 0 otherwise, and let P
be the set of shortest paths in G′ guaranteed by the lemma.

2: for P ∈ P do
3: interpret P as interval [0, 1], list S ∩ P = {x1, . . . , xm} and 0 ≤ x1 ≤ . . . ≤ xm ≤ 1
4: segment P into sub-paths P ′ = {[0, x1], [x1, x2], . . . , [xm, 1]}
5: for P ′ ∈ P ′ do
6: include P ′ in Π, and define the set of associated groups of shortest paths as sep ∪ {P ′}
7: end for
8: end for
9: let G′′ be the graph formed by removing all paths in P, and let C = {Ci}i be its components

10: include the union of all components with no intersection with S as a single part in Π, and define
the set of associated groups of paths as sep ∪ P

11: for Ci ∈ C do
12: if |Ci ∩ S| = 1 then
13: include Ci as a new part in Π, and define the set of associated groups of paths as sep∪P
14: else if |Ci ∩ S| ≥ 2 then
15: call DEF-Π(G′′[Ci], sep ∪ {P}, S) ⊲ G′′[Ci] is the induced sub-graph of G′′ on vertex

set Ci

16: end if
17: end for

By construction and Lemma 4.13, it is immediate that
⋃

Vi∈Π
Vi = V , and item 2.(b), 2.(c) also

follows easily. To see item 1, we observe that we have two types of Vi’s in Π. One is from the
shortest paths P (Line 6), and because of the segmentation, the intersection with S is at most 2.
The other type is the components in G′′ whose intersection with S is by definition at most 1 (Line
10, 13). Therefore, it remains to upper bound |Π|, and show item 2.(a) which requires a bound of
|
⋃ti

j=1P
i
j | = O(log |S|) for all Vi ∈ Π.

First, we observe that at any execution of Gen-Π, it is always the case that 0 ≤ |sep| ≤ O(log |S|),
because Lemma 4.13 guarantees the weight of every component in G′′ is halved. This also implies
that the total number of executions of GEN-Π is poly(|S|). Therefore, ∀Vi ∈ Π, |

⋃ti
j=1P

i
j | ≤

O(log |S|), which proves item 2.(a).

Bounding |Π| Observe that there are three places where we include a part Vi in Π, and we let
Π1 be the subset of those included at Line 6, Π2 be those included at Line 10, and Π3 be those

28

included at Line 13. Then |Π| ≤ |Π1| + |Π2| + |Π3|.
If Vi ∈ Π1, then Vi is a sub-path of some P ∈ P, where P is defined at Line 1. We observe

that the number of all Vi ∈ Π1 such that Vi ∩ S 6= ∅, i.e. |{Vi ∈ Π1 : Vi ∩ S 6= ∅}|, is at most
O(|S|). This is because we remove paths P ∈ P in every recursion, which means any point in S
can only participate in at most one such P during the whole execution, and hence any point in S
can intersect at most two sub-paths Vi ∈ Π1 such that Vi ∩ S 6= ∅ (because |Vi ∩ S| ≤ 2 by the
segmentation at Line 4). On the other hand, if Vi ∈ Π1 and Vi ∩ S = ∅, then no segmentation was
performed and Vi = P for P at Line 2. Therefore, the number of such Vi’s is bounded by the total
number of execution of DEF-Π multiplied by the size of P at Line 2, which is at most poly(|S|).
Therefore, we conclude that |Π1| = poly(|S|).

Finally, since every Vi ∈ Π3 satisfies |Vi ∩ S| = 1 (at Line 12 and 13), and we observe that
subsets in Π3 are disjoint, so we immediately have |Π3| = O(|S|). For Π2, we note that only one
Vi ∈ Π2 could be included in each execution of DEF-Π, so |Π2| = poly(|S|).

We conclude the proof of Lemma 4.12 by combining all the above discussions.

As before, we still apply the Lemma 4.12 with S = X (which is unweighted set) to obtain
Γ = {Vi}i with |Π| = O(poly(‖X‖0)), and it suffices to prove for each Vi ∈ Π

|{σH
c : c ∈ Vi}| ≤ |H|Õ(ǫ−2) log ‖X‖0 .

To proceed, we fix Vi and define functions fx(·) for c ∈ Vi. However, compared with Lemma 4.5,
the separating shortest paths in Lemma 4.12 are not from the original graph G, but is inside some
sub-graph generated by removing various other separating shortest paths. Also, the number of
shortest paths in the separator is increased from O(1) to O(log ‖X‖0).

Hence, we need to define fx’s with respect to the new structure of the separating shortest paths.
Suppose {Pi

1, . . . ,P
i
ti} is the ti groups of paths guaranteed by Lemma 4.12. Also as in the lemma,

suppose Gi
j is the sub-graph of G formed by removing all paths in Pi

1, . . . ,P
i
j−1 (define Gi

1 = G).

For 1 ≤ j ≤ ti, P ∈ Pi
j and x, y ∈ V , let dPj (x, y) denote the length of the shortest path from x

to y using edges in Gi
j and uses at least one point of P . Then, analogue to Fact 4.6, we have the

following lemma.

Lemma 4.14. For c ∈ Vi and x ∈ V \ Vi, there exists 1 ≤ j ≤ ti, P ∈ Pi
j and c′, x′ ∈ P , such that

d(c, x) = dPj (c, c′) + dPj (c′, x′) + dPj (x′, x).

Proof. First, we observe that the shortest path c x has to intersect (at a vertex of) at least one
path contained in {Pi

j}j, because removing
⋃ti

j=1Pj disconnects Vi from V \ Vi. Suppose j0 is the

smallest j such that c x intersects a shortest path in Pi
j , and let P ∈ Pi

j0
be any intersected path

in Pi
j0

.

Then, this implies that (the edge set of) c x is totally contained in sub-graph Gi
j0

, since Gi
j0

is formed by removing only groups Ps
j with j < j0 which do not intersect c x. Hence, we have

d(c, x) = dGi
j0

(c, x), where dGi
j0

is the shortest path metric in sub-graph Gi
j0

. By Lemma 4.12, P is

a shortest path in Gi
j0

, so c x has to cross P at most once, which implies there exists c′, x′ ∈ P ,

such that d(x, c) = dPj (c, c′) + dPj (c′, x′) + dPj (x′, x), as desired.

Using Lemma 4.14 and by the optimality of the shortest path, we conclude that

∀c ∈ Vi, x ∈ X, d(c, x) = min
1≤j≤ti

min
P∈Pi

j

min
c′,x′∈P

{dPj (c, c′) + dPj (c′, x′) + dPj (x′, x)}.

29

Then, for each 1 ≤ j ≤ ti, path P ∈ Pi
j , we use the same way as in the planar case to define the

approximate distance function l to approximate dPj (y, y′) for y ∈ V and y′ ∈ P . The fx is then
defined similarly, and the distortion follows by a very similar argument as in Lemma 4.8.

The analysis of shattering dimension is also largely the same as before, except that the definition
of u in the statement of Lemma 4.9 is slightly changed because of the new structural lemma. The
new statement is presented as follows, and the proof of it is essentially as before.

Lemma 4.15. Let u = |
⋃ti

j=1P
i
j |. There exists a partition Γ of Vi, such that the following holds.

1. |Γ| ≤ |H|Õ(ǫ−2)·u.

2. ∀V ′ ∈ Γ, ∀x ∈ H, there exists gx : Rs → R+ where s = O(ǫ−2), such that gx is a minimum
of O(ǫ−4u) linear functions on R

s, and for every c ∈ V ′, there exists y ∈ R
s that satisfies

fx(c) = gx(y).

We apply the lemma with the new bound of u = |
⋃ti

j=1P
i
j | = O(log ‖X‖0) (by Lemma 4.12),

and the bound in (18) is increased to

|Γ| ≤ |H|Õ(ǫ−2)·u ≤ |H|Õ(ǫ−2) log ‖X‖0 .

Finally, to complete the proof of Lemma 4.1, we again use Lemma 4.10 on each V ′ ∈ Γ to conclude
the desired shattering dimension bound.

4.3 High-Dimensional Euclidean Spaces

We present a terminal embedding for Euclidean spaces, with a guarantee that is similar to that of
excluded-minor graphs. For these results, the ambient metric space (V, d) of all possible centers is
replaced by a Euclidean space.9

Lemma 4.16. For every ǫ ∈ (0, 1/2) and finite weighted set X ⊂ R
m, there exists F = {fx : Rm →

R+ | x ∈ X} such that

∀x ∈ X, c ∈ R
m, ‖x− c‖2 ≤ fx(c) ≤ (1 + ǫ)‖x− c‖2,

and sdimmax(F) = O(ǫ−2 log ‖X‖0).

Proof. The lemma follows immediately from the following terminal version of the Johnson-Lindenstrauss
Lemma [JL84], proved recently by Narayanan and Nelson [NN19].

Theorem 4.17 (Terminal Johnson-Lindenstrauss Lemma [NN19]). For every ǫ ∈ (0, 1/2) and
finite S ⊂ R

m, there is an embedding g : S → R
t for t = O(ǫ−2 log |S|), such that

∀x ∈ S, y ∈ R
m, ‖x− y‖2 ≤ ‖g(x) − g(y)‖2 ≤ (1 + ǫ)‖x− y‖2.

Given X ⊂ R
m, apply Theorem 4.17 with S = X (as an unweighted set), and define for

every x ∈ X the function fx(c) := ‖g(x) − g(c)‖2. Then F = {fx | x ∈ X} clearly satisfies the
distortion bound. The dimension bound follows by plugging t = O(ǫ−2 log ‖X‖0) into the bound
sdimmax(F) = O(t) known from [FL11, Lemma 16.3].10

9It is easily verified that as long as X is finite, our entire framework from Section 3 extends to V = R
m with

ℓ2 norm. For example, all maximums (e.g., in Lemma 3.2) are well-defined by using compactness arguments on a
bounding box.

10The following is proved in [FL11, Lemma 16.3]. For every S ⊂ R
t, the function set H := {hx | x ∈ S} given by

hx(y) = ‖x− y‖2, has shattering dimension sdimmax(H) = O(t).

30

Corollary 4.18 (Coresets for Euclidean Spaces). For every 0 < ǫ, δ < 1/2, z ≥ 1, and integers
k,m ≥ 1, Euclidean (k, z)-Clustering of every weighted set X ⊂ R

m admits an ǫ-coreset of size
Õ(ǫ−422zk2 log 1

δ). Furthermore, such a coreset can be computed11 in time Õ(k‖X‖0m) with success
probability 1 − δ.

Proof. By combining Lemma 3.6, Lemma 3.7 with our terminal embedding from Lemma 4.16, we
obtain an efficient algorithm for constructing a coreset of size Õ(ǫ−422zk2 log ‖X‖0). This size can be
reduced to the claimed size (and running time) using the iterative size reduction of Theorem 3.1.

Remark 4.19 (Comparison to [HV20]). For (k, z)-Clustering in Euclidean spaces, our algorithms
can also compute an ǫ-coreset of size Õ(ǫ−O(z)k), which offers a different parameters tradeoff than
Corollary 4.18. This alternative bound is obtained by simply replacing the application of Lemma 3.2
(which is actually from [FSS20]) with [HV20, Lemma 3.1] (which itself is a result from [FL11],
extended to weighted inputs).

Our two coreset size bounds are identical to the state-of-the-art bounds proved by Huang and
Vishnoi [HV20] (in the asymptotic sense). Their analysis is different, and bounds sdimmax inde-
pendently of X using a dimensionality-reduction argument for clustering objectives. In contrast,
we require only a loose bound sdimmax(F) = O(poly(ǫ−1) · log ‖X‖0), which follows immediately
from [NN19], and the coreset size is then reduced iteratively using Theorem 3.1, which simplifies
the analysis greatly.

4.4 Graphs with Bounded Highway Dimension

The notion of highway dimension was proposed by Abraham, Fiat, Goldberg, and Werneck [AFGW10]
to measure the complexity of road networks. Motivated by the empirical observation that a shortest
path between two far-away cities always passes through a small number of hub cities, the high-
way dimension is defined, roughly speaking, as the maximum size of a hub set that meets every
long shortest path, where the maximum is over all localities of all distance scale. Several slightly
different definitions of highway dimension appear in the literature, and we use the one proposed
in [FFKP18].

Definition 4.20 (Highway Dimension [FFKP18]). Fix some universal constant ρ ≥ 4. The highway
dimension of an edge-weighted graph G = (V,E), denoted hdim(G), is the smallest integer t such
that for every r ≥ 0 and x ∈ V , there is a subset S ⊆ B(x, ρr) with |S| ≤ t, such that S intersects
every shortest path of length at least r all of whose vertices lie in B(x, ρr).

Remark 4.21. This version generalizes the original one from [AFGW10] (and also the subsequent
journal version [ADF+16]), and it was shown to capture a broader range of real-world transporta-
tion networks [FFKP18]. We also note that the version in [ADF+16] is stronger than the notion
of doubling dimension [GKL03], however, the version that we use (from [FFKP18]) is not. In par-
ticular, it means that the previous coreset result for doubling metrics [HJLW18] does not apply to
our case.

Unlike the excluded-minor and Euclidean cases mentioned in earlier sections, our coresets for
graphs with bounded highway dimension are obtained using terminal embeddings with an additive
distortion.

11We assume that evaluating ‖x− y‖2 for x, y ∈ R
m takes time O(m).

31

Lemma 4.22. Let G = (V,E) be an edge-weighted graph and denote its shortest-path metric by
M(V, d). Then for every 0 < ǫ < 1/2, weighted set X ⊆ V and an (unweighted) subset S ⊆ V ,
there exists FS = {fx : V → R+ | x ∈ X} such that

∀x ∈ X, c ∈ V, d(x, c) ≤ fx(c) ≤ (1 + ǫ) · d(x, c) + ǫ · d(x, S),

and sdimmax(FS) = (|S| + hdim(G))O(log(1/ǫ)).

Proof. We rely on an embedding of graphs with bounded highway dimension into graphs with
bounded treewidth, as follows.

Lemma 4.23 ([BKS18]). For every 0 < ǫ < 1/2, edge-weighted graph G = (V,E) of highway
dimension h, and S ⊆ V , there exists a graph G′ = (V ′, E′) of treewidth tw(G′) = (|S|+h)O(log(1/ǫ)),
and a mapping φ : V → V ′ such that

∀x, y ∈ V, dG(x, y) ≤ dG′(φ(x), φ(y)) ≤ (1 + ǫ) · dG(x, y) + ǫ · min{d(x, S), d(y, S)}.

We now apply on G′ (the graph produced by Lemma 4.23), the following result from [BBH+20,
Lemma 3.5], which produces the function set FS we need for our proof.

Lemma 4.24 ([BBH+20]). Let G = (V,E) be an edge-weighted graph, and denote its shortest-path
metric by M(V, d). Then for every weighted set X ⊆ V , the function set F = {d(x, ·) | x ∈ X} has
sdimmax(F) = O(tw(G)), where tw(G) is the treewidth of G.

Notice that we could also apply on G′ our own Lemma 4.1, because bounded-treewidth graphs
are also excluded-minor graphs, however Lemma 4.24 has better dependence on tw(G) and also
saves a poly(1/ǫ) factor. This concludes the proof of Lemma 4.22.

Corollary 4.25 (Coresets for Graphs with Bounded Highway Dimension). For every edge-weighted
graph G = (V,E), 0 < ǫ, δ < 1/2, and integer k ≥ 1, k-Median of every weighted set X ⊆ V (with
respect to the shortest path metric of G) admits an ǫ-coreset of size Õ((k+hdim(G))O(log(1/ǫ))) log 1

δ).

Furthermore, it can be computed in time Õ(|E|) with success probability 1 − δ.

Proof. By combining Lemma 3.9, Corollary 3.8 with our terminal embedding from Lemma 4.22,
we obtain an efficient also for constructing a coreset of the said size. Notice that we do not need
to apply the iterative size reduction (Theorem 3.1) because sdimmax is independent of X, thanks
to the additive error.

5 Applications: Improved Approximation Schemes for k-Median

In this section, we apply coresets to design approximation schemes for k-Median in shortest-path
metrics of planar graphs and graphs with bounded highway dimension. In particular, we give an
FPT-PTAS, parameterized by k and ǫ, for k-Median in graphs with bounded highway dimension,
and a PTAS for k-Median in planar graphs. Both algorithms run in time near-linear in |V | and
improve state of the art results.

32

FPT-PTAS An ǫ-coreset D reduces the size of the input data set X while approximately pre-
serving the cost for all clustering centers. Intuitively, in order to find a (1+ǫ)-approximate solution,
it suffices to solve the problem on D instead of X. However, solving the problem on D does not
necessarily imply a PTAS for X because the optimal center C maybe contain element from the
ambient space V , and thus would require enumerating all center sets from V k making this approach
prohibitively expensive. Instead, we enumerate all k-partitions of D and find an optimal center
for each part. This simple idea implies an FPT-PTAS for k-Median and it can be implemented
efficiently if the coreset size is independent of the input X. We formalize this idea in Section 5.1.

Centroid Set The aforementioned simple idea of enumerating all k-partitions of the coreset has
exponential dependence in k, and hence is not useful for PTAS. Precisely, the bottleneck is that
the set of potential centers, which is V , is not reduced. To reduce the potential center set, we
consider centroid set that was first introduced by [Mat00] in the Euclidean setting, and later has
been extended to other settings, e.g., doubling spaces [HJLW18]. A centroid set is a subset of V
that contains a (1 + ǫ)-approximate solution. We obtain centroid sets of size independent of the

input X for planar k-Median, improving the recent bound of (log |V |)ǫ
−O(1)

from [CPP19]. The
formal statement of our result for the centroid set can be found in Section 5.2.

PTAS for Planar k-Median The aforementioned improvement for centroid sets immediately
implies improved PTAS for k-Median. Indeed, a (1 + ǫ)-approximation for the centroid set is
as well a (1 + Θ(ǫ))-approximation for the original data set. Specifically, we apply our cen-
troid set to speedup a local search algorithm [CKM19] for planar k-Median, and our result is

a PTAS that runs in time Õ
(

(kǫ−1)ǫ
−O(1)

|V |
)

which is near-linear in |V |. This improves a previous

PTAS [CKM19] whose running time is kO(1)|V |ǫ
−O(1)

, and an FPT-PTAS [CPP19] whose running
time is 2O(kǫ−3 log(kǫ−1))|V |O(1). Details of the PTAS can be found in Section 5.3.

5.1 FPT-PTAS

We state our FPT-PTAS as a general reduction. Specifically we show that if a graph family admits
a small ǫ-coreset then it also admits an efficient FPT-PTAS.

Lemma 5.1. Let G be family of graphs. Suppose for 0 < ǫ < 1
2 , integer k ≥ 1, every graph

G = (V,E) ∈ G and every weighted set X ⊆ V , there is an ǫ-coreset D = D(G,X) for k-Median

on X in the shortest-path metric of G. Then there exists an algorithm that for every 0 < ǫ < 1
2 ,

integer k ≥ 1 and G ∈ G computes a (1 + ǫ)-approximate solution for k-Median on any weighted
set X ⊆ V in time Õ(k1+‖D(G,X)‖0 |V |).

Proof. The algorithm finds an optimal solution for the weighted instance defined by D. This
optimal solution is a (1 + ǫ)-approximate solution for k-Median on the original data set X since
D is an ǫ-coreset.

To find the optimal solution for k-Median on D we enumerate all k-clusterings (i.e. k-
partitions) C = {C1, . . . , Ck} of D. For each part Ci we find an optimal center ci ∈ V that
minimizes the cost of part Ci, i.e. minci∈V

∑
x∈Ci

wD(x) · d(x, ci). The optimal solution is the
k-center set that achieves the minimum total cost over all such k-clusterings of D.

To implement this algorithm efficiently, we first pre-compute all distances between point in D
and points in V . This can be done in time Õ(‖D‖0|V |) using e.g. Dijkstra’ algorithm. Using the
pre-computed distances, we can find, in O(|V |) time, the optimal center for any fixed set C ⊆ D.

33

Since there are k parts C1, . . . , Ck and since there are k‖D‖0 possible partitions, the total running
time is Õ

(
k1+‖D‖0 |V |

)
. This completes the proof.

FPT-PTAS for Graphs with Bounded Highway Dimension Combining Lemma 5.1 with
Corollary 4.25, we obtain an FPT-PTAS for k-Median in graphs of bounded highway dimension.
Compared with the previous bound |V |O(1) · f(ǫ, k,hdim(G)) from [BKS18, Theorem 2], our result
runs in time near-linear in |V | which is a significant improvement. Moreover, our algorithm is based
on straightforward enumeration while [BKS18] is based on dynamic programming.

Corollary 5.2. There is an algorithm that for every 0 < ǫ < 1
2 , integer k ≥ 1, every edge-weighted

graph G = (V,E), computes a (1 + ǫ)-approximate solution for k-Median on every weighted set

X ⊆ V with constant probability, running in time Õ
(
|V | · k(k+hdim(G))O(log ǫ−1)

)
.

Similarly, plugging Corollary 4.2 into Lemma 5.1 yields an FPT-PTAS for k-Median in planar
graphs. We do not state this result here because the improved PTAS in the following section has
a better running time.

5.2 Centroid Sets

The focus of the section is to present an improved centroid set that will be combined with a local
search algorithm to yield a better PTAS. As already mentioned, a centroid set is a subset of points
that contains a near-optimal solution. The formal definition is given below, and our centroid set is
presented in Theorem 5.4.

Definition 5.3 (Centroid Set). Given a metric space M(V, d) and weighted set X ⊆ V , a set of
points S ⊆ V is an ǫ-centroid set for (k, z)-Clustering on X if there is a center set C ∈ Sk such
that costz(X,C) ≤ (1 + ǫ) · OPTz(X).

Theorem 5.4. There is an algorithm that computes an ǫ-centroid set D of size

‖D‖0 = (ǫ−1)O(ǫ−2) poly(‖X‖0),

for every 0 < ǫ < 1
2 , every planar graph G = (V,E) and weighted subset X ⊆ V , running in time

Õ((ǫ−1)O(ǫ−2) poly(‖X‖0)|V |).

First of all, we show there is a near-optimal solution C⋆ such that the distance from every
center in C⋆ to X can only belong to poly(‖X‖0) number of distinct distance scales. This is
an essential property to achieve centroid sets of size independent of V . Specifically, consider the
pairwise distance between points in X, and assume they are sorted as

d1 ≤ d2 ≤ . . . ≤ dm

where m =
(‖X‖0

2

)
. We prove the following lemma.

Lemma 5.5. For every ǫ ∈ (0, 1/2), there is a k-subset C ⊆ V k and an assignment π : X → C,
such that

∑

x∈X

wX(x) · d(x, π(x)) ≤ (1 + 2ǫ) · OPT(X), (21)

and for every x ∈ X, d(x, π(x)) belongs to an interval Ij := [ǫdj , dj/ǫ] for some j = 1, . . . ,m. In
particular, C is a (1 + 2ǫ)-approximation to k-Median on X.

34

Proof. Let C⋆ = {c⋆1, . . . , c
⋆
k} ⊆ V be the optimal solution to k-Median on X, and we will de-

fine C by “modifying” C⋆. Let C⋆
i ⊆ X be the corresponding cluster of c⋆i and define cost⋆i :=∑

x∈C⋆
i
wX(x) · d(x, c⋆i) to be the cost contributed by C⋆

i .
The proof strategy goes as follows. We examine c⋆i ∈ C⋆ one by one. For each c⋆i , we will define

ci ∈ C as some point in C⋆
i , and the assignment π assigns every point in C⋆

i to ci. To bound the
cost, we will prove

∑
x∈C⋆

i
wX(x) · d(x, ci) ≤ (1 + 2ǫ) · cost⋆i for each i, and this implies (21).

Now fix some i. If c⋆i satisfies for every x ∈ X, there is some 1 ≤ j ≤ m such that d(x, c⋆i)
belongs to Ij = [ǫdj , ǫ

−1dj], then we include ci := c⋆i to C, and for all x ∈ C⋆
i , let π(x) := c⋆i . Since

the center c⋆i is included in C as is, the cost corresponding to C⋆
i is not changed.

Otherwise, there is some x̂ ∈ X such that for every 1 ≤ j ≤ m, either d(x̂, c⋆i) < ǫdj or
d(x̂, c⋆i) > ǫ−1dj . Then we pick any such x̂, let ci := x̂, and define for each x ∈ C⋆

i , π(x) := x̂. We
note that for every x′ ∈ X, d(x̂, x′) equals some dj by definition, so d(x̂, x′) = dj ∈ Ij.

Hence, it remains to prove that the cost is still bounded, i.e.
∑

x∈C⋆
i
wX(x) · d(x, x̂) ≤ (1 + 2ǫ) ·

cost⋆i , and we prove it by showing ∀x ∈ C⋆, d(x, x̂) ≤ (1 + 2ǫ) · d(x, c⋆i). Observe that d(x, x̂) = dj
for some j, so depending on whether d(x̂, c⋆i) < ǫdj or d(x̂, c⋆i) > ǫ−1dj we have two cases.

• If d(x̂, c⋆i) < ǫdj = ǫd(x, x̂), then by triangle inequality, d(x, x̂) ≤ d(x, c⋆i)+d(c⋆i , x̂) ≤ d(x, c⋆i)+
ǫd(x, x̂), hence d(x, x̂) ≤ 1

1−ǫd(x, c⋆i) ≤ (1 + 2ǫ)d(x, c⋆i) when ǫ ∈ (0, 1/2).

• Otherwise, d(x̂, c⋆i) > ǫ−1dj , by triangle inequality, d(x, c⋆i) ≥ d(x̂, c⋆i) − d(x, x̂) > 1−ǫ
ǫ d(x, x̂),

which implies d(x, x̂) < ǫ
1−ǫd(x, c⋆i) < (1 + ǫ)d(x, c⋆i) when ǫ ∈ (0, 1/2).

This completes the proof.

Proof of Theorem 5.4. Suppose C⋆ is an optimal solution. Our general proof strategy is to find a
point c′ that is sufficiently close to c for very center point c ∈ C⋆. Specifically, consider a center
point c ∈ C⋆, and let xc ∈ X be the closest point to it. We want to guarantee that there always
exists some c′ in the centroid set, such that d(c, c′) ≤ ǫ · d(c, xc), and this would imply the error
guarantee of the centroid set by triangle inequality.

Since we can afford (1 + ǫ)-multiplicative error, we round the distances to the nearest power of
(1 + ǫ). Furthermore, we can assume without loss of generality that C⋆ is the (1 + ǫ)-approximate
solution claimed by Lemma 5.5, Then by Lemma 5.5, any distance d(c, x) for c ∈ C⋆ and x ∈ X
has to lie in some interval Ij = [ǫdj , ǫ

−1dj], and because of the rounding of distances, the distances
on C⋆ ×X have to take from a set {r1, . . . , rt}, where t = poly(ǫ−1‖X‖0).

However, C⋆ is not known by the algorithm, and we have to “guess” c and c′. Specifically we
enumerate over all points x ∈ X which corresponds to the nearest point of c, and connection costs
r ∈ {r1, ..., rt} corresponding to d(x, c), where c is some imaginary center in C⋆. To implement this
efficiently, we pre-process the distances on V ×X using O(‖X‖0) runs of Dijkstra’s algorithm in
time Õ(‖X‖0|V |), and then ri’s are enumerated in O(t) time.

Then to find c′, a naive approach is to add an ǫr-net of B(x, r) into D. The problem is that
there may be too many points in the ǫ-net, so we need to use the structure of the graph to construct
the net more carefully, and we make use of Lemma 4.5 which is restated as follows.

Lemma 5.6 (Restatement of Lemma 4.5). For every edge-weighted planar graph G = (V,E) and
subset S ⊆ V , V can be broken into parts Π := {Vi}i with |Π| = poly(|S|) and

⋃
i Vi = V , such that

for every Vi ∈ Π,

1. |S ∩ Vi| = O(1),

2. there exists a collection of shortest paths Pi in G with |Pi| = O(1) and removing the vertices
of all paths in Pi disconnects Vi from V \ Vi (points in Vi are possibly removed).

35

Furthermore, such Π and the corresponding shortest paths Pi for Vi ∈ Π can be computed in Õ(|V |)
time.

Apply Lemma 5.6 with (unweighted) S = X to compute parts Π and the corresponding shortest
paths Pi := {Pj}j for each Vi ∈ Π, in Õ(|V |) time. Then, apart from enumerating xc and r, we
further enumerate the set Vi ∈ Π. For each P i

j ∈ Pi, we let Qi
j := P i

j ∩ B(xc, ǫ
−1r + r). Observe

that P i
j is a path, so by triangle inequality Qi

j is contained in a segment of length O(ǫ−1r) of

P i
j . We further find an ǫr-net12 Ri

j for Qi
j which is of size O(ǫ−2). Finally, we let Ri :=

⋃
j R

i
j

denote the union of net points in all the shortest paths in Pi, and R′
i := Ri ∪ (X ∩ Vi) as the set

with X ∩ Vi included in Ri. By Lemma 5.6, we know |X ∩ Vi| = O(1). Write R′
i = {y1, . . . , ym}.

We consider the set of possible distance tuples to R′
i, i.e. for a point x, we consider the vector

(d(x, y1), . . . , d(x, ym)).
To restrict the number of possible distance tuples, we need to carefully discretize the distances

so that the distances only come from a small ground set.

• For y ∈ X ∩ Vi, because of Lemma 5.5, we can discretize and assume d(x, y) from {r1, ..., rt}.

• For y ∈ Ri, we note that we will only use d(x, y) such that d(x, y) = O(r/ǫ), so we only
need to take d(x, y) from {0, ǫr, 2ǫr, ..., (ǫ−2 + 5)ǫr} (noting that here we use an ǫr additive
stepping).

Since |Ri| = O(ǫ−2) and |X ∩ Vi| = O(1), there are (ǫ−2)O(ǫ−2)tO(1) many possible tuples.
For every tuple (a1, . . . , am), we find an arbitrary point x′ in Vi ∩ B(xc, r) (if it exists) that

realizes the distance tuple to R′
i when rounding to the closest discretized distance, i.e. d′(x′, yi) = ai

for 1 ≤ i ≤ m where d′ is the discretized distance, and add x′ into D.
In total, we have added (ǫ−2)O(ǫ−2)tO(1) poly(‖X‖0) = (ǫ−1)O(ǫ−2) poly(‖X‖0) points into D, as

desired. This whole process of enumerating Vi, computing ǫr-nets and finding point x′ for each
tuple can be implemented in time O((ǫ−1)O(ǫ−2) poly(‖X‖0)|V |).

Error Analysis We will prove D is indeed an ǫ-centroid set. Consider the solution C⋆ =
{c1, . . . , ck} and the corresponding assignment π guaranteed by Lemma 5.5. Suppose C⋆ clusters
X into {C⋆

1 , . . . , C
⋆
k} by the arrangement π. We will prove the following claim.

Claim 5.7. For every 1 ≤ i ≤ k, there exists c′i ∈ D such that

∀y ∈ C⋆
i , d(y, c′i) ≤ (1 + O(ǫ)) · d(y, ci), (22)

where C⋆
i ⊆ X is the cluster of X corresponding to ci ∈ C⋆.

Suppose the above claim is true, then we define a k-subset C ′ := {c′1, . . . , c
′
k}, and it implies

that cost(X,C ′) ≤ (1 + O(ǫ)) · cost(X,C⋆). Hence, it remains to prove Claim 5.7,

Proof of Claim 5.7. Fix 1 ≤ i ≤ k. We start with defining c′i. Suppose xci ∈ X is the closest point
to ci and let ri := d(xci , ci). Let Vj ∈ Π such that ci ∈ Vj , and consider the moment that our
algorithm enumerates xci , ri and Vj . By construction, we have the following fact.

Fact 5.8. There exists some point c′ ∈ D such that

1. d(xci , c
′) ≤ ri

12 For ρ > 0 and some subset W ⊆ V , a ρ-net is a subset Y ⊆ V such that ∀x, y ∈ Y , d(x, y) ≥ ρ and ∀x ∈ W

there is y ∈ Y with d(x, y) < ρ.

36

2. for every y ∈ Ri, if d(ci, y) ≤ (ǫ−2 + 4)ǫri, then d(c′, y) ∈ d(ci, y) ± ǫri

3. for every y ∈ X ∩ Vi, d(c′, y) ∈ (1 ± ǫ) · d(ci, y).

We pick c′i as any of such c′ in Fact 5.8.
Now we analyze the error. Fix y ∈ C⋆

i . We note that the R′
i that we pick only covers an

O(ǫ−1ri) range, so even though c′i approximate ci on the distance tuples, it cannot directly imply
the distance from c′i to all other points in C⋆

i is close to that from ci, and we need the following
argument.

• If d(y, ci) > ǫ−1ri, then y is far away and d(y, c′i) cannot be handled by the distance tuples.
However, we observe that in this case d(ci, c

′
i) is small relative to d(y, ci). In particular, we

have d(ci, c
′
i) ≤ d(ci, xci) + d(c′i, xci) ≤ 2ri. Hence, it implies

d(y, c′i) ≤ d(y, ci) + d(ci, c
′
i) ≤ d(y, ci) + 2ri ≤ (1 + 2ǫ) · d(y, ci).

• Otherwise, d(y, ci) ≤ ǫ−1ri, and we will use that c′i and ci are close with respect to the tuple
distance, and use the separating shortest paths Pj (recalling that Vj ∈ Π is the part that ci
belongs to).

– If y ∈ Vj , then y belongs to the set R′
j and d(c′i, y) belongs to one of the distance tuples

(recalling that y ∈ C⋆
i ⊆ X). Hence, by the guarantee of the distance tuples, c′i satisfies

d(y, c′i) = d(y, ci).

– Otherwise, y /∈ Vj. Then the shortest path y ci has to pass through at least one of the

shortest paths in Pj . Now suppose P j
l ∈ Pj is the separating shortest path that shortest

path y ci passes through. Since d(y, ci) ≤ ǫ−1ri, we have y ∈ B(xci , ǫ
−1ri + ri). Since

P j
l is a shortest path in G, y ci can only cross it once.

Hence, there is y′, y′′ ∈ Qj
l such that

d(y, ci) = d(y, y′) + d(y′, y′′) + d(y′′, ci).

Since Rj
l is an ǫri-net of Qj

l , by triangle inequality, we know there exists z′, z′′ ∈ Rj
l such

that

d(y, z′) + d(z′, z′′) + d(z′′, ci) ≤ d(y, ci) + 4ǫri.

Since d(z′′, ci) ≤ d(y, ci) + 4ǫri ≤ (ǫ−2 + 4)ǫri, by Fact 5.8 we know that d(z′′, c′i) ≤
d(z′′, ci) + ǫri. Finally, by triangle inequality, we have,

d(y, c′i) ≤ d(y, z′) + d(z′, z′′) + d(z′′, c′i) ≤ d(y, ci) + O(ǫri),

Observe that by definition d(y, ci) ≥ d(xxi
, ci) = ri, so we conclude that

d(y, c′i) ≤ d(y, ci) + O(ǫri) ≤ (1 + O(ǫ)) · d(y, ci).

This completes the proof of Claim 5.7.

This completes the proof of Theorem 5.4

37

5.3 Improved PTAS’s for Planar k-Median

Recently, [CKM19] showed the local search algorithm that swaps ǫ−O(1) points in the center set in
each iteration yields a 1+ ǫ approximation for k-Median in planar and the more general excluded-
minor graphs. We use the centroid set and coreset to speedup this algorithm, and we obtain the
following PTAS.

Corollary 5.9. There is an algorithm that for every 0 < ǫ < 1
2 , integer k ≥ 1 and every edge-

weighted planar graph G = (V,E), computes a (1+ ǫ)-approximate solution for k-Median on every

weighted set X ⊆ V with constant probability, running in time Õ((ǫ−1k)ǫ
−O(1)

· |V |).

As noted by [HJLW18] and [FRS19], the potential centers that the local search algorithm should
consider can be reduced using an ǫ-centroid set, but to make the local search terminate properly,
we also need to evaluate the objective value accurately in each iteration , which means we also need
a coreset. Hence, we start with constructing a coreset using Corollary 4.2, and then extend it to
be a centroid set using Theorem 5.4.

Proof of Corollary 5.9. Construct an ǫ-coreset S of size poly(ǫ−1k) using Corollary 4.2, and apply
Theorem 5.4 with X = S to obtain an ǫ-centroid set S′ of size (ǫ−1)O(ǫ−2)kO(1). Then the algorithm
constructs a weighted set D that consists of S ∪S′, and the weights of points x ∈ S is set to wS(x),
and those x ∈ S′ \ S has weight 0. It is immediate that D is both an ǫ-coreset and an ǫ-centroid
set, whose size is ‖D‖0 = (ǫ−1)O(ǫ−2)kO(1). We pre-process the pairwise distance in D ×D using

Dijkstra’s algorithm. The overall running time for all these steps is Õ((ǫ−1)ǫ
−O(1)

kO(1) · |V |).
We next use D to accelerate [CKM19, Algorithm 1]. The algorithm first defines an initial center

set C to be an arbitrary subset of D. Then in each iteration, the algorithm enumerates C ′ ∈ Dk

that is formed by swapping at most ǫ−O(1) points in D from C. Update C := C ′ if some C ′ has cost
cost(D,C ′) ≤ (1 − ǫ

|V |) · cost(D,C), and terminate otherwise. The running time for each iteration

is (ǫ−1k)ǫ
−O(1)

.
By [CKM19], the algorithm always finds a (1 + ǫ)-solution when it terminates, and the number

of iterations is at most ǫ−1|V | until termination. Therefore, the total running time is bounded by

Õ((ǫ−1k)ǫ
−O(1)

· |V |). This completes the proof.

References

[ADF+16] Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and Renato F. Wer-
neck. Highway dimension and provably efficient shortest path algorithms. J. ACM,
63(5):41:1–41:26, 2016.

[AFGW10] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato Fonseca F. Werneck.
Highway dimension, shortest paths, and provably efficient algorithms. In SODA, pages
782–793. SIAM, 2010.

[AG06] Ittai Abraham and Cyril Gavoille. Object location using path separators. In PODC,
pages 188–197. ACM, 2006. doi:10.1145/1146381.1146411.

[ARR98] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for
Euclidean k-medians and related problems. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages 106–113, 1998.

38

https://doi.org/10.1145/1146381.1146411

[BBCA+19] Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, and Chris
Schwiegelshohn. Oblivious dimension reduction for k-means: beyond subspaces and
the johnson-lindenstrauss lemma. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pages 1039–1050, 2019.

[BBH+20] Danial Baker, Vladimir Braverman, Lingxiao Huang, Shaofeng H.-C. Jiang, Robert
Krauthgamer, and Xuan Wu. Coresets for clustering in graphs of bounded
treewidth. In ICML, Proceedings of Machine Learning Research, 2020. To appear.
arXiv:1907.04733.

[BFL16] Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline and
streaming coreset constructions. CoRR, abs/1612.00889, 2016. arXiv:1612.00889.

[BJKW19] Vladimir Braverman, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Xuan Wu.
Coresets for ordered weighted clustering. In ICML, volume 97 of Proceedings of Ma-
chine Learning Research, pages 744–753. PMLR, 2019.

[BKS18] Amariah Becker, Philip N. Klein, and David Saulpic. Polynomial-time approximation
schemes for k-center, k-median, and capacitated vehicle routing in bounded high-
way dimension. In ESA, volume 112 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018. https://arxiv.org/abs/1707.08270.
doi:10.4230/LIPIcs.ESA.2018.8.

[BPR+14] Jaros law Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa
Trinh. An improved approximation for k-median, and positive correlation in bud-
geted optimization. In Proceedings of the twenty-sixth annual ACM-SIAM symposium
on Discrete algorithms, pages 737–756. SIAM, 2014.

[BT15] Nicolas Bousquet and Stéphan Thomassé. VC-dimension and Erdős–Pósa property.
Discret. Math., 338(12):2302–2317, 2015.

[CEM+15] Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approximation.
In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 163–172, 2015.

[Che09] Ke Chen. On coresets for k-Median and k-Means clustering in metric and Euclidean
spaces and their applications. SIAM Journal on Computing, 39(3):923–947, 2009.
doi:10.1137/070699007.

[CKM19] Vincent Cohen-Addad, Philip N Klein, and Claire Mathieu. Local search yields ap-
proximation schemes for k-means and k-median in Euclidean and minor-free metrics.
SIAM Journal on Computing, 48(2):644–667, 2019.

[CPP19] Vincent Cohen-Addad, Marcin Pilipczuk, and Michal Pilipczuk. Efficient approxima-
tion schemes for uniform-cost clustering problems in planar graphs. In ESA, volume
144 of LIPIcs, pages 33:1–33:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

[CW15] Kenneth L. Clarkson and David P. Woodruff. Sketching for M -estimators: A unified
approach to robust regression. In SODA, pages 921–939. SIAM, 2015.

39

http://arxiv.org/abs/1907.04733
http://arxiv.org/abs/1612.00889
https://arxiv.org/abs/1707.08270
https://doi.org/10.4230/LIPIcs.ESA.2018.8
https://doi.org/10.1137/070699007

[CZQ+08] Weiwei Cui, Hong Zhou, Huamin Qu, Pak Chung Wong, and Xiaoming Li. Geometry-
based edge clustering for graph visualization. IEEE Trans. Vis. Comput. Graph.,
14(6):1277–1284, 2008.

[EKM14] David Eisenstat, Philip N. Klein, and Claire Mathieu. Approximat-
ing k-center in planar graphs. In SODA, pages 617–627. SIAM, 2014.
doi:10.1137/1.9781611973402.47.

[FFKP18] Andreas Emil Feldmann, Wai Shing Fung, Jochen Knemann, and Ian Post. A (1 + ε)-
embedding of low highway dimension graphs into bounded treewidth graphs. SIAM
Journal on Computing, 47(4):1667–1704, 2018. doi:10.1137/16M1067196.

[FFS06] Dan Feldman, Amos Fiat, and Micha Sharir. Coresets for weighted facilities and
their applications. In Proceedings of the 47th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 06, page 315324. IEEE Computer Society, 2006.
doi:10.1109/FOCS.2006.22.

[FKW19] Zhili Feng, Praneeth Kacham, and David P. Woodruff. Strong coresets for subspace
approximation and k-median in nearly linear time. CoRR, abs/1912.12003, 2019. URL:
http://arxiv.org/abs/1912.12003, arXiv:1912.12003.

[FL11] Dan Feldman and Michael Langberg. A unified framework for approx-
imating and clustering data. In STOC, pages 569–578. ACM, 2011.
https://arxiv.org/abs/1106.1379.

[FMSW10] Dan Feldman, Morteza Monemizadeh, Christian Sohler, and David P. Woodruff. Core-
sets and sketches for high dimensional subspace approximation problems. In Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 10, page 630649. SIAM, 2010.

[FRS19] Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search
yields a PTAS for k-means in doubling metrics. SIAM J. Comput., 48(2):452–480,
2019.

[FSS20] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, pca, and projective clustering. SIAM Journal on
Computing, 49(3):601–657, 2020. doi:10.1137/18M1209854.

[GI03] Venkatesan Guruswami and Piotr Indyk. Embeddings and non-approximability of
geometric problems. In SODA, volume 3, pages 537–538, 2003.

[GKL03] Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, frac-
tals, and low-distortion embeddings. In FOCS, pages 534–543. IEEE Computer Soci-
ety, 2003.

[Har11] Sariel Har-Peled. On Complexity, Sampling, and ǫ-Nets and ǫ-Samples, volume 173.
American Mathematical Soc., 2011.

[HJLW18] Lingxiao Huang, Shaofeng H.-C. Jiang, Jian Li, and Xuan Wu. Epsilon-coresets for
clustering (with outliers) in doubling metrics. In FOCS, pages 814–825. IEEE Com-
puter Society, 2018.

40

https://doi.org/10.1137/1.9781611973402.47
https://doi.org/10.1137/16M1067196
https://doi.org/10.1109/FOCS.2006.22
http://arxiv.org/abs/1912.12003
http://arxiv.org/abs/1912.12003
https://arxiv.org/abs/1106.1379
https://doi.org/10.1137/18M1209854

[HJV19] Lingxiao Huang, Shaofeng H.-C. Jiang, and Nisheeth K. Vishnoi. Coresets for clus-
tering with fairness constraints. In NeurIPS, pages 7587–7598, 2019.

[HK07] Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clus-
tering. Discret. Comput. Geom., 37(1):3–19, 2007.

[HM04] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clus-
tering. In Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of
Computing, STOC 04, page 291300. ACM, 2004. doi:10.1145/1007352.1007400.

[HV20] Lingxiao Huang and Nisheeth K. Vishnoi. Coresets for clustering in Euclidean spaces:
importance sampling is nearly optimal. In STOC, pages 1416–1429. ACM, 2020.

[JJJ+00] Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt, and Lixia Zhang.
On the placement of internet instrumentation. In INFOCOM, pages 295–304. IEEE
Computer Society, 2000.

[JL84] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. In Conference in modern analysis and probability (New Haven, Conn., 1982),
pages 189–206. Amer. Math. Soc., 1984. doi:10.1090/conm/026/737400.

[JMS02] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for
facility location problems. In Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing, pages 731–740, 2002.

[JV01] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility loca-
tion and k-median problems using the primal-dual schema and lagrangian relaxation.
J. ACM, 48(2):274–296, 2001.

[KL19] Zohar S. Karnin and Edo Liberty. Discrepancy, coresets, and sketches in machine
learning. In COLT, volume 99 of Proceedings of Machine Learning Research, pages
1975–1993. PMLR, 2019.

[KM12] Philip Klein and Shay Mozes. Optimization algorithms for planar graphs. Book draft,
http://www.planarity.org, 2012.

[LBK13] Yingyu Liang, Maria-Florina Balcan, and Vandana Kanchanapally. Distributed PCA
and k-means clustering. In The Big Learning Workshop at NIPS, volume 2013. Cite-
seer, 2013.

[LFKF17] Mario Lucic, Matthew Faulkner, Andreas Krause, and Dan Feldman. Training gaus-
sian mixture models at scale via coresets. The Journal of Machine Learning Research,
18(1):5885–5909, 2017.

[LGI+99] Bo Li, Mordecai J. Golin, Giuseppe F. Italiano, Xin Deng, and Kazem Sohraby. On
the optimal placement of web proxies in the internet. In INFOCOM, pages 1282–1290.
IEEE Computer Society, 1999.

[LMP13] Mu Li, Gary L. Miller, and Richard Peng. Iterative row sampling. In FOCS, pages
127–136. IEEE Computer Society, 2013.

[LS10] Michael Langberg and Leonard J. Schulman. Universal epsilon-approximators for
integrals. In SODA, pages 598–607. SIAM, 2010.

41

https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1090/conm/026/737400
http://www.planarity.org

[Mat00] Jivr’i Matouvsek. On approximate geometric k-clustering. Discrete & Computational
Geometry, 24(1):61–84, 2000.

[MJF19] Alaa Maalouf, Ibrahim Jubran, and Dan Feldman. Fast and accurate least-mean-
squares solvers. In Advances in Neural Information Processing Systems, pages 8305–
8316, 2019.

[MMR19] Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of
johnson-lindenstrauss transform for k-means and k-medians clustering. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1027–
1038, 2019.

[MP04] Ramgopal R. Mettu and C. Greg Plaxton. Optimal time bounds for approximate
clustering. Mach. Learn., 56(1-3):35–60, 2004.

[MSSW18] Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, and David P. Woodruff.
On coresets for logistic regression. In NeurIPS, pages 6562–6571, 2018.

[NN19] Shyam Narayanan and Jelani Nelson. Optimal terminal dimensionality re-
duction in Euclidean space. In STOC, pages 1064–1069. ACM, 2019.
doi:10.1145/3313276.3316307.

[PT19] Jeff M Phillips and Wai Ming Tai. Near-optimal coresets of kernel density estimates.
Discrete & Computational Geometry, pages 1–21, 2019.

[RMJ07] Matthew J. Rattigan, Marc E. Maier, and David D. Jensen. Graph clustering with
network structure indices. In ICML, volume 227 of ACM International Conference
Proceeding Series, pages 783–790. ACM, 2007.

[SL97] Shashi Shekhar and Duen-Ren Liu. CCAM: A connectivity-clustered access method for
networks and network computations. IEEE Trans. Knowl. Data Eng., 9(1):102–119,
1997.

[SSS19] Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler. Fair coresets and
streaming algorithms for fair k-means. In WAOA, volume 11926 of Lecture Notes
in Computer Science, pages 232–251. Springer, 2019.

[SW18] Christian Sohler and David P. Woodruff. Strong coresets for k-median and subspace
approximation: Goodbye dimension. In FOCS, pages 802–813. IEEE Computer Soci-
ety, 2018.

[TFL83] Barbaros C Tansel, Richard L Francis, and Timothy J Lowe. State of the artlocation
on networks: a survey, part i and ii. Management Science, 29(4):482–497, 1983.

[Tho04] Mikkel Thorup. Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM, 51(6):993–1024, 2004. doi:10.1145/1039488.1039493.

[Tho05] Mikkel Thorup. Quick k-Median, k-Center, and facility location for sparse graphs.
SIAM J. Comput., 34(2):405432, 2005. doi:10.1137/S0097539701388884.

[VC71] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its Applications,
16(2):264–280, 1971. doi:10.1137/1116025.

42

https://doi.org/10.1145/3313276.3316307
https://doi.org/10.1145/1039488.1039493
https://doi.org/10.1137/S0097539701388884
https://doi.org/10.1137/1116025

[VX12] Kasturi R. Varadarajan and Xin Xiao. On the sensitivity of shape fitting problems.
In FSTTCS, volume 18 of LIPIcs, pages 486–497. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.486.

[YM04] Man Lung Yiu and Nikos Mamoulis. Clustering objects on a spatial network. In
SIGMOD Conference, pages 443–454. ACM, 2004.

Appendices

A Proof of Lemma 4.5

Lemma A.1 (restatement of Lemma 4.5). For every edge-weighted planar graph G = (V,E) and
subset S ⊆ V , V can be broken into parts Π := {Vi}i with |Π| = poly(|S|) and

⋃
i Vi = V , such that

for every Vi ∈ Π,

1. |S ∩ Vi| = O(1),

2. there exists a collection of shortest paths Pi in G with |Pi| = O(1) and removing the vertices
of all paths in Pi disconnects Vi from V \ Vi (points in Vi are possibly removed).

Furthermore, such Π and the corresponding shortest paths Pi for Vi ∈ Π can be computed in Õ(|V |)
time.

The proof of Lemma 4.5 is based on the following property of general trees. We note that
the special case when R = T was proved in [EKM14, Lemma 3.1] and our proof is based on it.
Nonetheless, we provide the proof for completeness.

Lemma A.2. Let T be a tree of degree at most 3 and let R be a subset of nodes in T . There is a
partition of the nodes of T with poly(|R|) parts, such that each part is a subtree of T that contains
O(1) nodes of R and has at most 4 boundary edges13 connecting to the rest of T . Such partition
can be computed in time Õ(|T |), where |T | is the number of nodes in T .

Proof. We give an algorithm to recursively partition T in a top-down manner. The recursive
algorithm takes a subtree T ′ as input, and if |T ′ ∩ R| ≥ 4, it chooses an edge e from T ′ and run
recursively on the two subtrees T ′

1 and T ′
2 that are formed by removing e from T ′. Otherwise, the

algorithm simply declares the subtree T ′ a desired part and terminate, if |T ′ ∩ R| < 4. Next, we
describe how e is picked provided that |T ′ ∩R| ≥ 4.

If T ′ has at most 3 boundary edges, we pick an edge e ∈ T ′ such that each of the two subtrees
T ′
1, T ′

2 formed by removing e satisfies 1
3 |T

′ ∩R| ≤ |T ′
j ∩R| ≤ 2

3 |T
′ ∩R|, for j = 1, 2. By a standard

application of the balanced separator theorem (see e.g. Lemma 1.3.1 of [KM12]), such edge always
exists and can be found in time O(|T ′|).

Now, suppose T ′ has exactly 4 boundary edges. Then we choose an edge e ∈ T ′, such that
each of the two subtrees T ′

1 and T ′
2 formed by removing e has at most 3 boundary edges. Such e

must exist because the maximum degree is at most 3, and such e may be found in time O(|T ′|) as
well. To see this, suppose the four endpoints (in T ′) of the four boundary edges are a, b, c, d. It is
possible that they are not distinct, but they can have a multiplicity of at most 2 because otherwise
the degree bound 3 is violated. If any point has a multiplicity 2, say a and b, then it has to be

13Here a boundary edge is an edge that has exactly one endpoint in the subtree.

43

https://doi.org/10.4230/LIPIcs.FSTTCS.2012.486

a leaf node in T ′ (again, because of the degree constraint), and we can pick the unique tree edge
in T ′ connecting a as our e. Now we assume the four points are distinct, and consider the unique
paths P1, P2 that connect a, b and c, d respectively. If P1 and P2 intersect, then the intersection
must contain an edge as otherwise the intersections are at nodes only which means each of them
have degree at least 4, a contradiction. Hence, we pick the intersecting edge as our e. Finally, if
P1 and P2 are disjoint, we consider the unique path P3 that connects a and c, and we pick edge
e := e′ in P3 that is outside both P1 and P2 to separate a and b from c and d.

We note that there are no further cases regarding the number of boundary edges of T ′, since in
the case of 4 boundaries edges, both T ′

1 and T ′
2 have at most 3 boundary edges and it reduces to

the first case.
It remains to analyze the size of the partition. By the property of balanced separator, we

know that such recursive partition has O(log |R|) depth. Hence the total number of subtrees is
2O(log |R|) = poly(|R|). Finally, we note that in each level of depth, we scan the whole tree once, so
the running time is upper bounded By O(log |R|) · |T | = Õ(|T |).

Proof of Lemma 4.5. We assume G is triangulated, since otherwise we can triangulate G and assign
weight +∞ to the new edges so that the shortest paths are the same as before. Let T be a shortest
path tree of G from an arbitrary root vertex. Let G⋆ be the planar dual of G. Let T ⋆ be the set
of edges e of G⋆ such that the corresponding edge of e in G is not in T . Indeed, T and T ⋆ are
sometimes called interdigitating trees, and it is well known that T ⋆ is a spanning tree of G⋆ (see
e.g. [KM12]).

Choose R⋆ to be the set of faces that contain at least one point from S. We apply Lemma A.2 on
R = R⋆ and T = T ⋆ to obtain Π⋆, the collection of resulted subtrees of T ⋆. Then |Π⋆| = poly(|S|),
and each part C⋆ in Π⋆ is a subset of faces in G such that only O(1) of these faces contain some
point in S on their boundaries. For a part C⋆ in Π⋆, let V (C⋆) be the set of vertices in G that
are contained in the faces in C⋆. Recall that G is triangulated, so each face can only contain O(1)
vertices from S on its boundary. Therefore, for each part C⋆ in Π⋆, |C⋆ ∩ S| = O(1).

Still by Lemma A.2, each part C⋆ in Π⋆ corresponds to a subtree in T ⋆, and it has at most 4
boundary edges connecting to the rest of T ⋆. By the well-known property of planar duality (see
e.g. [KM12]), each C⋆ is bounded by the fundamental cycles in T of the boundary edges. We
observe that the vertices of a fundamental cycle lie on 2 shortest paths in G via the least common
ancestor in T (recalling that T is the shortest path tree). So by removing at most 8 shortest paths
in G, V (C⋆) is disconnected from V \ V (C⋆) for every C⋆ ∈ Π⋆.

Therefore, we can choose Π := {V (C⋆) : C⋆ ∈ Π⋆}. For the running time, we note that both the
triangulation and the algorithm in Lemma A.2 run in Õ(|V |) time. This completes the proof.

44

	1 Introduction
	1.1 Our Results
	1.2 Technical Contributions
	1.3 Related Work

	2 Preliminaries
	3 Framework
	3.1 Iterative Size Reduction
	3.2 Importance Sampling
	3.3 Coresets via Terminal Embedding with Multiplicative Distortion
	3.4 Coresets via Terminal Embedding with Additive Distortion

	4 Coresets
	4.1 Excluded-minor Graphs
	4.2 Proof of lemma:mfsdim
	4.2.1 From Planar to Minor-excluded Graphs

	4.3 High-Dimensional Euclidean Spaces
	4.4 Graphs with Bounded Highway Dimension

	5 Applications: Improved Approximation Schemes for k-Median
	5.1 FPT-PTAS
	5.2 Centroid Sets
	5.3 Improved PTAS's for Planar k-Median

	A Proof of lemma:planarsep

