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Chvátal Rank in Binary Polynomial Optimization
Alberto Del Pia,a Silvia Di Gregorioa

aDepartment of Industrial and Systems Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison,
Wisconsin 53715
Contact: delpia@wisc.edu, https://orcid.org/0000-0001-8428-3914 (ADP); sdigregorio@wisc.edu,

https://orcid.org/0000-0002-0071-5669 (SDG)

Received: March 5, 2020
Revised: May 19, 2020; November 7, 2020
Accepted: November 17, 2020
Published Online in Articles in Advance:
March 26, 2021

https://doi.org/10.1287/ijoo.2019.0049

Copyright: © 2021 INFORMS

Abstract. Recently, several classes of cutting planes have been introduced for binary
polynomial optimization. In this paper, we present the first results connecting the com-
binatorial structure of these inequalities with their Chvátal rank.We determine the Chvátal
rank of all known cutting planes and show that almost all of them have Chvátal rank 1.We
observe that these inequalities have an associated hypergraph that is β-acyclic. Our second
goal is to derive deeper cutting planes; to do so, we consider hypergraphs that admit
β-cycles. We introduce a novel class of valid inequalities arising from odd β-cycles, that
generally have Chvátal rank 2. These inequalities allow us to obtain the first character-
ization of themultilinear polytope for hypergraphs that contain β-cycles. Namely, we show
that the multilinear polytope for cycle hypergraphs is given by the standard lineariza-
tion inequalities, flower inequalities, and odd β-cycle inequalities. We also prove that
odd β-cycle inequalities can be separated in linear time when the hypergraph is a cycle
hypergraph. This shows that instances represented by cycle hypergraphs can be solved
in polynomial time. Last, to test the strength of odd β-cycle inequalities, we perform
numerical experiments that imply that they close a significant percentage of the in-
tegrality gap.

Funding: This work was supported by the National Science Foundation [Award CMMI-1634768].
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1. Introduction
In recent work, Del Pia and Khajavirad (2017) introduced the multilinear polytope. In order to define it, let V
be a ground set, let E be a set of subsets of cardinality at least two of V, and denote by G the hypergraph (V,E).
The multilinear polytope of G, denoted by MPG, consists of the convex hull of the binary points z ∈ ZV∪E that
satisfy ze # ∏

v∈e zv for every e ∈ E. The combinatorial structure of the multilinear polytope is highlighted by the
fact that its face defined by ze # 0, ∀e ∈ E, is an affine transformation of the set covering polytope.

The multilinear polytope plays a fundamental role in integer programming. In fact, the problem of
minimizing a multivariate polynomial function over all binary points can be reformulated as a linear program
over the multilinear polytope. In this reformulation, each v ∈ V corresponds to a variable of the original
polynomial problem, and each e ∈ E corresponds to a nonlinear monomial in the original objective function.

The strong NP-hardness of binary polynomial programming (Garey and Johnson 1979) indicates the high
complexity of the multilinear polytope. A well-known polyhedral relaxation of the multilinear polytope is the
so-called standard linearization, denoted by MPLP

G , and defined by

zv ≤ 1 ∀v ∈ V. (αv)
− ze ≤ 0 ∀e ∈ E. (νe)∑

v∈e
zv − ze ≤ |e| − 1 ∀e ∈ E, (εe)

− zv + ze ≤ 0 ∀v ∈ e,∀e ∈ E. (δv,e)

This linearization follows from Fortet (Fortet 1960, Glover and Woolsey 1974). Because the binary points in
MPLP

G coincide with the vertices of MPG, our binary polynomial program can be now reformulated as an
integer linear program over the standard linearization.

In order to obtain tighter polyhedral relaxations of the multilinear polytope, several classes of valid in-
equalities for MPG have been defined (Del Pia and Khajavirad 2017, 2018a, b, 2021; Crama and Rodrı́guez-
Heck 2017). These cutting planes have been shown to drastically improve the performance of global solvers
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(Del Pia et al. 2020). All these inequalities have been derived by directly exploiting the combinatorial nature of
the multilinear polytope. In this paper, we take a different approach. Namely, we leverage both the integer
programming and combinatorial optimization aspects of the multilinear polytope in order to provide the first
links between valid inequalities for MPG and Chvátal-Gomory (CG) cuts (Schrijver 1986). CG cuts, which are
defined in Section 1.1, provide a fundamental class of valid inequalities for general integer programming
problems and have been the subject of extensive research (see Schrijver 1986 and Conforti et al. 2014 and
references therein). These inequalities are used by all high-performance algorithms for solving integer pro-
grams and have been one of the reasons for the great leap in the success of solvers to handle real-world
problems in the past 20 years (Lodi 2010). If we restrict our attention to the case in which the objective function
is a quadratic polynomial, the study of the Chvátal rank of known valid inequalities for the Boolean quadric
polytope (Padberg 1989) has been developed in Boros et al. (1992) and Bonami et al. (2018). The first paper
focuses on the specific case in which the graph representing the instance is complete. The authors show that,
under this assumption, the Chvátal closure is given by adding to the formulation the triangle inequalities. The
second paper generalizes this result to any instance by proving that the Chvátal closure of the Boolean quadric
polytope is obtained by adding the odd-cycle inequalities.

In Section 2, we show that running intersection inequalities (Del Pia and Khajavirad 2021) are CG cuts for
MPLP

G . Because running intersection inequalities subsume two-link inequalities (Crama and Rodrı́guez-Heck
2017) and flower inequalities (Del Pia and Khajavirad 2018a), this result shows that almost all cutting planes
defined thus far in the literature are CG cuts for MPLP

G . In addition, our result implies that MPLP
G has Chvátal

rank 1 when G is kite-free β-acyclic, a class introduced in Del Pia and Khajavirad (2021) that includes γ-acyclic
hypergraphs. To obtain this result, we heavily exploit the running intersection property, which has been
extensively used in the database and machine learning communities (Beeri et al. 1983, Lauritzen 1996). We
refer the reader to Section 1.1 for an overview of the various types of cycles in a hypergraph.

All running intersection inequalities correspond to β-acyclic hypergraphs. In order to derive cutting planes
with higher Chvátal rank, in Section 3 we consider hypergraphs that contain β-cycles. We observe that several
applications of binary polynomial optimization are represented by hypergraphs that contain multiple β-cycles,
including problems arising from the area of computer vision and from the Bernasconi model in theoretical
physics (Mertens and Bessenrodt 1998, POLIP 2014, Crama and Rodrı́guez-Heck 2017, Elloumi et al. 2019, Del
Pia et al. 2020). In particular, we introduce the odd β-cycle inequalities, a novel class of valid inequalities for
MPG, arising from odd β-cycles, that generally have Chvátal rank 2. These inequalities generalize odd-cycle
inequalities for the Boolean quadric polytope (Padberg 1989) and their lifting by node addition obtained in Del
Pia and Khajavirad (2017). This also completes one task of the paper, because we have now determined the
Chvátal rank of all the already known cutting planes for the multilinear polytope.

The remaining sections of this paper are devoted to assessing whether odd β-cycle inequalities can provide
some benefit in solving instances of binary polynomial optimization. In Section 4, we start by studying the
separation problem for odd β-cycle inequalities. Although, in general, it is not clear whether this problem can
be solved efficiently, we consider the particular setting where G is a cycle hypergraph. In this case, we show
that the separation problem can be solved in linear time. The study of this special case is further developed in
Section 6.

We then present an indication of the theoretical power of the odd β-cycle inequalities. In fact, the intro-
duction of these inequalities allows us to provide the first characterization of MPG in a setting that allows
β-cycles. Sections 5 and 6 are devoted to this convex hull characterization. In particular, in Section 5 we
present a procedure that will be essential in the proofs of Section 6. Namely, we introduce a technique that
allows us to exploit a description of any multilinear polytope MPG to obtain a description of MPG′ , where G′

is a new hypergraph obtained from G by replacing any node with a new edge. We remark that this method
holds for any hypergraph G. Moreover, this technique provides a general way to iteratively extend convex hull
characterizations and decomposability results and, in particular, allows us to extend all known decompos-
ability results for the multilinear polytope (Del Pia and Khajavirad 2018a, b, 2021). In Section 6, we return to
studying cycle hypergraphs, and we present a perfect formulation of MPG in this setting. Indeed, we show that
MPG is fully characterized by the standard linearization, flower inequalities, and odd β-cycle inequalities,
when G is a cycle hypergraph. We remark that all previous perfect formulations results for the multilinear
polytope were under the assumption, among others, that the hypergraph could not have any β-cycle (Crama
and Rodrı́guez-Heck 2017; Buchheim et al. 2018; Del Pia and Khajavirad 2018a, 2021). Furthermore, this result
also attests the theoretical power of odd β-cycle inequalities. In particular, together with the positive result of
Section 4, this implies that these instances can be solved in polynomial time. To the best of our knowledge,
instances represented by cycle hypergraphs represent a new class of instances of binary polynomial
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optimization for which we can find an optimal solution in polynomial time. Last, we observe that our explicit
description of MPG implies that MPLP

G has Chvátal rank at most 2, provided that G is a cycle hypergraph.
On the other hand, the aim of Section 7 is to understand if the odd β-cycle inequalities can be useful also

from a practical point of view. In particular, our goal is to compute the reduction in the integrality gap
obtained by using a subset of the odd β-cycle inequalities. Namely, we only use inequalities corresponding to
β-cycles of length 3 or 4. We tested them on instances coming from the two applications mentioned earlier: the
one arising in computer vision (Crama and Rodrı́guez-Heck 2017) and the one in theoretical physics
(Bernasconi 1987, Mertens and Bessenrodt 1998). Our numerical results indicate that the odd β-cycle in-
equalities can be a very useful tool. As a matter of fact, just using a subset of them leads to an average
reduction in the integrality gap by 44% for computer vision application and 60% for the theoretical physics
one. These results, together with the well-known computational impact of odd-cycle inequalities in the
quadratic setting (Bonami et al. 2018), motivate our belief that the odd β-cycle inequalities could give rise to an
improvement in state-of-the-art solvers.

We close the introduction by observing that studying extended formulations and representing the objective
function with a hypergraph is not the only way to approach binary polynomial optimization. There is a line of
work that focuses on using particular types of graphs to represent the problem and finding properties of such
graphs that lead to classes of instances that can be solved in polynomial time (Bienstock and Muñoz 2018,
Hojny et al. 2019). In particular, the first paper shows that binary polynomial optimization problems can be
solved in polynomial time if the corresponding intersection graphs has bounded treewidth. On the other hand,
the second paper introduces additional monomials and uses digraphs to represent the problem. They show
that if the digraph related to this new extended formulation is acyclic in the undirected sense, then there is an
algorithm able to solve the corresponding instance in polynomial time. Graphs have also been used in the
context of Pseudo-boolean optimization. In fact, Crama et al. (1990) provides a direct method to find the
optimal solution of binary polynomial optimization problems whose corresponding co-occurrence graphs
have bounded treewidth in polynomial time. The difference with the papers mentioned previously is that here
the algorithm does not use a polyhedral approach. In the field of pseudo-Boolean optimization, the goal is to
optimize set functions with a closed algebraic expression. Any such function can be equivalently written as a
polynomial function whose variables are allowed to only have binary values. Some seminal papers on this
topic are Hammer et al. (1963) and Hammer and Rudeanu (1968), and we refer to Boros and Hammer (2002)
for a thorough survey. We remark that instances that can be represented by cycle hypergraphs do not fall in
general into any of the previous categories that can be solved by a polynomial time algorithm. Last but not
least, we mention that a different popular way to solve binary polynomial optimization problems exploits
quadratization of the objective function. Here the idea is to increase the number of variables and constraints of
the problem, in order to write the original problem as a binary quadratic problem in a higher dimensional
space. In this way, it is then possible to use the literature that has been developed for the quadratic case. Some
papers in this field are as follows: Rosenberg (1975), Freedman and Drineas (2005), Buchheim and
Rinaldi (2007), Boros and Gruber (2012), Ishikawa (2009, 2011), Elloumi et al. (2019), and Boros et al. (2020).

1.1. Definitions
In this section we present some definitions that will be heavily used in this paper (Fagin 1983; Schrijver 1986;
Del Pia and Khajavirad 2017, 2021). We start by describing the definitions connected to CG cuts. Let P #
{x ∈ Rn : Ax ≤ b} be a polyhedron, with A ∈ Rm×n, b ∈ Rm. Let πx ≤ π0 be a valid inequality for P, with π ∈ Zn.
Then, πx ≤ )π0* is a Chvátal-Gomory cut, or more compactly a CG cut. Equivalently, πx ≤ )π0* is CG cut if and
only if there exists a vector u ∈ Rm such that u ≥ 0, uA # π, ub # π0. The set of points in P that satisfy all CG
cuts is called the Chvátal closure of P, which we denote by C(P). One can then iteratively define the t-th Chvátal
closure of P as the Chvátal closure of the (t − 1)th Chvátal closure of P, that is, Ct(P) :# C(Ct−1(P)). The smallest t
for which Ct(P) # conv(P ∩ Zn) is called the Chvátal rank of P. Similarly, the Chvátal rank of an inequality cx ≤ d is
the number t for which cx ≤ d is valid for Ct(P) but not for Ct−1(P).

As mentioned previously, there are several definitions of cycles in a hypergraph. In this paper, we will only
use concepts related to Berge-cycles, γ-cycles, and β-cycles, which we provide next. We refer the reader to
Fagin (1983) for further notions of cycles in hypergraphs.

Let G # (V,E) be a hypergraph. A Berge-cycle of length m, for some m ≥ 2, is a sequence v1, e1, v2,
e2, . . . , vm, em, v1 such that v1, v2, . . . , vm are distinct nodes, e1, e2, . . . , em are distinct edges, vi, vi+1 ∈ ei for
i # 1, . . . ,m − 1, vm, v1 ∈ em. A hypergraph is Berge-acyclic if it contains no Berge-cycles. We say that a Berge-
cycle is a γ-cycle if m ≥ 3 and the node vi belongs to ei−1, ei and no other ej for all i # 2, . . . ,m. A hypergraph is
said to be γ-acyclic if it does not contain any γ-cycles. Next, we define a β-cycle as a γ-cycle such that the node
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v1 belongs to e1, em and cannot belong to any other ej. Then, a hypergraph is β-acyclic if there are no β-cycles
in it.

We close this section with some definitions regarding hypergraphs that will be useful in the rest of the
paper. Consider a hypergraph G # (V,E). Given two edges e, f ∈ E, we say that e is adjacent to f if e ∩ f -# ∅. A
hypergraph G is connected if for any two distinct nodes vi, vj ∈ G, there is a sequence vi, ei, vq, eq, . . . , er, vj such
that vi, vq, . . . , vj are distinct nodes of G, ei, eq, . . . , er are distinct edges of G, and every node belongs to the edge
that come before it and after it in the sequence. Let V′ be a subset of V. A hypergraph (V′,E′) is a partial
hypergraph of G if E′ ⊆ E. The section hypergraph of G induced by V′ is the hypergraph (V′,E′), where
E′ # {e ∈ E : e ⊆ V′}. The connected components of G are the maximal connected section hypergraphs of G. The
support hypergraph of a valid inequality az ≤ b for MPG, is the hypergraph G(a) # (V(a),E(a)), where
V(a) :# {v ∈ V : av -# 0} ∪ {v ∈ V :∃ e ∈ E s.t. v ∈ e, ae -# 0}, and E(a) :# {e ∈ E : ae -# 0}. By at we denote the entry of
the vector a corresponding to the variable zt for t ∈ V ∪ E.

2. Running Intersection Inequalities Are CG Cuts
In this section, we analyze the Chvátal rank of running intersection inequalities, a class of valid inequalities for
the multilinear polytope introduced in Del Pia and Khajavirad (2021). First, we give the formal definition of
running intersection inequalities.

A family F of subsets of a finite set V has the running intersection property if there exists an ordering
s1, s2, . . . , sm of the sets in F such that, for each i # 2, . . . ,m, there exists j < i such that si ∩ (∪k<isk) ⊆ sj. An
ordering s1, s2, . . . , sm satisfying the above condition is called a running intersection ordering of F. Each running
intersection ordering s1, s2, . . . , sm of F induces a collection of sets

N s1( ) :# ∅, N si( ) :# si ∩
⋃

k<i
sk

( )
for i # 2, . . . ,m.

In the remainder of the paper, for a nonnegative integer m, we denote by [m] the set {1, . . . ,m}.
Definition 1. Consider a hypergraphG # (V,E). Let e0 ∈ E and let ei, i ∈ [m], be a collection of edges in E, adjacent to
e0, such that the family Ẽ :# {e0 ∩ ei : i ∈ [m]} has the running intersection property. Consider a running intersection
ordering of Ẽwith the corresponding sets N(e0 ∩ ei), for i ∈ [m]. For each i ∈ [m]with N(e0 ∩ ei) -# ∅, let ui be a node
in N(e0 ∩ ei). We define a running intersection inequality as

−
∑
i∈ m[ ]

N e0∩ei( ) -#∅

zui +
∑

v∈e0\
⋃

i∈ m[ ] ei

zv +
∑

i∈ m[ ]
zei − ze0 ≤ n0 + | i ∈ m[ ] :N e0 ∩ ei( ) # ∅{ }| − 1, (1)

where n0 is the number of nodes in e0 not contained in any edge ei, i ∈ [m]. We refer to e0 as the center and to
ei, i ∈ [m], as the neighbors.

The reader can find an illustration of an example of the support hypergraph of such inequalities in figure 2
in Del Pia and Khajavirad (2021).

Theorem 1. Running intersection inequalities are CG cuts for MPLP
G .

Proof. In order to make this proof simpler to describe, we will be using the following class of redundant valid
inequalities for MPLP

G :

ze ≤ 1 ∀e ∈ E. (ηe)

Consider a running intersection Inequality (1); let us denote it by az ≤ b. If m # 0, then the inequality is in the
standard linearization, hence we assume m ≥ 1. To show that it is a CG cut for MPLP

G , we provide a non-
negative combination of the inequalities αv, νe, εe, δv,e, and ηe, which we denote by πz ≤ π0. We indicate by αv,
νe, εe, δv,e, and ηe the multipliers associated with the inequalities (αv), (νe), (εe), (δv,e), and (ηe), respectively.

Let e0 and Ẽ be as in Definition 1, and let e0 ∩ e1, e0 ∩ e2, . . . , e0 ∩ em be a running intersection ordering of the
family Ẽ. We partition the nodes of e0 ∩⋃

i∈[m] ei in two sets U,W, where U :# {ui : i ∈ [m], N(e0 ∩ ei) -# ∅}
contains the nodes whose variables belong to the first sum of (1), and W :# (e0 ∩⋃

i∈[m] ei) \U. Define
γ :# |e0 ∩⋃

i∈[m] ei| ≥ 1. Then, the multipliers are defined as follows. For ease of exposition, all the multipliers
not explicitly defined are set to zero.

1. Set εe0 :# 1/γ, νe0 :# 1 − 1/γ, αv :# 1 − 1/γ, for every v ∈ e0 \⋃i∈[m] ei.
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Next, we define the multipliers δv,e, ηe of the edges e1, . . . , em recursively.
2. Going backward, consider ei with i # m, . . . , 1.
2.1. Set δw,ei :# 1/γ for every w ∈ W ∩ ei \⋃j>i ej.
2.2. For each index j > i such that N(e0 ∩ ej) -# ∅, uj ∈ ei, and uj /∈ e) for ) # i + 1, . . . , j − 1, set δuj ,ei :#

1 − (δuj,ej − 1/γ).
2.3. If N(e0 ∩ ei) -# ∅, then set δui ,ei :# 1 −∑

v∈ei\{ui} δv,ei .
Otherwise, set ηei :# 1 −∑

v∈ei δv,ei .
We observe that, in order to prove this theorem, it suffices to show that the inequality πz ≤ )π0* is a CG cut

for MPLP
G and is equal to az ≤ b. The proof of this fact is rather technical and requires some involved steps that

rely on the combinatorial structure of the support hypergraph of (1). For ease of exposition, we simply state
here the statements of the three claims that complete the proof. The interested reader can find the corre-
sponding proofs in Section 8.1.
Claim 1. The multipliers αv, νe, εe, δv,e, ηe are nonnegative.
Claim 2. The left-hand side of az ≤ b is equal to πz.
Claim 3. The right-hand side of az ≤ b coincides with )π0*. □

We remark that Theorem 1 yields an alternative proof of the validity of the running intersection inequalities.
We recall that running intersection inequalities are a generalization of both two-link and flower inequalities;
therefore, Theorem 1 immediately shows that also such cutting planes are CG cuts for MPLP

G . In Del Pia and
Khajavirad (2021), the authors introduce kite-free β-acyclic hypergraphs, a class that in particular contains all
γ-acyclic hypergraphs. The authors further show that, for hypergraphs in this class, the multilinear polytope
coincides with the running intersection relaxation. As a consequence, Theorem 1 implies that MPLP

G has
Chvátal rank 1 when G is kite-free β-acyclic.

3. Odd β-Cycle Inequalities
In this section, our aim is to introduce valid inequalities for MPG that are deeper than the running
intersection inequalities, in the sense that their Chvátal rank can be larger than 1. Because all the inequalities
considered in Section 2 correspond to β-acyclic hypergraphs, we decide to consider here hypergraphs that
contain β-cycles. We start by defining our odd β-cycle inequalities. In the remainder of the paper, given a β-cycle
C# v1,e1,v2, . . . ,vm,em,v1 in a hypergraph G # (V,E), we denote by V(C) :# {v1, . . . ,vm}⊆V, and by E(C) :#
{e1, . . . , em} ⊆ E.

Definition 2. Consider a hypergraph G # (V,E), let C # v1, e1, v2, . . . , vm, em, v1 be a β-cycle in G, and let E−,E+ be a
partition of E(C) such that k :# |E−| is odd and e1 ∈ E−. LetD :# {ep+1, ep+2, . . . , em}, where ep is the last edge in C that
belongs to E−. We denote by f1, . . . , fk the subsequence of e1, . . . , em of the edges in E−. Let S1 :# (∪e∈E−e) \⋃e∈E+ e and
S2 :# V(C) \⋃e∈E− e. With this notation in place, we make the following assumptions:

(a) Every node v ∈ ⋃m
i#1 ei is contained in at most two edges among e1, . . . , em.

(b) For every edge ei ∈ E+ \D, every edge in E− adjacent to ei (if any) is either ei−1 or ei+1.
(c) No edge in D is adjacent to an edge fi with i even.
(d) At least one of the following two conditions holds:
(d1) For every v ∈ S1, either v is contained in just one edge e ∈ E−, or it is contained in two edges fi, fj with i

odd and j even.
(d2) For every e′ ∈ E− and e′′ ∈ D such that e′ ∩ e′′ -# ∅, then either e′ # e1, e′′ # em or e′ # ep, e′′ # ep+1.
We then define the odd β-cycle inequality corresponding to C and E− as

∑

v∈S1
zv −

∑

e∈E−
ze −

∑

v∈S2
zv +

∑

e∈E+
ze ≤ |S1| − | i ∈ 1, . . . ,m{ } : ei, ei+1 ∈ E−{ }| + k

2

⌊ ⌋
. (2)

We observe that assumption (a) is equivalent to
(a′) All γ-cycles of G that can be formed using edges of C are β-cycles.
To see that (a) implies (a′), let C′ be a γ-cycle of G with E(C′) ⊆ {e1, . . . , em}. We have V(C′) ⊆ ⋃

e∈E(C′) e ⊆⋃m
i#1 ei, and (a) implies that each node in V(C′) is contained in at most two edges in E(C′); thus, C′ is also a

β-cycle. Conversely, to show that (a′) implies (a), we assume by contradiction that there exists v ∈ ⋃m
i#1 ei that is

contained in three distinct edges ei1 , ei2 , ei3 ∈ {e1, . . . , em}. Without loss of generality, let us assume that
i1 < i2 < i3. Let P be the substring of C from ei1 to ei3 , and define C′ :# v,P, v. By substring we mean a contiguous
sequence within a string. By definition of β-cycle, the node v is not in V(C), thus v does not appear in the
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sequence P. Because v is contained in three different edges in E(C′), we have shown that C′ is a γ-cycle that is
not a β-cycle.

It is simple to see that odd β-cycle inequalities are never valid for MPLP
G . This can be checked by considering

the vector z̄ in MPLP
G defined as follows, given a β-cycle C and sets E−, E+ satisfying assumptions (a)–(d). For

every edge ei ∈ E−, we set z̄vi :# 1/2, z̄vi+1 :# 1/2, z̄v :# 1 for every v ∈ ei \ {vi, vi+1}, and z̄ei :# 0, where vi and vi+1
are the nodes in C coming immediately before and after ei. Next, we consider the edges in E+. Let ei ∈ E+. For
every v ∈ ei such that its corresponding variable has not been defined yet, we set z̄v :# 1/2. Moreover, we define
z̄ei :# 1/2. All the remaining entries of z̄ can be set to 0.

Later in this section we will show the following result.

Theorem 2. Odd β-cycle Inequalities (2) are inequalities of Chvátal rank at most 2 for MPLP
G . In particular, they are valid

for MPG.
Although the definition of odd β-cycle inequalities is not straightforward, it yields a large class of in-

equalities that contains odd-cycle inequalities for the Boolean quadric polytope (Padberg 1989), as well as their
lifting by node addition obtained in corollary 10 in Del Pia and Khajavirad (2017). In particular, the in-
equalities given in Del Pia and Khajavirad (2017) have the same form (2) of our odd β-cycle inequalities, but
they are defined only in the special case where the hypergraph G # (V,E), with edges e1, . . . , em, satisfies m ≥ 3,
and every edge ei has nonempty intersection only with ei−1 and ei+1 for every i ∈ {1, . . . ,m}, where, for
convenience, we define em+1 :# e1 and e0 :# em. If m # 3, it is also required that e1 ∩ e2 ∩ e3 # ∅. In this paper, we
refer to a hypergraph of this type as a cycle hypergraph. If G is a cycle hypergraph, we now explain why
assumptions (a)–(d) are trivially satisfied. (a) Every node in G is contained in at most two edges. (b) Every
edge ei in E(C) intersects only ei−1 and ei+1. (c) Each e ∈ D is not adjacent to edges f2, f3, . . . , fk−1. (d1) Every v ∈ S1
is either contained in just one edge e ∈ E−, or in exactly two consecutive edges fi, fi+1. Moreover, assumption
(d2) is also satisfied.

Next, we provide an example of odd β-cycle inequalities.

Example 1. Let G # (V,E) be the hypergraph depicted in Figure 1 and defined by

V # v1, . . . , v9{ }, E # e1278, e23, e349, e4578, e569, e16{ },
where the edge eI contains the nodes with indices in I.

A β-cycle in G is given by

C # v1, e1278, v2, e23, v3, e349, v4, e4578, v5, e569, v6, e16, v1.

If we define E− :# {e1278, e23, e349}, it is simple to check that C and E− satisfy assumptions (a)–(d) in Definition 2.
In particular, assumption (d1) is satisfied and (d2) is not. The corresponding odd β-cycle Inequality (2) is

zv2 + zv3 − ze1278 − ze23 − ze349 − zv5 − zv6 + ze4578 + ze569 + ze16 ≤ 1. (3)

Using the same cycle C, we could define instead E− :# {e1278, e23, e4578}. Also, in this case, C and E− satisfy
assumptions (a)–(d) in Definition 2. However, in this case, assumption (d2) is satisfied and (d1) is not. The
corresponding odd β-cycle Inequality (2) is

zv2 + zv7 + zv8 − ze1278 − ze23 − ze4578 − zv6 + ze349 + ze569 + ze16 ≤ 3. (4)

It can be checked that (3) and (4) are both facet defining for MPG, for example, by using PORTA (PORTA
2015). In this example, MPG has a total of 156 facet-defining inequalities; 35 of them are in the standard
linearization, 2 are flower inequalities, and 70 are odd β-cycle inequalities.

Figure 1. (Color online) Hypergraph Containing β-Cycles
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The hypergraph G given in this example satisfies assumption (a) for any choice of C. In this case, all the
remaining assumptions are necessary for the validity of (2). Indeed, for any of the three assumptions (b), (c),
and (d), there exists an inequality of Form (2) that does not satisfy that specific assumption but satisfies
the remaining two and is not valid for MPG. We now provide three examples that show this. We use the same
cycle of before, that is, C # v1, e1278, v2, e23, v3, e349, v4, e4578, v5, e569, v6, e16, and v1, for all the three examples.
What changes throughout the examples is the partition E−, E+ of E. Consider first the case in which |E−| # 3
with f1 # e1278, f2 # e4578, f3 # e569. It follows that D # {e16} and E+ \D # {e23, e349}. Here, only assumption
(b) does not hold. The corresponding inequality of Form (2) is zv5 + zv7 + zv8 − ze1278 − ze4578 − ze569 − zv3 + ze16+
ze23 + ze349 ≤ 3, which is not valid for MPG. In fact, it can be checked that both zv4 + zv5 + zv7 + zv8 − ze1278 − ze4578 −
ze569 − zv3+ ze16 + ze23 + ze349 ≤ 4 and zv5 + zv7 + zv8 + zv9 − ze1278 − ze4578 − ze569 − zv3 + ze16 + ze23 + ze349 ≤ 4 are facet-
defining inequalities for MPG, which would not be possible if the previous inequality was valid. Next, let
f1 # e23, f2 # e349, and f3 # e4578. It follows that E+ # D in this case. In particular, D # {e569, e16, e1278}. It is easy to
see that (c) is the only violated assumption. Similarly to the previous case, we observe that the corresponding
inequality, zv3 + zv4 − ze23 − ze349 − ze4578 − zv1 − zv6 + ze16 + ze1278 + ze569 ≤ 1, is not valid, as zv3 + zv4 + zv9 − ze23− ze349 −
ze4578 − zv1 − zv6 + ze16 + ze1278 + ze569 ≤ 2 induces a facet of MPG. The last example considers |E−| # 5 with f1 # e23,
f2 # e349, f3 # e4578, f4 # e569, and f5 # e16, while E+ # D # {e1278}. It follows that assumptions (b) and (c) hold,
whereas assumption (d) does not, because both (d1) and (d2) are not satisfied in this case. The resulting
inequality derived from (2) is zv3 + zv4 + zv5 + zv6 + zv9 − ze23 − ze349 − ze4578 − ze569 − ze16 + ze1278 ≤ 3. The fact that the
inequality zv3 + zv4 + zv5 + zv6 + zv7 + zv8 + zv9 − ze23 − ze349 − ze4578 − ze569 − ze16 + ze1278 ≤ 5 is facet defining for MPG
implies that the previous inequality is not valid for MPG. >

Theorem 2 states that odd β-cycle inequalities have Chvátal rank at most 2 for MPLP
G . This leaves open the

possibility that the Chvátal rank of these inequalities could be always equal to 1. We show next that this is not
the case, by providing an example of an odd β-cycle inequality that is not valid for the Chvátal closure
of MPLP

G .

Example 2. Let G # (V,E) be the cycle hypergraph depicted in Figure 2 and defined by

V # v1, . . . , v9{ }, E # e123, e345, e4567, e678, e89, e129{ }.

By defining E− # {e345, e678, e129}, we obtain the odd β-cycle inequality

−ze345 − ze678 − ze129 + ze123 + ze4567 + ze89 ≤ 1. (5)

By corollary 3 in Hartmann et al. (1999), it follows immediately that (5) has Chvátal rank 2. Indeed, corollary 3
holds because MPG is full-dimensional, (5) is facet defining for MPG (both these facts are proved in Del Pia and
Khajavirad 2017), and finally all the components of (5) are relatively prime integers.

Usually proving directly that an inequality has Chvátal rank greater than 1 is hard, and not many proofs of
this kind are available in the literature. However, in this case we are able to provide a direct and simple proof,
which we give next.

In order for (5) to have Chvátal rank 2, we verify that (5) is not valid for the Chvátal closure C(MPLP
G ) of

MPLP
G . Assume, for a contradiction, that (5) is valid for C(MPLP

G ). Because G is a cycle hypergraph, it follows
from corollary 10 in Del Pia and Khajavirad (2017) that (5) is facet defining for MPG. As MPG ⊆ C(MPLP

G ), all
the vectors in MPG that satisfy at Equality (5) belong to C(MPLP

G ) too. Therefore, (5) is facet defining for C(MPLP
G )

as well. It then follows that (5) is a CG cut for MPLP
G ; therefore, if we maximize the left-hand side of (5) over

MPLP
G , we should get an objective value π0 such that )π0* # 1. However, it can be checked that the vector

Figure 2. (Color online) Cycle Hypergraph
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defined by zv1 # zv2 # zv3 # zv4 # zv5 # zv6 # zv7 # 1/2, zv8 # zv9 # 1, ze123 # ze4567 # 1/2, ze345 # ze678 # ze129 # 0, and
ze89 # 1 is feasible to MPLP

G and yields π0 # 2. We obtained a contradiction; thus, we conclude that (5) is not
valid for C(MPLP

G ). 1
In order to prove Theorem 2, we show that each odd β-cycle inequality can be obtained as a CG cut for the

flower relaxation of MPG, that is, the polyhedron obtained from MPLP
G by adding all flower inequalities. Let us

recall here the definition of flower inequalities.

Definition 3. Consider a hypergraph G # (V,E). Let f ∈ E and let T ⊆ E \ { f } be a subset of edges adjacent to f such
that f ∩ e ∩ e′ # ∅ for all e, e′ ∈ T with e -# e′. Then the flower inequality centered at f with neighborhood T, is
given by

∑

v∈f \⋃e∈T e
zv +

∑

e∈T
ze − zf ≤ f \

⋃

e∈T
e

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ + |T| − 1. (θf)

Flower inequalities were introduced in Del Pia and Khajavirad (2018a). However, our definition is more
general than the original one for three reasons. (i) In Definition 3, the set T could be empty, whereas in the
previous definition it must be nonempty. (ii) The condition f ∩ e ∩ e′ # ∅ in Definition 3 replaces the previous
stronger assumption e ∩ e′ # ∅. (iii) In Definition 3, we require that each edge in T is adjacent to f , whereas
originally it was assumed that | f ∩ e| ≥ 2 for every e ∈ T. Flower inequalities in Definition 3 are still a special
case of running intersection inequalities. This follows immediately by observing that the set { f ∩ e : e ∈ T} has
the running intersection property, because f ∩ e ∩ e′ # ∅ for every e, e′ ∈ T, e -# e′ by Definition 3. Therefore,
Theorem 1 implies that they are CG cuts for MPLP

G .

Proposition 1. Odd β-cycle inequalities are CG cuts for the flower relaxation of MPG.

Proof. The overall scheme of the proof is similar to the one of Theorem 1. Consider an odd β-cycle Inequality (2), we
denote it by az ≤ b. We provide a nonnegative combination πz ≤ π0 of the inequalities αv, νe, εe, δv,e, and θf such that
π coincides with a, and )π0* is equal to b. We denote by αv, νe, εe, δv,e, and θf the multipliers associated with the
inequalities (αv), (νe), (εe), (δv,e), and (θf ), respectively.

For every fi ∈ E−, we define the set Ti :# {e ∈ E+ : e ∩ fi -# ∅}. We denote by (θfi) the flower inequality with
center fi and neighbors Ti. Because of (a), we have that e ∩ e′ ∩ e′′ # ∅ for every three edges in E(C). In
particular, this is true whenever e ∈ E− and e′, e′′ ∈ E+. Hence, the flower inequalities (θfi) are well defined. If∑k

i#1 |Ti ∩D| ≥ 1, we set T :# ∑k
i#1 |Ti ∩D|. In this case, because we are dealing with a cycle, we have that∑k

i#1 |Ti ∩D| -# 1; thus, T ≥ 2. Otherwise, if ∑k
i#1 |Ti ∩D| # 0, we set T :# 2. For ease of exposition, all multipliers

not explicitly defined are set to zero. The nonzero multipliers are defined in the following rules.
1. For i odd, set θfi :# 1/T, and νfi :# (T − 1)/T. For i even, set θfi :# (T − 1)/T, and νfi :# 1/T.
2. For every v contained in only one edge fi ∈ E− and in no edge of E+, set αv :# (T − 1)/T if i is odd, and set

αv :# 1/T if i is even.
3. Consider the multipliers regarding inequalities involving edges in E+ \D. Note that E+ \D can be

partitioned into maximal length substrings of e1, . . . , ep. For each such substring ei, . . . , ei+h:
3.1. Note that ei−1 # fj for some j. Then set δvi+1,ei :# 1 − θfj .
3.2. For l # i + 1, . . . , i + h − 1, set δvl,el :# θfj , and then δvl+1,el :# 1 − θfj .
3.3. Set δvi+h,ei+h :# θfj .
4. Let us focus here on the edges in D and their related inequalities. For every edge ei ∈ D, define the

number ∆i :# |{f ∈ E− : ei ∩ f -# ∅}|.
4.1. Set δvp+2,ep+1 :# 1 − ∆p+1/T.
4.2. For i # p + 2, . . . ,m − 1, set δvi,ei :#

∑i−1
j#p+1 ∆j/T, and set δvi+1,ei :# 1 −∑i

j#p+1 ∆j/T.
4.3. Set δvm ,em :# ∑m−1

j#p+1 ∆j/T.
We remark that, when ∑k

i#1 |Ti ∩D| # 0, then D # ∅; thus, we do not need to consider rule 4.
The thesis is obtained by showing that the inequality πz ≤ )π0* is a CG cut for the flower relaxation of MPG.

Moreover, πz ≤ )π0* is equal to az ≤ b. Next, we state the three claims that yield the proof of this statement.
The proofs of these claims can be found in Section 8.2.

Claim 4. The multipliers αv, νe, εe, δv,e, θf are nonnegative.
Claim 5. The left-hand side of az ≤ b coincides with πz.
Claim 6. The right-hand side of az ≤ b is equal to )π0*. □

We are now ready to give the straightforward proof of Theorem 2.
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Proof of Theorem 2. We observe that the thesis of Theorem 2 follows from combining Proposition 1 with the fact
that flower inequalities are CG cuts for MPLP

G , as observed after Definition 3. □

4. Separation of the Odd β-Cycle Inequalities on Cycle Hypergraphs
Understanding whether the separation problem for the odd β-cycle inequalities can be solved in polynomial
time is an open question in the general setting. However, we are able to provide a positive result for the
special case in which the whole hypergraph that represents the instance is a cycle hypergraph. In fact, we
show that under this assumption the separation problem can be solved very efficiently. More formally, given a
cycle hypergraph G and z̄ ∈ MPLP

G , we can either understand if z̄ satisfies all odd β-cycle inequalities, or we can
find an odd β-cycle inequality violated by z̄ in linear time. We recall that the definition of cycle hypergraph can
be found in Section 3 just after the statement of Theorem 2.

Theorem 3. Given a cycle hypergraph G and z̄ ∈ MPLP
G , it is possible to check in linear time whether z̄ satisfies all the odd

β-cycle inequalities valid for MPG, or find one odd β-cycle inequality valid for MPG that is violated by z̄.

Proof. We start by expressing any odd β-cycle Inequality (2) in a more convenient way. We observe that )k/2* #
(|E−| − 1)/2 in (2), because k # |E−| is odd. This means that an equivalent form of (2) is given by

∑

v∈S1
1 − zv( ) +

∑

e∈E−

1
2
+ ze

( )
− | i ∈ 1, . . . ,m{ } : ei, ei+1 ∈ E−{ }| +

∑

v∈S2
zv −

∑

e∈E+
ze ≥

1
2
. (6)

Next, m # |{i ∈ {1, . . . ,m} : ei, ei+1 ∈ E−}| + |S2| + 2σ, where σ # |{i : ei ∈ E+, ei+1 ∈ E−}| is the same σ that appears in
the proof of Claim . Second, observe that σ # |E+| − |S2|. Then, |{i ∈ {1, . . . ,m} : ei, ei+1 ∈ E−}| # m + |S2| − 2|E+|.
Therefore, (6) is equivalent to

∑

v∈S1
1 − zv( ) +

∑

e∈E−
ze −

1
2

( )
+
∑

v∈S2
zv − 1( ) +

∑

e∈E+
1 − ze( ) ≥ 1

2
. (7)

We next show that, in order to solve the separation problem, it suffices to find sets S1, E−, S2, and E+ that
satisfy Definition 2 and minimize the left-hand side of (7), and checking whether the resulting value is greater
than or equal to the right-hand side of (7), given a vector z̄ ∈ MPLP

G . Actually, we remark that, given a partition
E−, E+ of E, the corresponding desired sets S1 and S2 can be found automatically. Indeed, these sets can be
computed as

S1 #
⋃

ei∈E−
ei \ ei−1 ∪ ei+1( )( ) ∪

⋃
i#1,...,m

ei ,ei+1∈E−

ei ∩ ei+1, S2 #
⋃

i#1,...,m
ei,ei+1∈E+

ûi, (8)

where em+1 # e1 and ûi # argminv∈ei∩ei+1 z̄v. The definition of ûi is becuase our goal is to minimize the left-hand
side of (7).

Similar to the result in Barahona and Mahjoub (1986), we reduce this problem to solving a shortest
path problem on a digraph. Let G # (V,E) be the cycle hypergraph, and let z̄ ∈ MPLP

G the vector of the

Figure 3. (Color online) Digraph G′
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separation problem. We next construct a digraph G′ # (V′,A′), where |V′| # 8|E| + 4 and |A′| # 12|E|. A picture
of G′ can be found in Figure 3.

For the remainder of the section, we will use the following convention regarding the indices: that is, m + 1 #
1 and 0 # m. Each intersection ei ∩ ei+1 in G, for i # 1, . . . ,m − 1, is represented by eight nodes in G′, namely vji,i+1
where j # 1, . . . , 8. Note that e1 ∩ em is represented instead by 12 nodes in G′: 8 of them are at the right of the
digraph, v1m,1, . . . , v

8
m,1, and the remaining 4 are at the left of the digraph: v10,1, v

2
0,1, v

3
0,1, and v40,1.

Every edge in G is replaced with 12 arcs in G′. Let us consider e1 first. The two arcs that correspond to e1 ∈ E+

are (v10,1, v11,2) and (v40,1, v41,2), whereas the arcs that represent e1 ∈ E− are (v20,1, v31,2) and (v30,1, v21,2). The other eight
arcs address the issues arising whether e1 and e2 are both in E− or E+, or if one of them is in E− and the other
belongs to E+. The arcs (v11,2, v51,2) and (v41,2, v81,2) deal with the case e1, e2 ∈ E+. Similarly, (v21,2, v61,2) and (v31,2, v71,2)
handle the case e1, e2 ∈ E−. The remaining arcs correspond to the cases where e1 and e2 are not in the same set.
Indeed, (v11,2, v61,2) and (v41,2, v71,2) represent the case in which e1 ∈ E+ and e1 ∈ E−. On the other hand, (v21,2, v51,2)
and (v31,2, v81,2) correspond to the case where e1 ∈ E− and e2 ∈ E+. The construction of the other arcs is analogous,
where vj0,1, v

j
1,2 are replaced by, respectively, vj+4i−1,i and vji,i+1, for j # 1, . . . , 4 and i # 2, . . . ,m. We observe that G′

is acyclic.
We now describe the weight vector w whose entries are the weights on the arcs of G′. For each i # 2, . . . ,m,

the arcs (v5i−1,i, v1i,i+1), (v8i−1,i, v4i,i+1) have equal weight, which we denote by w+
i . Likewise, the arcs (v10,1, v11,2) and

(v40,1, v41,2) are both assigned the weight w+
1 . These weights are defined as

w+
i :# −z̄ei , for i # 1, . . . ,m.

Next, we deal with the weights of the arcs corresponding to ei ∈ E−, which are (v20,1, v31,2), (v30,1, v21,2), and
(v6i−1,i, v3i,i+1), (v7i−1,i, v2i,i+1), for i # 2, . . . ,m. The arcs (v6i−1,i, v3i,i+1), (v7i−1,i, v2i,i+1) are given weight w−

i , for i # 2, . . . ,m,
whereas the arcs (v21, v31,2), (v31, v31,2) have both weight w−

1 . Such weights are

w−
i :#

∑

v∈ei\ ei−1,ei+1{ }
1 − z̄v( ) + 1

2
+ z̄ei

( )
, for i # 1, . . . ,m.

It remains to define the weights w+
i,i+1 and w−

i,i+1. Both arcs (v1i,i+1, v5i,i+1), (v4i,i+1, v8i,i+1) have weight w+
i,i+1, defined as

w+
i,i+1 :# z̄ûi , for i # 1, . . . ,m.

Finally, the arcs (v2i,i+1, v6i,i+1), (v3i,i+1, v7i,i+1) have equal weight w−
i,i+1, which is

w−
i,i+1 :#

∑

v∈ei∩ei+1
1 − z̄v( ) − 1, for i # 1, . . . ,m.

The remaining weights are set equal to 0. Some weights can be negative. However, this does not constitute an
issue, because G′ is acyclic and therefore there cannot be any negative-cost cycles in G′.

It is easy to see that the weight of any path in G′ from v10,1 to v8m,1 or from v20,1 to v7m,1 corresponds to the left-
hand side of an odd β-cycle inequality for MPG evaluated at z̄. In fact, given any path in G′ from v10,1 to v8m,1 or
from v20,1 to v7m,1, we can construct a partition E−, E+ of E as follows. If we are considering a path from v10,1 to
v8m,1, then e1 ∈ E+. Otherwise, e1 ∈ E−. For i # 2, . . . ,m, the edge ei belongs to E+ if either the arc (v5i−1,i, v1i,i+1) or
the arc (v8i−1,i, v4i,i+1) is in the chosen path. Similarly, for i # 2, . . . ,m, the edge ei is in E− if either (v6i−1,i, v3i,i+1) or
(v7i−1,i, v2i,i+1) is part of the selected path. Observe that E−, E+ indeed form a partition of E, and also that |E−| is
odd. We then compute the sets S1 and S2 by using (8). We finally recall that, because G is a cycle hypergraph,
assumptions (a)–(d) are valid for any partition E−, E+, and therefore also for the partition that was just defined.
Hence, the inequality of Form (2) found by using the sets E−, E+, S1, and S2 defined previously is a valid odd
β-cycle inequality. By definition of the weight vector w, it follows that the weight of the chosen path is exactly
equal to the value of the left-hand side of this odd β-cycle inequality when we consider z # z̄.

On the other hand, we next show that for any odd β-cycle inequality of MPG we can find a path in G′ with
weight lower than or equal to the value of the left-hand side of the chosen odd β-cycle inequality when
evaluated in z # z̄. Indeed, we can use the same construction of before backward in order to define the path.
We observe, however, that in this case the weight of the constructed path can be lower than the value of the
left-hand side of the selected odd β-cycle inequality when z # z̄. This happens whenever there exists a node in
S2 in the odd β-cycle inequality that is not a minimizer of minv∈ei∩ei+1 : ei ,ei+1∈E+ z̄v.

At this point, we compute two shortest paths in G′: the one from v10,1 to v8m,1 and the one from v20,1 to v7m,1. We
choose the one yielding lower weight between the two, and check whether its weight is less than 1/2, which is
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the right-hand side of (7). If so, we found a violated odd β-cycle inequality. Namely, the one that can be
constructed from the path with minimum weight, by following the procedure explained previously. Oth-
erwise, we know that z̄ satisfies all odd β-cycle inequalities for MPG.

Lastly, we observe that the running time of this procedure is linear. In fact, the number of nodes and arcs of
G′ is linear in the number of nodes and edges of G. Then, both computing the weight vector w and solving the
shortest path can be done in linear time. In particular, solving the shortest path problem in G′ takes O(|E′|)
operations, since G′ is an acyclic digraph. □

5. Combining Perfect Formulations
In this section, we present a result of a different flavor that is of independent interest and that is used in the
characterization of MPG given in the next section. It deals with extending the multilinear polytope of a
hypergraph G to the multilinear polytope of a new hypergraph G′ obtained from G by replacing any node
with a new edge containing arbitrarily many new nodes. To the best of our knowledge, this is the first result of
this type for the multilinear polytope. We first show a very general lemma that allows us to combine two
perfect formulations that overlap only in one variable.

Lemma 1. Let P # {(x, y) ∈ Rn1 × R :A(x, y) ≤ b}, Q # {(y, z) ∈ R × Rn2 :C(y, z) ≤ d} be polytopes with binary vertices.
Then R # {(x, y, z) ∈ Rn1 × R × Rn2 :A(x, y) ≤ b, C(y, z) ≤ d} is a polytope with binary vertices.

Proof. Because P ⊆ [0, 1]n1 × [0, 1] and Q ⊆ [0, 1] × [0, 1]n2 , the polyhedron R is contained in [0, 1]n1 × [0, 1]×
[0, 1]n2 . Let (x̄, ȳ, z̄) be a vertex of R. We want to show that (x̄, ȳ, z̄) ∈ {0, 1}n1 × {0, 1} × {0, 1}n2 . Because it is a vertex,
there exist n1 + 1 + n2 linearly independent constraints among A(x, y) ≤ b, C(y, z) ≤ d that are active at (x̄, ȳ, z̄). In
the inequalities fromA(x, y) ≤ b, only n1 + 1 variables can appear with nonzero coefficient, so at most n1 + 1 of these
constraints can be linearly independent. Similarly there can be at most n2 + 1 linearly independent constraints
among the inequalities C(y, z) ≤ d. Therefore, there are only two ways the n1 + 1 + n2 inequalities defining (x̄, ȳ, z̄)
can be distributed among the systems A(x, y) ≤ b and C(y, z) ≤ d: either n1 + 1 are in A(x, y) ≤ b and n2 are in
C(y, z) ≤ d, or n1 are in A(x, y) ≤ b and n2 + 1 are in C(y, z) ≤ d. By symmetry, we can assume, without loss of
generality, that we are in the first case.

The vector (x̄, ȳ) is in P because it satisfies A(x, y) ≤ b. Moreover, n1 + 1 linearly independent constraints
among A(x, y) ≤ b are active at (x̄, ȳ). This implies that (x̄, ȳ) is a vertex of P. Since P has binary vertices, we
obtain (x̄, ȳ) ∈ {0, 1}n1 × {0, 1}. In particular, these n1 + 1 linearly independent constraints imply the con-
straint y # ȳ.

Consider now the vector (ȳ, z̄). This vector is in Q, and it satisfies at equality n2 linearly independent
constraints among C(y, z) ≤ d. Moreover, it also satisfies the equation y # ȳ. This equation must be linearly
independent from the latter n2 constraints, because it was obtained from the first n1 + 1 constraints defin-
ing (x̄, ȳ, z̄). Hence, (ȳ, z̄) must be a vertex of the polytope F :# {(y, z) ∈ Q : y # ȳ}. Because ȳ ∈ {0, 1} and Q is
contained in [0, 1] × [0, 1]n2 , we have that F is a face of Q. Because Q has binary vertices, so does F, and
we obtain (ȳ, z̄) ∈ {0, 1} × {0, 1}n2 . We have shown that (x̄, ȳ, z̄) ∈ {0, 1}n1 × {0, 1} × {0, 1}n2 ; thus, R has bi-
nary vertices. □

Theorem 4. Let G # (V,E) be a hypergraph, let w ∈ V, and let f be a nonempty set of nodes disjoint from V. We define the
hypergraph G′ # (V′,E′) as follows:

V′ :# V \ w{ }( ) ∪ f ,
E′ :# f

{ } ∪ e ∈ E :w /∈ e{ } ∪ e ∪ f : e ∈ E, w ∈ e
{ }

.

Then, a perfect formulation of the multilinear polytope MPG′ is obtained from an external description of MPG by
1. Replacing zw with zf in every inequality of MPG, and
2. Adding the standard linearization of the edge f .

Proof. LetR be the polyhedron obtained by performing the operations in the statement.We can then apply Lemma 1,
where P = MPG, Q is the polytope defined by the standard linearization of the edge f , and y is the variable zf . We
obtain that R is a polytope with binary vertices. Note that R lives in a space of dimension n # |V′| + |E′| #
|V| + |E| + | f |. Therefore, to conclude the proof, we only need to show that R ∩ {0, 1}n # MPG′ ∩ {0, 1}n. For ease of
notation, in this proof, we denote by SG and SG′ the set of binary point in MPG and MPG′ , respectively.
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First, we prove the inclusion R ∩ {0, 1}n ⊇ SG′ . Let z̄′ be a vector in SG′ . As z̄′ is binary, we only need to show
that z̄′ is in R. Clearly z̄′ satisfies all inequalities of the standard linearization of f . Let z̄ be the vector in the
space of G obtained from z̄′. Formally, z̄ is constructed by setting z̄v :# z̄′v for every v ∈ V \ {w}, z̄w :# z̄′f , z̄e :# z̄′e
for every e ∈ E with w /∈ e, and z̄e :# z̄′e∪f for every e ∈ E with w ∈ e. Clearly, z̄ ∈ SG, thus it satisfies the
constraints in the linear description of MPG. Because z̄w # z̄′f , we obtain that z̄′ satisfies the constraints of R
obtained by applying the operation 1 in the statement. Therefore, we have shown z̄′ ∈ R.

Next, we show the reverse inclusion R ∩ {0, 1}n ⊆ SG′ . Let z̄′ be a binary vector not in SG′ . If z̄′f -#
∏

v∈f z̄′v, then
z̄′ does not satisfy some inequality in the standard linearization of f and so z̄′ is not in R. Assume now
z̄′f #

∏
v∈f z̄′v. Because z̄′ is not in SG′ , there exists an edge g′ ∈ E′ with g′ -# f such that z̄′g′ -#

∏
v∈g′ z̄′v. Let g be the

edge of G corresponding to g′. As above, we define the vector z̄ in the space of G obtained from z̄′. Then
z̄g -# ∏

v∈g z̄v; thus, z̄ is not in SG. This means that there exists an inequality in the linear description of MPG that
is not satisfied by z̄. The inequality obtained from it by applying the operation 1 is not satisfied by z̄′, because
z̄w # z̄′f , which implies that z̄′ is not in R. □

Theorem 4 can be used to extend all known decomposition results for the multilinear polytope (Del Pia and
Khajavirad (2018a, b, c, 2021). Let G be a hypergraph, and let G1, G2 be section hypergraphs of G such that
MPG is decomposable into MPG1 and MPG2 . Let w ∈ V(G), let G′ be obtained from G as described in Theorem 4,
and let G′

1,G
′
2 be the section hypergraphs of G′ corresponding to G1 and G2. Then, Theorem 4 implies that MPG′

is decomposable into MPG′
1
and MPG′

2
. We remind the reader that the definition of section hypergraph can be

found in Section 1.1.
We remark that Theorem 4 can be also used to characterize the multilinear polytope of laminar hyper-

graphs, providing a simple proof of theorem 10 in Del Pia and Khajavirad (2018a). In fact, we can exploit
Theorem 4 to iteratively construct MPG, where G is a laminar hypergraph. The new proof is elementary, as it
does not rely on the result by Conforti and Cornuéjols regarding the connection between integral polyhedra
and balanced matrices (theorem 6.13 in Cornuéjols 2001). Next, we present the idea of this simpler proof.

Let G # (V,E) be laminar. Because G is laminar, we can assume without loss of generality that there exists an
edge ē ∈ E that contains V, that is, ē # V. Observe that we can partition the edges of G in sets Li, for i # 1, . . . , r
for some r ≥ 1, such that an e ∈ E belongs to Li if and only if there exist precisely i − 1 distinct edges that
properly contain e. We begin our construction starting from the hypergraph G′ that has only one node and no
edges. We apply Theorem 4 to the only node v in G′. We replace v with an edge f , which at the end of the
contruction will be equal to ē. The cardinality of f is equal to the sum of the number of nodes in ē that do not
belong to any edge of L2, plus the cardinality of L2. Note that all edges of L2 are subsets of ē, by definition of ē
and the fact that G is laminar. Next, we expand the nodes of f corresponding to edges of L2 one by one,
provided that L2 -# ∅, by using again Theorem 4. Each of these nodes is replaced by an edge whose cardinality
is equal to the sum of the number of nodes that are in the corresponding edge of L2 and do not belong to any
edge of L3, plus the number of edges of L3 that are subsets of this specific edge of L2 (if any). When all the
nodes corresponding to edges in L2 have been replaced, we start replacing the nodes corresponding to edges of
L3 by applying Theorem 4, and so on. After replacing all the nodes corresponding to edges of Lr, we will have
obtained the laminar hypergraph G.

6. The Multilinear Polytope of Cycle Hypergraphs
In this section, we provide an indication of the theoretical power of odd β-cycle inequalities. These results
provide the first characterizations of MPG for a nontrivial family of hypergraphs G that contain β-cycles. First,
we show that the multilinear polytope of cycle hypergraphs is fully described by the standard linearization
and odd β-cycle inequalities, if each pair of edges intersect in exactly one node.

Proposition 2. Let G be a cycle hypergraph with edges e1, . . . , em such that |ei ∩ ei+1| # 1 for every i # 1, . . . ,m, where, for
convenience, we define em+1 :# e1. Then, MPG is given by the system comprised of the standard linearization and the odd
β-cycle inequalities.

Proof. We show this result by induction on the number of edges. We first show the base case, which is when G
has three edges. We assume G # (V,E), with E # {e1, e2, e3} such that |e1 ∩ e2| # |e2 ∩ e3| # |e1 ∩ e3| # 1. Let v̄ be
the only node in e1 ∩ e2. We define F1 :# {z ∈ MPG : zv̄ # 0}, F2 :# {z ∈ MPG : zv̄ # 1}. By definition, MPG is a bi-
nary polytope; hence, MPG is the convex hull of the union of F1 and F2. Observe that we know a perfect formulation
of F1 and of F2. In fact, the underlying hypergraph of F1 is (V \ {v̄}, {e3}), whereas the underlying hypergraph of F2
is (V \ {v̄}, {e1 \ {v̄}, e2 \ {v̄}, e3}). Both these hypergraphs are Berge-acyclic, and by theorem 7 in Del Pia and
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Khajavirad (2018a), we know that their perfect formulations coincide with the corresponding standard lineari-
zations. Therefore, we apply Balas’ formulation (see theorem 2.1 in Balas 1998) for the union of polytopes and
obtain a perfect formulation for MPG in the extended space. Let P be the polyhedron described by Balas’ for-
mulation for the convex hull of the union of F1 and F2. We denote by proj(P) the projection of P on the space of the
variables {zt : t ∈ V ∪ E}. It follows immediately that P is an integral polyhedron, and therefore also proj(P) is
integral. Hence, we have that MPG # proj(P). In order to achieve the thesis, it suffices to show the correctness of the
following claim.

Claim . is� described� by� the� inequalities� from� the� standard� linearization� and� the� odd β-cycle
inequalities.

In the proof of Claim , we use Fourier-Motzkin elimination on the additional variables that arise in the
extended formulation obtained from Balas’ theorem. Therefore, this proof requires many steps, and is rather
long. In order to streamline the presentation, we decided not to include the Fourier-Motzkin computations.
However, they can be found in Section 8.3.1

Let us move on to the inductive step. Consider G a cycle hypergraph with m edges, e1, . . . , em, such that
|ei ∩ ei+1| # 1 for every i # 1, . . . ,m, where em+1 # e1. Let v′ :# e1 ∩ e2, and v′′ :# em−1 ∩ em. We set f :# {v′, v′′}, and
define G′ # (V,E′), where E′ :# E ∪ { f }. We also consider two hypergraphs G1, G2 that are the section
hypergraphs of G′ induced by e1 ∪ em, and

⋃m−1
i#2 ei, respectively. Note that G1 and G2 satisfy the assumptions of

Proposition 2 and both have less than m edges. Hence, we apply the inductive hypothesis in order to obtain a
perfect formulation of MPG1 and MPG2 . Observe also that G1 and G2 satisfy the hypothesis of the decom-
position result given by theorem 1 in Del Pia and Khajavirad (2018b), because G1 ∪ G2 # G′, and G1 ∩ G2 #
({v′, v′′}, { f }) is a complete hypergraph. This implies that a perfect formulation for MPG′ is obtained by
combining the perfect formulations of MPG1 and MPG2 .

In order to achieve a description of MPG, we need to project the variable zf out of the system defining MPG′ .
We do so by applying the Fourier-Motzkin elimination procedure. Once zf is no longer present in the system,
we obtain a perfect formulation for MPG. Therefore, MPG # proj(MPG′), where proj(MPG′) is the projection of
MPG′ on the space of the variables {zt : t ∈ V ∪ E}.

Claim . consists� only� of� inequalities� from� the� standard� linearization,� and� odd inequalities.

Similar to what we did with the previous claim, the calculations that show the correctness of Claim are in
Section 8.3.2. Because of the fact that MPG # proj(MPG′) and of Claim , we can conclude the proof. □

Next, we present the main result of this section. Specifically, we prove that the multilinear polytope of
general cycle hypergraphs is characterized by the standard linearization and all the flower and odd β-cycle
inequalities.

Theorem 5. Let G # (V,E) be a cycle hypergraph. Then, MPG is given by the system comprised of the standard linearization,
the flower inequalities, and the odd β-cycle inequalities. Moreover, the Chvátal rank of MPLP

G is at most 2.

Proof. We prove this theorem using Proposition 2 and Theorem 4 and subsequently projecting out the additional
variables introduced by the application of Theorem 4.

Let G # (V,E) be a cycle hypergraph with edges e1, . . . , em. First, we create a new hypergraph G′ # (V′,E′)
obtained by contracting every intersection ei ∩ ei+1 to a new node wi, for every i ∈ [m], where we define
em+1 :# e1. Observe that G′ satisfies the hypothesis of Proposition 2, because it is still a cycle hypergraph and
now every nonempty intersection of two edges has cardinality equal to one. Hence, MPG′ is described by the
system consisting of the standard linearization and the odd β-cycle inequalities. Then, starting from G′, we
construct a second hypergraph G′′ # (V,E′′) by applying Theorem 4 to every node wi, for i ∈ [m], in order to
obtain the same node set V of the original hypergraph G. In this way, we obtain MPG′′ . By the application of
Theorem 4, it follows that E′′ -# E. Indeed, the application of Theorem 4 yields a new edge for every node wi,
and therefore E′′ # E ∪ { f1, . . . , fm}, where fi :# ei ∩ ei+1.

Thus, in order to achieve a description of MPG, it remains to eliminate the variables corresponding to the
new edges f1, . . . , fm. This means that MPG # proj(MPG′′), where proj(MPG′′) is the projection of MPG′′ on the
space of the variables {zt : t ∈ V ∪ E}. We project out the variables zf1 , . . . , zfm using the Fourier-Motzkin
elimination procedure.

Claim 9. The system describing is� given� by� inequalities� from� the� standard� linearization,� flowers
inequalities, and odd β-cycle inequalities.
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Once again, we decided not to present the Fourier-Motzkin calculations, because they are pretty long. They
can be found in Section 8.4.

At this point, we recall that it suffices to use Theorems 1 and 2 in order to prove the last part of Theorem 5.
In fact, from Theorems 1 and 2, it follows immediately that MPLP

G has Chvátal rank at most 2. This concludes
the proof of the theorem. □

We close this section by observing that all the instances of binary polynomial optimization represented by
cycle hypergraphs can be solved in polynomial time, as the corresponding linear program in the extended
space can be solved in polynomial time. This can be easily obtained by combining Theorems 3 and 5.

Corollary 1. Let G be a cycle hypergraph. Then, optimizing a linear function over MPG can be done in polynomial time.

Proof. By the equivalence of separation and optimization (Conforti et al. 2014), it suffices to show that all the
inequalities defining MPG can be separated efficiently. From Theorem 5, this implies that we are interested in the
separation of the odd β-cycle inequalities, the flower inequalities, and the standard linearization inequalities.
The first result is proved in Theorem 3. Second, the number of flower and the standard linearization inequalities in
the system describing MPG is polynomial in |V| and |E|. In particular, there are only 3|E| flower inequalities in this
system. This follows by the definition of cycle hypergraph. Lastly, the number of standard linearization inequalities
is bounded by |V| + 2|E| + |V‖E|. Therefore, it is possible to separate over both the flower inequalities and the
standard linearization inequalities simply by checking them one by one. □

7. Numerical Results
Given the indication of the theoretical power of the odd β-cycle inequalities presented in Theorem 5, we
wanted to gain some further insight about the practical effectiveness of these inequalities. In particular, we
focused on cases when the hypergraph representing the instance is not a cycle hypergraph, because we now
know that such instances can be solved in polynomial time. In order to do so, we chose two problems. The first
problem is the image restoration problem in computer vision, as described in Crama and Rodrı́guez-
Heck (2017), whereas the second is the low autocorrelation binary sequence problem that emerged from
theoretical physics (Bernasconi 1987, Mertens and Bessenrodt 1998, POLIP 2014, MINLPLib 2020). These
problems have been commonly used to test procedures for binary polynomial optimization (Crama and
Rodrı́guez-Heck 2017, Elloumi et al. 2019, Del Pia et al. 2020). Our goal is to understand the percentage of the
integrality gap that is closed by applying only the odd β-cycle inequalities. We remark that these problems are
indeed not represented by cycle hypergraphs, and a polynomial-time separation for the odd β-cycle in-
equalities in these settings is not known. Therefore, because of the exponential number of these inequalities,
we only consider a subset of them in our computational experiments. Namely, we only use the ones arising
from β-cycles of length 3 or 4. Hence, we define two relaxations of the original problem that are obtained by
adding to the standard linearization all the odd β-cycle inequalities coming from β-cycles of length 3 and all
the inequalities arising from β-cycles of lengths 3 and 4, respectively. We denote the corresponding polytopes
by MP3

G and MP4
G. The percentage of the integrality gap closed is computed as in Fischetti and Lodi (2007). The

precise expression is 100-100(opt(MPG)-opt(MP3
G))/(opt(MPG)-opt(MPLP

G )) and 100-100(opt(MPG)-opt(MP4
G))/

(opt(MPG)-opt(MPLP
G )) for the two relaxations respectively, where opt(·) denotes the optimal value of the

objective function when optimized over that specific polytope.
We first present the results for the image restoration problem and then the ones for the low autocorrelation

binary sequence problem. We observe that the running intersection inequalities have been proved to be very
effective in solving the image restoration problem. On the other hand, they are not a useful tool for the low
autocorrelation binary sequence problem, as mentioned in Del Pia et al. (2020). As the reader will see in the
next sections, the odd β-cycle inequalities are able to close a significant amount of the integrality gap for such
problems. Therefore, this might indicate that using inequalities with a higher Chvátal rank can lead to better
performances. We close this paragraph by noticing that the instances from the low auto-correlation binary
sequence problem are much harder to solve than the ones of the image restoration problem. This is probably
because the hypergraphs representing the instances of the first problem are considerably more dense than the
ones coming from the image restoration problem, as it is explained in Elloumi et al. (2019).

7.1. Image Restoration Problem
Next, we briefly describe the test set for this problem, while we refer to Crama and Rodrı́guez-Heck (2017)
for a thorough explanation of these instances’ construction. The test set involves 45 instances. There are three
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image types (top left, center, and cross) and three image sizes (10 × 10, 10 × 15, and 15 × 15). Each combi-
nation of image type and size leads to five instances depending on the level of perturbation that is applied to them.
In particular, one instance corresponds to no perturbation, two instances have a low level of perturbation, whereas
the last two correspond to a high level.

We recall that in our experiments we compute the percentage of the integrality gap closed by two re-
laxations of the problem, whose polytopes are MP3

G and MP4
G. The results can be found in Table 1.

It is immediate to see that using these cuts yields a considerable reduction in the integrality gap. In fact, one
can see that the integrality gap is reduced on average by 24% just when using the odd β-cycle inequalities
corresponding to cycles of length 3. This percentage increases to 44% when we also consider inequalities cor-
responding to cycles of length 4.

7.2. Low Autocorrelation Binary Sequence Problem
The test set for this problem can be found in both POLIP (2014) and MINLPLib (2020). We start this section
by observing that for many instances of the test set an optimal solution is not known. Precisely, this is true for
27 instances over 45. For these instances we cannot compute the reduction in the integrality by using

Table 1. Results of Computer Vision Instances

Instance Gap reduced MP3
G Gap reduced MP4

G

Top left, 10 × 10, none 27% 48%
Top left, 10 × 15, none 26% 47%
Top left, 15 × 15, none 26% 47%
Top left, 10 × 10, low 1 25% 47%
Top left, 10 × 10, low 2 25% 47%
Top left, 10 × 15, low 1 26% 47%
Top left, 10 × 15, low 2 25% 47%
Top left, 15 × 15, low 1 26% 46%
Top left, 15 × 15, low 2 26% 46%
Top left, 10 × 10, high 1 24% 41%
Top left, 10 × 10, high 2 24% 41%
Top left, 10 × 15, high 1 23% 41%
Top left, 10 × 15, high 2 24% 42%
Top left, 15 × 15, high 1 23% 41%
Top left, 15 × 15, high 2 23% 40%
Center, 10 × 10, none 25% 46%
Center, 10 × 15, none 25% 46%
Center, 15 × 15, none 25% 47%
Center, 10 × 10, low 1 24% 45%
Center, 10 × 10, low 2 24% 45%
Center, 10 × 15, low 1 24% 46%
Center, 10 × 15, low 2 24% 45%
Center, 15 × 15, low 1 25% 46%
Center, 15 × 15, low 2 25% 46%
Center, 10 × 10, high 1 24% 41%
Center, 10 × 10, high 2 23% 41%
Center, 10 × 15, high 1 23% 41%
Center, 10 × 15, high 2 24% 41%
Center, 15 × 15, high 1 23% 40%
Center, 15 × 15, high 2 23% 40%
Cross, 10 × 10, none 25% 45%
Cross, 10 × 15, none 25% 45%
Cross, 15 × 15, none 25% 46%
Cross, 10 × 10, low 1 24% 45%
Cross, 10 × 10, low 2 24% 44%
Cross, 10 × 15, low 1 24% 44%
Cross, 10 × 15, low 2 24% 44%
Cross, 15 × 15, low 1 24% 45%
Cross, 15 × 15, low 2 25% 45%
Cross, 10 × 10, high 1 23% 40%
Cross, 10 × 10, high 2 23% 41%
Cross, 10 × 15, high 1 23% 41%
Cross, 10 × 15, high 2 23% 41%
Cross, 15 × 15, high 1 23% 40%
Cross, 15 × 15, high 2 23% 41%
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the expression 100-100(opt(MPG)-opt(MP3
G))/(opt(MPG)-opt(MPLP

G )), because the value opt(MPG) is missing.
Therefore, we replaced opt(MPG) in the previous formula with the best primal bound, that is, the value of the
best feasible solution. Such bounds are regularly updated in MINLPLib (2020). It can be easily checked that
the reduction of the integrality gap that we provide in these cases is a lower bound for the true reduction of
the integrality gap.

The results of the computational experiments are displayed in Table 2. Two instances, bern 20.3 and
bern 25.3, were not considered in our study, as their optimal solution can be found by simply solving the
standard linerization. This is because the hypergraphs representing the two instances are actually Berge-
acyclic, and therefore, the standard linearization is a perfect formulation for these problems (Del Pia and
Khajavirad 2018a). Moreover, in this case, we decided to use only odd β-cycle inequalities corresponding to
β-cycles of length 3. This is because these instances are significantly harder to solve than the ones in the
previous section. We were able to compute the reduction in the integrality gap for 18 of the 43 considered
instances in the test set. The reason behind it is that the linear programs corresponding to the remaining
instances resulted in an error in GUROBI (2019) caused by the huge size of the matrix, even if we only used a
subset of inequalities.

We observe that the odd β-cycle inequalities produce a remarkable reduction in the integrality gap when
applied to these hard problems. In particular, these percentages are considerably higher than the corre-
sponding ones for the instances of the image restoration problem. In fact, on average the integrality gap is
reduced by 60% just by considering all the inequalities coming from β-cycles of length 3.

Given the results of these experiments, we believe that an interesting future work would be to perform a
more thorough computational study and implementing the odd β-cycle inequalities in a branch and
bound routine.

8. Technical Proofs
8.1. Claims in the Proof of Thereom 1
8.1.1. Proof of Claim 1. Let G̃ be the hypergraph (e0, Ẽ), and note that G̃ can contain loops and parallel edges.
There is a one-to-one correspondence between edges in E and in Ẽ. Given an edge e ∈ E, we denote by ẽ the
corresponding edge in Ẽ defined by ẽ :# e0 ∩ e. Vice� versa,
sponding edge in E.

For every edge ei, i ∈ [m], let Ji be the set of indices j ∈ {i + 1, . . . ,m} for which the condition in rule 2.2 holds.
Subsequently, we define recursively the sets

Ci :# Ji ∪
⋃

j∈Ji
Cj

( )
for every i ∈ m[ ],

Table 2. Results of LowAutocorrelation Binary Sequence Instances

Instance Gap reduced MP3
G

bern 20.5 58%
bern 20.10 64%
bern 20.15 63%
bern 25.6 64%
bern 25.13 64%
bern 30.4 39%
bern 30.8 64%
bern 30.15 63%
bern 35.4 39%
bern 35.9 64%
bern 40.5 59%
bern 40.10 64%
bern 45.5 59%
bern 45.11 62%
bern 50.6 64%
bern 50.13 64%
bern 55.6 64%
bern 60.8 64%
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starting from i # m and moving to i # 1. Moreover, for every i ∈ [m], let

Wi :# w ∈ W : δw,eh -# 0, for some h ∈ i{ } ∪ Ci
{ }

,

Ui :# uj ∈ U : δuj ,eh -# 0, for some h ∈ i{ } ∪ Ci, h -# j
{ }

.

The next claim provides a fundamental tool for the arguments in this proof.

Subclaim 1. For every i ∈ [m], we have

∑

v∈ei\ ui{ }
δv,ei #

Wi
⃒⃒ ⃒⃒

γ
+ Ui
⃒⃒ ⃒⃒

γ
. (9)

If N(ẽi) # ∅, then ui is not defined, and the sum ranges over all v ∈ ei.

Proof of Subclaim1.
explicitly, in terms of the multipliers defined in rules 2.1 and 2.2. We obtain

∑

v∈ei\ ui{ }
δv,ei #

∑
v∈W∩ei

v /∈ ∪j>iej

1
γ
+

∑

j∈Ji
1 − δuj ,ej −

1
γ

( )( )
. (10)

If j ∈ Ji, then uj ∈ ẽi ∩ ẽj; thus, ẽi and ẽj belong to the same connected component of G̃ that we denote by C.
Hence, the right-hand side of (10) only depends on the values of the multipliers δv,e for edges ẽ of C.

Let p :# |E(C)| ≥ 1. We can assume, without loss of generality, that the edges of C correspond to the first p
edges in the running intersection ordering of Ẽ. That is, the edges of C are ẽ1, . . . , ẽp. We observe that this can be
done without loss of generality, since C is a connected component of G̃, and the considered multipliers depend
exclusively on multipliers corresponding to the other edges of C. Recall that we only need to prove (9) for the
fixed index i ∈ [p]. Instead, we prove (9) for all indices i ∈ [p]. We do so by induction on i, starting from i # p
and going backward to 1. Thus, we no longer think of i as a fixed index.

Consider the base case i # p. Then Jp # Cp # ∅. Therefore, the second sum of (10) reduces to |W ∩ ep|/γ #
|Wp|/γ, and the third sum is zero. This completes the proof of the base case, because Up # ∅.

Before showing the inductive step, we also provide the argument for the case i # p − 1 because the idea is the
same, but the calculations are significantly simpler. Let i # p − 1. If Jp−1 # ∅, then also Cp−1 # ∅ and therefore the
third sum of (10) is zero, and the second sum is equal to |W ∩ ep−1 \ ep|/γ # |Wp−1|/γ. This is true because, in this
case, Wp−1 # {w ∈ W : δv,ep−1 -# 0}. Note also that Up−1 is the empty set, because Jp−1 # ∅ implies that there is no
node u ∈ U \ {up−1} for which δu,ep−1 -# 0.

Thus, we now assume that Jp−1 # {p}, which means that N(ẽp) -# ∅ and up ∈ ẽp−1. Then, Cp−1 # {p} ∪ Cp # {p}.
In this case, the second sum of (10) reduces to |W ∩ ep−1 \ ep|/γ, and the third sum is

1 − δup,ep −
1
γ

( )
# 1 −

(
1 −

∑

v∈ep\ up{ }
δv,ep −

1
γ

)
#

∑

v∈ep\ up{ }
δv,ep +

1
γ
# |Wp|

γ
+ 1
γ
,

where we have used the definition of δup,ep in rule 2.3, and the fact that ∑v∈ep\{up} δv,ep # |Wp|/γ. We obtain

∑

v∈ep−1\ up−1{ }
δv,ep−1 #

|W ∩ ep−1 \ ep|
γ

+ |Wp|
γ

+ 1
γ
# |Wp−1|

γ
+ |Up−1|

γ
.

This holds because, by definition, Wp−1 # {w ∈ W : δw,eh -# 0, for some h ∈ {p − 1, p}}, and every node w in W
has exactly one edge e for which δw,e -# 0. This second fact follows directly from rule 2.1. Hence, Wp−1 is
the disjoint union of W ∩ ep−1 \ ep and Wp # W ∩ ep. Similarly, we show that Up−1 # {up}. By definition,
Up−1 # {uj ∈ U : δuj ,eh -# 0, for some h ∈ {p − 1, p}, h -# j}. When h # p, then the only nonzero multiplier δuj,ep is
for j # p, hence h # j, and when h # p − 1, the multipliers δuj,ep−1 are nonzero only However, h needs to be
different from j, hence the only multiplier that satisfies this condition is δup,ep−1 . This concludes the proof
that Up−1 # {up}.
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We fix i ∈ [m] and prove (9). In order to do this, it will be useful to write the left-hand side of (9)
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We now prove the inductive step. Let i ∈ {2, . . . , p}, we suppose that (9) holds for all j ≥ i, and we show that
(9) still holds for i − 1. The second sum of (10) is then |W ∩ ei−1 \⋃j≥i ej|/γ, and the third sum is

∑

j∈Ji−1
1 − δuj ,ej −

1
γ

( )( )
#

∑

j∈Ji−1

(
1 −

(
1 −

∑

v∈ej\ uj{ }
δv,ej −

1
γ

))

#
∑

j∈Ji−1

(
∑

v∈ej\ uj{ }
δv,ej +

1
γ

)
#

∑

j∈Ji−1

|Wj|
γ

+ |Uj|
γ

( )
+ |Ji−1|

γ
,

where we have used the definition of δuj ,ej in rule 2.3, and the induction hypothesis. We obtain

∑

v∈ei−1\ ui−1{ }
δv,ei−1 #

|W ∩ ei−1 \⋃j≥i ej|
γ

+
∑

j∈Ji−1

|Wj|
γ

+ |Uj|
γ

( )
+ |Ji−1|

γ

# |Wi−1|
γ

+ |Ui−1|
γ

.

The last equality follows from two facts that we show next. The first is that Wi−1 is the disjoint union of
W ∩ ei−1 \⋃j≥i ej and

⋃
j∈Ji−1 W

j, where also all these unions are disjoint.
We prove first that Wi−1 # (W ∩ ei−1 \⋃j≥i ej) ∪

⋃
j∈Ji−1 W

j, by showing the two set inclusions. Recall that
Wi−1 # {w ∈ W : δw,eh -# 0, for some h ∈ {i − 1} ∪ Ci−1}. We show first the inclusion ⊆. Let w ∈ Wi−1. Then either
δw,ei−1 -# 0, or δw,eh -# 0 with h ∈ Ci−1. If the first case holds, then w ∈ (W ∩ ei−1 \⋃j≥i ej) by rule 2.1. Assume then
that there exists h ∈ Ci−1 such that δw,eh -# 0. It implies that h ∈ Ji−1 ∪ (∪j∈Ji−1Cj). Then either h ∈ Ji−1 or h ∈ ⋃

j∈Ji−1 Cj.
If h ∈ Ji−1, then δw,eh -# 0 and w ∈ Wh. On the other hand, if h ∈ ⋃

j∈Ji−1 Cj, it means that there exists j′ ∈ Ji−1 such
that h ∈ Cj′ . Then w ∈ Wj′ , by definition of Wj′ . We prove now the reverse set inclusion ⊇. Let w ∈
(W ∩ ei−1 \⋃j≥i ej) ∪⋃

j∈Ji−1 W
j. Assume first that w ∈ W ∩ ei−1 \⋃j≥i ej. By rule 2.1, we have δw,ei−1 -# 0, thus

w ∈ Wi−1. Consider now the other case w ∈ ⋃
j∈Ji−1 W

j. This means that there exists j̄ ∈ Ji−1 such that w ∈ Wj̄. It
follows that there exists h ∈ { j̄} ∪ Cj̄ such that δw,eh -# 0. Note that { j̄} ∪ Cj̄ ⊆ Ci−1; hence, h ∈ Ci−1. There-
fore, w ∈ Wi−1.

Next we show that Wi−1 is the disjoint union of the set W ∩ ei−1 \⋃j≥i ej, and of the sets Wj, with j ∈ Ji−1.
Before moving forward, we recall that for every w ∈ W, there exists a unique edge e such that δw,e -# 0. Assume
for a contradiction that these unions are not disjoint; that is, there exists w ∈ Wi−1 such that either w ∈
W ∩ ei−1 \⋃j≥i ej and there exists j̄ ∈ Ji−1 such that w ∈ Wj̄, or there exist two distinct indices j′, j′′ ∈ Ji−1 such that
w ∈ Wj′ , w ∈ Wj′′ .

Consider the first case. By assumption w ∈ W ∩ ei−1 \⋃j≥i ej, which implies that w /∈ ej for all j ≥ i. Observe
that, by rule 2.2, all indices j ∈ Ji−1 are greater than or equal to i. Therefore, by definition of Wj̄, this set contains
only nodes w′ for which δw′,eh -# 0 with h ≥ i. Because δw,ei−1 -# 0 by rule 2.1, and because there exists only one
edge e such that δw,e -# 0, we can conclude that w /∈ Wj̄, which is a contradiction.

Assume that the second case holds. Without loss of generality we suppose that j′ < j′′. As remarked before
there exists a unique index h ≥ i such that δw,eh -# 0. By definition of Wj′ ,Wj′′ , it follows that h ∈ ({ j′}∪
Cj′) ∩ ({ j′′} ∪ Cj′′). We show j′ /∈ Cj′′ . As j′ < j′′, and Cj′′ only contains indices strictly larger than j′′ > j′, then
j′ /∈ Cj′′ . Next, we show j′′ /∈ Cj′ . By expanding the definition of Cj′ , observe that Cj′ is a collection of some sets Jq
with q ≥ j′. Assume by contradiction j′′ ∈ Cj′ . Then, there exists an index k ≥ j′ such that j′′ ∈ Jk, which means
that, by rule 2.2, δuj′′ ,ek -# 0. By assumption, j′′ ∈ Ji−1; hence, ei−1 is the only edge e, different from ej′′ such that
δuj′′ ,e -# 0. This is a contradiction because k ≥ j′ > i − 1. Therefore, we have j′′ /∈ Cj′ .

As j′ -# j′′, j′ /∈ Cj′′ , and j′′ /∈ Cj′ , we have h ∈ Cj′ ∩ Cj′′ . Because h ∈ Cj′ , there exists an index k′ ≥ j′, k′ -# h such
that h ∈ Jk′ ; therefore, δuh,ek′ -# 0. Similarly, because h ∈ Cj′′ , there exists k′′ ≥ j′′, k′′ -# h such that δuh,ek′′ -# 0.
However, δuh,e -# 0 with e -# eh is satisfied only by one edge e; thus, ek′ # ek′′ . Let us denote this edge by ek.
Because of the recursive nature of the set Cj′ , there exists a sequence of edges e1′ , e2′ , . . . , er′ such that e1′ # ej′ ,
er′ # ek, and p′ ∈ J(p−1)′ , for every p ∈ {2, . . . , r}. Similarly, let e1′′ , e2′′ , . . . , et′′ be a sequence such that e1′′ # ej′′ ,
et′′ # ek, and p′′ ∈ J(p−1)′′ , for every p ∈ {2, . . . , t}. Because k ∈ J(r−1)′ ∩ J(t−1)′′ and there exists a unique edge e -# ek
for which δuk ,e -# 0, it follows that e(r−1)′ # e(t−1)′′ . Recursively, we apply the same uniqueness property until we
arrive to the first edge of the shortest sequence. Either r -# t or r # t. Consider the first case. If r < t, it means
that e1′ # eq′′ for some q > 1. Because e1′ # ej′ , this implies in turn that j′ ∈ Cj′′ , which is a contradiction as
showed earlier. Then suppose r > t. Similarly, we can conclude that j′′ ∈ Cj′ , which again is a contradiction as
proved previously. Hence assume that r # t. In this case, e1′ # e1′′ , which means that ej′ # ej′′ . This is a
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contradiction because ej′ and ej′′ are different edges by assumption. Therefore, h /∈ Cj′ ∩ Cj′′ , and we have
showed that Wi−1 is the disjoint union of the set W ∩ ei−1 \⋃j≥i ej and the set Wj, with j ∈ Ji−1.

The second fact is that Ui−1 # Ji−1 ∪⋃
j∈Ji−1 U

j, and in addition Ui−1 is the disjoint union of Ji−1, Uj, for j ∈ Ji−1.
The proof of this is very similar to the one regarding Wi−1. This concludes the proof that (9) holds and
of the subclaim. 1

Because γ ≥ 1, we only need to prove that the multipliers δuj ,ei , δui ,ei , and ηei are nonnegative for every edge ei,
i ∈ [m]. We first consider multipliers δui ,ei and ηei , which are defined in rule 2.3. If we are defining ηei instead of
δui ,ei , it means that N(e0 ∩ ei) # ∅, which implies that node ui does not exist. Therefore, to show that multipliers
δui ,ei and ηei are nonnegative, we can equivalently show that ∑v∈ei\{ui} δv,ei ≤ 1, for every i ∈ [m].

By Subclaim 1, we obtain

∑

v∈ei\ ui{ }
δv,ei #

Wi
⃒⃒ ⃒⃒

γ
+ Ui
⃒⃒ ⃒⃒

γ
≤ |W|

γ
+ |U|

γ
# |e0 ∩⋃

i∈ m[ ] ei|
γ

# 1,

where the second equality holds because W,U form a partition of e0 ∩⋃
i∈[m] ei, and the last equality is true by

definition of γ.
Finally, the multipliers δuj ,ei are nonnegative because δuj,ei # 1 + 1/γ − δuj ,ej and we just showed that

δuj ,ej ≤ 1. □

8.1.2. Proof of Claim 2. We check that every entry of π coincides with the corresponding component of a, the
left-hand side of the inequality of type (1) that was fixed at the beginning of the proof of Theorem 1.

Each variable corresponding to an edge different from e0 or its neighbors e1, . . . , em does not appear in az ≤ b,
and it does not appear in the inequality πz ≤ )π0* either, because their corresponding multipliers are not
explicitly defined and therefore are set to zero. An analogous argument holds for the nodes v that do not
belong to e0.

Consider the variable ze0 . The only constraints chosen with nonzero multipliers in which it appears are (εe0)
and (νe0). The first constraint is selected with multiplier equal to 1/γ, whereas the second with multiplier
1 − 1/γ by rule 1. By summing these two inequalities we obtain that the entry of π related to ze0 is equal to −1,
as is the coefficient of ze0 in az.

Similarly, consider variables zv, for v ∈ e0 \⋃i∈[m] ei. Each of them is involved in just two constraints among
the ones picked with nonzero multiplier. These two inequalities are (εe0) and (αv). Once we sum these two
constraints chosen with the multipliers described in rule 1, we obtain that the resulting coefficients of these
variables in πz are all equal to 1.

Let w ∈ W ∩⋃
i∈[m] ei. The corresponding variable zw is present again in only two constraints among the

selected ones: (εe0) and (δw,ei), where i is the largest index in the running intersection ordering of Ẽ such that ẽi
contains the node w. By rules 1 and 2.1, the multipliers corresponding to these two inequalities are 1/γ. Then
the component of π corresponding to zw is equal to 0, because in one inequality it has coefficient +1 and in the
other it has coefficient −1.

Now consider a node u ∈ U. Let ẽ′, ẽ′′ be the two edges in Ẽ that contain u, with, respectively, largest and
second largest index in the running intersection ordering of Ẽ. This time the variable zu is present in three
different constraints: (εe0), (δu,e′), (δu,e′′). The corresponding multipliers are εe0 # 1/γ, δu,e′ , and δu,e′′ #
1 − (δu,e′ − 1/γ). Therefore, the coefficient of zu in πz ≤ )π0* is equal to

1
γ
− δu,e′ + 1 − δu,e′ +

1
γ

( )
# 1
γ
− 1 − 1

γ
# −1,

as it is in the left-hand side of (1), and therefore in a.
We only need to check the coefficients of the variables zei corresponding to the edges ei with i ∈ [m]. The

variable zei appears in several δv,e inequalities. Because of rules 2.1, 2.2, and 2.3, the entry in π corresponding to
zei is given either by δui,ei +

∑
v∈ei\{ui} δv,ei if N(e0 ∩ ei) -# ∅, or by ηei +

∑
v∈ei δv,ei . In both cases, by the definition of

δui ,ei and ηei , respectively, we can conclude that the coefficient corresponding to zei in πz is equal to 1, for
i ∈ [m]. □

8.1.3. Proof of Claim 3. Denote by Ki, i # 1, . . . , l, the connected components of G̃. For every i # 1, . . . , l, let
pi :# |E(Ki)|. Moreover, let us order the edges of E(Ki) such that they follow the same order in which they
appear in the running intersection ordering of Ẽ. Then let ẽij , with j # 1, . . . , pi, be the order of the edges of
E(Ki), for every i ∈ {1, . . . , l}.
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Notice that for every connected component Ki, i # 1, . . . , l, only the first edge ẽi1 satisfies N(ẽi1) # ∅; thus, it is
the only edge that may contribute to )π0*, because it is the only edge for which ηe is possibly nonzero. This
contribution is equal to

ηei1 # 1 −
∑

v∈ei1
δv,ei1 # 1 − |Wi1 |

γ
− |Ui1 |

γ
,

where the second equality comes from Subclaim 1.
By rules 1, 2.1, 2.2, and 2.3 we obtain that )π0* is equal to

|e0| − 1
γ

+ 1 − 1
γ

( )
e0 \

⋃

i∈ m[ ]
ei

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ +

∑l

i#1
ηei1

⌊ ⌋
# |e0| − 1

γ
+ 1 − 1

γ

( )
e0 \

⋃

i∈ m[ ]
ei

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ +

∑l

i#1
1 − |Wi1 |

γ
− |Ui1 |

γ

( )⌊ ⌋
. (11)

By Definition 1, we know that we need (11) to be equal to |e0 \⋃i∈[m] ei| + |{i ∈ [m] :N(e0 ∩ ei) # ∅}| − 1. Observe
that (11) is equal to

e0 \
⋃

i∈ m[ ]
ei

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ + | i ∈ m[ ] :N e0 ∩ ei( ) # ∅{ }| + |e0| − 1

γ
− 1
γ
e0 \

⋃

i∈ m[ ]
ei

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ −

∑l

i#1

|Wi1 | + |Ui1 |
γ

⌊ ⌋
.

Then we simply need to show that

|e0|
γ

− 1
γ

1 + e0 \
⋃

i∈ m[ ]
ei

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ +

∑l

i#1
|Wi1 | + |Ui1 |( )

( )⌊ ⌋
# −1. (12)

Note that Wi1 and Ui1 contain exactly all the nodes in V(Ki). Moreover, Wi1 and Ui1 are disjoint and therefore
|Wi1 | + |Ui1 | # |V(Ki)|, for every connected component Ki. Then, the 2l sets Wi1 ,Ui1 for i # 1, . . . , l, form a
partition of e0 ∩⋃

i∈[m] ei . Thus,
∑l

i#1(|Wi1 | + |Ui1 |) # |e0 ∩⋃
i∈[m] ei|. It follows that the left-hand side of (12) can be

written as

|e0|
γ

− 1
γ

1 + e0 \
⋃

i∈ m[ ]
ei

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ + e0 ∩

⋃

i∈ m[ ]
ei

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒

( )⌊ ⌋
# |e0|

γ
− 1
γ

1 + |e0|( )
⌊ ⌋

# − 1
γ

⌊ ⌋
# −1.

We can therefore conclude that the claim holds. □

8.2. Claims in the Proof of Proposition 1
8.2.1. Proof of Claim 4. We recall from the definition of T that T ≥ 2. Then, all multipliers defined in rule 1
and rule 2 are nonnegative. Observe that the multipliers θfj are defined only in rule 1. Therefore, all mul-
tipliers defined in rule 3 are either 1/T or (T − 1)/T and thus nonnegative. Notice that ∑m

i#p+1 ∆i # T. Therefore,
all the sums of ∆j considered in rule 4 are between zero and T. Hence, also the multipliers defined in rule 4 are
nonnegative. □

8.2.2. Proof of Claim 5. Each variable corresponding to an edge not in the cycle does not appear in any in-
equality of the type (2), and it does not appear in πz ≤ )π0* either, because its corresponding multipliers are
not explicitly defined in rules 1–4 and thus are set to zero. A similar argument is true for the nodes v that do
not belong to any edge of the cycle.

Observe also that the variables representing nodes that are contained in edges of E+, but do not belong to S2,
are not present in any of the inequalities chosen with nonzero multiplier. This does not represent a problem,
because these variables do not appear in az.

It is easy to check that the entries of π corresponding to f ∈ E− and to v ∈ S1 ∪ S2 satisfy the thesis. In fact,
each of the corresponding variables appears in only two inequalities chosen with nonzero multiplier and these
multipliers sum to 1. Indeed, variables related to fi ∈ E− are present only in the inequalities corresponding to
the multipliers θfi and νfi , which sum to 1 by rule 1. Similarly, each zv for v ∈ S1 is present only in one or two
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different θf , because of assumption (a). If it is present only in one flower inequality, then the multiplier αv is
chosen accordingly such that the two multipliers sum to 1, by rule 2. If, on the other hand, zv is contained in
two flower inequalities, we must analyze two different cases: whether assumption (d1) or assumption (d2)
holds. Suppose that assumption (d1) is satisfied. This implies that the multipliers of the two flower inequalities
sum to 1, because of rule 1. Then, assume that assumption (d2) holds. We remark that T is exactly equal to 2
here. If D is nonempty, it follows by assumption (a), whereas if D is empty, it follows from the definition of T.
Therefore, the two flower inequalities both have multiplier 1/2, and the coefficient of zv in πz is equal to 1.

The rest of the proof works both for assumption (d1) and assumption (d2). Consider vi ∈ S2. Then the only
nonzero multipliers that affect its component in π are δvi ,ei−1 and δvi,ei . By rules 3.2 and 4.2, the sum of these two
values is equal to 1.

Next, we focus on variables ze, with e ∈ E+. We start analyzing the coefficients of the variables corresponding
to e ∈ E+ \D. We restrict our attention on one maximal length substring of E+ \D. Let ei, . . . , ei+h be the
substring, and note that ei−1 # fj for some j. Recall that, by assumption (b), only ei and ei+h are adjacent to edges
that belong to E−. Observe that, if ei # ei+h, then zei appears with nonzero coefficient only in the two flower
inequalities (θfj) and (θfj+1). By rule 1, the corresponding multipliers sum to one. Assume now ei -# ei+h. The
variable zei is present in just two inequalities: the flower inequality (θfj), and (δvi+1,ei ). By rule 3.1, the sum of the
related multipliers is equal to 1. The coefficients of zei+1 , . . . , zei+h−1 are correct in πz ≤ )π0*, because these
variables are present in only two inequalities with nonzero multipliers and, by rule 3.2, they sum to 1.
Consider the entry of π corresponding to the variable zei+h . This variable appears in two inequalities: one chosen
with multiplier equal to δvi+h,ei+h , which is equal to θfj , and in the flower inequality corresponding to ei+h+1 # fj+1.
By rule 1, the multiplier of this flower inequality is equal to 1 − θfj , because there are no edges of E− between ei
and ei+h. Hence, the coefficient of zei+h in πz ≤ )π0* is correctly equal to 1, as it is in a too.

We check the correctness of the coefficients of zei , with ei ∈ D; thus, we assume that D is nonempty. Consider
the first edge of D, that is ep+1. Because of assumption (c), the variable corresponding to it appears in ∆p+1
flower inequalities, whose centers are edges fj with j odd, and in (δvp+2,ep+1) if |D| ≥ 2. By rules 1 and 4.1, all these
multipliers sum to 1. Then consider edges ep+i ∈ D \ {ep+1, em}. Because of assumption (c), each of these
variables is present in ∆p+i flower inequalities, with centers in the edges fj ∈ E− with j odd, and (δvp+i,ep+i ),
(δvp+i+1,ep+i). Then this sum is equal to

∆p+i
T

+ δvp+i ,ep+i + δvp+i+1,ep+i #
∆p+i
T

+
∑p+i−1

j#p+1 ∆j

T
+ 1 −

∑p+i
j#p+1 ∆j

T

#
∑p+i

j#p+1 ∆j

T
+ 1 −

∑p+i
j#p+1 ∆j

T
# 1,

where the first equality comes from the definition of the multipliers in rule 4.2. We only need to verify what
happens for zem . This variable is present in ∆m flower inequalities all with multiplier 1/T, and in (δvm ,em). Then,
by rules 1 and 4.3, its coefficient is equal to

∆m

T
+
∑m−1

j#p+1 ∆j

T
#
∑m

j#p+1 ∆j

T
# 1,

where the last equality follows from ∑m
i#p+1 ∆i # T. □

8.2.3. Proof of Claim 6. Assume first that assumption (d1) holds. This implies that D -# ∅. In fact, if this is not the
case, then we would have that em # fk and ∅ -# f1 ∩ fk ⊆ S1, by assumption (a). However, both 1 and k are odd
indices, which contradict (d1). We obtain the following formula for )π0*, where the first two sums come from
inequalities (θfi), depending on i being odd or even, and the last two from αv:

∑

i∈ k[ ]
i odd

1
T

fi \
⋃

e∈Ti

e

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ + |Ti| − 1

( )
+

∑

i∈ k[ ]
i even

T − 1
T

fi \
⋃

e∈Ti

e

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ + |Ti| − 1

( )
+

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
∑

i∈ k[ ]
i odd

T − 1
T

fi \
(
⋃

e∈Ti

e ∪
⋃

f∈E−\ fi{ }
f

)⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒ +

∑

i∈ k[ ]
i even

1
T

fi \
⋃

e∈Ti

e ∪
⋃

f∈E−\ fi{ }
f

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Recall that S1 is the set of nodes contained only in edges of E−. Then observe that |S1| is equal to
∑

i∈ k[ ]
i odd

1
T

fi \
⋃

e∈Ti

e

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ +

∑

i∈ k[ ]
i even

T − 1
T

fi \
⋃

e∈Ti

e

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ +

+
∑

i∈ k[ ]
i odd

T − 1
T

fi \
(
⋃

e∈Ti

e ∪
⋃

f∈E−\ fi{ }
f

)⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒ +

∑

i∈ k[ ]
i even

1
T

fi \
(
⋃

e∈Ti

e ∪
⋃

f∈E−\ fi{ }
f

)⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒. (13)

In fact, each node v of S1 is either contained in two edges of E−, one odd and one even, or only in one edge
of E−, by assumptions (a) and (d1). In the first case, v appears only in the first two sums and is counted one single
time in each sum, once with multiplier 1/T and once with (T − 1)/T. Summing these two quantities, we obtain that
every node v ∈ S1 of this type contributes by 1 in (13). Consider the second case, that is, v is in only one edge of
E−. If v belongs to fi for some i odd, it contributes by 1/T in the first sum and by (T − 1)/T in the third sum.
Otherwise, it contributes by (T − 1)/T in the second sum and by 1/T in the last sum. Hence, also when v is contained
in just one edge, by summing these two terms we see that v contributes by 1 in (13). Then |S1| ≤ (13). To prove
that (13) ≤ |S1|, it suffices to see that only nodes in S1 are considered in (13) and that no node is considered twice
with the same multiplier.

Therefore, we get the following expression for )π0*:

|S1| +
∑

i∈ k[ ]
i odd

1
T

|Ti ∩D| + |Ti \D| − 1( ) +
∑

i∈ k[ ]
i even

T − 1
T

|Ti \D| − 1( )

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (14)

# |S1| + 1 +
∑

i∈ k[ ]
i odd

|Ti \D|
T

− 1
T

k
2

⌊ ⌋
+ 1

( )
+

∑

i∈ k[ ]
i even

T − 1
T

|Ti \D| − T − 1
T

k
2

⌊ ⌋
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

# |S1| + 1 +
∑

i∈ k[ ]
i odd

|Ti \D|
T

+
∑

i∈ k[ ]
i even

T − 1
T

|Ti \D| − k
2

⌊ ⌋
− 1
T

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the first line comes also from the fact that |Ti ∩D| # 0 for all i even, by assumption (c), and the first
equality follows from the definition of T.

Because of assumption (b), notice that ∑ i∈[k]
i odd

|Ti \D| # ∑
i∈[k]
i even

|Ti \D|, because both sums count how many times
the sign of the variables ze changes from negative to positive in the part of the β-cycle corresponding to the
edges of E(C) \D. Let us denote this quantity by σ. Then )π0* is equal to

|S1| + 1 − k
2

⌊ ⌋
+ σ

T
+ T − 1

T
σ − 1

T

⌊ ⌋
# |S1| + 1 − k

2

⌊ ⌋
+ σ − 1

T

⌊ ⌋

# |S1| + 1 − k
2

⌊ ⌋
+ σ + − 1

T

⌊ ⌋
# |S1| + 1 − k

2

⌊ ⌋
+ σ − 1 # |S1| −

k
2

⌊ ⌋
+ σ. (16)

In order for )π0*, we need to check that −)k/2* + σ # −|{i ∈ {1, . . . ,m} : ei, ei+1 ∈ E−}| + )k/2*. This is equivalent to
σ + |{i ∈ {1, . . . ,m} : ei, ei+1 ∈ E−}| # 2)k/2* # k − 1. The latter equality is true because every edge in E−, except the
last one, is either accounted for in |{i ∈ {1, . . . ,m} : ei, ei+1 ∈ E−}| or in σ, if its succeeding edge belongs to E+ \D.

Now assume that (d2) holds. Observe that, when assumption (d2) holds, T # 2. In fact, when D -# ∅,
assumption (a) implies that T is equal to 2. On the other, when D # ∅, it follows that T # 2 from its definition.
We start by the case in which D, and therefore also E+, is nonempty. In this case )π0* is given by

∑

i∈ k[ ]

1
2

fi \
⋃

e∈Ti

e

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ + |Ti| − 1

( )
+
∑

i∈ k[ ]

1
2

fi \
(
⋃

e∈Ti

e ∪
⋃

f∈E−\ fi{ }
f

)⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By similar arguments to the previous case, S1 is equal to

∑

i∈ k[ ]

1
2

fi \
⋃

e∈Ti

e

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ +

∑

i∈ k[ ]

1
2

fi \
(
⋃

e∈Ti

e ∪
⋃

f∈E−\ fi{ }
f

)⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒ .
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Thus, at this point, we obtain that )π0* is equal to

|S1| +
∑

i∈ k[ ]
i odd

1
2

|Ti ∩D| + |Ti \D| − 1( ) +
∑

i∈ k[ ]
i even

1
2

|Ti \D| − 1( )

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
# |S1| + 1 +

∑

i∈ k[ ]

1
2

|Ti \D| − 1( )
⌊ ⌋

. (17)

The equality comes from the fact that in this case the only indices i for which |Ti ∩D| -# 0 are i # p + 1,m. More
precisely they are exactly equal to 1. Because of this, the calculations are analogous to the ones of the first part
of the proof.

Next, we deal with the case in which D # ∅ and E+ -# ∅. The only difference with the previous proof is that
|Ti ∩D| # 0 for every i ∈ [k] in (14), and therefore, there is no +1 at the beginning of the floor in (17). By doing
the same computations as in (16), we see that in this case

)π0* # |S1| −
k
2

⌊ ⌋
+ σ − 1 .

Therefore, we now want to check that −)k/2* + σ − 1 # −|{i ∈ {1, . . . ,m} : ei, ei+1 ∈ E−}| + )k/2*. This is true,
because we have that σ + |{i ∈ {1, . . . ,m} : ei, ei+1 ∈ E−}| # k. Indeed now for all the edges ei of E− either ei+1 is in
E− too, or it belongs to E+ \D, which is equal to E+.

It remains to study the case in which E+ # ∅. By the fact that )π0* is equal to (17), Ti # ∅ for all i ∈ [k], we
get that

)π0* # |S1| + − k
2

⌊ ⌋
.

In order to achieve the thesis, it suffices to check that )−k/2* # −|{i ∈ {1, . . . ,m} : ei, ei+1 ∈ E−}| + )k/2*. It is easy
to see that this is true, once we observe that |{i ∈ {1, . . . ,m} : ei, ei+1 ∈ E−}| # k in this case.

We can conclude that b coincides with )π0* in every case. □

8.3. Claims in the Proof of Proposition 2
8.3.1. Proof of Claim 7. We recall that the perfect formulations of F1,F2 coincide with their corresponding
standard linearizations, which we now write explicitly. Hence, the perfect formulation of F1 is

ze1 # ze2 # zv̄ # 0
0 ≤ zv ≤ 1 ∀v ∈ e1 ∪ e2 \ v̄{ } ∪ e3( )
−ze3 ≤ 0

∑

v∈e3
zv − ze3 ≤ |e3| − 1

zv ≤ 1 ∀v ∈ e3
−zv + ze3 ≤ 0 ∀v ∈ e3 .

Similarly, F2 is described by the standard linearization:

zv̄ # 1
−ze ≤ 0 ∀e ∈ e1, e2, e3{ }

∑

v∈e1\ v̄{ }
zv − ze1 ≤ |e1| − 2

∑

v∈e2\ v̄{ }
zv − ze2 ≤ |e2| − 2

∑

v∈e3
zv − ze3 ≤ |e3| − 1

zv ≤ 1 ∀v ∈ V \ v̄{ }
−zv + ze1 ≤ 0 ∀v ∈ e1 \ v̄{ }
−zv + ze2 ≤ 0 ∀v ∈ e2 \ v̄{ }
−zv + ze3 ≤ 0 ∀v ∈ e3 .
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The application of Balas’ formulation for the union of polytopes gives us the following perfect formulation
of MPG:

z # z1 + z2, (18)
0 ≤ λ ≤ 1

z1e1 # z1e2 # z1v̄ # 0

0 ≤ z1v ≤ 1 − λ ∀v ∈ e1 ∪ e2 \ v̄{ } ∪ e3( ) , (19)
−z1e3 ≤ 0, (20)

∑

v∈e3
z1v − z1e3 ≤ |e3| − 1( ) 1 − λ( ), (21)

z1v ≤ 1 − λ ∀v ∈ e3, (22)
−z1v + z1e3 ≤ 0 ∀v ∈ e3, (23)

z2v̄ # λ

−z2e ≤ 0 ∀e ∈ e1, e2, e3{ }
∑

v∈e1\ v̄{ }
z2v − z2e1 ≤ |e1| − 2( )λ

∑

v∈e2\ v̄{ }
z2v − z2e2 ≤ |e2| − 2( )λ

∑

v∈e3
z2v − z2e3 ≤ |e3| − 1( )λ

z2v ≤ λ ∀v ∈ V \ v̄{ }
−z2v + z2e1 ≤ 0 ∀v ∈ e1 \ v̄{ }
−z2v + z2e2 ≤ 0 ∀v ∈ e2 \ v̄{ }
−z2v + z2e3 ≤ 0 ∀v ∈ e3,

where the variables z1 and z2 arise from the systems defining F1 and F2, respectively. Therefore, it remains to
use Fourier-Motzkin elimination on the additional variables z1, z2,λ.

From (18), we see immediately that zv̄ # z1v̄ + z2v̄ # λ. Similarly, ze1 # z2e1 and ze2 # z2e2 . Hence, projecting out the
variables z1e1 , z

2
e1 , z

1
e2 , z

2
e2 , z

1
v̄, z

2
v̄ is trivial.

Then, we begin projecting the variables coming from F1, starting from z1v for every v ∈ e1 ∪ e2 \ ({v̄} ∪ e3).
These variables only appear in (18) and (19). We write these constraints in form of inequality, splitting them in
inequalities in which z1v has negative coefficient and inequalities in which its coefficient is positive.

−z1v ≤ 0

zv − z1v − z2v ≤ 0

z1v ≤ 1 − λ

−zv + z1v + z2v ≤ 0

Therefore, from the Fourier-Motzkin elimination of these variables we obtain the following inequalities:
−zv + z2v ≤ 0 ∀v ∈ e1 ∪ e2 \ v̄{ } ∪ e3( )
zv − z2v ≤ 1 − λ ∀v ∈ e1 ∪ e2 \ v̄{ } ∪ e3( ).

Next, we deal with z1e3 . This variable is present in (18), (20), (21), and (23). By splitting the inequalities in two
sets, we have

−z1e3 ≤ 0
∑

v∈e3
z1v − z1e3 ≤ |e3| − 1( ) 1 − λ( )

ze3 − z1e3 − z2e3 ≤ 0

−z1v + z1e3 ≤ 0 ∀v ∈ e3
−ze3 + z1e3 + z2e3 ≤ 0 .
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After summing every pair of inequalities in which z1e3 has different sign, we only keep in the formulation the
following inequalities:

∑

v∈e3
z1v − ze3 + z2e3 ≤ |e3| − 1( ) 1 − λ( ), (24)

−z1v + ze3 − z2e3 ≤ 0 ∀v ∈ e3, (25)
−ze3 + z2e3 ≤ 0 ∀v ∈ e3,

as −z1v ≤ 0 for every v ∈ e3 is implied by the last two inequalities of the previous system, and ∑
v∈e3\{w} z

1
v ≤

(|e3| − 1)(1 − λ) is implied by (22) for every w ∈ e3.
It remains to project out the variables z1v, with v ∈ e3, in order to eliminate all the variables arising from F1.

These variables appear in (18), (22), (24), and (25):

−z1v + ze3 − z2e3 ≤ 0 (26)
zv − z1v − z2v ≤ 0, (27)

z1v ≤ 1 − λ, (28)
−zv + z1v + z2v ≤ 0, (29)∑

v∈e3
z1v − ze3 + z2e3 ≤ |e3| − 1( ) 1 − λ( ). (30)

Observe that when we projected out the variables z1v, with v ∈ e1 ∪ e2 \ ({v̄} ∪ e3), we did not impose an
elimination order among these variables. This is because no two variables z1v, z

1
w, with v -# w, appeared in the

same inequality. However, it is not the case now because of the presence of (30). Then, let us see how
the inequalities change after we eliminate one specific variable, let it be z1v̂ such that v̂ ∈ e3. We leave in the
formulation the inequalities:

−zv̂ + z2v̂ + ze3 − z2e3 ≤ 0, (31)
zv̂ − z2v̂ ≤ 1 − λ, (32)

zv̂ − z2v̂ +
∑

v∈e3\ v̂{ }
z1v − ze3 + z2e3 ≤ |e3| − 1( ) 1 − λ( ). (33)

In fact, the other inequalities are redundant. Indeed, the inequality obtained by (26) + (28) is implied by (31) +
(32), and (26) + (30) is implied by (22). Moreover, (27) + (29) provides a trivial inequality, that is, 0 ≤ 0.

Note that (33) contains all the remaining z1v variables, all of them with coefficient +1. Recall that, by Fourier-
Motzkin elimination, we can sum (33) with only inequalities in which −z1v is present, in order to project out the
remaining variables. In the system there are only two inequalities of this type: −z1v + ze3 − z2e3 ≤ 0 and
zv − z1v − z2v ≤ 0. Similarly to the case in which we projected out z1v̂, we obtain a redundant inequality when we
sum (33) with −z1v + ze3 − z2e3 ≤ 0, for the next chosen v in the elimination order. Hence, the only way in which
(33) may lead to a nonredundant inequality is by summing it with zv − z1v − z2v ≤ 0. This argument holds for any
node of e3 in the elimination order. Then, we can conclude that after we eliminate all the variables z1v, with
v ∈ e3, (24) has become ∑

v∈e3(zv − z2v) − ze3 + z2e3 ≤ (|e3| − 1)(1 − λ). Moreover, observe that every time we
remove a variable z1v, we obtain the corresponding Inequalities (31) and (32).

We are done with the variables resulted from F1. At this point, the system has become
zv̄ # λ

0 ≤ λ ≤ 1
−ze1 ≤ 0
−ze2 ≤ 0

−z2e3 ≤ 0

−ze3 + z2e3 ≤ 0

z2v ≤ λ ∀v ∈ V \ v̄{ }, (34)
−zv + z2v ≤ 0 ∀v ∈ e1 ∪ e2 \ v̄ ∪ e3( )
zv − z2v ≤ 1 − λ ∀v ∈ V \ v̄{ }, (35)
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−z2v + ze1 ≤ 0 ∀v ∈ e1 \ v̄{ }
−z2v + ze2 ≤ 0 ∀v ∈ e2 \ v̄{ }
−z2v + z2e3 ≤ 0 ∀v ∈ e3

−zv + z2v + ze3 − z2e3 ≤ 0 ∀v ∈ e3∑

v∈e1\ v̄{ }
z2v − ze1 ≤ |e1| − 2( )λ

∑

v∈e2\ v̄{ }
z2v − ze2 ≤ |e2| − 2( )λ

∑

v∈e3
z2v − z2e3 ≤ |e3| − 1( )λ

∑

v∈e3
zv − z2v
( ) − ze3 + z2e3 ≤ |e3| − 1( ) 1 − λ( ) .

Next, we deal with variables coming from F2, starting with z2e3 . For simplicity, we display the inequalities in
which z2e3 appears. We divide them in two sets:

−z2e3 ≤ 0

−zv + z2v + ze3 − z2e3 ≤ 0 ∀v ∈ e3 , (36)
∑

v∈e3
z2v − z2e3 ≤ |e3| − 1( )λ, (37)

−ze3 + z2e3 ≤ 0

−z2v + z2e3 ≤ 0 ∀v ∈ e3 , (38)
∑

v∈e3
zv − z2v
( ) − ze3 + z2e3 ≤ |e3| − 1( ) 1 − λ( ) . (39)

After applying Fourier-Motzkin elimination on this variable, we keep the following inequalities:
−ze3 ≤ 0

−z2v ≤ 0 ∀v ∈ e3 \ e1 ∪ e2( )
−zv + z2v ≤ 0 ∀v ∈ e3
−zv + ze3 ≤ 0 ∀v ∈ e3

−zv + z2v − z2w + ze3 ≤ 0 ∀v,w ∈ e3, v -# w, (40)
∑

v∈e3
zv − z2v
( ) − ze3 ≤ |e3| − 1( ) 1 − λ( )

∑

v∈e3
z2v − ze3 ≤ |e3| − 1( )λ

∑

v∈e3
zv − ze3 ≤ |e3| − 1, (41)

where (40) comes from (36) + (38) when the nodes v in the two inequalities are distinct. We discarded (36) +
(39), as it is implied by (35). Similarly, we did not write (37) + (38), because it is entailed by (34). Let us remark
that we decide to keep some redundant inequalities in the system as long as they contain only variables in the
original space, like for Example (41), because they will be useful in the next arguments.

Now we continue with the projection of the other variables. We focus first on z2v with v ∈ e1 \ ({v̄} ∪ e3). For
v ∈ e2 \ ({v̄} ∪ e3) the calculations are similar, as it suffices to swap the roles of e1 and e2. Therefore, we are not
going to repeat the computations. As before, we write here the inequalities involving such z2v:

zv − z2v ≤ 1 − λ ∀v ∈ e1 \ v̄{ } ∪ e3( ), (42)
−z2v + ze1 ≤ 0 ∀v ∈ e1 \ v̄{ } ∪ e3( ), (43)

z2v ≤ λ ∀v ∈ e1 \ v̄{ } ∪ e3( )
−zv + z2v ≤ 0 ∀v ∈ e1 \ v̄{ } ∪ e3( ) , (44)

∑

v∈e1\ v̄{ }
z2v − ze1 ≤ |e1| − 2( )λ . (45)
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Observe that here, like when we projected out variables z1v for v ∈ e3, there is one inequality, (45), that contains
all the variables z2v. Then, let us fix a node v̂ ∈ e1 \ ({v̄} ∪ e3). After performing Fourier-Motzkin elimination on
this variable, we keep the following set of inequalities:

zv̂ ≤ 1
ze1 ≤ λ

−zv̂ + ze1 ≤ 0

zv̂ +
∑

v∈e1\ v̄,v̂{ }
z2v − ze1 ≤ 1 + |e1| − 3( )λ . (46)

In fact, (42) + (44) provides the trivial inequality 0 ≤ 1 − λ, and (43) + (45) produces ∑
v∈e1\{v̄,v̂} z

2
v ≤ (|e1| − 2)λ,

which is implied by (34).
Observe that (46) contains all the z2v variables that still need to be projected out, with v ∈ e1 \ ({v̄} ∪ e3). When

we sum (46) with (43), chosen for the variable zv that we are currently eliminating, we obtain a redundant
inequality. In fact, it is dominated by the bounds zw ≤ 1, for all w ∈ e1 \ ({v̄} ∪ e3) for which z2w has already been
projected out, and z2v ≤ λ, for the variables that are still to be eliminated. Hence, (46) can lead to a nonre-
dundant inequality only when it is summed with (42). Thus, if we add (46) to (42) for every v ∈ e1 \ ({v̄} ∪ e3),
then we can conclude that (45) leads to

∑

v∈e1\ v̄{ }∪e3( )
zv +

∑

v∈e1∩e3
z2v − ze1 ≤ |e1| − 2 .

Observe that the second sum actually involves only one variable, because |e1 ∩ e3| # 1 by assumption.
At this point, the variables left to project out are z2v, for v ∈ e3, and λ. We focus on z2v, with v ∈ e3 \ (e1 ∪ e2).

Consider a specific node v̂ in this set. Then z2v̂ is present in the following system of inequalities:

−z2v̂ ≤ 0, (47)
zv̂ − z2v̂ ≤ 1 − λ, (48)

−zw + z2w − z2v̂ + ze3 ≤ 0 ∀w ∈ e3, w -# v̂, (49)∑

v∈e3
zv − z2v
( ) − ze3 ≤ |e3| − 1( ) 1 − λ( ), (50)

−zv̂ + z2v̂ ≤ 0, (51)
z2v̂ ≤ λ, (52)

−zv̂ + z2v̂ − z2w + ze3 ≤ 0 ∀w ∈ e3, w -# v̂, (53)∑

v∈e3
z2v − ze3 ≤ |e3| − 1( )λ . (54)

We first provide the inequalities that we do not discard after this iteration of Fourier-Motzkin elimination and
next we explain why we removed the other inequalities. We keep

zv̂ ≤ 1

zv̂ +
∑

e3\ v̂{ }
zv − z2v
( ) − ze3 ≤ |e3| − 1( ) 1 − λ( ) + λ , (55)

zv̂ +
∑

e3\ v̂{ }
z2v − ze3 ≤ 1 + |e3| − 2( )λ . (56)

All inequalities coming from (47) are redundant. Inequality (47) + (51) is equivalent to the sum of −zv̂ + ze3 ≤ 0
and −ze3 ≤ 0; however, these two inequalities are already in the system, and therefore, (47) + (51) is redundant.
Moreover, (47) + (52) is equivalent to 0 ≤ λ, which is always true, and (47) + (53) is implied by −zv̂ + ze3 ≤ 0 and
−z2w ≤ 0 for all w ∈ e3, w -# v̂. Observe that if w ∈ e3 \ (e1 ∪ e2), then −z2w ≤ 0 is in the system; otherwise, −z2w ≤ 0 is
obtained by the sum of −z2w + zei ≤ 0 and −zei ≤ 0, depending on w # e3 ∩ e1 or w # e3 ∩ e2. Furthermore, (47) +
(54) is implied by (34) and −ze3 ≤ 0.

Consider Inequality (48). When summed with (51), it provides the trivial inequality 0 ≤ 1 − λ. Additionally,
(48) + (53) is redundant as it is implied by −zv + z2v − z2w + ze3 ≤ 0 and zv − z2v ≤ 1 − λ, for v -# w, v ∈ e3. Such a v
exists, because we have not projected out the nodes in the intersections e1 ∩ e3 and e2 ∩ e3 yet.
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Also, all inequalities deriving from (49) are redundant. The calculations regarding (49) + (51), (49) + (52),
and (49) + (53) are similar to the previous cases in which we considered (53). Inequality (49) + (54) is implied
instead by −zw + z2w ≤ 0 and (34) for all w -# v̂.

Then, let us analyze what happens to (50). The sum (50) + (51) can be obtained by summing (35) and
−ze3 ≤ 0. Similarly, (50) + (53) is implied by −z2w ≤ 0, for all w -# v̂ and (35). Last, observe that (50) + (54)
coincides with (41), which is already in the system.

Now, observe that both (55) and (56) contain all the variables z2v corresponding to the other nodes in
e3 \ (e1 ∪ e2). Like for Inequalities (33) and (46), notice that (55) and (56) might become nonredundant only
when they are summed with, respectively, (52) and (48), where these inequalities are chosen for the node v
whose variable is currently being eliminated. Therefore, after projecting out all variables corresponding to
nodes in e3 \ (e1 ∪ e2), (55) and (56) become

∑

v∈e3\ e1∪e2( )
zv +

∑

e3∩ e1∪e2( )
zv − z2v
( ) − ze3 ≤ |e3 \ e1 ∪ e2( )| + 1 − λ

∑

v∈e3\ e1∪e2( )
zv +

∑

e3∩ e1∪e2( )
z2v − ze3 ≤ |e3 \ e1 ∪ e2( )| + λ .

For ease of notation, let {w1} # e1 ∩ e3 and {w2} # e2 ∩ e3. There are only three variables left to eliminate: zw1 ,
zw2 , and λ. Consider zw1 . It is present in

zw1 − z2w1
≤ 1 − λ, (57)

−z2w1
+ ze1 ≤ 0, (58)

−zw2 + z2w2
− z2w1

+ ze3 ≤ 0, (59)
∑

v∈e3\ w1,w2{ }
zv + zw1 − z2w1

+ zw2 − z2w2
− ze3 ≤ |e3 \ e1 ∪ e2( )| + 1 − λ, (60)

z2w1
≤ λ, (61)

−zw1 + z2w1
≤ 0, (62)

−zw1 + z2w1
− z2w2

+ ze3 ≤ 0, (63)
∑

v∈e1\ v̄,w1{ }
zv + z2w1

− ze1 ≤ |e1| − 2, (64)
∑

v∈e3\ w1,w2{ }
zv + z2w1

+ z2w2
− ze3 ≤ |e3 \ e1 ∪ e2( )| + λ. (65)

We keep these inequalities in the formulation:

zw1 ≤ 1

−z2w2
+ ze3 ≤ 1 − λ

∑

v∈e1\ v̄{ }
zv − ze1 ≤ |e1| − 1 − λ

∑

v∈e3\ w2{ }
zv + z2w2

− ze3 ≤ |e3 \ e2|

−zw1 + ze1 ≤ 0

−zw1 + ze1 − z2w2
+ ze3 ≤ 0

∑

v∈e1\ v̄,w1{ }
zv − zw2 + z2w2

− ze1 + ze3 ≤ |e1| − 2

∑

v∈e3\ w1,w2{ }
zv + z2w2

+ ze1 − ze3 ≤ |e3 \ e1 ∪ e2( )| + λ

∑

v∈e3\ w2{ }
zv + zw2 − z2w2

− ze3 ≤ |e3 \ e2|
∑

v∈ e3∪e1( )\ v̄,w2{ }
zv + zw2 − z2w2

− ze1 − ze3 ≤ |e3 \ e1 ∪ e2( )| + |e1| − 1 − λ . (66)
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All the other inequalities are redundant. Let us check them one by one. Inequality (57) + (62) is equal to
0 ≤ 1 − λ, which is always true because 0 ≤ λ ≤ 1. This is the only inequality certainly redundant arising from
(57). Then, let us move on to (58). The result of (58) + (61) is equal to ze1 ≤ λ, which is already in the system. We
can discard also (58) + (64), because zv ≤ 1 holds for every variable corresponding to nodes v for which we
have already projected out z2v.

Now consider inequalities coming from (59). Inequality (59) + (61) is redundant because it can be obtained
equivalently by summing −zw2 + ze3 ≤ 0 and z2w2

≤ λ. Similarly, (59) + (62) is implied by −zw1 + ze3 ≤ 0 and
−zw2 + z2w2

≤ 0. Along the same lines, we can obtain (59) + (63) as the sum of −zw1 + ze3 ≤ 0 and −zw2 + ze3 ≤ 0.
Finally, Inequality (59) + (65) can be discarded, as the combination of zv ≤ 1, for v ∈ e3 \ {w1,w2}, −zw1 + z2w1

≤ 0,
and z2w2

≤ λ provides the same inequalities.
It remains to check the inequalities originating from (60). The first redundant inequality is (60) + (62),

because zw2 − z2w2
≤ 1 − λ, −ze3 ≤ 0, and zv ≤ 1, for all v ∈ e3 \ {w1,w2}. Similarly, we can remove (60) + (63) from

the formulation, because it can be obtained by summing zw2 − z2w2
≤ 1 − λ, −z2w2

≤ 0, and zv ≤ 1, if v ∈ e3 \ {w1,w2}.
Ultimately, (60) + (65) is implied by (41) and the usual bound on the variables zv. We finished with projecting
out the variable z2w1

.
Next, we apply Fourier-Motzkin elimination on z2w2

. This variable is present in the following inequalities:

zw2 − z2w2
≤ 1 − λ, (67)

−z2w2
+ ze2 ≤ 0, (68)

−z2w2
+ ze3 ≤ 1 − λ, (69)

−zw1 + ze1 − z2w2
+ ze3 ≤ 0, (70)

∑

v∈e3\ w2{ }
zv + zw2 − z2w2

− ze3 ≤ |e3 \ e2|, (71)
∑

v∈ e3∪e1( )\ v̄,w2{ }
zv + zw2 − z2w2

− ze1 − ze3 ≤ | e3 ∪ e1( ) \ e2| − λ, (72)

z2w2
≤ λ, (73)

−zw2 + z2w2
≤ 0, (74)

∑

v∈e2\ v̄,w2{ }
zv + z2w2

− ze2 ≤ |e2| − 2, (75)
∑

v∈e3\ w2{ }
zv + z2w2

− ze3 ≤ |e3| − 1, (76)
∑

v∈e1\ v̄,w1{ }
zv − zw2 + z2w2

− ze1 + ze3 ≤ |e1| − 2, (77)
∑

v∈e3\ w1,w2{ }
zv + z2w2

+ ze1 − ze3 ≤ |e3 \ e1 ∪ e2( )| + λ ., (78)

We keep the following inequalities and discard the rest:

zw2 ≤ 1
−zw2 + ze2 ≤ 0

∑

v∈e2\ v̄{ }
zv − ze2 ≤ |e2| − 1 − λ

∑

v∈e1\ v̄,w1{ }
zv − zw2 − ze1 + ze2 + ze3 ≤ |e1| − 2

∑

v∈e2\ v̄,w2{ }
zv − zw1 + ze1 − ze2 + ze3 ≤ |e2| − 2

∑

v∈e3\ w1,w2{ }
zv + ze1 + ze2 − ze3 ≤ |e3| − 2 + λ

∑

v∈V\ v̄{ }
zv − ze1 − ze2 − ze3 ≤ |V| − 2 − λ .

Here we show why we decided to discard all other inequalities. Let us start from analyzing the ones coming
from (67). Inequality (67) + (74) is equal to 0 ≤ 1 − λ; hence, it is always true because λ is bounded to lie
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in [0, 1]. Also (67) + (76) is redundant, as it is implied by (41). Observe that (67) + (77) can be obtained as sum
of (66) and −zw1 + ze3 ≤ 0; therefore, we are allowed to ignore it. Similarly, (67) (78) is equal to the sum of (41)
and −zw1 + ze1 ≤ 0.

Next, consider the inequalities coming from (68). Note that (68) + (73) was already found when projecting
out nodes in e2 \ (e1 ∪ e3). Inequalities (68) + (75) and (68) + (76) are implied by the fact that zv ≤ 1, for
all v -# w2.

All inequalities resulting from (69) are redundant. In fact, (69) + (73) can be obtained by summing in-
equalities already in the system, which are −zv + ze3 ≤ 0, zv ≤ 1 for any v ∈ e3, v -# w2. Then, (69) + (74) is
equal to (δw2,e3), which was found earlier. Inequality (69) +(75) is redundant for similar reasons as (67) + (77).
Instead, (69) + (76) is implied by zv ≤ 1. Additionally, (69) + (77) can be achieved as sum of (66), −zw1 + ze3 ≤ 0,
and −zw2 + ze3 ≤ 0. Moreover, (69) + (78) can be discarded, as it is implied by zv ≤ 1 and ze1 ≤ λ, for all involved
nodes v.

We move on and consider (70). Notice that (70) + (73) is implied by −zw1 + ze3 ≤ 0 and ze1 ≤ λ. Furthermore,
(70) + (74) is equal to the sum of −zw2 + ze3 ≤ 0 and −zw1 + ze1 ≤ 0. Also, (70) + (76) can be obtained by zv ≤ 1, for
all v ∈ e3 \ {w2}, and −zw1 + ze1 ≤ 0. Similarly, inequality (70) + (77) is implied by the sum of zv ≤ 1, for suitable
nodes v, −zw1 + ze3 ≤ 0, and −zw2 + ze3 ≤ 0. Last, (70) + (78) is redundant, because it is the sum of zv ≤ 1,
−zw1 + ze1 ≤ 0, and ze1 ≤ λ, all inequalities that are already in the system.

Here we focus on the next to last inequality in which z2w2
has negative coefficient. (71) + (73) is implied by

(41). Inequality (71) + (74) instead is redundant because of zv ≤ 1, and −ze3 ≤ 0. Then, (71) + (75) is implied
by (41), zv ≤ 1, and −ze2 ≤ 0. Furthermore, (71) + (76) is similar to (71) + (75). Also, (71) + (77) is redundant
because of zv ≤ 1 and −ze1 ≤ 0. Observe that (71) + (78) is obtained by summing (41), zv ≤ 1 for the remaining
zv, and ze1 ≤ λ, ze3 ≤ 0.

We focus now on (72). Similar to before, (72) + (73) is equal to the sum of (41), zv ≤ 1 for the variables not
included in (41), and −ze1 ≤ 0. Analogously, (72) + (74) is implied by (66), zv ≤ 1, and −ze3 ≤ 0. Inequality (72) +
(76) can be obtained by (66), (41), zv ≤ 1, and −ze3 ≤ 0. Along the same lines, (72) + (77) coincides with
summing (66), zv ≤ 1, and −ze1 ≤ 0. Finally, (72) + (78) is redundant because it is implied by (41), zv ≤ 1,
and −ze3 ≤ 0.

At this point, the only variables appearing in the formulation are z and λ. The system is

zv̄ # λ
0 ≤ λ ≤ 1
−ze1 ≤ 0
−ze2 ≤ 0
−ze3 ≤ 0

−λ + ze1 ≤ 0
−λ + ze2 ≤ 0

zv ≤ 1 ∀v ∈ V \ v̄{ }
−zv + ze1 ≤ 0 ∀v ∈ e1 \ v̄{ }
−zv + ze2 ≤ 0 ∀v ∈ e2 \ v̄{ }
−zv + ze3 ≤ 0 ∀v ∈ e3∑

v∈e1\ v̄{ }
zv + λ − ze1 ≤ |e1| − 1

∑

v∈e2\ v̄{ }
zv + λ − ze2 ≤ |e2| − 1

∑

v∈e3
zv − ze3 ≤ |e3| − 1

∑

v∈e1\ v̄,w1{ }
zv − zw2 − ze1 + ze2 + ze3 ≤ |e1| − 2

∑

v∈e2\ v̄,w2{ }
zv − zw1 + ze1 − ze2 + ze3 ≤ |e2| − 2

∑

v∈e3\ w1,w2{ }
zv − λ + ze1 + ze2 − ze3 ≤ |e3| − 2

∑

v∈V\ v̄{ }
zv + λ − ze1 − ze2 − ze3 ≤ |V| − 2 . (79)
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By (79), it suffices to substitute λ with zv̄ in the previous system in order to project out the variable λ. Because
the system consists of all the standard linearization inequalities and the four odd β-cycle inequalities that arise
in this case, we obtain that the claim holds when the hypergraph G contains only three edges. □

8.3.2. Proof of Claim 8. Here, we present the computations that are required to project the variable zf out of the
system. We also remove redundant inequalities from the obtained formulation. We perform this projection by
applying the Fourier-Motzkin elimination procedure. We separate in two sets the inequalities of the for-
mulation for MPG′ in which zf appears with coefficient −1 and +1, respectively.

−zf ≤ 0, (80)
zv′ + zv′′ − zf ≤ 1, (81)

−zv + ze1 + zem − zf ≤ 0 where v # e1 ∩ em, (82)
∑

v∈e1∪em
zv − ze1 − zem − zf ≤ |e1 ∪ em| − 2, (83)

∑

v∈S1 G2( )
zv −

∑

e∈E− G2( )
ze −

∑

v∈S2 G2( )
zv +

∑

e∈E+ G2( )
ze ≤ |S1 G2( )| − |I G2( )| + |E− G2( )|

2

⌊ ⌋
, (84)

−zv′ + zf ≤ 0, (85)
−zv′′ + zf ≤ 0, (86)

∑

v∈e1\ v′{ }∪em( )
zv − zv′′ − ze1 + zem + zf ≤ |e1| − 2, (87)

∑

v∈em\ v′′{ }∪e1( )
zv − zv′ + ze1 − zem + zf ≤ |em| − 2, (88)

∑

v∈S1 G2( )
zv −

∑

e∈E− G2( )
ze −

∑

v∈S2 G2( )
zv +

∑

e∈E+ G2( )
ze ≤ |S1 G2( )| − |I G2( )| + |E− G2( )|

2

⌊ ⌋
. (89)

In this system, Inequality (84) holds for every odd subset E−(G2) of E(G2) containing f , whereas Inequality (89)
holds for each odd subset E−(G2) of E(G2) such that f /∈ E−(G2). In these inequalities, I(G2) denotes the set of
edges in E−(G2) such that also the next edge in the β-cycle belongs to E−(G2) as well. We refer the reader to the
definition of odd β-cycle inequalities for the meaning of the sets E+(G2), S1(G2), and S2(G2). Before moving on,
we remark that Inequalities (82), (83), (87), and (88) are the odd β-cycle inequalities corresponding to G1. In
particular, Inequalities (82) and (83) are the odd β-cycle inequalities in which f ∈ E−, whereas (87) and (88) are
the odd β-cycle inequalities that arise when f ∈ E+.

The sums (80) + (85), (80) + (86), (80) + (87), (80) + (88), (80) + (89), (81) + (85), (81) + (86), (81) + (87), (81) +
(88), (81) + (89), (82) + (85), (82) + (86), (82) + (87), (82) + (88), (83) + (85), (83) + (86), (83) + (87), (83) +
(88), (84) + (85), (84) + (86), and (84) + (89) have a support hypergraph that is Berge-acyclic. This is true, by the
assumptions on G and because none of these sums contains all edges of E. By Del Pia and Khajavirad (2018a),
we know that the only nonredundant inequalities for these hypergraphs are those of the standard lineari-
zation. Observe that only Inequalities (81) + (85) and (81) + (86) belong to the standard linearization. However,
they are already present in the system because of the inductive hypothesis. All the remaining inequalities cited
previously do not belong to the standard linearization and therefore are redundant for the multilinear
polytopes deriving from their support hypergraphs. Moreover, by proposition 6 in Del Pia and Khajavirad
(2017), it follows that these inequalities are redundant also for MPG, because the support hypergraphs of any
of these sums is a partial hypergraph of G. We recall that the definitions of support hypergraph and of partial
hypergraph are given in Section 1.1.

Then, it remains to check (82) + (89), (83) + (89), (84) + (87), and (84) + (88). Consider (84) + (87). We define
E−(G) # {e1} ∪ E−(G2) \ { f }, and denote by S1(G) and S2(G), the corresponding sets in Definition 2. Notice
immediately that |E−(G)|# 1+|E−(G2) \ f |; therefore, |E−(G)| is an odd number. Moreover, )|E−(G)|/2* # )|E−(G2)|/2*,
and )|{e1}|/2* # 0. We need to examine the different cases where each of e2, em−1 belongs to E−(G2) or E+(G2).

Then, let us start from the case e2 ∈ E−(G2). With this assumption, the node v′ is in S1(G), because
e1, e2 ∈ E−(G). Indeed, v′ ∈ S1(G2) and the corresponding variable does not appear in (87); therefore, zv′ appears
with coefficient +1 in (84) + (87). Next, we further assume that em−1 ∈ E+(G2); hence, v′′ ∈ S2(G). The variable zv′′
does not appear in (84), whereas it appears with coefficient −1 in (87). Observe that this is exactly
what we expect from the definition of odd β-cycle. We need to check the correctness of the right-hand
side. It follows that |S1(G)| # |e1| − 2 + |S1(G2)|, as S1(G) is the disjoint union of e1 \ ({v′} ∪ em) and S1(G2).
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Second, |I(G2)| # |{i ∈ {1, . . . ,m} : ei, ei+1 ∈ E−(G)}|, because e1 replaces f as predecessor of e2. Therefore, we obtain
the desired right-hand side in this case.

Then, consider e2, em−1 ∈ E−(G2). As a consequence, we have that em−1 ∈ E−(G), em ∈ E+(G); therefore, zv′′ must
not be present in the resulting inequality. This is true, because there is −zv′′ in the left-hand side of (87) and
+zv′′ in (84) because em−1, f ∈ E−(G2). Once we sum the two inequalities, zv′′ vanishes. However, we need to be
more careful in the analysis of the correctness of the right-hand side. In fact, in this case, |S1(G)| # |e1|−
2 + |S1(G2) \ {v′′}| # |e1| − 2 + |S1(G2)| − 1. Moreover, we now have that |{i ∈ {1, . . . ,m} : ei, ei+1 ∈ E−(G)}| is equal
to |I(G2)| − 1, because the edge after em−1 does not belong to E−(G). Then, the right-hand side of the odd β-cycle
of G corresponding to E−(G) in this case is equal to

|S1 G( )| − | i ∈ 1, . . . ,m{ } : ei, ei+1 ∈ E− G( ){ }| + |E− G( )|
2

⌊ ⌋
#

# |e1| − 2 + |S1 G2( )| − 1 − |I G2( )| + 1 + |E− G2( )|
2

⌊ ⌋
#

# |e1| − 2 + |S1 G2( )| − |I G2( )| + |E− G2( )|
2

⌊ ⌋
,

which coincides with the sum of the right-hand sides of (87) and (84). This concludes the case e2 ∈ E−(G2).
Now assume instead that e2 ∈ E+(G2). Therefore, zv′ does not appear in (87) or (84); hence, this variable is not

present in their sum. Let em−1 ∈ E+(G2). This case is similar to the previous case e2 ∈ E−(G2), em−1 ∈ E+(G2).
Moreover, the case em−1 ∈ E−(G2) has similar calculations to the previous case e2, em−1 ∈ E−(G2).

We can conclude that by summing (84) with (87), we obtain the odd β-cycle inequalities arising from G.
Similar arguments hold in the other sums (82) + (89), (83) + (89), and (84) + (88). □

8.4. Proof of Claim 9
We apply the Fourier-Motzkin elimination on variables zf1 , . . . , zfm one by one. At every step, we remove
redundant inequalities from the formulation. We start from projecting out the variable zf1 . We write here the
inequalities in which this variable is present, and we divide the inequalities in two sets: one in which zf1 has
coefficient −1, whereas in the second set, its coefficient is equal to +1.

∑

v∈f1
zv − zf1 ≤ | f1| − 1 (90)

−zf1 + ze1 ≤ 0 (91)
−zf1 + ze2 ≤ 0 (92)

∑

p∈S1
zp −

∑

e∈E−
ze −

∑

f∈S2
zf +

∑

e∈E+
ze ≤ |S1| − | i : ei, ei+1 ∈ E−{ }| + |E−|

2

⌊ ⌋
(93)

−zv + zf1 ≤ 0 ∀v ∈ f1 (94)
∑

v∈e1\ f1∪fm( )
zv + zf1 + zfm − ze1 ≤ |e1 \ f1 ∪ fm

( )| + 1 (95)
∑

v∈e2\ f1∪f2( )
zv + zf1 + zf2 − ze2 ≤ |e2 \ f1 ∪ f2

( )| + 1 (96)

∑

p∈S1
zp −

∑

e∈E−
ze −

∑

f∈S2
zf +

∑

e∈E+
ze ≤ |S1| − | i : ei, ei+1 ∈ E−{ }| + |E−|

2

⌊ ⌋
(97)

In this system, Inequality (93) holds for each odd subset E− of {e1, . . . , em} with e1, e2 /∈ E−, whereas Inequality
(97) holds for each odd subset E− of {e1, . . . , em} with e1, e2 ∈ E−. In these inequalities, E+ # {e1, . . . , em} \ E−.
Moreover, the set S1 contains the edges fi # ei ∩ ei+1 such that ei, ei+1 ∈ E− and the nodes in V contained only in
one edge among e1, . . . , em, and this edge belongs to E−. The set S2 contains the edges fi such that ei, ei+1 ∈ E+.
Therefore, in Inequality (93), we have f1 ∈ S2, and in Inequality (97), we have f1 ∈ S1. We did not write the
inequalities −zf1 ≤ 0 and zf1 ≤ 1 in this system; the first comes from the addition of the standard linearization of
f1 and the second derives from the replacement of zw1 with zf1 in zw1 ≤ 1. This is because these two inequalities
are redundant, and we discard them. In fact, the first inequality can be obtained by summing −zf1 + ze1 ≤ 0 and
−ze1 ≤ 0. The second inequality is redundant because it is implied by −zv + zf1 ≤ 0 and zv ≤ 1 for any v ∈ f1.
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Observe that, without doing any calculations, we know a priori that the inequalities obtained from the sums
(91) + (97), (92) + (97), (93) + (95), (93) + (96), and (93) + (97) are redundant for the new system. In fact, the
support hypergraph of each of these inequalities is γ-acyclic, because either the edge e1 or e2 is missing, and by
theorem 14 in Del Pia and Khajavirad (2018a), the only nonredundant inequalities for these hypergraphs are
the standard linearization and the flower inequalities. However, Inequalities (91) + (97), (92) + (97), (93) +
(95), (93) + (96), and (93) + (97) do not belong to these categories and therefore are redundant for the
multilinear polytopes deriving from their support hypergraphs. By proposition 6 in Del Pia and Khajavirad
(2017), it follows that Inequalities (91) + (97), (92) + (97), (93) + (95), (93) + (96), and (93) + (97) are redundant
also for the new system of inequalities, because the support hypergraphs of any of these sums is a partial
hypergraph of (V,E′′ \ { f1}).

Also, the inequalities obtained from (90) + (94), (91) + (95), and (92) + (96) are redundant for the new system,
as they can be achieved equivalently by summing, for each variable appearing in the left-hand side, the bound
that every variable is less than or equal to 1.

On the other hand, all the remaining inequalities obtained by the Fourier-Motzkin elimination might be facet
defining for the resulting polytope and will not be discarded. Inequalities (90) + (95) and (90) + (96) are the
flower inequalities with center e1, e2, and neighbor fm, f2, respectively. Inequality (90) + (97) has the same form
of Inequality (97) if we redefine S1 by replacing f1 with all its nodes. Notice that the obtained inequality is the
first step in achieving the odd β-cycle inequalities in which the nodes in e1 ∩ e2 belong to the resulting set S1.

The inequalities obtained from (92) are analogous to (91), as the role of ze1 in (91) is the same of ze2 in (92).
Hence, we only consider the inequalities arising from (91). These are achieved by summing (91) with (94)
and (96). From the first, we get (δv,e1) for all v ∈ e1 ∩ e2, whereas from the second, we gain the flower inequality
with center e2 and neighbors {e1, f2}.

It remains to check what happens for ( ) + (94). In this case, we obtain |e1 ∩ e2| inequalities. Each of these
inequalities has the same form of (93), where the set S2 is redefined by replacing the edge f1 with one of the
nodes in f1. This inequality will lead to the odd β-cycles in which there is one node v ∈ e1 ∩ e2 in S2.

We are done with eliminating the variable zf1 and now we move on to zf2 . Next, we consider the system
obtained from the Fourier-Motzkin elimination of variable zf1 . To project out the variable zf2 , we focus on the
inequalities with a nonzero coefficient for zf2 .

∑

v∈f2
zv − zf2 ≤ | f2| − 1 (98)

−zf2 + ze2 ≤ 0 (99)
−zf2 + ze3 ≤ 0 (100)

∑

p∈S1
zp −

∑

e∈E−
ze −

∑

p∈S2
zp +

∑

e∈E+
ze ≤ |S1| − | i : ei, ei+1 ∈ E−{ }| + |E−|

2

⌊ ⌋
(101)

−zv + zf2 ≤ 0 ∀v ∈ f2 (102)
∑

v∈e2\ f2
zv + zf2 − ze2 ≤ |e2 \ f2| (103)

∑

v∈e2\ f2∪f3( )
zv + zf2 + zf3 − ze3 ≤ |e3 \ f2 ∪ f3

( )| + 1 (104)

∑

p∈S1
zp −

∑

e∈E−
ze −

∑

p∈S2
zp +

∑

e∈E+
ze ≤ |S1| − | i : ei, ei+1 ∈ E−{ }| + |E−|

2

⌊ ⌋
(105)

Like in the previous system, Inequality (101) holds for each odd subset E− of {e1, . . . , em} with e2, e3 /∈ E−,
whereas Inequality (105) holds for each odd subset E− of {e1, . . . , em} with e2, e3 ∈ E−. In these inequalities,
E+ # {e1, . . . , em} \ E−. The set S1 contains the edges fi, for i ∈ {2, . . . ,m} such that ei, ei+1 ∈ E−, all the nodes in
e1 ∩ e2 if e1, e2 ∈ E−, and all the nodes in V contained only in one edge among e1, . . . , em, and this edge belongs to
E−. The set S2 contains the edges fi, for i ∈ {2, . . . ,m}, such that ei, ei+1 ∈ E+, and one node in e1 ∩ e2 if e1, e2 ∈ E+.
In particular, in Inequality (101), we have f2 ∈ S2, and in Inequality (105), we have f2 ∈ S1.

We remark that the structure of Inequalities (98)–(105) is almost identical to that of System (90)–(97). In
particular, f1, e1, e2 are replaced by f2, e2, e3, respectively. The only difference is between Inequality (95) and
(103), because the variable zf1 has been already projected out. The same analysis of before holds in this case,
except for the inequality obtained by (98) + (103). In fact, in this case, we obtain inequality (εe2) of the standard
linearization instead of a flower inequality.
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Recursively, we project out all the additional variables until we are left with only zfm . This variable is present
in the following inequalities:

∑

v∈fm
zv − zfm ≤ | fm| − 1, (106)

−zfm + ze1 ≤ 0, (107)
−zfm + zem ≤ 0, (108)

∑

v∈S1
zv −

∑

e∈E−
ze −

∑

p∈S2
zp +

∑

e∈E+
ze ≤ |S1| − | i : ei, ei+1 ∈ E−{ }| + |E−|

2

⌊ ⌋
, (109)

−zv + zfm ≤ 0 ∀v ∈ fn, (110)
∑

v∈e1\fm
zv + zfm − ze1 ≤ |e1 \ fm|, (111)

∑

v∈em\fm
zv + zfm − zem ≤ |em \ fm|, (112)

∑

p∈S1
zp −

∑

e∈E−
ze −

∑

v∈S2
zv +

∑

e∈E+
ze ≤ |S1| − | i : ei, ei+1 ∈ E−{ }| + |E−|

2

⌊ ⌋
. (113)

Inequality (109) holds for each odd subset E− of {e1, . . . , em} with em, e1 /∈ E−, and Inequality (113) holds for each
odd subset E− of {e1, . . . , em} with em, e1 ∈ E−. The set S1 contains the edge fm if em, e1 ∈ E−, all the nodes in
ei ∩ ei+1, for i ∈ {1, . . . ,m − 1}, if ei, ei+1 ∈ E−, and all the nodes in V contained only in one edge among e1, . . . , em,
and this edge belongs to E−. The set S2 contains the edge fm if em, e1 ∈ E+, and one node in ei ∩ ei+1, for
i ∈ {1, . . . ,m − 1}, if ei, ei+1 ∈ E+. In particular, in Inequality (109), we have fm ∈ S2, and in Inequality (113), we
have fm ∈ S1.

The variable zfm can be projected out by following the same arguments of the previous steps, because
Inequalities (106)–(113) have the same structure. However, observe that the inequalities obtained by (106) +
(113) and (109) + (110) are exactly the odd β-cycle inequalities for which em, e1 both belong to either E− or E+.

Once we have eliminated all variables zfi from the description of MPG′′ , the obtained system contains only
inequalities of the standard linearization, flower inequalities, and odd β-cycle inequalities. □
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