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Abstract. The multilinear polytope of a hypergraph is the convex hull of a set of binary
points satisfying a collection of multilinear equations. We introduce the running inter-
section inequalities, a new class of facet-defining inequalities for the multilinear polytope.
Accordingly, we define a new polyhedral relaxation of the multilinear polytope, referred
to as the running intersection relaxation, and identify conditions under which this re-
laxation is tight. Namely, we show that for kite-free beta-acyclic hypergraphs, a class that
lies between gamma-acyclic and beta-acyclic hypergraphs, the running intersection re-
laxation coincides with the multilinear polytope and it admits a polynomial size ex-
tended formulation.
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1. Introduction
1.1. Multilinear Sets and Polytopes
Factorable reformulations of many types of mixed integer nonlinear programs (MINLP) contain a collection of
multilinear equations of the form ze ! ∏

v∈e zv, e ∈ E, where E denotes a set of subsets of cardinality at least two
of a ground set V. Important special cases include multilinear and polynomial optimization problems. Ac-
cordingly, we define the set

z ∈ 0, 1{ }V+E : ze !
∏

v∈e
zv, ∀e ∈ E

{ }
. (1)

In particular, this set represents the feasible region of linearized binary polynomial optimization problems.
There is a one-to-one correspondence between sets of form (1) and hypergraphs G ! (V,E) (Del Pia and
Khajavirad [12]). Henceforth, we refer to (1) as the multilinear set of G and denote it by SG, and refer to its
convex hull as the multilinear polytope of G and denote it by MPG.

If all multilinear equations defining SG are bilinear, the multilinear polytope coincides with the Boolean
quadric polytope defined by Padberg [25] in the context of unconstrained 0−1 quadratic optimization. In this
case, our hypergraph representation simplifies to the graph representation defined by Padberg for the Boolean
quadric polytope. Indeed, the Boolean quadric polytope is a well-known polytope in combinatorial opti-
mization, and its facial structure has been thoroughly studied over the past three decades (see Deza and
Laurent [16] for an exposition). In addition, these theoretical findings have had a significant impact on the
performance of mixed-integer quadratic optimization (MIQCP) solvers (Bao et al. [2], Bonami et al. [7],
Misener et al. [24], Sahinidis [26]). In this paper, we consider multilinear sets containing higher degree
multilinear equations and obtain new structural results for their convex hull with significant computational
benefits for MINLPs.

There is an interesting connection between the complexity of the multilinear polytope and the acyclicity
degree of its hypergraph. Padberg [25] shows that the Boolean quadric polytope admits a simple compact
description, referred to as the standard linearization, if and only if the graph is acyclic. Subsequently, he
introduces odd-cycle inequalities, a class of facet-defining inequalities arising from chordless cycles. The
incorporation of these inequalities in general branch-and-cut based solvers has led to significant algorithmic
improvements (Barahona et al. [3], Bonami et al. [7], Sahinidis [26]). Motivated by this compelling line of

1

http://pubsonline.informs.org/journal/moor
mailto:delpia@wisc.edu
https://orcid.org/0000-0001-8428-3914
https://orcid.org/0000-0001-8428-3914
mailto:aida@lehigh.edu
https://doi.org/10.1287/moor.2021.1121


research, it is natural to study the facial structure of the multilinear polytope of acyclic hypergraphs as the
starting point. Interestingly, the notion of graph acyclicity has been extended to several different notions of
hypergraph acyclicity; in increasing order of generality, one can name Berge-acyclicity, γ-acyclicity, β-acyclicity,
and α-acyclicity (Fagin [18]). We should remark that polynomial time algorithms for determining acyclicity
degree of hypergraphs are available (Fagin [18]). In Buchheim et al. [8] and Del Pia and Khajavirad [13], the
authors show that the standard linearization coincides with the multilinear polytope if and only if the
hypergraph is Berge-acyclic. Del Pia and Khajavirad [13] introduce flower inequalities, a generalization of two-
link inequalities (Crama et al. [11]) and show that the polytope obtained by adding all such inequalities to the
standard linearization is the multilinear polytope if and only if the hypergraph is γ-acyclic. As the multilinear
polytope of γ-acyclic hypergraphs may contain exponentially many facets, the authors present a strongly
polynomial-time algorithm to solve the separation problem. This in turn implies that for a γ-acyclic hypergraph G,
optimizing a linear function over MPG can be done in polynomial time.

1.2. Our Contribution
The next type of acyclic hypergraphs is the class of β-acyclic hypergraphs. We believe that the multilinear
polytope in this case has a significantly more complex structure than the multilinear polytope of γ-acyclic
hypergraphs. In particular, it can be checked that the multilinear polytope of β-acyclic hypergraphs can have
dense facet-defining inequalities. By dense facets, we mean facets whose support hypergraph contains almost all
edges of the original hypergraph, a property that is not desirable from a computational perspective. This is in major
contrast with the multilinear polytope of γ-acyclic hypergraphs, whose defining inequalities are fairly sparse.

With the objective of constructing stronger polyhedral relaxations for multilinear sets of general hyper-
graphs that can also be effectively incorporated in branch-and-cut–based MINLP solvers, in this paper
we introduce a new class of sparse facet-defining inequalities for the multilinear polytope. The proposed
inequalities, referred to as running intersection inequalities, serve as a significant generalization of flower
inequalities (Del Pia and Khajavirad [13]).

As we detail in Section 2, the support hypergraph of a running intersection inequality consists of a center
edge e0 together with a number of neighbor edges ek, k ∈ K, that are adjacent to e0. The support hypergraph of
flower inequalities has the same structure, with the additional assumption that e0 ∩ ek ∩ ek′ ! ∅ for all k, k′ ∈ K.
The support hypergraph of running intersection inequalities, however, may contain nonempty intersections
among multiple neighbors with the center edge, which amounts to the presence of γ-cycles. This, in turn,
makes the proposed inequalities applicable to a much broader class of hypergraphs. Our generalization relies
on the key notion of running intersection property, a set theoretic concept first introduced in the database
community to study acyclic databases (Beeri et al. [4]). As we demonstrate in Section 2.5, this generalization
has significant computational implications. That is, by using running intersection cuts instead of flower cuts,
we are able to obtain much stronger relaxations for a class of fourth-order binary polynomial optimization
problems that arise from an application in computer vision. Furthermore, in Del Pia et al. [15], the authors
investigate the impact of the proposed inequalities on the convergence rate of the global solver Branch and
Reduce Optimization Navigator (BARON) (Khajavirad and Sahinidis [20]). Results on various types of
polynomial optimization problems indicate that running intersection cuts significantly improve the perfor-
mance of BARON and lead to an average 50% CPU time reduction.

To better understand the theoretical limits of the proposed inequalities, we define the running intersection
relaxation, a new polyhedral relaxation for the multilinear set obtained by adding all running intersection
inequalities to its standard linearization. We show that for kite-free β-acyclic hypergraphs, a class that lies
between γ-acyclic hypergraphs and β-acyclic hypergraphs, the running intersection relaxation coincides with
the multilinear polytope (Theorem 3). In addition, for a kite-free β-acyclic hypergraph G ! (V,E), we present a
compact extended formulation of the multilinear polytope (Theorem 2). More precisely, if all edges of G have
cardinality at most r, the proposed extended formulation has at most |V| + 2|E| variables and 2(|V| + (r + 2)|E|)
inequalities, whereas the multilinear polytope in the original space may contain exponentially many facet-
defining inequalities. This in turn implies that optimizing a linear function over MPG can be done in
polynomial time. The proposed extended formulation is obtained by showing that, after the addition of at
most |E| edges to the original hypergraph G, the corresponding multilinear polytope can be expressed as the
intersection of a collection of multilinear polytopes MPGj , j ∈ J, where each polytope MPGj has a compact
description. To this end, we present a new sufficient condition for decomposability of multilinear sets, a result
that is of independent interest (Theorem 1).

There has been an interesting line of research (Bienstock and Munoz [6], Kolman and Koutecký [21], Laurent [22],
Wainwright and Jordan [27]) that relates the complexity of the convex hull of a binary set defined by a system
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of polynomial inequalities to the treewidth of a corresponding intersection graph. Namely, it has been shown
that if the intersection graph has constant treewidth, the convex hull has an extended formulation of
polynomial size. We derive an alternative statement of this result in terms of the acyclicity degree of the
underlying hypergraph (Theorem 5). This new interpretation enables us to compare and contrast this existing
result against ours. In particular, we show that neither of the two results is implied by the other one.

1.3. Organization
In Section 2, we introduce running intersection inequalities, we establish some of their basic properties, and
we identify conditions under which they induce facets of the multilinear polytope. In Section 3, we show that
the running intersection relaxation coincides with the multilinear polytope of kite-free β-acyclic hypergraphs.
We compare our characterization against the treewidth based approach in Section 4. Finally, proofs of the
technical results omitted in the previous sections are given in Section 5.

2. The Running Intersection Relaxation
We start by formally introducing some hypergraph terminology. A hypergraph G is a pair (V,E), where V is a
finite set of nodes and E is a multiset of subsets of V, called the edges of G. Unless stated otherwise,
throughout this paper we consider hypergraphs without loops or parallel edges, in which case E is a set of
subsets of V of cardinality at least two. We refer to the node set of G as V(G) and to the edge set of G as E(G).
We say that two edges are adjacent if they have nonempty intersection. We define the support hypergraph of a
valid inequality az ≤ α for MPG, as the hypergraph G(a), where V(G(a)) ! {v ∈ V : av )! 0} ∪ (∪e∈E:ae )!0e), and
E(G(a)) ! {e ∈ E : ae )! 0}.

In Del Pia and Khajavirad [13], we introduced flower inequalities, a class of facet-defining inequalities for
the multilinear polytope whose support hypergraphs are γ-acyclic. In this section, we present a significant
generalization of these inequalities that does not require γ-acyclicity of the support hypergraph. To obtain the
new cutting planes, we make use of the notion of running intersection property, which was introduced in the
database community to study acyclic databases (Beeri et al. [4]) and has been used by the machine learning
community to infer conditional independence in graphical models (Lauritzen [23]).

2.1. The Running Intersection Property
A multiset F of subsets of a finite set V has the running intersection property if there exists an ordering
p1, p2, . . . , pm of the sets in F such that

for each k ! 2, . . . , m, there exists j < k such that pk ∩
⋃

i< k
pi

( )
⊆ pj. (2)

Throughout the paper, we refer to an ordering p1, p2, . . . , pm satisfying (2) as a running intersection ordering of F.
See Figure 1 for an illustration. Each running intersection ordering p1, p2, . . . , pm of F induces a collection of sets

N p1
( )

:! ∅, N pk
( )

:! pk ∩
⋃

i<k
pi

( )
for k ! 2, . . . ,m. (3)

It can be shown that if a multiset F with |F| ≥ 2 has the running intersection property, then there exist several
running intersection orderings of F. We refer to an element f ∈ F as a leaf of F if there exists a running intersection

Figure 1. (Color online) Multiset with the running intersection property. A running intersection ordering is given by
p1, p2, p3, p4, p5, p6, p7, p8.
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ordering of F in which f is the last element. The following lemma states some basic properties of multisets with
the running intersection property and has been stated in various forms in the literature (Beeri et al. [4]).

Lemma 1. Let F be a multiset with the running intersection property. If |F| ≥ 2, then (i) F has at least two leaves; (ii) for any
f ∈ F, there exists a running intersection ordering of F in which f is the first element; and (iii) for any f ∈ F such that f ⊆ f ′ for
some f ′ ∈ F, the multiset F \ {f } has the running intersection property.

As we detail in the following, to obtain running intersection inequalities, we make use of the number of
connected components of a related hypergraph. We now formalize the concept of hypergraph connectivity.
We first present the notion of a chain in a hypergraph as defined in Berge [5]. A chain in G of length t for
some t ≥ 1, is a sequence P ! v1, e1, v2, e2, . . . , et, vt+1 such that v1, v2, . . . , vt are distinct nodes of G, e1, e2, . . . , et
are distinct edges of G, and vi, vi+1 ∈ ei for i ! 1, . . . , t. A hypergraph G is connected if for any two distinct nodes
vi, vj of G, there is a chain between vi and vj in G. Consider a hypergraph G ! (V,E) and let V′ be a subset of V.
A hypergraph (V′,E′) is a partial hypergraph of G if E′ ⊆ E. The section hypergraph of G induced by V′ is the
partial hypergraph (V′,E′), where E′ ! {e ∈ E : e ⊆ V′}. The connected components of G are the maximal con-
nected section hypergraphs of G. We refer to a node of G as an isolated node if it is not contained in any edge
of G. An isolated node corresponds to a connected component. The next lemma provides an alternative
characterization for the number of connected components of a hypergraph whose edge set has the running
intersection property.

Lemma 2. Let G ! (V,E) be a hypergraph. Assume that there exists a running intersection ordering e1, . . . , em of E and
denote by N(e1), . . . ,N(em) the corresponding sets defined in (3). Then the number of connected components of G is

n0 + | e ∈ E : N e( ) ! ∅{ }|,

where n0 is the number of isolated nodes of G.

Proof. To prove the statement, it suffices to show that the number ω of connected components of a hypergraph G
with no isolated nodes is |{e ∈ E : N(e) ! ∅}|. The proof is by induction on m ! |E|, the base case being trivial. Let
G′ ! (V′,E′) be the hypergraphwith node setV′ :! ∪m−1

k!1 ek and edge set E′ :! {e1, . . . , em−1}. Note that e1, . . . , em−1 is a
running intersection ordering of E′ and that the corresponding sets (3) are N′(ek) ! N(ek) for all k ! 1, . . . ,m − 1.
Thus, by induction the number ω′ of connected components of G′ is |{e ∈ E′ : N(e) ! ∅}|. First consider the case
em ∩ E′ ! ∅. In this case N(em) ! ∅ and G has one more connected component than G′; that is,

ω ! ω′ + 1 ! | e ∈ E′ : N e( ) ! ∅{ }| + 1 ! | e ∈ E : N e( ) ! ∅{ }|.

Next, consider the case em ∩ E′ )! ∅. It then follows that N(em) )! ∅ and G has the same number of connected
component as G′. Thus,

ω ! ω′ ! | e ∈ E′ : N e( ) ! ∅{ }| ! | e ∈ E : N e( ) ! ∅{ }|. □

We are now in a position to define running intersection inequalities.

2.2. Running Intersection inequalities
Consider a hypergraph G ! (V,E). Let e0 ∈ E and let ek, k ∈ K, be a collection of edges adjacent to e0 in G such
that the multiset

Ẽ :! e0 ∩ ek : k ∈ K{ } (4)
has the running intersection property. Consider a running intersection ordering of Ẽ with the corresponding
sets N(e0 ∩ ek), for k ∈ K, as defined in (3). For each k ∈ K with N(e0 ∩ ek) )! ∅, let uk be a node in N(e0 ∩ ek). We
define a running intersection inequality as

−
∑

k∈K:N e0∩ek( ) )!∅
zuk +

∑

v∈e0\
⋃

k∈K ek

zv +
∑

k∈K
zek − ze0 ≤ ω − 1, (5)

where ω is the number of connected components of the hypergraph G̃ ! (e0, Ẽ). We refer to e0 as the center and
to ek, k ∈ K, as the neighbors. Unlike G, the hypergraph G̃ may have loops and parallel edges. By Lemma 2, the
right-hand side of (5) is equal to the sum of the coefficients of the left-hand side. In the special case where
N(e0 ∩ ek) ! ∅ for all k ∈ K, that is, e0 ∩ ek ∩ ek′ ! ∅ for all k, k′ ∈ K, running intersection inequalities simplify to
flower inequalities introduced in Del Pia and Khajavirad [13].

We now establish the validity of running intersection inequalities for MPG.
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Proposition 1. Running intersection inequalities are valid for the multilinear polytope.

Proof. Consider a running intersection inequality (5). Let G̃ ! (e0, Ẽ) be the corresponding hypergraph where Ẽ is
defined by (4), and letO denote a running intersection ordering of Ẽwith the setsN(e0 ∩ ek), k ∈ K, as defined in (3).

Denote by G̃i, for i ! 1, . . . ,ω, the connected components of G̃. For each G̃i, define Ki ! {k ∈ K : ek ∩ e0 ∈ E(G̃i)}.
Clearly, the sets Ki, for i ! 1, . . . ,ω, form a partition of K. We argue that for each G̃i with Ki )! ∅, the following
inequality is valid for MPG.

−
∑

k∈Ki :N e0∩ek( ))!∅
zuk +

∑

k∈Ki

zek ≤ 1. (6)

If |Ki| ! 1, say Ki ! {1}, then N(e0 ∩ e1) ! ∅; thus, the validity of (6) is trivial. Henceforth, assume that |Ki| ≥ 2.
We claim that the maximum value of the left-hand side of inequality (6) is one, and this value is attained if and
only if zek ! 1 for all k ∈ Ki. Let Oi be the subsequence of O corresponding to the edges e0 ∩ ek, with k ∈ Ki. It can
be shown that Oi is a running intersection ordering of E(G̃i). Without loss of generality, let Oi ! e0 ∩ e1,
e0 ∩ e2, . . . , e0 ∩ et, where t :! |E(G̃i)|. Because G̃i is a connected hypergraph by Lemma 2, we have N(e0 ∩ ek) )! ∅
for all k ! 2, . . . , t. This implies that for each k ! 2, . . . , t, the node uk exists and if zek ! 1, we have zuk ! 1.
Consequently the value of the left-hand side of inequality (6) is at most one and if it is equal to one, we must
have ze1 ! 1. Now suppose that ze1 ! 1. Because u2 ∈ e1, it follows that zu2 ! 1. Hence, if the maximum value of
the left-hand side of (6) is attained, we must have ze2 ! 1. If t ! 2, the proof is complete. Otherwise, because u3
is in e1 or in e2 and ze1 ! ze2 ! 1, we have zu3 ! 1, which in turn implies ze3 ! 1. Hence, by a recursive application
of this argument for each element of Oi, we conclude that inequality (6) is binding if and only if zek ! 1 for
all k ∈ Ki.

By summing up inequalities (6) for all G̃i with E(G̃i) )! ∅ together with inequalities zvi ≤ 1 for all G̃i with V(G̃i) !
{vi} and E(G̃i) ! ∅, we conclude that the value of the three summations on the left-hand side of (5) does not exceedω.
In addition, this maximum value is attained only if zek ! 1 for all k ∈ K and zv ! 1 for all v ∈ e0 \ (∪k∈Kek), which in
turn implies ze0 ! 1. Hence, inequality (5) is valid. □

Example 1. Consider the hypergraph G ! (V,E) with V ! {v1, . . . , v7} and E ! {e0, e1, e2, e3, e4}, where we define
e0 :! V, e1 :! {v1, v2, v3, v7}, e2 :! {v2, v3, v6}, e3 :! {v1, v3, v5}, and e4 :! {v1, v2, v4} (Figure 2).

Consider the set Ẽ ! {e ∩ e0 : e ∈ E \ e0}. It is then simple to see that the sequence O ! e1, e2, e3, e4 is a running
intersection ordering of Ẽ. By (3) we have N(e0 ∩ e4) ! {v1, v2}, N(e0 ∩ e3) ! {v1, v3}, and N(e0 ∩ e2) ! {v2, v3}.
Hence, the system of running intersection inequalities centered at e0 with neighbors E \ {e0} is given by

−2zvi − zvj − ze0 + ze1 + ze2 + ze3 + ze4 ≤ 0 for all distinct pairs i, j
( ) ∈ 1, 2, 3{ }. (7)

It can be checked that all these inequalities define facets of MPG. One can write many more running in-
tersection inequalities for MPG. Because of space limitations, we only listed those centered at e0 with
neighbors E \ {e0}. □

Figure 2. (Color online) Hypergraph considered in Example 1.
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Consider the set of all running intersection inequalities centered at e0 with neighbors ek, k ∈ K. To construct
these inequalities, we make use of a running intersection ordering of the multiset Ẽ defined by (4), and by
Lemma 1, such an ordering is not unique. However, the following proposition implies that the system of all
running intersection inequalities centered at e0 with neighbors ek, k ∈ K, is independent of the running in-
tersection ordering.

Proposition 2. Let F be a multiset with the running intersection property. Then any running intersection ordering of F leads
to the same multiset {N(e) : e ∈ F} as defined in (3).

Proof. We prove the statement by induction on |F|. Given a multiset F′ of subsets of a finite set and e, f ∈ F′, we say
that e is a parent of f in F′ if f ∩ (⋃g∈F′\ f g) ⊆ e.

In the base case, we have |F| ! 1; the running intersection ordering is unique and thus the statement
trivially follows. We also consider the base case |F| ! 2. Let f , g ∈ F. If f ∩ g ! ∅, then independent of the
running intersection ordering, we obtain N( f ) ! N(g) ! ∅. Thus, we assume that f ∩ g is nonempty. Let O be a
running intersection ordering of F. If O ! g, f , we obtain N( f ) ! f ∩ g and N(g) ! ∅. Vice versa, if O ! f , g, we
obtain N′(g) ! g ∩ f and N′( f ) ! ∅. Hence, the two multisets coincide. In the latter base case, although the two
multisets coincide, the function that associates to each e ∈ F the set N(e) is not independent of the running
intersection ordering.

We now prove the inductive step. Let O and O′ be two running intersection orderings of F. Let {N(e) : e ∈ F}
be the multiset corresponding to O and let {N′(e) : e ∈ F} be the multiset corresponding to O′. If the last set in
O and O′ is the same set, say f , then we have N( f ) ! N′( f ). By dropping the last set from O and O′, we obtain
two running intersection orderings Õ and Õ′ of F \ { f }, respectively. By induction, the two multisets {N(e) :
e ∈ F \ { f }} and {N′(e) : e ∈ F \ { f }} coincide; hence, the multisets {N(e) : e ∈ F} and {N′(e) : e ∈ F} also coincide.
Thus we now assume that the last set in O, say f , is different from the last set in O′, say g.

Because f and g are leaves of F, they both have a parent in F. Let p( f ) be a parent of f in F, and let p(g) be a
parent of g in F. There might be several sets of F that are parents of f . If g is a parent of f , then we set p( f ) :! g.
Symmetrically, if f is a parent of g, then we set p(g) :! f .

We first consider the case where p( f ) ! g and p(g) ! f . Because p(g) ! f , for every set e ∈ F \ {f }, we have
g ∩ e ! f ∩ g ∩ e. Let F̄ be obtained from F \ { f } by replacing the set g with a new set f ∩ g and let Ō be obtained
from O by dropping the last set f and by replacing g with f ∩ g. Because by dropping the last set from O, we
obtain a running intersection ordering of F \ { f }, it can be checked that Ō is a running intersection ordering of
F̄ and that the two running intersection orderings lead to the same multiset {N(e) : e ∈ F \ {f }}. Symmetrically,
because p( f ) ! g, we define the set F̄′ obtained from F \ {g} by replacing the set f with a new set f ∩ g. We also
obtain Ō′ from O′ by dropping the last set g and by replacing f with f ∩ g. As previously, Ō′ is a running
intersection ordering of F̄′. Moreover, Ō′ and the running intersection ordering of F \ {g} obtained by dropping
the last set from O′ lead to the same multiset {N′(e) : e ∈ F \ {g}}. Note that F̄ ! F̄′; thus, by induction, the two
multiset {N(e) : e ∈ F \ { f }} and {N′(e) : e ∈ F \ {g}} coincide. Because N( f ) ! f ∩ g ! N′(g), also the multisets
{N(e) : e ∈ F} and {N′(e) : e ∈ F} coincide. This concludes the proof in the case p( f ) ! g and p(g) ! f .

We now assume that the assumption p(g) ! f and p( f ) ! g does not hold. To study the multiset {N(e) : e ∈ F}
corresponding to O, we define the multiset F1 obtained from F by deleting the set f .

Claim 1. If p(g) )! f , then p(g) is a parent of g in F1. If p(g) ! f , then p( f ) is a parent of g in F1.

Proof of Claim. If p(g) )! f , then p(g) is a parent of g in F1 because

g ∩ ∪e∈F\ f ,g{ }e
( )

⊆ g ∩ ∪e∈F\ g{ }e
( )

⊆ p g
( )

.

Assume now that p(g) ! f . We have g ∩ (∪e∈F\{f ,g}e) ⊆ g ∩ (∪e∈F\{g}e) ⊆ f , and ∪e∈F\{f ,g}e ⊆ ∪e∈F\{f }e. Thus,

g ∩ ∪e∈F\ f ,g{ }e
( )

⊆ f ∩ ∪e∈F\ f{ }e
( )

⊆ p f
( )

.

Because p( f ) )! g, it follows that p( f ) is a parent of g in F1. □

By Claim 1, g has a parent in F1. This implies that there exists a running intersection ordering of F \ { f } with
g as the last set. In fact, such a running intersection ordering can be obtained by appending g to a running
intersection ordering of F \ { f , g}. Because by induction all running intersection orderings of F \ { f } lead to the
same multiset, we assume without loss of generality that the second to last set in O is g. We now explicitly
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write the obtained sets N( f ) and N(g). To do so, we consider three cases: (A) p( f ) )! g and p(g) )! f , (B) p( f ) ! g
and p(g) )! f , and (C) p( f ) )! g and p(g) ! f .

Case A. We have N( f ) ! f ∩ p( f ) and by Claim 1 N(g) ! g ∩ p(g).
Case B. We have N( f ) ! f ∩ g and by Claim 1 N(g) ! g ∩ p(g).
Case C. We have N( f ) ! f ∩ p( f ) and by Claim 1 N(g) ! g ∩ p( f ).
We now study the multiset {N′(e) : e ∈ F} corresponding to O′. Let F′1 be obtained from F by deleting the

set g. By Claim 1, with f and g permuted, and with F′1 instead of F1, we obtain the following.

Claim 2. If p( f ) )! g, then p( f ) is a parent of f in F′1. If p( f ) ! g then p(g) is a parent of f in F′1.

By Claim 2, f has a parent in F′1. This implies that there exists a running intersection ordering of F \ {g} with
f as the last set. Because by induction, all running intersection orderings of F \ {g} lead to the same multiset,
we assume without loss of generality that the second to last set in O′ is f . In order to explicitly write the
obtained sets N′(g) and N′( f ), we consider the three cases A, B, and C introduced previously.

Case A. We have N′(g) ! g ∩ p(g) and by Claim 2 N′( f ) ! f ∩ p( f ).
Case B. We have N′(g) ! g ∩ p(g) and by Claim 2 N′( f ) ! f ∩ p(g).
Case C. We have N′(g) ! g ∩ f and by Claim 2 N′( f ) ! f ∩ p( f ).
We now show that the multiset {N( f ),N(g)} equals the multiset {N′(g),N′( f )}. This concludes the proof of

the proposition because the two orders obtained from O and O′ by dropping the last two sets are running
intersection orderings of the same set F \ { f , g} and by induction the two corresponding multisets coincide.

Again, we consider the three cases A, B, and C. As Case C is symmetric to Case B, we will not consider it
any further.

Case A. We have N( f ) ! N′( f ), and N(g) ! N′(g). Thus, we are done.
Case B. We have N(g) ! N′(g). Thus, we need to show N( f ) ! f ∩ g ! f ∩ p(g) ! N′( f ). Because p(g) is a

parent of g in F, we have f ∩ g ⊆ p(g); thus, f ∩ g ⊆ f ∩ p(g). Vice versa, because g is a parent of f in F, we have
f ∩ p(g) ⊆ g; thus, f ∩ p(g) ⊆ f ∩ g. □

By applying Proposition 2 to the multiset Ẽ defined by (4), we obtain the following result.

Corollary 1. Any running intersection ordering of Ẽ leads to the same system of running intersection inequalities centered at
e0 with neighbors ek, k ∈ K.

We now introduce a new polyhedral relaxation of multilinear sets. To this end, we first recall a widely used
polyhedral relaxation of SG, which is obtained by replacing each multilinear equation ze ! ∏

v∈e zv, by its
convex hull over the unit hypercube:

MPLP
G :!

{
z : zv ≤ 1, ∀v ∈ V,

ze ≥ 0, ze ≥
∑

v∈e
zv − |e| + 1, ∀e ∈ E,

ze ≤ zv, ∀e ∈ E, ∀v ∈ e
}
. (8)

This relaxation has been used extensively in the literature and is often referred to as the standard linearization of
the multilinear set (Crama [10]).

We define the running intersection relaxation of SG, denoted by MPRI
G , as the polytope obtained by adding to

MPLP
G all possible running intersection inequalities for SG. Running intersection inequalities with no neighbors

are already present in (8).

2.3. Redundant inequalities
For a general hypergraph G, many of the running intersection inequalities defined by (5) are redundant for
MPRI

G . The following proposition provides sufficient conditions to identify such redundant inequalities.

Proposition 3. Every running intersection inequality centered at e0 with neighbors ek, k ∈ K, that defines a facet of MPRI
G

satisfies the following three conditions:
(i) For any k, k′ ∈ K, we have e0 ∩ ek ⊈ e0 ∩ ek′;
(ii) For any k ∈ K, we have |e0 ∩ ek | ≥ 2;
(iii) For any distinct k, k′ ∈ K with uk,uk′ ∈ N(e0 ∩ ek) ∩N(e0 ∩ ek′), we have uk ! uk′.

Proof. To prove the statement, we consider a running intersection inequality not satisfying each condition. Then
we show that such an inequality can be obtained by summing up a number of other inequalities valid for MPRI

G .
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Because MPG is full dimensional (Del Pia and Khajavirad [12]), this implies that the inequality under consideration
is not facet defining.

Consider a running intersection inequality centered at e0 with neighbors ek, k ∈ K. Assume that this inequality
does not satisfy condition (i); that is, there exist i, j ∈ K such that e0 ∩ ei ⊆ e0 ∩ ej. Consider the multiset Ẽ defined
by (4). We show that there exists a running intersection ordering O of Ẽ in which e0 ∩ ej appears before e0 ∩ ei.
Define Ẽ′ ! {e0 ∩ ek : k ∈ K \ {i}}. Observe that by part (iii) of Lemma 1, the set Ẽ′ has the running intersection
property. Consider a running intersection orderingO′ of Ẽ′ and construct a sequenceO obtained by inserting e0 ∩ ei
right after e0 ∩ ej inO′. It is now simple to check thatO is a running intersection ordering of Ẽ. A running intersection
inequality centered at e0 with neighbors ek, k ∈ K \ {i}, is given by

−
∑

k∈K\ i{ }:N e0∩ek( ))!∅
zuk +

∑

v∈e0\
⋃

k∈K\ i{ } ek

zv +
∑

k∈K\ i{ }
zek − ze0 ≤ ω − 1, (9)

where ω denotes the number of connected components of G̃′ ! (e0, Ẽ′) and the sets N(e0 ∩ ek), k ∈ K \ {i} are
obtained according to the running intersection ordering O′. Now consider the edge ei and denote by u a node
in e0 ∩ ei. Then the following inequality is present in MPLP

G :

−zu + zei ≤ 0. (10)

It is simple to see that e0 \ ∪k∈Kek ! e0 \ ∪k∈K\{i}ek. Moreover, the number of connected components of the two
hypergraphs G̃ ! (e0, Ẽ) and G̃′ are identical. In addition, by construction, the sets N(e0 ∩ ek), k ∈ K \ {i}, as-
sociated with O′ coincide with those associated with O. Finally, the set N(e0 ∩ ei) obtained using O is given by
N(e0 ∩ ei) ! e0 ∩ ei, because by assumption e0 ∩ ei ⊆ e0 ∩ ej and e0 ∩ ej appears before e0 ∩ ei. It then follows that
the running intersection inequality under consideration can be obtained by adding inequalities (9) and (10).

Consider a running intersection inequality centered at e0 with neighbors ek, k ∈ K. Assume that this inequality
does not satisfy condition (ii) that is,there exist i ∈ K and u ∈ V(G) such that e0 ∩ ei ! {u}. We can assume that the
inequality satisfies condition (i) thus we have u /∈ ek ∩ e0 for every k ∈ K \ {i}. Consider a running intersection
ordering O of Ẽ defined by (4) and let the set N(e0 ∩ ek), k ∈ K, be defined by (3). It then follows that N(e0 ∩ ei) ! ∅
and that the sequence O′ obtained by removing e0 ∩ ei from O is a running intersection ordering of the set
Ẽ′ ! {e0 ∩ ek : k ∈ K \ {i}}. In addition, the sets N(e0 ∩ ek), k ∈ K \ {i}, associated with O′ are identical to those
associated with O. Hence, a running intersection inequality centered at e0 with neighbors ek, k ∈ K \ {i} is given by

−
∑

k∈K:N e0∩ek( ))!∅
zuk +

∑

v∈e0\
⋃

k∈K\ i{ } ek

zv +
∑

k∈K\ i{ }
zek − ze0 ≤ ω − 1, (11)

where ω denotes the number of connected components of the hypergraph G̃′ ! (e0, Ẽ′). Now consider the edge
ei; clearly, the following inequality is present in MPLP

G :

−zu + zei ≤ 0. (12)

It is simple to see that e0 \⋃k∈K\{i} ek ! {u} ∪ (e0 \⋃k∈K ek). In addition, the number of connected components
of G̃ ! (e0, Ẽ) and G̃′ are identical. It then follows that the running intersection inequality under consideration
can be obtained by summing up inequalities (11) and (12).

Finally, consider a running intersection inequality centered at e0 with neighbors ek, k ∈ K that does not satisfy
condition (iii) that is, there exist i, j ∈ K with ui,uj ∈ N(e0 ∩ ei) ∩N(e0 ∩ ej) such that ui )! uj. We now construct two
other running intersection inequalities entered at e0 with neighbors ek, k ∈ K, for which we select the same node
from each N(e0 ∩ ek), for all k ∈ K \ {i, j} as the original inequality, but for first one we let u′i ! u′j ! ui, whereas for
the second one we let u′′i ! u′′j ! uj. It is then simple to check that the running intersection inequality under
consideration can be obtained by adding these two inequalities both of which are present in MPRI

G . □

2.4. Facet-Defining inequalities
We conclude this section by showing that, under certain assumptions, running intersection inequalities are
facet-defining for their support hypergraphs. This result together with the lifting theorems presented in Del
Pia and Khajavirad [12] enables us to obtain sufficient conditions under which these inequalities define facets
of the multilinear polytope of general hypergraphs.
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Proposition 4. Consider a running intersection inequality centered at e0 with neighbors ek, k ∈ K, and let G denote its
support hypergraph. Assume that the inequality satisfies the following conditions:

1. For every k ∈ K, we have |e0 ∩ ek | ≥ 2;
2. For every K′ ⊆ K such that e0 ∩ (∩k∈K′ek) )! ∅ we have e0 ∩ (ei \ ∪k∈K′\{i}ek) )! ∅ for all i ∈ K′;
3. Each nonempty N(e0 ∩ ek), k ∈ K, intersects the set U :! {uk : k ∈ K, N(e0 ∩ ek) )! ∅} in only one node.

Then this running intersection inequality defines a facet of MPG.

Proof. Consider a running intersection inequality defined by (5). We start by identifying a set of points in SG that
satisfy this inequality tightly. Subsequently, we show that any nontrivial valid inequality az ≤ α for SG that is
satisfied tightly at all such points coincides with (5) up to a positive scaling. Because MPG is full dimensional (Del
Pia and Khajavirad [12]), this in turn implies that inequality (5) defines a facet of MPG.

Let G̃ ! (e0, Ẽ), where Ẽ is given by (4). As in the proof of Proposition 1, we denote by G̃1, . . . , G̃ω the
connected components of G̃. Consider a partition of K given by K ! ⋃ω

i!1 Ki, where Ki contains the indices of the
edges of G̃i. Let Ω contain those indices i ∈ {1, . . . ,ω} for which Ki )! ∅. By Lemma 2, for each i ∈ Ω there exists a
unique index ri in Ki with N(e0 ∩ eri ) ! ∅. Define

γGi ! −
∑

k∈Ki\ ri{ }
zuk +

∑

k∈Ki

zek .

Then, it can be checked that

Claim 3. Let z ∈ SG. Then
(i) If zuk ! 1 for all k ∈ Ki \ {ri} and zek ! 1 for all k ∈ Ki, then γGi ! 1;
(ii) If zuk ! zek for all k ∈ Ki \ {ri} and zeri ! 0, then γGi ! 0.

For notational simplicity, in the following, let V0 ! e0 \ ∪k∈Kek. To identify the tight points of (5), we consider
two cases:

(I) Case ze0 ! 1: a point in SG satisfies (5) tightly if and only if γGi ! 1 for all i ∈ Ω;
(II) Case ze0 ! 0: a point in SG satisfies (5) tightly if and only if one of the following is satisfied:

(II′) We have zv ! 1 for all v ∈ V0, γGj ! 0 for some j ∈ Ω and γGi ! 1 for all i ∈ Ω \ {j};
(II′′) We have V0 )! ∅, zw ! 0 for some w ∈ V0, zv ! 1 for all v ∈ V0 \ {w}, and γGi ! 1 for all i ∈ Ω.

If V0 )! ∅, by part (i) of Claim 3, it is simple to check that substituting tight points of type (I) and (II′′) in
az ≤ α, yields

av + ae0 ! 0, ∀v ∈ V0. (13)

Define Uj ! ∪k∈Kj\{rj}uk for all j ∈ Ω. For each j ∈ Ω with ∪k∈Kj ek \Uj )! ∅, by part (ii) of Claim 3, we construct two
tight points of type (II′) as follows: the first tight point is obtained by letting zv ! 0 for all v ∈ ∪k∈Kjek. The
second tight point is obtained by letting zw ! 1 for some w ∈ (∪k∈Kjek) \Uj and zv ! 0 for all v ∈ ∪k∈Kjek \ {w}.
From condition 1, it follows that e0 ∩ ∪k∈Kjek \ {w} )! ∅. By construction, in both tight points we have zuk !
zek ! 0 for all k ∈ Kj \ {rj} and zerj ! 0. Substituting these two points in az ≤ α and subtracting the resulting
expressions gives aw ! 0. Using a similar line of arguments for each w ∈ (∪k∈Kjek) \Uj and each j ∈ Ω, we obtain

av ! 0, ∀v ∈
⋃

k∈K
ek \

⋃

j∈Ω
Uj. (14)

Let e% denote a leaf of E(G̃j). We claim that e0 ∩ e% \Uj is nonempty. If Uj ! ∅, then the statement is trivial.
Otherwise, by definition of a leaf e0 ∩ e% \Uj ⊇ e0 ∩ e% \ e0 ∩ eh for some h ∈ Kj such that h )! %. Moreover, from
condition 2 it follows that e0 ∩ (e% \ eh) )! ∅. Now we construct two tight points as follows: the first point is a
tight point of type (I). The second point is obtained by letting zw ! 0 for some w ∈ e0 ∩ e% \Uj and zv ! 1 for all
v ∈ ∪k∈Kjek \ {w}. This point is a tight point of type (II′). To see this, consider a running intersection ordering of
Ẽ in which e0 ∩ e% is the first element. By part (II) of Lemma 1, such an ordering exists. It then follows that at
this tight point we have zuk ! zek ! 1 for all k ∈ Kj \ {%} and ze% ! 0. By (14), we have aw ! 0. Substituting these
two points in az ≤ α and subtracting the resulting relations we obtain

aek + ae0 ! 0, ∀k ∈ K : ek is a leaf of Ẽ. (15)

Again consider a tight point of type (II′) in which γGj ! 0 for some j ∈ Ω by letting zek ! 0 for all k ∈ Kj and
zuk ! 0 for all k ∈ Kj \ {rj}. Consider a node w in the set Uj defined previously. Denote by K′ the index set of all
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edges in Kj with ek ⊃ w. Let % ∈ K′ and consider a running intersection ordering of Ẽ in which e0 ∩ e% is the first
element. The existence of such an ordering follows from part (ii) of Lemma 1. Now, construct a second tight point
of type (II′) in which we have zw ! 1. By condition 3, we have uk ! w for all k ∈ K′ \ {%}, as by construction,
N(e0 ∩ ek) ⊇ w for all k ∈ K′ \ {%}. Moreover, by condition 2, there exists a node v% ∈ e0 ∩ (e% \ ∪k∈K′\{%}ek). It then
follows that by letting zv% ! 0 and zw ! 1, we can construct a tight point of type (II′) in SG such that ze% ! 0,
zuk ! zek ! 1 for all k ∈ K′ \ {%} and zuk ! zek ! 0 for all k ∈ Kj \ K′. Substituting these two points in az ≤ α and
using (14), yields

|K′| − 1( )aw +
∑

k∈K′\ %{ }
aek ! 0, ∀% ∈ K′.

It then follows that for each w ∈ U, we have

aw + aek ! 0, ∀k ∈ K such that ek ⊃ w. (16)

Together with (15), this implies that

aek + ae0 ! 0, ∀k ∈ K. (17)

Finally, by substituting the tight point of type (I) we get α ! ∑
p∈V∪E ap. Together with (13), (14), (16), and (17),

this implies that az ≤ α coincides with inequality (5) up to a positive scaling, implying that (5) defines a facet
of MPG. □

In particular, Proposition 4 implies the following.

Corollary 2. Consider a running intersection inequality centered at e0 with neighbors ek, k ∈ K. Suppose that |e0 ∩ ek | ≥ 2 for
all k ∈ K and |e0 ∩ ek ∩ ek′ | ≤ 1 for all k, k′ ∈ K. Then this inequality defines a facet of the multilinear polytope of its sup-
port hypergraph.

Proof. To prove the statement, it suffices to show conditions 2 and 3 of Proposition 4 are satisfied. First consider
condition 2; because |e0 ∩ ek ∩ ek′ | ≤ 1 for all k, k′ ∈ K, it follows that for anyK′ ⊆ K, the set e0 ∩ (∩k∈K′ek) consists of at
most a single node. Moreover, if e0 ∩ (∩k∈K′ek) ! {v}, then e0 ∩ ek ∩ ek′ ! {v} for all k, k′ ∈ K′. Hence, for each i ∈ K′

we have e0 ∩ (ei \ ∪k∈K′\{i}ek) ! (e0 ∩ ei) \ {v}, and the latter is nonempty as by assumption |e0 ∩ ei| ≥ 2. Condition 3 is
satisfied as the assumption |e0 ∩ ek ∩ ek′ | ≤ 1 for all k, k′ ∈ K implies that |N(e0 ∩ ek)| ≤ 1 for all k ∈ K. □

We should remark that the converse of Proposition 4 does not hold in general; namely, although by
Proposition 3, condition 1 is necessary, one can construct facet-defining inequalities that do not satisfy
conditions 2 and 3. In fact, in Example 1, inequalities (7) are facet defining but they do not satisfy condition 3
of Proposition 4. We believe that a complete characterization for facetness of running intersection inequalities
depends on the precise structure of the support hypergraph.

2.5. Computational Impact
Del Pia et al. [15] demonstrate the effectiveness of running intersection inequalities in constructing strong
polyhedral relaxations for general multilinear polytopes. Namely, they devise an efficient algorithm for separating
running intersection inequalities that they embed at every node of the branch-and-reduce global solver BARON
(Khajavirad and Sahinidis [20]). Results for multilinear and polynomial optimization problems of degree three
and four show that running intersection cuts significantly improve the performance of BARON.

As we detailed before, running intersection inequalities serve as a generalization of flower inequalities (Del
Pia and Khajavirad [13]). Indeed, running intersection cuts have a more complex form than flower cuts, and
the corresponding proof techniques are more involved. In the following, we demonstrate the significance of
running intersection cuts in global optimization via a simple numerical study. We consider a test set con-
taining computer vision instances from an image restoration problem. This test set consists of 45 uncon-
strained binary polynomial optimization problems of degree four. Crama and Rodrı́guez-Heck [11] provide
the problem formulation and a detailed description of the test set. It can be checked that corresponding
hypergraphs are not β-acyclic. To highlight the benefits of running intersection cuts, we devise two relaxation
construction strategies. We use the cut generation scheme of Del Pia et al. [15] to add (i) running intersection
cuts and (ii) only flower cuts to BARON’s polyhedral relaxation. We compare the root-node relaxation gap,
defined as the difference between the upper and lower bounds for the problem at the root node of the tree for the two
relaxation strategies. We call a problem trivial if it is solved to global optimality at the root node by both algorithms.
Of 45 problems, 10 were trivial. Results for the nontrivial problems are shown in Figure 3. For 27 instances, that is,
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for about 80% of the problems, running intersection cuts result in more than 95% reduction in root node
relaxation gap. This experiment demonstrates the usefulness of these inequalities in their most general form.

3. Convex Hull Characterizations
In Del Pia and Khajavirad [13], we defined the flower relaxation as the polytope obtained by adding all flower
inequalities for a multilinear set to its standard linearization. Subsequently, we showed that the flower re-
laxation coincides with the multilinear polytope if and only if the underlying hypergraph is γ-acyclic. In the
remainder of this paper, we study the tightness of the running intersection relaxation. Namely, we provide a
necessary condition and a sufficient condition for the tightness of the running intersection relaxation in terms
of the acyclicity degree of the hypergraph. To this end, we briefly review different types of cycles in hypergraphs.

3.1. Hypergraph Acyclicity
Unlike graphs for which there is a single natural notion of acyclic graphs, there are several nonequivalent
definitions of acyclicity for hypergraphs, which collapse to graph acyclicity for the special case of ordinary
graphs (Fagin [18]). Among the most widely used ones one can cite, in increasing order of generality, Berge-
acyclicity, γ-acyclicity, and β-acyclicity. Next, we briefly review these concepts as they play a crucial role in
our subsequent developments (see Berge [5] for an exposition).

A Berge-cycle in G of length t is a chain C ! v1, e1, v2, e2, . . . , vt, et, vt+1 such that vt+1 ! v1 and t ≥ 2. A γ-cycle in
G is a Berge-cycle such that t ≥ 3, and the node vi belongs to ei−1, ei and no other ej, for all i ! 2, . . . , t. A β-cycle
in G is a γ-cycle such that the node v1 belongs to e1, et and no other ej. A hypergraph is Berge-acyclic (re-
spectively, γ-acyclic, β-acyclic) if it does not contain any Berge-cycle (respectively, γ-cycle, β-cycle). Throughout
this paper, given any cycle C ! v1, e1, v2, e2, . . . , vt, et, v1, we denote by V(C) ! {v1, . . . , vt} the nodes of C, and by
E(C) ! {e1, . . . , et} the edges of C.

Consider a hypergraph G ! (V,E) and let V′ be a subset of V. We define the subhypergraph of G induced by
V′ as the hypergraph GV′ with node set V′ and with edge set {e ∩ V′ : e ∈ E, |e ∩ V′| ≥ 2}. For every edge e of GV̄ ,
there may exist several edges e′ of G satisfying e ! e′ ∩ V̄; we denote by e′(e) one such arbitrary edge of G. For
ease of notation, we often identify an edge e of GV̄ with an edge e′(e) of G. Next, we present a couple of basic
properties of β-acyclic hypergraphs that will be used to prove our main results.

Lemma 3. Let G ! (V,E) be a hypergraph. If the subhypergraph GV′ contains a β-cycle of length t, then G contains a β-cycle
of length t. In particular, if G is β-acyclic, then GV′ is β-acyclic as well.

Proof. Suppose that GV′ contains a β-cycle v1, e1, v2, e2, . . . , vt, et, v1. It is simple to check that v1, e′(e1), v2,
e′(e2), . . . , vt, e′(et), v1 is a β-cycle in G. □

The following result, first appearing in Beeri et al. [4], relates the concepts of β-acyclicity and running
intersection property.

Lemma 4. A hypergraph G ! (V,E) is β-acyclic if and only if every E′ ⊆ E has the running intersection property.

Figure 3. (Color online) Relaxation gap reduction at the root node of BARONwhen using running intersection cuts instead of
flower cuts for 35 computer vision instances.
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3.2. A Necessary Condition for the Tightness of the Running Intersection Relaxation
Denote by R a relaxation of the multilinear set; namely, R is a function that associates to each hypergraph G a
set RG containing all points in SG. Consider a hypergraph G ! (V,E) and let V̄ be a subset of V. Define

LV̄ :! z ∈ RV+E : zv ! 1 ∀v ∈ V \ V̄{ }
. (18)

Denote by projGV̄
(RG ∩ LV̄) the set obtained from RG ∩ LV̄ by projecting out all variables zv, for all v ∈ V \ V̄, and

zf , for all f ∈ E \ {e′(e) : e ∈ E(GV̄)}. In Del Pia and Khajavirad [13], we showed the following equivalence for the
multilinear polytope.

Lemma 5. Let G ! (V,E) be a hypergraph and let the set LV̄ be defined by (18) for some V̄ ⊆ V. Then MPGV̄
!

projGV̄
(MPG ∩ LV̄).

Next, we present a weaker version of this result for the running intersection relaxation. We state this result
without a proof, as the proof is a straightforward generalization of the proof of Lemma 13 in Del Pia and
Khajavirad [13], wherein we show that a similar inclusion relation holds for the flower relaxation.

Lemma 6. Let G ! (V,E) be a hypergraph and let the set LV̄ be defined by (18) for some V̄ ⊆ V. Then MPRI
G �V

⊆
projGV̄

(MPRI
G ∩ L �V).

The following proposition provides a necessary condition for the tightness of the running intersec-
tion relaxation.

Proposition 5. If the hypergraph G is not β-acyclic, then MPG ⊂ MPRI
G .

Proof. Suppose that G contains at least one β-cycle. Denote by C a β-cycle of minimum length, say t. To show that
MPG ⊂ MPRI

G , by Lemmas 5 and 6, it is sufficient to prove that MPGV(C) ⊂ MPRI
GV(C)

.
Define the set Ẽ :! {e ∩ V(C) : e ∈ E(C)}. Clearly, Ẽ ⊆ E(GV(C)). First suppose that Ẽ ! E(GV(C)); that is, GV(C) is a

graph that consists of a chordless cycle. The inclusion MPGV(C) ⊂ MPRI
GV(C)

is then valid as the odd-cycle inequalities
are facet defining for MPGV(C) (Padberg [25]) and are clearly not implied by MPRI

GV(C)
.

Next, suppose that Ẽ ⊂ E(GV(C)). Let ē be in E(GV(C)) \ Ẽ. We claim that ē ! V(C). To obtain a contradiction,
suppose that ē ⊂ V(C). Then it is simple to check that GV(C) contains a β-cycle of length t′ with t′ < t. By Lemma 3,
also G contains a β-cycle of length t′. However, this contradicts the assumption that C is β-cycle of G of minimum
length. Hence, ē ! V(C). This shows that E(GV(C)) ! Ẽ ∪ V(C); that is, the hypergraph GV(C) consists of a chordless
cycle enclosed by the edge ē. Denote by az ≤ α an odd-cycle inequality corresponding to the chordless cycle inGV(C).
Suppose that ae ! −1 for e ∈ M ⊆ E(C) such that |M| ! 2 h + 1 for some h ≥ 1. It can be checked that any inequality of
the form az + hzē ≤ α defines a facet ofMPGV(C) . However, such inequalities are not present inMPRI

GV(C)
. Consequently,

if the hypergraph G contains a β-cycle, we have MPGV(C) ⊂ MPRI
GV(C)

. □

Henceforth, we consider a β-acyclic hypergraph G ! (V,E). By Lemmas 1 and 3, given any edge e0 ∈ E and a
collection of adjacent edges ek, k ∈ K, the set {e0 ∩ ek : k ∈ K} has the running intersection property. Hence, the
polytope MPRI

G can be simply obtained by adding to MPLP
G all inequalities of the form (5) with any e0 ∈ E as the

center edge and any collection of adjacent edges ek, k ∈ K. The following example indicates that even for
β-acyclic hypergraphs, the running intersection relaxation may not coincide with the multilinear polytope.

Example 2. Consider the hypergraph G ! (V,E) with V ! {v1, v2, v3, v4} and E ! {e12, e123, e124, e1234}, where the
edge eI contains the nodes with indices in I. It is simple to check that G is β-acyclic. It can be shown that the
inequality −ze12 + ze123 + ze124 − ze1234 ≤ 0 defines a facet of MPG and is not valid for the running intersection relaxation
of SG. □

More generally, it can be checked that the multilinear polytope of β-acyclic hypergraphs can have dense
facet-defining inequalities. By dense facets, we mean facets whose support hypergraph contains almost all
edges of the original hypergraph. This is in major contrast with the support hypergraph of running inter-
section inequalities that consists of a center edge that is adjacent to all other edges. In the following, we
characterize a class of β-acyclic hypergraphs for which we have MPG ! MPRI

G . We believe that for general
β-acyclic hypergraphs, MPG has a far more complicated facial structure than MPRI

G .

3.3. A Sufficient Condition for the Tightness of the Running Intersection Relaxation
We now introduce the class of kite-free β-acyclic hypergraphs. As we will show in the following, for this class
of hypergraphs the running intersection relaxation coincides with the multilinear polytope. A kite in a hypergraph
G ! (V,E) consists of three edges e0, e1, e2 ∈ E such that |e0 ∩ e1 ∩ e2| ≥ 2, (e0 ∩ e1) \ e2 )! ∅, and (e0 ∩ e2) \ e1 )! ∅.
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Figure 4(a) provides an illustration of a kite. A hypergraph G ! (V,E) is said to be kite-free if it contains no kite.
Figure 4(b) shows an example of a kite-free β-acyclic hypergraph. The hypergraph in Example 2 is β-acyclic but
is not kite-free; that is, it contains a kite consisting of edges {v1, v2, v3, v4}, {v1, v2, v3}, {v1, v2, v4}.

As we mentioned before, a polynomial-time algorithm for determining β-acyclicity of hypergraphs is
available (Fagin [18]). Moreover, one can check in O(|E|3) operations whether a hypergraph G ! (V,E) is kite-
free; hence, the detection problem for kite-free β-acyclic hypergraphs runs in polynomial time.

As we detail in the following, if G is a kite-free β-acyclic hypergraph, then the subhypergraph Ge of G
induced by any edge e ∈ E(G) has a particular structure that enables us to characterize MPGe using a lift-and-
project technique. Let us first define a t-laminar hypergraph. A hypergraph G ! (V,E) is t-laminar if for any
two edges e1, e2 ∈ E with |e1 ∩ e2| ≥ t, we have e1 ⊂ e2 or e2 ⊂ e1 (see Dukes [17] for more details on t-laminarity).
In particular, one-laminar hypergraphs are referred to as laminar hypergraphs. The following is the key
connection between kite-free hypergraphs and two-laminar hypergraphs.

Lemma 7. Let G be a kite-free hypergraph, and let e0 ∈ E(G). Then the subhypergraph Ge0 of G induced by e0 is a two-
laminar hypergraph.

Proof. Assume by contradiction that Ge0 is not two-laminar. Then there exist two edges e1, e2 of G such
that |(e0 ∩ e1) ∩ (e0 ∩ e2)| ≥ 2, e0 ∩ e1 )⊂ e0 ∩ e2, and e0 ∩ e2 )⊂ e0 ∩ e1. Then edges e0, e1, e2 satisfy |e0 ∩ e1 ∩ e2| ≥ 2,
(e0 ∩ e1) \ e2 ! (e0 ∩ e1) \ (e0 ∩ e2) )! ∅, and (e0 ∩ e2) \ e1 ! (e0 ∩ e2) \ (e0 ∩ e1) )! ∅. This contradicts the fact that G is
kite-free. □

The running intersection inequalities (5) can be greatly simplified if G is a kite-free β-acyclic hypergraph.
Consider a collection of edges e0, ek, k ∈ K, satisfying conditions (i) and (ii) of Proposition 3, that is, e0 ∩ ek )
⊆ e0 ∩ ek′ for any k, k′ ∈ K, and |e0 ∩ ek | ≥ 2 for all k ∈ K. By construction, G̃ ! (e0, Ẽ), where Ẽ is defined by (4),
is a partial hypergraph of the subhypergraph of G induced by e0. Hence, by Lemma 7, G̃ is a two-laminar
hypergraph; it then follows that each set N(e0 ∩ ek), k ∈ K, as defined by (3) consists of at most a single node.
For each node v ∈ e0, denote by δK(v) the number of edges in ek, k ∈ K, that contain v. Then, there exists only
one running intersection inequality centered at e0 with neighbors ek, k ∈ K, and it can be checked that this
inequality is of the form

∑

v∈e0
1 − δK v( )( )zv +

∑

k∈K
zek − ze0 ≤ ω − 1, (19)

where, as before ω denotes the number of connected components of G̃.
In the remainder of this section, we state the results that we need to establish that the multilinear polytope of

kite-free β-acyclic hypergraphs coincides with the running intersection relaxation. To streamline the pre-
sentation, the technical proofs are given in Section 5. In Section 3.3.1, we characterize the multilinear polytope
of two-laminar β-acyclic hypergraphs using a lift-and-project type technique. Subsequently, in Section 3.3.2,
we present a sufficient condition under which a multilinear set is decomposable into a collection of simpler
multilinear sets. In Section 3.3.3, we use the results of Sections 3.3.1 and 3.3.2 to obtain a compact extended
formulation for MPG. More precisely, we show that in a lifted space, the multilinear polytope of a kite-free
β-acyclic hypergraph G is representable as the intersection of a collection of multilinear polytopes of two-
laminar β-acyclic hypergraphs. Finally, in Section 3.3.4, by projecting out the extra variables, we show that in
the original space we have MPG ! MPRI

G .

3.3.1. Multilinear Polytope of Two-Laminar β-Acyclic Hypergraphs. By definition, a laminar hypergraph is also
two-laminar. However, although laminarity implies γ-acyclicity, a two-laminar β-acyclic hypergraph contains
γ-cycles in general, resulting in an increased complexity of the corresponding multilinear polytope. In Del Pia

Figure 4. (Color online) Kites in hypergraphs (a) An illustration of a kite and (b) a kite-free β-acyclic hypergraph.
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and Khajavirad [13], we showed that the subhypergraph induced by an edge of a γ-acyclic hypergraph is
laminar. Subsequently, we characterized the multilinear polytope of laminar hypergraphs by leveraging on a
fundamental result from Conforti and Cornuéjols regarding the connection between integral polyhedra and
balanced matrices (Conforti and Cornuéjols [9]). Namely, we showed that the constraint matrix corresponding
to the facet description of the multilinear polytope of laminar hypergraphs is balanced. A similar proof
technique is not applicable to two-laminar β-acyclic hypergraphs as the concept of balancedness is only
defined for 0,±1 matrices; that is, such a technique can only be used if the constraint matrix corresponding to
the facet description of the multilinear polytope only contains 0,±1 entries. However, for two-laminar β-acyclic
hypergraphs, some facet-defining inequalities have general integer-valued coefficients. We use a lift-and-
project type argument to characterize the multilinear polytope of these hypergraphs, which is significantly
more involved than our earlier proof for laminar hypergraphs.

To state the facet description of MPG for a two-laminar β-acyclic hypergraph G ! (V,E), we make use of the
following notation. For each edge e ∈ E, define I(e) :! {p ∈ V ∪ E : p ⊂ e, p )⊂ e′, for e′ ∈ E, e′ ⊂ e} and denote by
ω(e) the number of connected components in the hypergraph He ! (e, I(e) ∩ E). For each v ∈ V, let δe(v) denote
the number of edges in He containing v. It is simple to show that ω(e) ! ∑

v∈e (1 − δe(v)) + |I(e) ∩ E|.
Proposition 6. Let G ! (V,E) be a two-laminar β-acyclic hypergraph. Then MPG is described by the following system:

zv ≤ 1 ∀v ∈ V
−zp ≤ 0 ∀p ∈ V ∪ E s.t. p )⊂ f , for every f ∈ E

−zp + ze ≤ 0 ∀e ∈ E, ∀p ∈ I e( )
∑

v∈e
1 − δe v( )( )zv +

∑

p∈I e( )∩E
zp − ze ≤ ω e( ) − 1 ∀e ∈ E.

(20)

The proof of Proposition 6 is given in Section 5.1.
Consider the inequalities of system (20). Clearly, the first two sets are present in MPLP

G . The third set is
present in MPLP

G if p is a node, and is a running intersection inequality if p is an edge. Finally, for each e ∈ E, the
last inequality is present in MPLP

G if I(e) ⊂ V and is a running intersection inequality otherwise. Hence, we have
the following characterization.

Corollary 3. Let G be a two-laminar β-acyclic hypergraph. Then MPG ! MPRI
G .

It is important to note that for a two-laminar β-acyclic hypergraph G, the relaxation MPRI
G in general contains

many more running intersection inequalities than system (20). More precisely, for each edge e ∈ E(G), in-
equalities (20) contain at most two running intersection inequalities in which e is the center edge, whereas in
the description of MPRI

G , the number of running intersection inequalities (19) centered at e grows exponentially
with the number of neighbors. In addition, it can be shown that all running intersection inequalities in
system (20) are facet defining, whereas many of the running intersection inequalities present in MPRI

G are
redundant, and identifying such redundant inequalities is not simple in general. This compact representation
is the key property of two-laminar β-acyclic hypergraphs, which enables us to use a lift-and-project technique
to directly characterize their multilinear polytope.

3.3.2. A Sufficient Condition for Decomposability of Multilinear Sets. Given hypergraphs Gα ! (Vα,Eα) and
Gω ! (Vω,Eω), we denote by Gα ∩ Gω the hypergraph (Vα ∩ Vω,Eα ∩ Eω) and by Gα ∪ Gω the hypergraph
(Vα ∪ Vω,Eα ∪ Eω). Let G be a hypergraph and let Gα,Gω be section hypergraphs of G such that Gα ∪ Gω ! G.
We say that the set SG is decomposable into the sets SGα and SGω if

convSG ! convS̄Gα ∩ convS̄Gω ,

where S̄Gα (respectively, S̄Gω) is the set of all points in the space of SG whose projection in the space defined by
Gα (respectively, Gω) is SGα (respectively, SGω ).

In Del Pia and Khajavirad [13, 14], we derived sufficient conditions for decomposability of multilinear sets.
In Del Pia and Khajavirad [14], we showed that SG is decomposable into SGα and SGω if the hypergraph
Gα ∩ Gω is complete. In Del Pia and Khajavirad [13], we showed that SG is decomposable into SGα and SGω if
ē ! V(Gα) ∩ V(Gω) is an edge of G and every edge that is only present in Gα either contains ē or is disjoint from
it. In particular, our decomposition result in Del Pia and Khajavirad [13] enables us to characterize multilinear
polytopes of Berge-acyclic and γ-acyclic hypergraphs by showing that the corresponding multilinear sets are
decomposable into a collection of simpler subsets whose convex hulls can be obtained directly.
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Next, in Theorem 1, we provide a new sufficient condition for decomposability of multilinear sets. The
setting considered in Theorem 1 is significantly more involved than the ones described above. Namely, the
edges of Gα may only contain a subset of nodes in V(Gα) ∩ V(Gω), and as a result our earlier tools in Del Pia
and Khajavirad [13, 14] are not applicable to the current setting. More precisely, the key step in proving all
these decomposition results is to show that a vector (ẑα, ẑ∩, ẑω) can be written as a convex combination of
vectors in SG if (ẑα, ẑ∩) can be written as a convex combination of vectors in SGα and (ẑ∩, ẑω) can be written as a
convex combination of vectors in SGω . To prove the decomposition results in Del Pia and Khajavirad [13, 14],
it is sufficient to consider vectors in SG obtained by combining only one vector in SGα with only one vector
in SGω . However, to prove Theorem 1, it seems no longer sufficient to consider vectors in SG obtained by
combining only one vector in SGα with one vector in SGω . To address this issue, we exploit the special structure
of Gα and partition its edge set into k subsets based on the nodes in V(Gα) ∩ V(Gω) to which they are
connected. This allows us to combine one vector in SGω with k vectors in SGα (one per each element of the
partition) that coincide in certain components of Gα ∩ Gω and obtain a vector in SG. Finally, we show that any
vector (ẑα, ẑ∩, ẑω) ∈ MPG can be written as a convex combination of the obtained vectors in SG.

We now state our decomposition result. The proof is given in Section 5.2.

Theorem 1. Let G be a hypergraph, and let Gα, Gω be section hypergraphs of G such that Gα ∪ Gω ! G. Denote by
p̄ :! V(Gα) ∩ V(Gω). Suppose that p̄ ∈ V(G) ∪ E(G) and that Gα is a two-laminar β-acyclic hypergraph. Then the set SG is
decomposable into SGα and SGω .

3.3.3. A Compact Extended Formulation of MPG. We now use the result of Theorem 1 to obtain a compact
extended formulation for the multilinear polytope of kite-free β-acyclic hypergraphs. We say that an edge is
maximal if it is not strictly contained in any other edge. Consider a kite-free β-acyclic hypergraph G ! (V,E).
If V is an edge of G, by Lemmas 3 and 7, G is a two-laminar β-acyclic hypergraph, and consequently by
Corollary 3, we have MPG ! MPRI

G . Henceforth, suppose that G has at least two maximal edges. Denote by Ē
the set of all maximal edges of G, and define κ :! |Ē|. Then by Lemma 4, there exists a running intersection
ordering O ! ē1, . . . , ēκ of Ē. Let the sets N(ēj), j ∈ {1, . . . , κ} be as defined in (3). We now construct the
hypergraph G+ ! (V,E+) obtained from G by adding at most κ − 1 auxiliary edges to E, defined as follows:

E+ :! E ∪ N ēj
( )

: |N ēj
( )| ≥ 2, j ∈ 2, . . . , κ{ }

{ }
. (21)

The following theorem provides an extended formulation of polynomial size for MPG, which contains at most
|V| + 2|E| variables and 2(|V| + (r + 1)|E|) inequalities, where r denotes the maximum cardinality of the edges of
G. In essence, via a recursive application of our decomposition result stated in Theorem 1, we show that SG+ is
decomposable into a collection to multilinear sets of two-laminar β-acyclic hypergraphs.

Theorem 2. Let G ! (V,E) be a kite-free β-acyclic hypergraph. Denote by ēi, i ! 1, . . . ,κ, the maximal edges of G. Consider
the hypergraph G+ ! (V,E+), where E+ is defined by (21), and denote by G+

i , i ! 1, . . . ,κ, the section hypergraph of G+

induced by ēi. Then G+
i , i ∈ {1, . . . ,κ}, is a two-laminar β-acyclic hypergraph and

MPG+ !
⋂κ

i!1
MPG+

i
. (22)

Proof. Consider a kite-free β-acyclic hypergraph G ! (V,E). By Lemma 4, there exists a running intersection
ordering O ! ē1, . . . , ēκ of the set of maximal edges of G. Let Gēκ denote the subhypergraph of G induced by ēκ.
Because G is a kite-free β-acyclic hypergraph, by Lemmas 3 and 7, Gēκ is a two-laminar β-acyclic hypergraph. Now
consider the hypergraph G+ ! (V,E+), where E+ is defined by (21). We define G1

α as the section hypergraph of G+

induced by ēκ, andG1
ω as the section hypergraph ofG+ induced by∪E+\E(G1

α)e. It is simple to check thatG1
α is a partial

hypergraph of Gēκ . Hence, G1
α is a two-laminar β-acyclic hypergraph as well. In addition, both G1

α and G1
ω are

different from G+, and we have G1
α ∪ G1

ω ! G+, G1
α ∩ G1

ω ! N(ēκ), where the set N(ēκ) is defined in (3). Finally,
by construction,N(ēκ) ∈ E+. Thus, all assumptions of Theorem 1 are satisfied, and the set SG+ is decomposable into
SG1

α
and SG1

ω
. As G1

α is a two-laminar β-acyclic hypergraph, MPG1
α
is given by Proposition 6.

Now define G+
\κ :! G1

ω and consider the edge ēκ−1, that is, the element of O before ēκ. Let Gēκ−1 denote the
subhypergraph of G induced by ēκ−1. Again, by Lemmas 3 and 7, Gēκ−1 is a two-laminar β-acyclic hypergraph.
Define G2

α as the section hypergraph of G+
\κ induced by ēκ−1 and G2

ω as the section hypergraph of G+
\κ induced by

∪E(G+
\κ)\E(G2

α)e. The hypergraph G2
α is a partial hypergraph of Gēκ−1 and as a result is a two-laminar β-acyclic

hypergraph as well. Similarly, we can verify that all assumptions are Theorem 1 are satisfied and the set SG+\κ is
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decomposable into SG2
α
and SG2

ω
. By a recursively application of this argument for all elements of O in the reverse

order, we conclude that the multilinear set SG+ is decomposable into the sets SGi
α
, i ! 1, . . . ,κ, where Gi

α is the
section hypergraph of G+ induced by ēκ−i+1, which as detailed previously is a two-laminar β-acyclic hypergraph
with the corresponding multilinear polytope given by Proposition 6. □

In particular, Theorem 2 implies that we can optimize over MPG in polynomial time.

3.3.4. The Explicit Characterization of MPG. The facet description of each polytope MPG+
i
in (22) is given by

system (20) in Proposition 6. By projecting out the auxiliary variables ze, e ∈ E+ \ E, from the description of
MPG+ , using Fourier–Motzkin elimination, we obtain an explicit characterization for MPG:

Theorem 3. Let G be a kite-free β-acyclic hypergraph. Then MPG ! MPRI
G .

The proof of Theorem 3 is given in Section 5.3.
It is important to note that, although Theorem 3 provides an explicit description of MPG in the original

space, the polytope MPRI
G may contain exponentially many facet-defining inequalities in general (see Example 2

in Del Pia and Khajavirad [13], in which we gave a γ-acyclic hypergraph G for which the number of facets of
MPG is not bounded by a polynomial in |V(G)| and |E(G)|). From Theorems 2 and 3, it follows that if G is a kite-
free β-acyclic hypergraph, we can optimize over MPG in polynomial time. By the equivalence of separation and
optimization, for this class of hypergraphs, the separation problem over MPG can be solved in polynomial time
as well. In fact, our results imply that separation over MPG can be done in a simple way which does not rely on
the ellipsoid algorithm. Namely, given a vector z̃ ∈ RV+E, one can substitute z̃ in the system defining MPG+ in
Theorem 2, and obtain a system of linear inequalities only involving extended variables. Via linear pro-
gramming, we can solve the feasibility problem over the reduced system. If this system is feasible, then clearly
z̃ ∈ MPG+ . Otherwise, Farkas’ lemma provides a certificate of infeasibility that can be used to construct an
inequality that separates z̃ from MPG+ .

We conclude this section by remarking that the converse of Theorem 3 is not correct, in general. Obtaining a
complete characterization of β-acyclic hypergraphs for which the running intersection relaxation coincides
with the multilinear polytope is a topic of future research.

4. Connections with the Treewidth-Based Approach
In this section, we investigate the connections between our convex hull characterization and an earlier result in
the literature that relates the complexity of MPG to the treewidth of the intersection graph of G (Bienstock and
Munoz [6], Laurent [22], Wainwright and Jordan [27]). We refer the reader to Bienstock and Munoz [6] for the
standard definition of treewidth. Recall that the intersection graph of a hypergraph G ! (V,E) is the graph
U ! (V,E′), where {i, j} ∈ E′ if and only if there exists e ∈ E with {i, j} ⊆ e. The next theorem follows from results
presented elsewhere (Bienstock and Munoz [6], Laurent [22], Wainwright and Jordan [27]). In these papers, the
authors give an extended formulation for the convex hull of the feasible set of (possibly) constrained binary
polynomial optimization problems. As in our setting the multilinear polytope corresponds to the convex hull
of the feasible set of an unconstrained binary polynomial optimization problem, we state their result for the
unconstrained case.

Theorem4. Let G ! (V,E) be a hypergraph, and let w be the treewidth of its intersection graph. Then there exists an extended
formulation of MPG with O(2w|V|) variables and constraints.

We now present a result that is equivalent to Theorem 4 and relates the complexity of MPG to its hypergraph
acyclicity. This alternative statement in turn enables us to directly compare Theorem 4 with our result stated in
Theorem 2. Recall that the rank of a hypergraph G ! (V,E) is the maximum cardinality of an edge in E.

Theorem 5. Let G ! (V,E) be an α-acyclic hypergraph of rank r. Then there exists an extended formulation of MPG with
O(2r−1|V|) variables and constraints.

By Theorem 5, the multilinear polytope of an α-acyclic hypergraph with constant rank has an extended
formulation of polynomial size. As we mentioned before, α-acyclic hypergraphs are the most general type of
acyclic hypergraphs. Several equivalent definitions of α-acyclic hypergraphs are known. In the following, we
will use the characterization stated in Lemma 8, which can be obtained with little effort from theorem 3.4 in
Beeri et al. [4]. Before stating this lemma, we recall a couple of graph theoretic concepts. A hypergraph G is
conformal if for every clique K in its intersection graph, there is an edge of G that contains K. A graph is chordal
if every cycle with at least four distinct nodes has a chord.
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Lemma 8. A hypergraph G is α-acyclic if and only if its intersection graph U is chordal, and the set of maximal cliques of U
coincides with the set of maximal edges of G.

Proof. Let G be a hypergraph and let U be its intersection graph. From theorem 3.4 (1) ⇔ (3) in Beeri et al. [4], we
know that G is α-acyclic if and only if it is conformal and U is chordal. Therefore, it suffices to show that the
following two conditions are equivalent: (a) G is conformal, and (b) the set of maximal cliques of U coincides with
the set of maximal edges of G.

Clearly (b) implies (a); thus, in the remainder of the proof we show that (a) implies (b). Let G′ be obtained from G
by removing from E each edge that is a proper subset of another edge. Clearly, in G′ no edge is a proper subset of
another edge. Note that U is the intersection graphs of both G and G′. The hypergraph G′ is also conformal. In fact,
since G is conformal, for every clique K in U there is an edge e of G that contains K. By definition of G′, there is an
edge e′ ofG′ that contains e. Therefore, K ⊆ e′ and soG′ is conformal. BecauseG′ is conformal and no edge ofG′ is a
proper subset of another edge, from theorem 3.2 in Beeri et al. [4], we know that the edges of G′ are precisely the
maximal cliques of U. However, the edges of G′ coincide with the maximal edges of G. This concludes the proof
that (a) implies (b) and hence the lemma holds. □

The following two lemmas enable us to prove the equivalence of Theorems 4 and 5.

Lemma 9. Let G be an α-acyclic hypergraph of rank r. Then the intersection graph of G has treewidth r − 1.

Proof. Let G be a hypergraph as defined in the statement and let U be its intersection graph. From Lemma 8, it
follows thatU is chordal and the set of maximal cliques ofU coincides with the set of maximal edges of G. Because
U is chordal, the treewidth ofU is one less than the cardinality of the largest clique inU (Heggernes [19]). Therefore,
the treewidth of U is one less than the cardinality of the largest edge of G, that is, r − 1. □

Lemma 10. Let G be a hypergraph, and let w be the treewidth of its intersection graph. Then G is a partial hypergraph of an
α-acyclic hypergraph G′ of rank w + 1.

Proof. Let G ! (V,E) be a hypergraph, let U be its intersection graph, and assume that U has constant treewidth.
We refer the reader to Bienstock and Munoz [6] for the standard definitions of tree decomposition, width, and
treewidth. Let V ! ∪t∈TWt be a tree decomposition of U of minimum width, and let G′ be the hypergraph defined
byG′ :! (V,E ∪ {Wt : t ∈ T}). ClearlyG is a partial hypergraph ofG′. We show that each edge ofG′ contains at most
w + 1 nodes. Because by assumption, the width of the tree decomposition V ! ∪t∈TWt of U is w, it follows that
max{|Wt| : t ∈ T} ! w + 1. By definition of intersection graph, each e ∈ E is a clique in U. It is well known that each
clique in U is contained in a set Wt, for t ∈ T (see lemma 2.2 in Heggernes [19]). Therefore, each e ∈ E contains at
most w + 1 nodes. This completes the proof that G′ has rank w + 1.

Next, we show that G′ is α-acyclic. LetU′ be the intersection graph of G′. By Lemma 8, it suffices to show thatU′

is chordal and that the set of maximal cliques of U′ coincides with the set of maximal edges of G′. Note that U′ is
obtained by adding edges to U so that eachWt becomes a clique. This implies that U′ is chordal (see lemma 5.16 in
Heggernes [19]). Furthermore, each clique inU′ is contained in a setWt, for t ∈ T, which is an edge ofG′. Vice versa,
we have already seen that each edge of G′ is contained in a setWt, and so it is contained in a clique inU′. Therefore,
the set of maximal cliques of U′ coincides with the set of maximal edges of G′. □

The equivalence of Theorems 4 and 5 can now be seen as follows. Theorem 5 follows directly from Lemma 9 and
Theorem 4. We now show that Theorem 4 can be proven using Theorem 5. Let G ! (V,E) be a hypergraph, and
let w be the treewidth of its intersection graph. From Lemma 10, it follows that G is a partial hypergraph of an
α-acyclic hypergraph G′ of rank w + 1. By Theorem 5, there exists an extended formulation of MPG′ with O(2w|V|)
variables and constraints. Because each edge of G is also an edge of G′, this is also an extended formulation of MPG.

Let us now compare the strengths of Theorems 2 and 5. We demonstrate that neither of these results implies
the other one by showing that neither of the two classes of kite-free β-acyclic hypergraphs and constant-
treewidth α-acyclic hypergraphs contains the other class. First, consider the hypergraph G1 ! (V,E), where
V ! {v1, . . . , v2m+1}, for some integer m ≥ 1, and where E contains all subsets of {vi, vi+1, vi+2} for every odd
i ∈ {1, . . . , 2m − 1}. It is simple to check that G1 is an α-acyclic hypergraph with rank r ! 3, while it contains
many β-cycles. Hence, G1 satisfies the assumptions of Theorem 5 but does not satisfy the assumptions of
Theorem 2. Now consider a laminar hypergraph G2 with an edge containing all of its nodes. As we detailed in
Section 3.3.1, G2 is γ-acyclic and hence is kite-free β-acyclic, and therefore, a compact extended formulation for
its multilinear polytope is given by Theorem 2. However, the rank of G2 is equal to n and hence is not a
constant, implying that this hypergraph does not satisfy the assumptions of Theorem 5.
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5. Technical Proofs
In this section, we provide the proofs omitted in Section 3.

5.1. Proof of Proposition 6
Let G ! (V,E) be a two-laminar β-acyclic hypergraph. We prove the theorem by induction on the number of
nodes of G. In the base case, G consists of a single node v. In this case, system (20) simplifies to 0 ≤ zv ≤ 1,
which is clearly the multilinear polytope. To perform the inductive step, we a select a particular node ṽ in G.
To do so, we first define an extremal element.

For each e ∈ E, define I(e) :! {p ∈ V ∪ E : p ⊂ e, p )⊂ e′, for e′ ∈ E, e′ ⊂ e} and U(e) :! {v ∈ V : {v} ! e1 ∩ e2,
for some e1, e2 ∈ I(e) ∩ E}. Let ê ∈ E and consider a partial hypergraph of G denoted by Hê with V(Hê) ! ê and
E(Hê) ! I(ê) ∩ E. We refer to an element p ∈ I(ê) as an extremal element of Hê if the set wp ! p ∩ (⋃e⊇ê U(e)) is
either empty or consists of a single node and wp )! p. If an extremal p is an edge, we refer to it as an extremal
edge. Because p ⊂ ê, it follows that p ∩ (⋃e⊃ê U(e)) ! p ∩ (ê ∩ (⋃e⊃ê U(e))) ! p ∩ wê. Hence, we have wp ! (p ∩ wê)∪
(p ∩U(ê)). The hypergraph Hê is a partial hypergraph of the β-acyclic hypergraph G. Hence by part (i) of
Lemmas 1 and 4, the set E(Hê) has at least two leaves. From the definition of Hê, it follows that an edge ẽ is a
leaf of E(Hê) when the set N(ẽ) ! ẽ ∩ (∪e∈E(Hê)\{ẽ}e) ! ẽ ∩U(ê) consists of at most one node. Because N(ẽ) ⊆ wẽ, it
follows that every extremal-edge of Hê is a leaf of E(Hê) but the converse is not true. In fact, Hê may not have
any extremal edges in general. However, as we show next, in the special case where ê is already an extremal
edge, Hê has an extremal edge as well.

Claim 4. Let ej ∈ I(ei) and suppose that ej is an extremal edge of Hei . If I(ej) ∩ E )! ∅, then Hej has an extremal edge.

Proof of Claim. We show that Hej has an extremal edge ek. We have wek ! (ek ∩ wej ) ∪ (ek ∩U(ej)). Because ej is an
extremal edge of Hei , the set wej is either empty or consists of a single node. If Hej has a connected component
consisting of a single edge ek, then ek is an extremal edge ofHej as ek ∩U(ej) ! ∅, implying wek ⊆ wej . Hence, suppose
that each connected component in Hej has at least two edges. By part i of Lemma 1, the edge set of each connected
component in Hej has at least two leaves e′ and e′′; that is, each of the two sets e′ ∩U(ej) and e′′ ∩U(ej) consist of a
single node. Clearly, if (i) wej ⊂ e′ and wej ⊂ e′′, which implies wej ⊂ U(ej) or (ii) wej )⊂ e′ and wej )⊂ e′′, then we have
we′ ! e′ ∩U(ej) and we′′ ! e′′ ∩U(ej), implying both e′ and e′′ are extremal edges of Hej . Hence, the only remaining
case iswej ⊂ e′ andwej )⊂ e′′ (respectively,wej )⊂ e′ andwej ⊂ e′′), in which case e′′ (respectively, e′) is an extremal edge
of Hej . Hence, Hej has an extremal edge. □

We now describe the algorithm to select the node ṽ for the inductive step. Without loss of generality, we
assume that G has an edge containing all its nodes; that is, e0 :! V ∈ E, as otherwise by theorem 1 in Del Pia
and Khajavirad [14], the multilinear set SG is decomposable into a collection multilinear subsets, each of which
corresponds to a two-laminar β-acyclic hypergraph with an edge containing all of its nodes. First consider the
edge e0; if I(e0) ! V, we let ṽ be any node in e0. Otherwise, by Claim 4, we select an extremal edge of He0
denoted by e1. If I(e1) ⊂ V, then we let ṽ be a node in e1 \ we1 . Otherwise, we apply Claim 4 recursively, until we
obtain an extremal edge et of Het−1 with I(et) ⊂ V and we let ṽ ∈ et \ wet . Note that ej \ wej )! ∅ for all j ∈ {1, . . . t},
as for the extremal edge ej, the set wej is either empty or consists of a single node. Denote by Ẽ the set of all
edges of G containing the node ṽ. By this construction, the set Ẽ consists of a sequence of nested edges
e0 ⊃ e1 ⊃ . . . ⊃ et, where each ei, i ∈ {1, . . . , t} is an extremal edge of Hei−1 .

5.1.1. The Inductive Step. Denote by G0 (respectively, G1) the hypergraph corresponding to the face of MPG
with zṽ ! 0 (respectively, zṽ ! 1). We have MPG ! conv(MPG0 ∪MPG1). Clearly, both G0 and G1 are two-laminar
β-acyclic hypergraphs and |V(G0)| ! |V(G1)| ! |V(G)| − 1. Hence, MPG0 and MPG1 can be obtained from the
induction hypothesis.

Then MPG0 is given by

zṽ ! 0
zv ≤ 1 ∀v ∈ V \ ṽ
ze ! 0 ∀e ∈ Ẽ
−zp ≤ 0 ∀p ∈ V ∪ E \ Ẽ, p )⊂ f , f ∈ E \ Ẽ
−zp + ze ≤ 0 ∀e ∈ E \ Ẽ, ∀p ∈ I e( )
∑

v∈U e( )
1 − δe v( )( )zv +

∑

p∈I e( )
zp − ze ≤ ω e( ) − 1 ∀e ∈ E \ Ẽ. (23)
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Moreover, MPG1 is given by
zṽ ! 1
zv ≤ 1 ∀v ∈ V \ ṽ
ze ! ze\ ṽ{ } ∀e ∈ Ẽ : e \ ṽ{ } ∈ V ∪ E
−ze0 ≤ 0
−zp + ze ≤ 0 ∀e ∈ E, ∀p ∈ I e( )∑

v∈U e( )
1 − δe v( )( )zv +

∑

p∈I e( )
zp − ze ≤ ω e( ) − 1 ∀e ∈ E.

(24)

The last inequalities of systems (23) and (24) follow from the facts that for each e ∈ E, we have δe(v) ! 0 for all
v ∈ I(e) and δe(v) ! 1 for all v ∈ e \ {U(e) ∪ I(e)}. Using Balas formulation for the union of polytopes (Balas [1]), it
follows that the polytope MPG is the projection onto the space of the z variables of the polyhedron defined by
the following system:

zp ! z0p + z1p ∀p ∈ V ∪ E

z0ṽ ! 0
z0v ≤ λ0 ∀v ∈ V \ ṽ
z0e ! 0 ∀e ∈ Ẽ
−z0p ≤ 0 ∀p ∈ V ∪ E \ Ẽ, p )⊂ f , f ∈ E \ Ẽ
−z0p + z0e ≤ 0 ∀e ∈ E \ Ẽ, ∀p ∈ I e( )
∑

v∈U e( )
1 − δe v( )( )z0v +

∑

p∈I e( )
z0p − z0e ≤ ω e( ) − 1( )λ0 ∀e ∈ E \ Ẽ

z1ṽ ! λ1

z1v ≤ λ1 ∀v ∈ V \ ṽ
z1e ! z1e\ ṽ{ } ∀e ∈ Ẽ : e \ ṽ{ } ∈ V ∪ E

−z1e0 ≤ 0

−z1p + z1e ≤ 0 ∀e ∈ E, ∀p ∈ I e( )
∑

v∈U e( )
1 − δe v( )( )z1v +

∑

p∈I e( )
z1p − z1e ≤ ω e( ) − 1( )λ1 ∀e ∈ E

λ0 + λ1 ! 1
λ0,λ1 ≥ 0}. (25)

We now project out the variables z0, z1, λ0, λ1 from system (25) and obtain an explicit description for MPG.
From (25), it follows that z0ṽ ! 0, z1ṽ ! zṽ, λ0 ! 1 − zṽ, λ1 ! zṽ, and z0v ! zv − z1v for all v ∈ V \ {ṽ}, z1e ! ze for all
e ∈ Ẽ, and z1e\{ṽ} ! ze for all e ∈ Ẽ such that e \ {ṽ} ∈ V ∪ E and z0e ! ze − z1e for all e ∈ E \ Ẽ. Hence, by projecting
out λ0, λ1, and z0p for all p ∈ V ∪ E and z1p for all p ∈ {ṽ} ∪ Ẽ, we obtain

zv − z1v ≤ 1 − zṽ ∀v ∈ V \ ṽ
− zp − z1p
( )

≤ 0 ∀p ∈ I e( ), e ∈ Ẽ

− zp − z1p
( )

+ ze − z1e
( ) ≤ 0 ∀e ∈ E \ Ẽ, ∀p ∈ I e( )

∑

v∈U e( )
1 − δe v( )( ) zv − z1v

( ) +
∑

p∈I e( )
zp − z1p
( )

− ze − z1e
( ) ≤ ω e( ) − 1( ) 1 − zṽ( ) ∀e ∈ E \ Ẽ (26)

and
−ze0 ≤ 0
z1v ≤ zṽ ∀v ∈ V \ ṽ
−z1p + z1e ≤ 0 ∀e ∈ E, ∀p ∈ I e( )
∑

v∈U e( )
1 − δe v( )( )z1v +

∑

p∈I e( )
z1p − z1e ≤ ω e( ) − 1( )zṽ ∀e ∈ E. (27)
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In the following, we project out z1v, v ∈ V \ ṽ, z1e , and e ∈ E \ Ẽ from systems (26) and (27) in a specific order and
show that the projection is given by (20).

5.1.2. Projection Orderings for I(e). For any e ∈ E, the elements of I(e) have the running intersection property.
To see this, note that the set of edges in I(e) is a subset of the edge set of a β-acyclic hypergraph G, and hence
by Lemma 4 has the running intersection property. In addition, by construction, the nodes in I(e) are not contained
in any edge in I(e). Now suppose that e is an extremal edge of Hf , where e ∈ I( f ). Let ps be an element of I(e) that
contains we. Clearly, if we ! ∅, then ps can be any element of I(e). We define a projection ordering for I(e), denoted
by Ō(e), as a running intersection ordering of I(e) in which ps is the first element. By part (ii) of Lemma 1, such an
ordering exists. We define the hypergraph (V′,E′) obtained from He by removing some p ∈ I(e) as V′ :! V(He) \ {v :
v ∈ p} and E′ :! E(He) \ {p}. For any p ∈ I(e), we denote by H≤p

e , the hypergraph obtained from He by removing
all elements appearing after p in Ō(e). By definition of Ō(e) and the proof of Claim 4, we have the following.

Claim 5. Let e be an extremal edge of Hf , where e ∈ I( f ) and let Ō(e) ! p1, . . . pr, where r ! |I(e)|, be a projection
ordering for I(e). Then pj is an extremal element of H≤pj

e for all j ∈ {1, . . . , r}.
Consider the projection ordering Ō(e) as defined in Claim 5. Define U≤pj(e) :! {v ∈ V : {v} ! e1 ∩ e2, e1, e2 ∈

E(H≤pj
e )} and w̄pj :! (pj ∩ we) ∪ (pj ∩U≤pj(e)). By definition of a projection ordering Ō(e), we have

w̄p1 ! we, w̄pj ! N pj
( )

, ∀2 ≤ j ≤ r, (28)
where the sets N(pj) are as defined in (3). Because e is an extremal edge of Hf and p1, . . . pr is a running
intersection ordering of I(e), it is simple to see that w̄pj is either empty or consist of a single node. In the
remainder of the proof, given an edge e ∈ E, we use a projection ordering Ō(e) ! p1, . . . , pr to recursively project
out variables zpj , j ∈ {1, . . . , r}.
Projecting Out z1p Corresponding to Ge for Some e ∈ E \ Ẽ. Consider an edge ē ∈ E \ Ẽ and let Gē denote the
section hypergraph of G induced by ē. For a two-laminar hypergraph, the section hypergraph induced by an
edge coincides with the subhypergraph induced by the same edge. Suppose that ē is an extremal edge of Hf ,
where ē ∈ I( f ). Our objective is to project out variables z1v for all v ∈ V(Gē) \ wē and z1e for all e ∈ E(Gē) \ {ē} from
systems (26) and (27). To this end, we make use of the following result.

Claim 6. Let e ∈ E \ Ẽ and suppose that e is an extremal edge ofHf , where e ∈ I( f ). Let Ō(e) be a projection ordering
for I(e) with the corresponding sets w̄p, p ∈ I(e) as defined by (28). Consider the following inequalities:

z1p ≤ zṽ if w̄p ! ∅, or p ! we, ∀p ∈ I e( )
z1p ≤ z1vp , z

1
vp ≤ zṽ if w̄p ! vp

{ }
, ∀p ∈ I e( ),

{
(29)

z1e ≤ z1p ∀p ∈ I e( ), (30)
∑

v∈U e( )
1 − δe v( )( )z1v +

∑

p∈I e( )
z1p − z1e ≤ ω e( ) − 1( )zṽ, (31)

zp − z1p ≤ 1 − zṽ if w̄p ! ∅, or p ! we, ∀p ∈ I e( )
zp − z1p ≤ zvp − z1vp , zvp − z1vp ≤ 1 − zṽ if w̄p ! vp

{ }
, ∀p ∈ I e( ),

{
(32)

ze − z1e ≤ zp − z1p ∀p ∈ I e( ), (33)
∑

v∈U e( )
1 − δe v( )( ) zv − z1v

( ) +
∑

p∈I e( )
zp − z1p
( )

− ze − z1e
( ) ≤ ω e( ) − 1( ) 1 − zṽ( ). (34)

Then by projecting out z1p for all p ∈ I(e) ∪U(e) \ we, we obtain

zp ≤ 1 ∀p ∈ U e( ) and ∀p ∈ I e( ) s.t. w̄p ! ∅
zp ≤ zvp ∀p ∈ I e( ) s.t. w̄p ! vp

{ }

ze ≤ zp, ∀p ∈ I e( )∑

v∈U e( )
1 − δe v( )( )zv +

∑

p∈I e( )
zp − ze ≤ ω e( ) − 1

(35)

together with
z1e ≤ zṽ
ze − z1e ≤ 1 − zṽ,

(36)
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if we ! ∅, and
z1e ≤ z1ve
ze − z1e ≤ zve − z1ve
z1ve ≤ zṽ
zve − z1ve ≤ 1 − zṽ, (37)

if we ! {ve}.

Proof of Claim. First suppose that we ! ∅. Let p̄ be the last element of Ō(e). We project out the variable z1p̄ from
inequalities (29)–(34) using Fourier–Motzkin elimination. From (29) and (32), we obtain

zp̄ ≤ 1 if w̄p̄ ! ∅
zp̄ ≤ zvp̄ if w̄p̄ ! vp̄

{ }
,

{
(38)

whereas from (30) and (33), we obtain

ze ≤ zp̄. (39)
From (31) and (34), we obtain

∑

v∈U e( )
1 − δe v( )( )zv +

∑

p∈I e( )
zp − ze ≤ ω e( ) − 1. (40)

From (30) and (31), we obtain
∑

v∈U e( )
1 − δe v( )( )z1v +

∑

p∈I e( )\ p̄{ }
z1p ≤ ω e( ) − 1( )zṽ. (41)

We claim that inequality (41) is redundant. To see this, consider a running intersection ordering O of I(e) in
which p̄ is the first element. By part (ii) of Lemma 1, such an ordering exists. Let the sets N(p), p ∈ I(e) be
defined by (3). Now for each p ∈ O \ {p̄}, consider the following inequalities all of which are either present in
system (27) or are implied by it: z1p ≤ zṽ if N(p) ! ∅, and z1p ≤ z1vp if N(p) ! {vp}. By summing up these in-
equalities for all p ∈ O \ {p̄}, we obtain (41). By symmetry, projecting out z1p̄ from (33) and (34) yields a re-
dundant inequality. By projecting out z1p̄ from (29) and (30), we obtain

z1e ≤ zṽ, (42)

if w̄p̄ ! ∅, and z1e ≤ z1vp̄ if w̄p̄ ! {vp̄}. The latter inequality is redundant as it is implied by inequalities (29), for
some p )! p̄ such that p ⊃ vp̄. By symmetry, from (32) and (33), we obtain

ze − z1e ≤ 1 − zṽ (43)

if w̄p̄ ! ∅, and we obtain a redundant inequality if w̄p̄ ! {vp̄}. From (31) and (32), we obtain
∑

v∈U e( )
1 − δe v( )( )z1v + zp̄ +

∑

p∈I e( )\ p̄{ }
z1p − z1e ≤ ω e( ) − 2( )zṽ + 1 if w̄p̄ ! ∅

2 − δe vp̄
( )( )

z1vp̄ − zvp̄ +
∑

v∈U e( )\ vp̄{ }
1 − δe v( )( )z1v + zp̄ +

∑

p∈I e( )\ p̄{ }
z1p − z1e ≤

≤ ω e( ) − 1( )zṽ if w̄p̄ ! vp̄
{ }

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Finally, the inequalities obtained by projecting out z1p̄ from (29) and (34) are given by
∑

v∈U e( )
1 − δe v( )( ) zv − z1v

( ) + zp̄ +
∑

p∈I e( )\ p̄{ }
zp − z1p
( )

− ze − z1e
( ) ≤

≤ ω e( ) − 2( ) 1 − zṽ( ) + 1 if w̄p̄ ! ∅
2 − δe vp̄

( )( )
zvp̄ − z1vp̄
( )

− zvp̄ +
∑

v∈U e( )\ vp̄{ }
1 − δe v( )( ) zv − z1v

( ) + zp̄ +

+
∑

p∈I e( )\ p̄{ }
zp − z1p
( )

− ze − z1e
( ) ≤ ω e( ) − 1( ) 1 − zṽ( ) if w̄p̄ ! vp̄

{ }
. (45)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Hence, projecting out z1p̄ from inequalities (29)–(34) yields inequalities (38), (39), (40), (42), (43), (44), and (45).
Denote by p̃ the element before p̄ in Ō(e). Clearly, among the inequalities obtained as a result of the previous
projection, the only ones containing z1p̃ are inequalities (44) and (45). Hence, to project out z1p̃ from system (29)–(34),
it suffices to consider inequalities (44) and (45) together with inequalities (29), (30), (32), and(33), for p ! p̃.
Using a similar line of arguments as previously, it follows that the only nonredundant inequalities obtained
from this projection are of the form (38) and (39) with p̄ replaced by p̃ together with those obtained by
projecting out z1p̃ from inequalities (32) (respectively, (29)) and (44) (respectively, (45)).

We now apply this approach recursively to project out z1p for all elements p ∈ Ō(e) in reverse order. From (44)
and (45), it follows that for a node v̄ ∈ U(e), after projecting out z1p corresponding to the δe(v̄) − 1 edges with
w̄p ! {v̄}, the coefficient of z1v̄ in these inequalities becomes zero. Moreover, at this point, the only inequalities
containing z1v̄ are z1v̄ ≤ zṽ and zv̄ − z1v̄ ≤ 1 − zṽ. Hence, projecting out z1v̄ yields zv̄ ≤ 1. As the number of elements p in
Ō(e) with w̄p ! ∅ is equal to ω(e), after projecting out z1p for all p ∈ Ō(e) from inequalities (32) and (44), we obtain∑

v∈U(e) (1− δe(v))zv +∑
p∈I(e) zp − z1e ≤ −zṽ + ω(e). However, this inequality is implied by inequalities (40) and (43).

By symmetry, we conclude that the inequality obtained from the recursive projection of z1p, p ∈ Ō(e) from (29)
and (45) is redundant. Hence, by projecting out z1p, for all p ∈ I(e) ∪U(e) from inequalities (29)–(34), we obtain
inequalities (35) and (36).

Next, suppose that we ! {ve} for some ve ∈ V. Denote by ps the first element in Ō(e). Recall that by definition of
Ō(e), we have ps ! ve if ve ∈ I(e) and ps ! ẽ where ẽ ⊃ ve is an edge in I(e), otherwise. We use the recursive pro-
jection as detailed above to project out z1p for all p ∈ U(e) ∪ I(e) \ {ps}. It then follows that projecting out z1p for all
p ∈ U(e) ∪ I(e) \ {ps} from inequalities (31) and (32) yields ∑

v∈U(e) (1 − δe(v))zv +∑
p∈I(e)\{ps} zp + z1ps − z1e ≤ ω(e) − 1.

However, this inequality is implied by inequality (33) for p ! ps and inequality (40). Symmetrically, we conclude
that the inequality obtained by projecting out z1p for all p ∈ U(e) ∪ I(e) \ {ps} from inequalities (29) and (34) is
redundant. Finally, if ps ! ẽ, we project out z1ps , which is only present in inequalities (29), (30), (32), and (33) with
p ! ẽ and wp ! {ve}, implying its projection yields inequalities (37). Hence, we have shown that the final projection
is given by inequalities (35) and (37). □

Recall that our objective is to project out z1v for all v ∈ V(Gē) \ wē and z1e for all e ∈ E(Gē) \ {ē} from sys-
tems (26) and (27), where Gē is the section hypergraph of G induced by ē and ē ∈ E \ Ẽ is an extremal edge of Hf
and ē ∈ I( f ). More precisely, we consider the following inequalities:

zv − z1v ≤ 1 − zṽ ∀v ∈ ē

− zp − z1p
( )

+ ze − z1e
( ) ≤ 0 ∀e ∈ E Gē( ), ∀p ∈ I e( )

∑

v∈U e( )
1 − δe v( )( ) zv − z1v

( ) +
∑

p∈I e( )
zp − z1p
( )

− ze − z1e
( ) ≤ ω e( ) − 1( ) 1 − zṽ( ) ∀e ∈ E Gē( ), (46)

and

z1v ≤ zṽ ∀v ∈ ē
−z1p + z1e ≤ 0 ∀e ∈ E Gē( ), ∀p ∈ I e( )
∑

v∈U e( )
1 − δe v( )( )z1v +

∑

p∈I e( )
z1p − z1e ≤ ω e( ) − 1( )zṽ ∀e ∈ E Gē( ). (47)

Claim 7. Consider the section hypergraph Gē as defined previously. By projecting out z1v, v ∈ V(Gē) \ wē and z1e , e ∈
E(Gē) \ {ē} from inequalities (46) and (47), we obtain

zv ≤ 1 ∀v ∈ ē
−zp + ze ≤ 0 ∀e ∈ E Gē( ), ∀p ∈ I e( )∑

v∈U e( )
1 − δe v( )( )zv +

∑

p∈I e( )
zp − ze ≤ ω e( ) − 1 ∀e ∈ E Gē( ), (48)

together with

z1ē ≤ zṽ
zē − z1ē ≤ 1 − zṽ, (49)
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if wē ! ∅ and
z1ē ≤ z1vē
zē − z1ē ≤ zvē − z1vē
z1vē ≤ zṽ
zvē − z1vē ≤ 1 − zṽ, (50)

if wē ! {vē}.

Proof of Claim. The proof is by induction on the number of edges of Gē. In the base case, we have |E(Gē)| ! 1,
implying I(ē) ⊂ V andU(ē) ! ∅. In this case, inequalities (46) and (47) coincide with inequalities (29)–(34) of Claim 6,
by letting e ! ē, in which case we have w̄p ! ∅ for all p ∈ Ō(ē) \ wē. Hence, by projecting out z1p for all p ∈ I(ē) \ wē,
we obtain inequalities (35) and (36) (respectively, (35) and (37)), which coincide with inequalities (48) and (49)
(respectively, (48) and (50)) for wē ! ∅ (respectively, wē ! {vē}).

Suppose that |E(Gē)| ≥ 2. Because ē is an extremal edge of Hf , where ē ∈ I( f ), we can construct a projection
ordering Ō(ē) of I(ē) with the corresponding sets w̄p defined by (28). Define Õ(ē) ! Ō(ē) \ V(Gē) and let r :! |Õ(ē)|.
Denote by pr the last element in Õ(ē) and letGpr denote the section hypergraph of Gē induced by pr. Clearly, Gpr has
at least one fewer edge thanGē and by construction pr is an extremal edge ofHē. Hence, by the induction hypothesis,
by projecting out z1v for all v ∈ V(Gpr) \ w̄pr and z1e for all e ∈ E(Gpr) \ {pr} from inequalities (46) and (47), we obtain
the system defined in the statement of the claim with ē replaced by pr. Similarly, we consider in reverse order, each
element pj ∈ Õ(ē) and because by Claim 5, pj is an extremal edge of H≤pj

ē , we can use the induction hypothesis to
project out z1v, v ∈ V(Gpj ) \ w̄pj , z1e , and e ∈ E(Gpj ) \ {pj} from inequalities (46) and (47). It then follows that the
remaining inequalities containing z1p and p ∈ I(ē) ∪U(ē) are identical to inequalities (29)–(34) defined in Claim 6
with e ! ē; hence, the final projection can be obtained accordingly and this completes the proof. □

Projecting out z1p Corresponding to Ge for Some e ∈ Ẽ. Let e ∈ Ẽ and denote by p̃ the element of I(e) containing
the node ṽ. Consider a projection ordering Ō(e) of I(e) in which p̃ is the first element and as before, let the sets
w̄p, p ∈ Ō(e) be given by (28). Clearly, z1e ! ze and z1p̃ ! zp̃. Consider the following inequalities:

− zp + z1p ≤ 0 ∀p ∈ I e( ) \ p̃
{ }

zp − z1p ≤ 1 − zṽ if w̄p ! ∅, ∀p ∈ I e( ) \ p̃
{ }

zp − z1p ≤ zvp − z1vp , zvp − z1vp ≤ 1 − zṽ if w̄p ! vp
{ }

, ∀p ∈ I e( ) \ p̃
{ }

.

{

ze ≤ z1p ∀p ∈ I e( ) \ p̃
{ }

z1p ≤ zṽ if w̄p ! ∅, ∀p ∈ I e( ) \ p̃
{ }

z1p ≤ z1vp , z
1
vp ≤ zṽ if w̄p ! vp

{ }
, ∀p ∈ I e( ) \ p̃

{ }
.

{

∑

v∈U e( )
1 − δe v( )( )z1v +

∑

p∈I e( )\ p̃{ }
z1p + zp̃ − ze ≤ ω e( ) − 1( )zṽ. (51)

We make use of the following claim to complete the proof of this theorem; we state this result without a proof
as the proof as is similar to the proof of Claim 6.

Claim 8. By projecting out z1p for all p ∈ I(e) ∪U(e) from system (51), we obtain

zp ≤ 1 if w̄p ! ∅, ∀p ∈ I e( )
zp ≤ zvp if w̄p ! vp

{ }
, ∀p ∈ I e( ).

{

ze ≤ zp ∀p ∈ I e( )
∑

v∈U e( )
1 − δe v( )( )zv +

∑

p∈I e( )
zp − ze ≤ ω e( ) − 1. (52)

5.1.3. Characterization of MPG. We now use the results of Claims 7 and 8 to characterize MPG in the original
space. Denote by Ẽ(G) the set containing the sequence of nested edges of G containing ṽ. The proof is by
induction on the cardinality of Ẽ(G). In the base case, we have Ẽ(G) ! {e0}. By definition of ṽ, this implies
that E(G) ! {e0}. Consider the system of inequalities defined by (51). By letting e ! e0, p̃ ! ṽ, and I(e0) ! V(G),
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which implies w̄p ! ∅ for all p ∈ I(e0), these inequalities coincide with systems (26) and (27). Therefore, by
Claim 8, in this case, MPG is given by system (52), which coincides with system (20) with I(e0) ! V.

Now, suppose that |Ẽ(G)| ≥ 2 and define {ẽ} :! I(e0) ∩ Ẽ(G). Consider a running intersection ordering O(e0) of
the edges in I(e0) in which ẽ is the first element. The existence of such an ordering follows from Lemmas 1 and 4.
Denote by we the intersection of each edge with all previous ones in O(e0). Let ē be the last element in O(e0) and
denote by Gē the section hypergraph of G induced by ē. Clearly, ē /∈ Ẽ(G) and ē is an extremal-edge of He0 .
Hence, by Claim 7, by projecting out z1v for all v ∈ V(Gē) \ wē and z1e for all e ∈ E(Gē) \ {ē} from inequalities of
systems (26) and (27) containing these variables, we obtain system (48) together with inequalities (49) if wē ! ∅
and inequalities (50) if wē ! {vē}. Similarly, apply this projection recursively for each element ê in O(e0) \ {ẽ}
in a reverse order to project out z1v for all v ∈ V(Gê) \ wê and z1e for all e ∈ E(Gê) \ {ê}, where Gê denotes the
section hypergraph of G induced by ê.

Let G′ denote the section hypergraph of G induced by ẽ. Clearly, G′ is a two-laminar β-acyclic hypergraph
with |Ẽ(G′)| ! |Ẽ(G)| − 1. In addition, wẽ ! ∅ as by construction, ẽ is first element of O(e0). Hence, by the
induction hypothesis, projecting out z1p for all p ∈ V(G′) ∪ E(G′) gives system (20) with G replaced by G′. It can
now be seen that the remaining inequalities containing variables z1p, p ∈ I(e0) ∪U(e0) \ {ẽ} coincide with
system (51) by letting e ! e0 and p̃ ! ẽ. Consequently, by projecting out these variables using Claim 8, we
conclude that MPG is given by (20). □

5.2. Proof of Theorem 1
In this proof we often consider β-cycles. It can be checked that a sequence C ! v1, e1, v2, e2, . . . , vt, et, vt+1 ! v1 is a
β-cycle in G if and only if t ≥ 3 and the edge ei contains vi, vi+1 and no other vj, for i ! 1, . . . , t.

If p̄ ! ∅, the result is obvious; thus, we assume that p̄ is nonempty. Similarly, we assume that the sets
V(G) \ V(Gω) and V(G) \ V(Gα) are nonempty.

To proceed with the proof, we need a structural result regarding the hypergraph G̃α ! (Vα, Ẽα) obtained
from Gα ! (Vα,Eα) by removing edge p̄, all the edges that strictly contain p̄, and all the edges strictly contained
in p̄. Because Gα is two-laminar, every edge in Ẽα contains at most one node of p̄. Let w1, . . . ,wk be the nodes in
p̄. For every i ∈ {1, . . . , p}, let Ui contain node wi and the nodes w ∈ Vα for which there exists a chain in G̃α from
wi to w.

Claim 9. The sets U1, . . . ,Uk are pairwise disjoint.

Proof of Claim. First we show that no node wi belongs to a set Uj, for distinct indices i, j in {1, . . . , k}. By con-
tradiction, assume that there exists a chain P in G̃α from wi to wj. Without loss of generality, choose i, j, and P such
that the length of P is minimal.We now show thatC ! P, p̄,wi is a β-cycle inGα. Because every edge in Ẽα contains at
most one node of p̄, the chain P must have length at least two. By the minimality assumption, p̄ contains only the
first (wi) and last (wj) nodes of P. Again, by minimality, each edge of P contains only the preceding and succeeding
node of P. Hence, C ! P, p̄,wi is a β-cycle in Gα, which is a contradiction.

Consider now a node w ∈ Vα that is not in p̄. We show that w cannot belong to Ui ∩Uj, for distinct indices i, j
in {1, . . . , k}. By contradiction, assume thatw ∈ Ui ∩Uj. Then there exists a chain Pi in G̃α fromw towi and a chain Pj

in G̃α from wj to w. Without loss of generality, choose w, i, j, Pi, and Pj such that the sum of the lengths of Pi and Pj

is minimal. We now show that C ! Pi, p̄,Pj is a β-cycle in Gα. All nodes of Pi (respectively, Pj) except for wi
(respectively, wj) are not in p̄, as otherwise such node wl ∈ p̄ would be in Ul ∩Ui (respectively, Ul ∩Uj). By the
minimality assumption, each edge of Pi contains only the preceding and succeeding node of Pi. Symmetrically,
each edge of Pj contains only the preceding and succeeding node of Pj. Again, by minimality, no edge of Pi

(respectively, Pj) contains nodes of Pj (respectively, Pi) different fromw. Hence,C ! Pi, p̄,Pj is a β-cycle inGα, which
is a contradiction. □

To simplify the notation in the remainder of the proof, it will be useful to consider the nodes in Vα \ (∪k
i!1Ui)

together with one of the sets U1, . . . ,Uk, instead than on their own. For this reason, we define the sets Wi :! Ui,
for i ! 1, . . . , k − 1, and Wk :! Wk ∪ (Vα \ (∪k

i!1Ui)).
Claim 10. The sets W1, . . . ,Wk form a partition of Vα. Moreover, every edge of G̃α is contained in exactly one of
these sets.

Proof of Claim. Claim 9 directly implies that the sets W1, . . . ,Wk form a partition of Vα. By definition of the sets
U1, . . . ,Uk, every edge of G̃α is either contained in one of these set, or it is contained in Vα \ (∪k

i!1Ui). Hence, every
edge of G̃α is contained in exactly one of the sets W1, . . . ,Wk. □
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In the next two claims, we use Claim 10 to obtain vectors in SG by combining a number of vectors in SGα and
SGω . We now explain how we write a vector z in the space defined by G in the rest of the proof by partitioning
its components in a number of subvectors. The vector z∩ contains the components of z corresponding to nodes
and edges that are both in Gα and in Gω (i.e., the nodes w1, . . . ,wk, the edge p̄, and any other edge contained
in p̄). The vector z0 contains the components of z corresponding to edges that are in Gα and strictly contain
edge p̄. For i ! 1, . . . , k, the vector zi contains the components of z corresponding to nodes in Wi \ {wi} and
edges contained in Wi. Finally, the vector zk+1 contains the components of z corresponding to nodes and edges
in Gω but not in Gα. Using these definitions, we can now write, up to reordering variables, z ! (z0, z1, . . . , zk, z∩, zk+1).
Similarly, we can write a vector z in the space defined by Gα as z ! (z0, z1, . . . , zk, z∩), and a vector z in the space
defined by Gω as z ! (z∩, zk+1).
Claim 11. Let zα ! (zα0 , zα1 , . . . , zαk , zα∩) be a vector in SGα , and let zω ! (zω∩, zωk+1) be a vector in SGω such that
zαp̄ ! zωp̄ ! 1. Then the vector z̃ ! (zα0 , zα1 , . . . , zαk , zω∩ , zωk+1) is in SG.

Proof of Claim. To prove the claim, we show that for each edge e of G, we have z̃e ! ∏
v∈e z̃v. First, we consider the

edges ofGω. For each edge e ofGω, we have z̃e ! zωe ! ∏
v∈e zωv ! ∏

v∈e z̃v. Next, we consider the edges ofGα. For each
edge e of Gα, we have z̃e ! zαe ! ∏

v∈e zαv ! ∏
v∈e\p̄ zαv ·

∏
v∈e∩p̄ zαv . For every node v ∈ p̄, we have zαv ! zωv ! 1 because

zαp̄ ! zωp̄ ! 1. Hence, we have z̃e ! ∏
v∈e\p̄ zαv ·

∏
v∈e∩p̄ zωv ! ∏

v∈e z̃v. □

Claim 12. Let zα1 ! (zα1
0 , zα1

1 , . . . , zα1
k , zα1

∩ ), . . . , zαk ! (zαk
0 , zαk

1 , . . . , zαk
k , zαk

∩ ) be k vectors in SGα , and let zω ! (zω∩ , zωk+1) be a
vector in SGω such that (1) zα1

p̄ ! · · · ! zαk
p̄ ! zωp̄ ! 0 and (2) zαi

wi
! zωwi

for every i ! 1, . . . , k. Then the vector z̃ !
(zα1

0 , zα1
1 , zα2

2 , . . . , zαk
k , zω∩, z

ω
k+1) is in SG.

Proof of Claim. To prove the claim, we show that for each edge e of G, we have z̃e ! ∏
v∈e z̃v. First, we consider the

edges ofGω. For each edge e inGω, we have z̃e ! zωe ! ∏
v∈e zωv ! ∏

v∈e z̃v. Next, we consider the edges ofGα. We have
zα1
0 ! · · · ! zαk

0 ! zω0 ! 0 since zα1
p̄ ! · · · ! zαk

p̄ ! zωp̄ ! 0. For each edge e contained in p̄, we have z̃e ! zωe ! ∏
v∈e zωv !∏

v∈e z̃v. For each edge e that strictly contains p̄, we have z̃e ! zα1
e ! 0 because zα1

0 ! 0; moreover,∏v∈e z̃v ≤
∏

v∈p̄ z̃v !∏
v∈p̄ zωv ! zωp̄ ! 0 because zω0 ! 0. Finally, let e be an edge that contains at most one node of p̄. We have that, by

Claim 10, e ⊆ Wi, for some i ∈ {1, . . . , k}; thus, we have z̃e ! zαi
e ! ∏

v∈e zαi
v . If wi /∈ e, then zαi

v ! z̃v for every v ∈ e; thus,
z̃e ! ∏

v∈e z̃v. Otherwise, if wi ∈ e, we have that zαi
wi

! zωwi
; hence, z̃e ! zωwi

·∏v∈e\{wi} z
αi
v ! ∏

v∈e z̃v. □

We now proceed with the proof of the statement of the theorem. The inclusion convSG ⊆ conv S̄Gα ∩ conv S̄Gω

clearly holds, because SG ⊆ S̄Gα ∩ S̄Gω . Thus, it suffices to show the reverse inclusion. Let ẑ ∈ conv S̄Gα∩
conv S̄Gω . We will show that ẑ ∈ convSG.

By assumption, the vector (ẑ0, ẑ1, . . . , ẑk, ẑ∩) is in convSGα . Thus, it can be written as a convex combination of
points in SGα ; that is, there exists µ ≥ 0 with ∑

α∈A µα ! 1 such that

ẑ0, ẑ1, . . . , ẑk, ẑ∩( ) !
∑

α∈A
µα zα0 , z

α
1 , . . . , z

α
k , z

α
∩

( )
, (53)

where the vectors (zα0 , zα1 , . . . , zαk , zα∩), for α ∈ A, belong to SGα . For each i ! 1, . . . , k, we partition the index set A
into Ai,0 ∪ Ai,1, where α ∈ Ai,1 if and only if zαwi

! 1. Similarly, the vector (ẑ∩, ẑk+1) is in convSGω , and it can be
written as a convex combination of points in SGω ; that is, there exists ν ≥ 0 with ∑

ω∈Ω νω ! 1 such that

ẑ∩, ẑk+1( ) !
∑

ω∈Ω
νω zω∩, z

ω
k+1

( )
, (54)

where the vectors (zω∩ , zωk+1), for ω ∈ Ω, belong to SGω . We partition the index set Ω differently to how we
partition A. Namely, we partition Ω into ΩT, for T ⊆ p̄, where ω ∈ ΩT if and only if for every v ∈ p̄, we have
zωv ! 1 if and only if v ∈ T.

We now obtain some relations between the multipliers µ, ν, and the vector ẑ that will be used in the
remainder of the proof. By considering the component of (53) and of (54) corresponding to p̄, we obtain

ẑp̄ !
∑

α∈A1,1∩···∩Ak,1

µα !
∑

ω∈Ωp̄

νω, thus

1 − ẑp̄ !
∑

α∈A\ A1,1∩···∩Ak,1( )
µα !

∑

T⊂p̄,ω∈ΩT

νω.
(55)
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By considering the component of (53) and (54) corresponding to wi, for i ! 1, . . . , k, we obtain

ẑwi !
∑

α∈Ai,1

µα !
∑

T⊆p̄ :wi∈T,ω∈ΩT

νω, thus

1 − ẑwi !
∑

α∈Ai,0

µα !
∑

T⊆p̄ :wi/∈T,ω∈ΩT

νω.

By defining, for T ⊂ p̄,

ρT wi( ) :! ẑwi − ẑp̄ if wi ∈ T,
1 − ẑwi if wi /∈ T, ρ T( ) :!

∏k

i!1
ρT wi( ),

{
(56)

we obtain the following relation regarding multipliers µ:
∑

α∈Ai,χT wi( )\ A1,1∩···∩Ak,1( )
µα ! ρT wi( ). (57)

For multipliers ν, we derive
∑

T⊂p̄ :wi∈T,ω∈ΩT

νω !
∑

T⊆p̄ :wi∈T,ω∈ΩT

νω −
∑

ω∈Ωp̄

νω ! ẑwi − ẑp̄,

∑

T⊂p̄ :wi/∈T,ω∈ΩT

νω !
∑

T⊆p̄ :wi/∈T,ω∈ΩT

νω ! 1 − ẑwi .
(58)

For every α ∈ A1,1 ∩ · · · ∩ Ak,1 and ω ∈ Ωp̄, we denote by zα,ω :! (zα0 , zα1 , . . . , zαk , zω∩ , zωk+1), which is in SG by Claim 11.
For every T ⊂ p̄, αi ∈ Ai,χT(wi) \ (A1,1 ∩ · · · ∩ Ak,1), for i ! 1, . . . , k, and ω ∈ ΩT, we denote by zα1,...,αk ,ω :! (zα1

0 , zα1
1 ,

zα2
2 , . . . , zαk

k , zω∩ , z
ω
k+1). The vector zα1,...,αk ,ω is in SG by Claim 12.

Claim 13. The vector ẑ can be written as ẑp̄ẑ1 + (1 − ẑp̄)ẑ0, where ẑ1 and ẑ0 are defined as the following convex
combination of vectors in SG:

ẑ1 :!
∑

ω∈Ωp̄,
α∈A1,1∩···∩Ak,1

µανω
ẑp̄
( )2 · zα,ω, (59)

ẑ0 :!
∑

T⊂p̄,ω∈ΩT ,

αi∈Ai,χT wi( )\ A1,1∩···∩Ak,1( ), i!1,...,k

µα1 · · ·µαkνω
1 − ẑp̄
( )

ρ T( ) · z
α1,...,αk ,ω. (60)

Proof of Claim. All the multipliers are nonnegative. We verify that they sum up to one. First consider the
multipliers in (59). We obtain

∑

ω∈Ωp̄,
α∈A1,1∩···∩Ak,1

µανω
ẑp̄
( )2 ! 1

ẑp̄
( )2 ·

∑

ω∈Ωp̄

νω ·
∑

α∈A1,1∩···∩Ak,1

µα ! 1,

where the last equation follows from (55). Next consider the multipliers in (60). We have

∑

T⊂p̄,ω∈ΩT ,

αi∈Ai,χT wi( )\ A1,1∩···∩Ak,1( ), i!1,...,k

µα1 · · ·µαkνω
1 − ẑp̄
( )

ρ T( ) !

! 1
1 − ẑp̄

·
∑

T⊂p̄,ω∈ΩT

νω
ρ T( ) ·

∏k

i!1

∑

αi∈Ai,χT wi( )\ A1,1∩···∩Ak,1( )
µαi

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

! 1
1 − ẑp̄

·
∑

T⊂p̄,ω∈ΩT

νω ! 1,

where the second equation holds by (56) and (57), and the last equation follows from (55).
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In the remainder of the proof, we show that ẑp̄ẑ1 + (1 − ẑp̄)ẑ0 ! ẑ. First, we consider components • ∈ {∩, k + 1}. We
calculate ẑp̄ẑ1• using (59):

ẑp̄ẑ1• !
1
ẑp̄

·
∑

ω∈Ωp̄ ,

α∈A1,1∩···∩Ak,1

µανωzω• ! 1
ẑp̄

·
∑

ω∈Ωp̄

νωzω• ·
∑

α∈A1,1∩···∩Ak,1

µα !
∑

ω∈Ωp̄

νωzω• ,

where the last equation holds by (55). Next, we calculate (1 − ẑp̄)ẑ0• using (60):

1 − ẑp̄
( )

ẑ0• !
∑

T⊂p̄,ω∈ΩT ,

αi∈Ai,χT wi( )\ A1,1∩···∩Ak,1( ), i!1,...,k

µα1 · · ·µαkνω
ρ T( ) · zω•

!
∑

T⊂p̄,ω∈ΩT

νω
ρ T( ) · z

ω
• ·

∏k

i!1

∑

αi∈Ai,χT wi( )\ A1,1∩···∩Ak,1( )
µαi

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ !

∑

T⊂p̄,ω∈ΩT

νωzω• ,

where in the third equation we used (56) and (57). We obtain that

ẑp̄ẑ1• + 1 − ẑp̄
( )

ẑ0• !
∑

ω∈Ωp̄

νωzω• +
∑

T⊂p̄,ω∈ΩT

νωzω• !
∑

ω∈Ω
νωzω• ! ẑ•,

where in the last equation we used (54).
To simplify our calculation of ẑp̄ẑ1 + (1 − ẑp̄)ẑ0 for the remaining components • ∈ {0, 1, . . . , k}, we calculate ẑp̄ẑ1

using (59). We obtain

ẑp̄ẑ1• !
1
ẑp̄

·
∑

ω∈Ωp̄,
α∈A1,1∩···∩Ak,1

µανωzα• ! 1
ẑp̄

·
∑

α∈A1,1∩···∩Ak,1

µαzα• ·
∑

ω∈Ωp̄

νω !
∑

α∈A1,1∩···∩Ak,1

µαzα• , (61)

where the last equation holds by (55).
We now consider the components z0, and we show that ẑp̄ẑ10 + (1 − ẑp̄)ẑ00 ! ẑ0. We will be using the fact that for each

α ∈ A \ (A1,1 ∩ · · · ∩ Ak,1), we have that zα0 ! 0 because each component corresponds to an edge that strictly contains
edge p̄ and at least one node in p̄ has its component in zα0 equal to zero. Firstwe show that ẑ00 ! 0. For each vector zα1,...,αk ,ω

0
in the sum (60), we have zα1,...,αk ,ω

0 ! zα1
0 and α1 ∈ A \ (A1,1 ∩ · · · ∩ Ak,1); thus, zα1,...,αk ,ω

0 ! 0 and ẑ00 ! 0. We obtain

ẑp̄ẑ10 + 1 − ẑp̄
( )

ẑ00 ! ẑp̄ẑ10 !
∑

α∈A1,1∩···∩Ak,1

µαzα0 !
∑

α∈A
µαzα0 ! ẑ0,

where the second equation holds by (61), and the third equation follows by the previous observation.
Finally, we consider the components zj, for j ! 1, . . . , k, and we show that ẑp̄ẑ1j + (1 − ẑp̄)ẑ0j ! ẑj. We calculate

(1 − ẑp̄)ẑ0j using (60):

1 − ẑp̄
( )

ẑ0j !
∑

T⊂p̄,ω∈ΩT ,

αi∈Ai,χT wi( )\ A1,1∩···∩Ak,1( ), i!1,...,k

µα1 · · ·µαkνω
ρ T( ) · zαj

j

!
∑

T⊂p̄,ω∈ΩT ,

αj∈Aj,χT wj( )\ A1,1∩···∩Ak,1( )

µαjνω
ρ T( ) · zαj

j ·
∏

i∈ 1,...,k{ }\ j{ }

∑

αi∈Ai,χT wi( )\ A1,1∩···∩Ak,1( )
µαi

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

!
∑

T⊂p̄,ω∈ΩT ,

αj∈Aj,χT wj( )\ A1,1∩···∩Ak,1( )

µαjνω
ρT wj

( ) · zαj
j

!
∑

T⊂p̄ :ωj∈T,ω∈ΩT ,

αj∈Aj,1\ A1,1∩···∩Ak,1( )

µαjνω
ẑwj − ẑp̄

· zαj
j +

∑

T⊂p̄ :ωj/∈T,ω∈ΩT ,

αj∈Aj,0

µαjνω
1 − ẑwj

· zαj
j

! 1
ẑwj − ẑp̄

·
∑

αj∈Aj,1\ A1,1∩···∩Ak,1( )
µαj z

αj
j ·

∑

T⊂p̄ :ωj∈T,ω∈ΩT

νω + 1
1 − ẑwj

·
∑

αj∈Aj,0

µαj z
αj
j ·

∑

T⊂p̄ :ωj/∈T,ω∈ΩT

νω

!
∑

αj∈Aj,1\ A1,1∩···∩Ak,1( )
µαj z

αj
j +

∑

αj∈Aj,0

µαj z
αj
j ,
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where in the third equation we used (56) and (57), in the fourth equation we used the definition of ρT(wj)
in (56), and in the sixth equation we used (58). Using the obtained expression and (61), we have that ẑp̄ẑ1j +
(1 − ẑp̄)ẑ0j equals

∑

α∈A1,1∩···∩Ak,1

µαzαj +
∑

αj∈Aj,1\ A1,1∩···∩Ak,1( )
µαj z

αj
j +

∑

αj∈Aj,0

µαj z
αj
j !

∑

α∈A
µαzαj ! ẑj,

where the last equation follows by (53). □

5.3. Proof of Theorem 3
Let G ! (V,E) be a kite-free β-acyclic hypergraph. The proof is by induction on the number of maximal edges
of G. If G has one maximal edge, then the proof follows from by Lemmas 3 and 7 and Corollary 3. Hence,
suppose that G has κ maximal edges for some κ ≥ 2. By Lemma 4, there exists a running intersection ordering
O of the set of maximal edges of G.

5.3.1. Lifting and Decomposition. Denote by ẽ the last element of O and define p̄ :! N(ẽ). Let G+ ! (V,E+) be the
hypergraph obtained from G by adding p̄ to E if p̄ /∈V ∪ E; that is, let E+ ! E ∪ {p̄} if p̄ /∈V ∪ E and let E+ ! E,
otherwise. Denote by Gα the section hypergraph of G+ induced by ẽ, and denote by Gω the section hypergraph
of G induced by ∪E+\E(Gα)e. As we detailed in the proof of Theorem 2, by Theorem 1, the multilinear set SG+ is
decomposable into multilinear sets SGα and SGω . As we argued in the proof of Theorem 2, Gα is a two-laminar
β-acyclic hypergraph. Hence, by Corollary 3, we have MPGα ! MPRI

Gα
.

Now consider the hypergraph Gω. First note that Gω has κ − 1 maximal edges that are different from ẽ. We
show that Gω is a kite-free β-acyclic hypergraph. If p̄ ∈ V ∪ E, then Gω is a partial hypergraph of G and hence
the statement follows trivially. Hence, suppose that p̄ /∈V ∪ E. It is simple to see that Gω is the subhypergraph
of G induced by ∪e∈Ē\{ẽ}e, where Ē denotes the set of maximal edges of G. Because G is β-acyclic, by Lemma 3,
Gω is β-acyclic as well. To show that Gω is kite-free, we need to show that exist no three edges e0, e1, e2 ∈ E(Gω)
such that |e0 ∩ e1 ∩ e2| ≥ 2, (e0 ∩ e1) \ e2 )! ∅, and (e0 ∩ e2) \ e1 )! ∅. To obtain a contradiction, suppose that such
three edges exist. Again, one of these edges, say e0 must be the edge p̄, because by assumption G is kite-free.
Because ẽ ∩ ∪e∈E(Gω)e ! p̄, it follows that the three edges ẽ, e1, and e2 in G satisfy |ẽ ∩ e1 ∩ e2| ≥ 2, (ẽ ∩ e1) \ e2 )! ∅,
and (ẽ ∩ e2) \ e1 )! ∅, which is in contradiction with the assumption that G is kite-free. Hence, Gω is a kite-free
β-acyclic hypergraph, and by the induction hypothesis, we have MPGω ! MPRI

Gω
, which together with MPGα !

MPRI
Gα

and the decomposability of SG+ into SGα and SGω , implies MPG+ ! MPRI
G+ .

If G ! G+, that is, if p̄ ∈ V ∪ E, we obtain MPG ! MPRI
G and this completes the proof. Henceforth, assume that

p̄ /∈V ∪ E. To obtain MPG, it suffices to project out the auxiliary variable zp̄ from the facet description of MPG+ .
In the following, we perform this projection using Fourier–Motzkin elimination.

5.3.2. Projection. First consider an inequality in the description of MPRI
G+ that does not contain zp̄. Clearly, the

support hypergraph of such an inequality is a partial hypergraph of G. The following claim establishes that
this inequality is also present in the description MPRI

G .

Claim 14. Let G′ be a partial hypergraph of G. Then all inequalities defining MPRI
G′ are also present in the system

defining MPRI
G .

Proof of Claim. Clearly, MPLP
G contains all inequalities present in the description of MPLP

G′ , because the standard
linearization of a multilinear set is obtained by intersecting the multilinear polytopes of each edge of the cor-
responding hypergraph, and we have E(G′) ⊂ E(G). In addition, by definition of running intersection inequalities,
every running intersection inequality for SG′ is also a running intersection inequality for SG, as again E(G′) ⊂ E(G).
Hence, all inequalities defining MPRI

G′ are also present in MPRI
G . □

To complete the proof, we need to show that by projecting out zp̄ from the remaining inequalities of MPRI
G+ ,

we obtain valid inequalities for MPRI
G . First, consider MPGα ; denote by ē the edge of Gα such that p̄ ∈ I(ē);
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the uniqueness of ē follows from the fact that Gα is a two-laminar hypergraph. By Proposition 6, zp̄ appears in
the following inequalities, which we will refer to as system (I) in the rest of the proof:

−zp + zp̄ ≤ 0 ∀p ∈ I p̄
( )

, (62)
−zp̄ + zē ≤ 0, (63)

∑

v∈p̄
1 − δp̄ v( )
( )

zv +
∑

e∈I p̄( )∩E
ze − zp̄ ≤ ω p̄

( ) − 1, (64)
∑

v∈ē
1 − δē v( )( )zv +

∑

e∈I ē( )∩E
ze − zē ≤ ω ē( ) − 1. (65)

Now consider the polytope MPGω ! MPRI
Gω
. As we showed earlier, Gω is a kite-free β-acyclic hypergraph.

Hence, its running intersection inequalities are of the form (19). Let Ep̄ be the set containing all subsets of edges
Ep̄ in Gω such that the center edge p̄ together with neighbors e, ∀e ∈ Ep̄ satisfy conditions i and ii of Proposition 3.
Note that Ep̄ contains the empty set. Let Ê denote the set of all edges ê of Gω such that |p̄ ∩ ê| ≥ 2. For each ê ∈ Ê,
denote by E ê the set containing all subsets of edges Eê in Gω such that p̄ ∈ Eê and the center edge ê with
neighbors e, ∀e ∈ Eê satisfy conditions (i) and (ii) of Proposition 3. Denote by ω(Ep̄) (respectively, ω(Eê)) the
number of connected components in the hypergraph with the node set p̄ (respectively, ê) and the edge set
{p̄ ∩ e,∀e ∈ Ep̄} (respectively, {ê ∩ e,∀e ∈ Eê}). Finally, for each v ∈ p̄ (respectively, v ∈ ê) denote by δEp̄(v) (re-
spectively, δEê(v)) the number of edges in Ep̄ (respectively, Eê) containing v. Then, the inequalities of MPRI

Gω

containing zp̄ are given by

−zp + zp̄ ≤ 0 ∀p ∈ I p̄
( )

, (66)
∑

v∈p̄
1 − δEp̄ v( )
( )

zv +
∑

e∈Ep̄

ze − zp̄ ≤ ω Ep̄
( ) − 1 ∀Ep̄ ∈ Ep̄, (67)

∑

v∈ê
1 − δEê v( )
( )

zv +
∑

e∈Eê

ze − zê ≤ ω Eê( ) − 1 ∀ê ∈ Ê,∀Eê ∈ E ê. (68)

In the remainder of the proof, we will refer to inequalities (66)–(68) as system (II).
Now consider the system of linear inequalities (I) and (II). We eliminate zp̄ from this system using

Fourier–Motzkin elimination. First suppose that we select two inequalities from system (I). Denote by G′
α the

hypergraph obtained by removing the edge p̄ from Gα. It then follows that the inequality az ≤ α obtained as a
result of such projection is valid for MPG′

α
. Because G′

α is a two-laminar β-acyclic hypergraph, by Corollary 3,
we have MPG′

α
! MPRI

G′
α
. Finally, because G′

α is a partial hypergraph of G, by Claim 14, az ≤ α is a valid in-
equality for MPRI

G . Similarly, we argue that by projecting out zp̄ from two inequalities of system (II), we obtain
an inequality that is valid for MPRI

G . To see this, observe that the hypergraph G′
ω obtained by removing p̄ from

Gω is kite-free, β-acyclic, and has κ − 1 maximal edges for which by the induction hypothesis we have
MPG′

ω
! MPRI

G′
ω
. Therefore, it suffices to examine inequalities obtained by projecting out zp̄ starting from two

inequalities one of which is only present in system (I), whereas the other one is only present in system (II).
We start by selecting one inequality in (62) from system (I). Clearly, this inequality is identical to in-

equality (66) present in system (II). Hence, by the above discussion, we do not need to consider inequal-
ities (62). Next, consider inequality (63) from system (I). Since the coefficient of zp̄ in (63) is negative, it suffices
to consider inequalities (66) and (68) from system (II). In addition, we do not need to consider (66) since it is
already present system (I). By summing inequalities (63) and (68), for each ê ∈ Ê and each Eê ∈ Eê we obtain

∑

v∈ê
1 − δEê v( )
( )

zv +
∑

e∈Eê\ p̄{ }
ze + zē − zê ≤ ω Eê( ) − 1. (69)

We claim that inequality (69) is a running intersection inequality of the form (19) centered at ê with neighbors
E′
ê :! (Eê \ {p̄}) ∪ {ē}. As before, let δE′

ê
(v) denote the number of edges in E′

ê containing the node v ∈ ê and denote
by ω(E′

ê) the number of connected components in the hypergraph with the node set ê and the edge set {ê ∩ e,
∀e ∈ E′

ê}. For each ê ∈ Ê and each Eê ∈ Eê, we have ê ∩ p̄ ! ê ∩ ē and e ∩ p̄ ! e ∩ ē for all e ∈ Eê, as by definition
p̄ ! N(ẽ), ē ⊆ ẽ, ē ⊃ p̄, ê )⊆ ẽ, and e )⊆ ẽ for all e ∈ Eê. This implies that conditions i and ii of Proposition 3 are satisfied
for ê, e ∈ E′

ê. Moreover, δEê (v) ! δE′
ê
(v) for all v ∈ ê and ω(Eê) ! ω(E′

ê). It then follows that for each ê ∈ Ê and each
Eê ∈ Eê, inequality (69) is a running intersection inequality of the form (19) is therefore present in MPRI

G .
By construction, there exists a set Ep̄ ∈ Ep̄ such that Ep̄ ! I(p̄) ∩ E. Therefore, inequalities (64) are implied by

inequalities (67), and as a result, we do not need to consider these inequalities. Hence, we proceed with
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inequalities (65) from system (I). Because the coefficient of zp̄ in (65) is positive, it suffices to consider in-
equalities (67) from system (II). By summing inequalities (65) and (67), for each Ep̄ ∈ Ep̄ and defining Eē :!
Ep̄ ∪ ((I(ē) \ {p̄}) ∩ E), we get

∑

v∈ē
1 − δē v( )( )zv +

∑

v∈p̄
1 − δEp̄ v( )
( )

zv +
∑

e∈Eē

ze − zē ≤ ω ē( ) + ω Ep̄
( ) − 2. (70)

For each v ∈ ē, denote by δEē (v) the number of edges in Eē containing v and denote by ω(Eē) the number of
connected components of the hypergraph (ē, Ẽ), where Ẽ ! {e ∩ ē : e ∈ Eē}. It can be checked that ω(Eē) !
ω(ē) + ω(Ep̄) − 1. Clearly, for any node v ∈ ē \ p̄, we have δEē (v) ! δē(v). Now consider a node v ∈ p̄; because
p̄ ∈ I(ē) but p̄ /∈ Eē, we have δEē(v) ! δEp̄(v) + δē(v) − 1. Because ē ⊃ p̄, inequality (70) can be equivalently
written as

∑

v∈ē
1 − δEē v( )
( )

zv +
∑

e∈Eē

ze − zē ≤ ω Eē( ) − 1. (71)

To complete the proof, we need to show that ē, e : e ∈ Eē satisfy conditions (i) and (ii) of Proposition 3:
condition i is clearly satisfied as ē ⊃ e for all e ∈ I(ē) ∩ E and |ē ∩ e| ≥ 2 for all e ∈ Ep̄ because |p̄ ∩ e| ≥ 2 for all
e ∈ Ep̄ and ē ⊃ p̄. To demonstrate the validity of condition (ii), we need to show that e ∩ ē )⊆ e′ ∩ ē for all e, e′ ∈ Eē.
By definition |e ∩ e′| ≤ 1 for all e, e′ ∈ I(ē) ∩ E; moreover, by construction e ∩ p̄ ! e ∩ ē for all e ∈ Ep̄ and e ∩ p̄ )
⊆ e′ ∩ p̄ for all e, e′ ∈ Ep̄. Finally, |e ∩ e′| ≤ 1 for all e ∈ (I(ē) \ {p̄}) ∩ E and for all e′ ∈ Ep̄ as |e ∩ p̄| ≤ 1 for all e ∈
(I(ē) \ {p̄}) ∩ E and by definition p̄ ! N(ẽ). Therefore, for each Ep̄ ∈ Ep̄, inequality (71) is a running intersection
inequality of the form (19) centered at ē with neighbors e, e ∈ Eē and hence is present in MPRI

G . □
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