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1. Introduction

1.1. Multilinear Sets and Polytopes

Factorable reformulations of many types of mixed integer nonlinear programs (MINLP) contain a collection of
multilinear equations of the form z, = [Tye. 2o, € € E, where E denotes a set of subsets of cardinality at least two
of a ground set V. Important special cases include multilinear and polynomial optimization problems. Ac-
cordingly, we define the set

{z €{0,1}""F:z. =] [z, Vee E}. (1)

vee

In particular, this set represents the feasible region of linearized binary polynomial optimization problems.
There is a one-to-one correspondence between sets of form (1) and hypergraphs G = (V,E) (Del Pia and
Khajavirad [12]). Henceforth, we refer to (1) as the multilinear set of G and denote it by S, and refer to its
convex hull as the multilinear polytope of G and denote it by MPg.

If all multilinear equations defining S are bilinear, the multilinear polytope coincides with the Boolean
quadric polytope defined by Padberg [25] in the context of unconstrained 0—1 quadratic optimization. In this
case, our hypergraph representation simplifies to the graph representation defined by Padberg for the Boolean
quadric polytope. Indeed, the Boolean quadric polytope is a well-known polytope in combinatorial opti-
mization, and its facial structure has been thoroughly studied over the past three decades (see Deza and
Laurent [16] for an exposition). In addition, these theoretical findings have had a significant impact on the
performance of mixed-integer quadratic optimization (MIQCP) solvers (Bao et al. [2], Bonami et al. [7],
Misener et al. [24], Sahinidis [26]). In this paper, we consider multilinear sets containing higher degree
multilinear equations and obtain new structural results for their convex hull with significant computational
benefits for MINLPs.

There is an interesting connection between the complexity of the multilinear polytope and the acyclicity
degree of its hypergraph. Padberg [25] shows that the Boolean quadric polytope admits a simple compact
description, referred to as the standard linearization, if and only if the graph is acyclic. Subsequently, he
introduces odd-cycle inequalities, a class of facet-defining inequalities arising from chordless cycles. The
incorporation of these inequalities in general branch-and-cut based solvers has led to significant algorithmic
improvements (Barahona et al. [3], Bonami et al. [7], Sahinidis [26]). Motivated by this compelling line of
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research, it is natural to study the facial structure of the multilinear polytope of acyclic hypergraphs as the
starting point. Interestingly, the notion of graph acyclicity has been extended to several different notions of
hypergraph acyclicity; in increasing order of generality, one can name Berge-acyclicity, y-acyclicity, p-acyclicity,
and a-acyclicity (Fagin [18]). We should remark that polynomial time algorithms for determining acyclicity
degree of hypergraphs are available (Fagin [18]). In Buchheim et al. [8] and Del Pia and Khajavirad [13], the
authors show that the standard linearization coincides with the multilinear polytope if and only if the
hypergraph is Berge-acyclic. Del Pia and Khajavirad [13] introduce flower inequalities, a generalization of two-
link inequalities (Crama et al. [11]) and show that the polytope obtained by adding all such inequalities to the
standard linearization is the multilinear polytope if and only if the hypergraph is y-acyclic. As the multilinear
polytope of y-acyclic hypergraphs may contain exponentially many facets, the authors present a strongly
polynomial-time algorithm to solve the separation problem. This in turn implies that for a y-acyclic hypergraph G,
optimizing a linear function over MPg can be done in polynomial time.

1.2. Our Contribution

The next type of acyclic hypergraphs is the class of p-acyclic hypergraphs. We believe that the multilinear
polytope in this case has a significantly more complex structure than the multilinear polytope of y-acyclic
hypergraphs. In particular, it can be checked that the multilinear polytope of f-acyclic hypergraphs can have
dense facet-defining inequalities. By dense facets, we mean facets whose support hypergraph contains almost all
edges of the original hypergraph, a property that is not desirable from a computational perspective. This is in major
contrast with the multilinear polytope of y-acyclic hypergraphs, whose defining inequalities are fairly sparse.

With the objective of constructing stronger polyhedral relaxations for multilinear sets of general hyper-
graphs that can also be effectively incorporated in branch-and-cut-based MINLP solvers, in this paper
we introduce a new class of sparse facet-defining inequalities for the multilinear polytope. The proposed
inequalities, referred to as running intersection inequalities, serve as a significant generalization of flower
inequalities (Del Pia and Khajavirad [13]).

As we detail in Section 2, the support hypergraph of a running intersection inequality consists of a center
edge ¢ together with a number of neighbor edges ¢, k € K, that are adjacent to eg. The support hypergraph of
flower inequalities has the same structure, with the additional assumption that eg Ney Nepy = 0 for all k, k" € K.
The support hypergraph of running intersection inequalities, however, may contain nonempty intersections
among multiple neighbors with the center edge, which amounts to the presence of y-cycles. This, in turn,
makes the proposed inequalities applicable to a much broader class of hypergraphs. Our generalization relies
on the key notion of running intersection property, a set theoretic concept first introduced in the database
community to study acyclic databases (Beeri et al. [4]). As we demonstrate in Section 2.5, this generalization
has significant computational implications. That is, by using running intersection cuts instead of flower cuts,
we are able to obtain much stronger relaxations for a class of fourth-order binary polynomial optimization
problems that arise from an application in computer vision. Furthermore, in Del Pia et al. [15], the authors
investigate the impact of the proposed inequalities on the convergence rate of the global solver Branch and
Reduce Optimization Navigator (BARON) (Khajavirad and Sahinidis [20]). Results on various types of
polynomial optimization problems indicate that running intersection cuts significantly improve the perfor-
mance of BARON and lead to an average 50% CPU time reduction.

To better understand the theoretical limits of the proposed inequalities, we define the running intersection
relaxation, a new polyhedral relaxation for the multilinear set obtained by adding all running intersection
inequalities to its standard linearization. We show that for kite-free f-acyclic hypergraphs, a class that lies
between y-acyclic hypergraphs and $-acyclic hypergraphs, the running intersection relaxation coincides with
the multilinear polytope (Theorem 3). In addition, for a kite-free f-acyclic hypergraph G = (V, E), we present a
compact extended formulation of the multilinear polytope (Theorem 2). More precisely, if all edges of G have
cardinality at most , the proposed extended formulation has at most [V| + 2|E| variables and 2(|V| + (r + 2)|E])
inequalities, whereas the multilinear polytope in the original space may contain exponentially many facet-
defining inequalities. This in turn implies that optimizing a linear function over MP; can be done in
polynomial time. The proposed extended formulation is obtained by showing that, after the addition of at
most |[E| edges to the original hypergraph G, the corresponding multilinear polytope can be expressed as the
intersection of a collection of multilinear polytopes MPg, j € ], where each polytope MPg, has a compact
description. To this end, we present a new sufficient condition for decomposability of multilinear sets, a result
that is of independent interest (Theorem 1).

There has been an interesting line of research (Bienstock and Munoz [6], Kolman and Koutecky [21], Laurent [22],
Wainwright and Jordan [27]) that relates the complexity of the convex hull of a binary set defined by a system
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of polynomial inequalities to the treewidth of a corresponding intersection graph. Namely, it has been shown
that if the intersection graph has constant treewidth, the convex hull has an extended formulation of
polynomial size. We derive an alternative statement of this result in terms of the acyclicity degree of the
underlying hypergraph (Theorem 5). This new interpretation enables us to compare and contrast this existing
result against ours. In particular, we show that neither of the two results is implied by the other one.

1.3. Organization

In Section 2, we introduce running intersection inequalities, we establish some of their basic properties, and
we identify conditions under which they induce facets of the multilinear polytope. In Section 3, we show that
the running intersection relaxation coincides with the multilinear polytope of kite-free p-acyclic hypergraphs.
We compare our characterization against the treewidth based approach in Section 4. Finally, proofs of the
technical results omitted in the previous sections are given in Section 5.

2. The Running Intersection Relaxation

We start by formally introducing some hypergraph terminology. A hypergraph G is a pair (V, E), where V is a
finite set of nodes and E is a multiset of subsets of V, called the edges of G. Unless stated otherwise,
throughout this paper we consider hypergraphs without loops or parallel edges, in which case E is a set of
subsets of V of cardinality at least two. We refer to the node set of G as V(G) and to the edge set of G as E(G).
We say that two edges are adjacent if they have nonempty intersection. We define the support hypergraph of a
valid inequality az < a for MPg, as the hypergraph G(a), where V(G(a)) = {v € V :a, # 0} U (Ueegq,20¢), and
E(G(a)) ={e € E :a, # 0}.

In Del Pia and Khajavirad [13], we introduced flower inequalities, a class of facet-defining inequalities for
the multilinear polytope whose support hypergraphs are y-acyclic. In this section, we present a significant
generalization of these inequalities that does not require y-acyclicity of the support hypergraph. To obtain the
new cutting planes, we make use of the notion of running intersection property, which was introduced in the
database community to study acyclic databases (Beeri et al. [4]) and has been used by the machine learning
community to infer conditional independence in graphical models (Lauritzen [23]).

2.1. The Running Intersection Property
A multiset F of subsets of a finite set V has the running intersection property if there exists an ordering
P1,P2,---,Pm of the sets in F such that

for each k =2, ..., m, there exists j < k such that py N (U pi) Cpj. (2)
i<k

Throughout the paper, we refer to an ordering py,p,, ..., p, satisfying (2) as a running intersection ordering of F.
See Figure 1 for an illustration. Each running intersection ordering p1,pa, ..., pm of F induces a collection of sets

N(p1) =0, N(pk) :=pe N (Upj) fork=2,...,m. (3)

i<k
It can be shown that if a multiset F with |F| > 2 has the running intersection property, then there exist several

running intersection orderings of F. We refer to an element f € F as a leaf of F if there exists a running intersection

Figure 1. (Color online) Multiset with the running intersection property. A running intersection ordering is given by

P1,P2,P3,P4,P5,P6,P7,P8-
Ps
:
0 P2 pr °
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ordering of F in which f is the last element. The following lemma states some basic properties of multisets with
the running intersection property and has been stated in various forms in the literature (Beeri et al. [4]).

Lemma 1. Let F be a multiset with the running intersection property. If |F| > 2, then (i) F has at least two leaves; (ii) for any
f € F, there exists a running intersection ordering of F in which f is the first element; and (iii) for any f € F such that f C f’ for
some f' € F, the multiset F \ {f} has the running intersection property.

As we detail in the following, to obtain running intersection inequalities, we make use of the number of
connected components of a related hypergraph. We now formalize the concept of hypergraph connectivity.
We first present the notion of a chain in a hypergraph as defined in Berge [5]. A chain in G of length t for
some t > 1, is a sequence P =vy,e1,0,6y,...,6:,0141 such that v1,v,,...,v; are distinct nodes of G, ey, e,...,¢
are distinct edges of G, and v;, vi4q €¢; fori=1,...,t. A hypergraph G is connected if for any two distinct nodes
v;,vj of G, there is a chain between v; and v; in G. Consider a hypergraph G = (V, E) and let V' be a subset of V.
A hypergraph (V’,E’) is a partial hypergraph of G if E’ C E. The section hypergraph of G induced by V’ is the
partial hypergraph (V’,E’), where E' = {e € E: e C V'}. The connected components of G are the maximal con-
nected section hypergraphs of G. We refer to a node of G as an isolated node if it is not contained in any edge
of G. An isolated node corresponds to a connected component. The next lemma provides an alternative
characterization for the number of connected components of a hypergraph whose edge set has the running
intersection property.

Lemma 2. Let G = (V,E) be a hypergraph. Assume that there exists a running intersection ordering ey, ..., e, of E and
denote by N(e1),...,N(en) the corresponding sets defined in (3). Then the number of connected components of G is

ny +|{e € E: N(e) = 0},
where ny is the number of isolated nodes of G.

Proof. To prove the statement, it suffices to show that the number @ of connected components of a hypergraph G
with no isolated nodes is |{e € E : N(e) = 0}|. The proof is by induction on m = |E|, the base case being trivial. Let
G’ = (V’,E’) be the hypergraph withnode set V' := UZ’Z‘llek and edgeset E’ := {ey,...,eu-1}. Note thatey, ..., e,-1isa
running intersection ordering of E’ and that the corresponding sets (3) are N’(ex) = N(ex) forallk=1,...,m—1.
Thus, by induction the number @’ of connected components of G’ is |{e € E’ : N(e) = 0}|. First consider the case
em N E" = 0. In this case N(e,) = 0 and G has one more connected component than G’; that is,

w=w+1={e€E :N()=0}+1=|eecE:N()=0}.

Next, consider the case e, N E’ # (. It then follows that N(e,;) # 0 and G has the same number of connected
component as G’. Thus,

w=w =|{e€cE :N()=0}=[{ecE:N()=0}. O

We are now in a position to define running intersection inequalities.

2.2. Running Intersection inequalities
Consider a hypergraph G = (V,E). Let ¢y € E and let ¢, k € K, be a collection of edges adjacent to ¢y in G such
that the multiset

E:={epNer:keK} 4)

has the running intersection property. Consider a running intersection ordering of E with the corresponding
sets N(ep Ne), for k € K, as defined in (3). For each k € K with N(eg Nex) # 0, let u; be a node in N(eg Neg). We
define a running intersection inequality as

- Z Zy, + Z zv+Zzek—zEOSa)—1, (5)

keK:N(epNey)#0 veeo\ U ex & kek

where w is the number of connected components of the hypergraph G = (ey, E). We refer to ey as the center and
to e, k € K, as the neighbors. Unlike G, the hypergraph G may have loops and parallel edges. By Lemma 2, the
right-hand side of (5) is equal to the sum of the coefficients of the left-hand side. In the special case where
N(epNex) =0 for all k € K, that is, g Nex Nep =0 for all k, K’ € K, running intersection inequalities simplify to
flower inequalities introduced in Del Pia and Khajavirad [13].

We now establish the validity of running intersection inequalities for MPg.
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Proposition 1. Running intersection inequalities are wvalid for the multilinear polytope.

Proof. Consider a running intersection inequality (5). Let G = (e, E) be the corresponding hypergraph where E is
defined by (4), and let © denote a running intersection ordering of E with the sets N(eg N ex), k € K, as defined in (3).

Denote by G, fori=1,...,w, the connected components of G. For each G;, define K; = {k € K : ex N ¢y € E(G;)}.
Clearly, the sets K;, for i =1,...,w, form a partition of K. We argue that for each G; with K; # 0, the following
inequality is valid for MPg.

- Z Zy, + Z zy < 1. ©)
keK;i:N(epNex)#0 kekK;

If |Ki| =1, say K; = {1}, then N(ep Ne1) = 0; thus, the validity of (6) is trivial. Henceforth, assume that |Kj| > 2.
We claim that the maximum value of the left-hand side of inequality (6) is one, and this value is attained if and
only if z, =1 for all k € K;. Let O; be the subsequence of O corresponding to the edges ey N ¢, with k € K;. It can
be shown that O; is a running intersection ordering of E(G;). Without loss of generality, let O; =egNey,
eoNey, ..., e0Ney, where t:= |E(G;)|. Because G; is a connected hypergraph by Lemma 2, we have N(ey Ne;) # 0
for all k=2,...,t. This implies that for each k=2,...,t, the node u; exists and if z, =1, we have z, =1.
Consequently the value of the left-hand side of inequality (6) is at most one and if it is equal to one, we must
have z,, = 1. Now suppose that z,, = 1. Because u; € e;, it follows that z,, = 1. Hence, if the maximum value of
the left-hand side of (6) is attained, we must have z,, = 1. If t = 2, the proof is complete. Otherwise, because u3
isine; orin e, and z,, = z,, = 1, we have z,, = 1, which in turn implies z,, = 1. Hence, by a recursive application
of this argument for each element of O;, we conclude that inequality (6) is binding if and only if z, =1 for
all k € K;.

By summing up inequalities (6) for all G; with E(G;) # 0 together with inequalities z,, < 1 for all G; with V(G;) =
{v;} and E(G;) = 0, we conclude that the value of the three summations on the left-hand side of (5) does not exceed w.
In addition, this maximum value is attained only if z,, = 1 forall k € Kand z, = 1 for all v € ¢y \ (Uexex), which in
turn implies z,, = 1. Hence, inequality (5) is valid. O

Example 1. Consider the hypergraph G = (V,E) with V = {vy,...,v;} and E = {ep, e1, €2, €3, 4}, where we define
eo =V, e1 :={v1,02,03,07}, €2 := {v2,03,0¢}, €3 := {01, 03,05}, and ey := {v1, 02,04} (Figure 2).

Consider the set E = {e Ney:e€kE \ eo}. It is then simple to see that the sequence O = ey, ey, €3, ¢4 iS @ running
intersection ordering of E. By (3) we have N(ey Nes) = {v1,v2}, N(ep Nes) = {v1,v3}, and N(ey Nea) = {vp, v}
Hence, the system of running intersection inequalities centered at ey with neighbors E \ {eg} is given by

=22y, — Zy,

— Zey + Ze, + Ze, + Ze, +2¢, <0 for all distinct pairs (i, j) € {1,2,3}. (7)

It can be checked that all these inequalities define facets of MPs. One can write many more running in-
tersection inequalities for MPg. Because of space limitations, we only listed those centered at ey with
neighbors E \ {¢p}. O

Figure 2. (Color online) Hypergraph considered in Example 1.
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Consider the set of all running intersection inequalities centered at ey with neighbors e, k € K. To construct
these inequalities, we make use of a running intersection ordering of the multiset £ defined by (4), and by
Lemma 1, such an ordering is not unique. However, the following proposition implies that the system of all
running intersection inequalities centered at ey with neighbors e, k € K, is independent of the running in-
tersection ordering.

Proposition 2. Let F be a multiset with the running intersection property. Then any running intersection ordering of F leads
to the same multiset {N(e) : e € F} as defined in (3).

Proof. We prove the statement by induction on |F|. Given a multiset F” of subsets of a finite setand ¢, f € F’, we say
that e is a parent of f in F" if f N (Uger\r8) Ce.

In the base case, we have |F| =1; the running intersection ordering is unique and thus the statement
trivially follows. We also consider the base case |F| =2. Let f,g € F. If fNg =0, then independent of the
running intersection ordering, we obtain N(f) = N(g) = 0. Thus, we assume that f N ¢ is nonempty. Let O be a
running intersection ordering of F. If O = g,f, we obtain N(f) = f N g and N(g) = 0. Vice versa, if O =f,g, we
obtain N’(g) = g N f and N’(f) = 0. Hence, the two multisets coincide. In the latter base case, although the two
multisets coincide, the function that associates to each e € F the set N(e) is not independent of the running
intersection ordering.

We now prove the inductive step. Let O and (0’ be two running intersection orderings of F. Let {N(e) : e € F}
be the multiset corresponding to O and let {N’(e) : e € F} be the multiset corresponding to ©". If the last set in
O and O’ is the same set, say f, then we have N(f) = N’(f). By dropping the last set from O and ', we obtain
two running intersection orderings O and @ of F\ {f}, respectively. By induction, the two multisets {N(e) :
ee F\{f}} and {N’(¢) : e € F\ {f}} coincide; hence, the multisets {N(e) : e € F} and {N’(e) : e € F} also coincide.
Thus we now assume that the last set in O, say f, is different from the last set in O, say g.

Because f and g are leaves of F, they both have a parent in F. Let p(f) be a parent of f in F, and let p(g) be a
parent of ¢ in F. There might be several sets of F that are parents of f. If ¢ is a parent of f, then we set p(f) :=g.
Symmetrically, if f is a parent of g, then we set p(g) :=f.

We first consider the case where p(f) = ¢ and p(g) = f. Because p(g) = f, for every set e € F\ {f}, we have
gNe=fNgne. Let F be obtained from F \ {f} by replacing the set ¢ with a new set f N g and let O be obtained
from O by dropping the last set f and by replacing g with f N g. Because by dropping the last set from O, we
obtain a running intersection ordering of F \ {f}, it can be checked that O is a running intersection ordering of
F and that the two running intersection orderings lead to the same multiset {N(e) : e € F \ {f}}. Symmetrically,
because p(f) = g, we define the set F obtained from F \ {g} by replacing the set f with a new set f N g. We also
obtain O’ from (¢’ by dropping the last set ¢ and by replacing f with f Ng. As previously, O’ is a running
intersection ordering of F’. Moreover, O’ and the running intersection ordering of F \ {g} obtained by dropping
the last set from O’ lead to the same multiset {N’(e) : e € F \ {g}}. Note that F = F’; thus, by induction, the two
multiset {N(e):e€ F\{f}} and {N’(e) : e € F\ {g}} coincide. Because N(f) =fNg=N’(g), also the multisets
{N(e) : e € F} and {N’(e) : e € F} coincide. This concludes the proof in the case p(f) = g and p(g) =f.

We now assume that the assumption p(g) = f and p(f) = g does not hold. To study the multiset {N(e) : e € F}
corresponding to O, we define the multiset F; obtained from F by deleting the set f.

Claim 1. If p(g) # f, then p(g) is a parent of g in F;. If p(g) = f, then p(f) is a parent of g in F.
Proof of Claim. If p(g) # f, then p(g) is a parent of g in F; because
&N (UEEF\{f,g}e) cgn (UeeF\{g}e) < p(g)

Assume now that p(g) = f. We have ¢ N (Ueer\(rg1€) S & N (Ueer\(gy€) S f, and Ueer\rg3€ S Ueer\rye- Thus,

gn (UeeF\{f,g}e) cfn (UeeF\{f}e) cp(f)-

Because p( f) # g, it follows that p( f) is a parent of ¢ in F;. O

By Claim 1, ¢ has a parent in F;. This implies that there exists a running intersection ordering of F \ {f} with
g as the last set. In fact, such a running intersection ordering can be obtained by appending g to a running
intersection ordering of F \ {f, g}. Because by induction all running intersection orderings of F \ {f} lead to the
same multiset, we assume without loss of generality that the second to last set in O is g. We now explicitly
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write the obtained sets N(f) and N(g). To do so, we consider three cases: (A) p(f) # g and p(g) #f, B) p(f) =g
and p(g) #f, and (C) p(f) # g and p(g) = f.

Case A. We have N(f) =f Np(f) and by Claim 1 N(g) = gNp(g).

Case B. We have N(f) =f Ng and by Claim 1 N(g) = gNp(g).

Case C. We have N(f) =f np(f) and by Claim 1 N(g) = g N p(f).

We now study the multiset {N’(¢) : e € F} corresponding to O'. Let F; be obtained from F by deleting the
set g. By Claim 1, with f and ¢ permuted, and with F; instead of F;, we obtain the following.

Claim 2. If p(f) # g, then p(f) is a parent of f in F}. If p(f) = g then p(g) is a parent of f in Fj.

By Claim 2, f has a parent in F;. This implies that there exists a running intersection ordering of F \ {g} with
f as the last set. Because by induction, all running intersection orderings of F \ {g} lead to the same multiset,
we assume without loss of generality that the second to last set in @ is f. In order to explicitly write the
obtained sets N’(g) and N’(f), we consider the three cases A, B, and C introduced previously.

Case A. We have N'(g) = gNp(g) and by Claim 2 N'(f) = f N p(f).

Case B. We have N’(g) = g¢nNp(g) and by Claim 2 N'(f) =f Np(g).

Case C. We have N’(g) = gnNf and by Claim 2 N’(f) =f N p(f).

We now show that the multiset {N(f), N(g)} equals the multiset {N’(g), N’(f)}. This concludes the proof of
the proposition because the two orders obtained from O and O’ by dropping the last two sets are running
intersection orderings of the same set F\ {f,¢} and by induction the two corresponding multisets coincide.

Again, we consider the three cases A, B, and C. As Case C is symmetric to Case B, we will not consider it
any further.

Case A. We have N(f) = N’(f), and N(g) = N’(g). Thus, we are done.

Case B. We have N(g) = N’(g). Thus, we need to show N(f) =fNng=fnNp(g) =N'(f). Because p(g) is a
parent of g in F, we have f N g C p(g); thus, f Ng Cf Np(g). Vice versa, because g is a parent of f in F, we have
fNp(g) Cg thus, fNp(R) SfNg O )

By applying Proposition 2 to the multiset E defined by (4), we obtain the following result.

Corollary 1. Any running intersection ordering of E leads to the same system of running intersection inequalities centered at
eo with neighbors e, k € K.

We now introduce a new polyhedral relaxation of multilinear sets. To this end, we first recall a widely used
polyhedral relaxation of Sg, which is obtained by replacing each multilinear equation z, = [Ty 2o, by its
convex hull over the unit hypercube:

MP(L;P = {z 1z, <1, VoevV,

2020, 2> > zo—|e| +1, Ve € E,

vee

Ze < z,, Ve € E, Yv € e}. (8)

This relaxation has been used extensively in the literature and is often referred to as the standard linearization of
the multilinear set (Crama [10]).

We define the running intersection relaxation of Sg, denoted by MP{!, as the polytope obtained by adding to
MPLP all possible running intersection inequalities for Sg. Running intersection inequalities with no neighbors
are already present in (8).

2.3. Redundant inequalities
For a general hypergraph G, many of the running intersection inequalities defined by (5) are redundant for
MPRL The following proposition provides sufficient conditions to identify such redundant inequalities.

Proposition 3. Every running intersection inequality centered at ey with neighbors ey, k € K, that defines a facet of MPK!
satisfies the following three conditions:

(i) For any k,k’ € K, we have ey Nex Leg N ey;

(ii) For any k € K, we have ley Nex| = 2;

(iif) For any distinct k, k' € K with uy, up € N(eo Nex) N Nleg Nep), we have uy = uy.

Proof. To prove the statement, we consider a running intersection inequality not satisfying each condition. Then
we show that such an inequality can be obtained by summing up a number of other inequalities valid for MPRL.
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Because MP; is full dimensional (Del Pia and Khajavirad [12]), this implies that the inequality under consideration
is not facet defining.

Consider a running intersection inequality centered at ¢y with neighbors ¢, k € K. Assume that this inequality
does not satisfy condition (i); that is, there exist i,j € K such that ey Ne; C eg N ¢;. Consider the multiset E defined
by (4). We show that there exists a running intersection ordering O of E in which ey N ¢; appears before ey Ne;.
Define E' = {ey Ney : k € K\ {i}}. Observe that by part (iii) of Lemma 1, the set E’ has the running intersection
property. Consider a running intersection ordering O’ of E” and construct a sequence O obtained by inserting ey N ¢;
right after ey N ¢; in O”. It is now simple to check that O is a running intersection ordering of E. A running intersection
inequality centered at ey with neighbors ¢, k € K\ {7}, is given by

- D Zy, + D Zo+ D) Ze—Zy Sw-—1, 9)

keK\{i}:N(eoNex)#0 UEEO\UkEK\m €k keK\{i}

where @ denotes the number of connected components of G’ = (e, E’) and the sets N(eg Nex), k € K\ {i} are
obtained according to the running intersection ordering ©’. Now consider the edge ¢; and denote by u a node
in ey Ne;. Then the following inequality is present in MPX:

—2zy + 2, < 0. (10)

It is simple to see that ¢p \ Ukekek = €o \ Ukek\(iyek- Moreover, the number of connected components of the two
hypergraphs G = (ep, E) and G’ are identical. In addition, by construction, the sets N(eo Nex), k € K\ {i}, as-
sociated with O coincide with those associated with O. Finally, the set N(ey N ¢;) obtained using O is given by
N(ep Ne;) = eg Ne;, because by assumption eg Ne; € eg Ne; and ey N ¢j appears before eg Ne;. It then follows that
the running intersection inequality under consideration can be obtained by adding inequalities (9) and (10).

Consider a running intersection inequality centered at ey with neighbors e, k € K. Assume that this inequality
does not satisfy condition (ii) that is,there exist i € K and u € V(G) such that ¢y Ne; = {u}. We can assume that the
inequality satisfies condition (i) thus we have 1 ¢ ¢, Ney for every k € K\ {i}. Consider a running intersection
ordering O of E defined by (4) and let the set N(ep Nex), k € K, be defined by (3). It then follows that N(ey Ne;) =0
and that the sequence ' obtained by removing ¢y Ne; from O is a running intersection ordering of the set
E ={eynep: ke K\ {i}}. In addition, the sets N(ey Ney), k € K\ {i}, associated with ¢ are identical to those
associated with O. Hence, a running intersection inequality centered at ey with neighbors e, k € K \ {i} is given by

- DLzt Dzt Dz —zp<w-1, (11)

keK:N(epNeg)#0 veeO\Ukek\m e keK\{i}

where @ denotes the number of connected components of the hypergraph G’ = (eo, E’). Now consider the edge
¢;; clearly, the following inequality is present in MPL’:

—Zy + 2, < 0. (12)

It is simple to see that ¢ \ Ukek\(iy €& = {u} U (o \ Ukex €x). In addition, the number of connected components
of G = (ey, E) and G’ are identical. It then follows that the running intersection inequality under consideration
can be obtained by summing up inequalities (11) and (12).

Finally, consider a running intersection inequality centered at ¢y with neighbors ¢, k € K that does not satisfy
condition (iii) that is, there exist i,j € K with u;, 1; € N(ep N e;) N N(eg N ¢;) such that u; # u;. We now construct two
other running intersection inequalities entered at ey with neighbors ¢, k € K, for which we select the same node
from each N(ep Ney), for all k € K\ {i,j} as the original inequality, but for first one we let u} = u]’- = u;, whereas for
the second one we let u; = u = u;. It is then simple to check that the running intersection inequality under
consideration can be obtained by adding these two inequalities both of which are present in MPE. O

2.4. Facet-Defining inequalities

We conclude this section by showing that, under certain assumptions, running intersection inequalities are
facet-defining for their support hypergraphs. This result together with the lifting theorems presented in Del
Pia and Khajavirad [12] enables us to obtain sufficient conditions under which these inequalities define facets
of the multilinear polytope of general hypergraphs.
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Proposition 4. Consider a running intersection inequality centered at ey with neighbors e, k € K, and let G denote its
support hypergraph. Assume that the inequality satisfies the following conditions:

1. For every k € K, we have |eg Nex| = 2;

2. For every K’ C K such that ey N (Miexrex) # O we have ey N (e; \ Ugerngiyex) # O for all i € K';

3. Each nonempty N(eg Nex), k € K, intersects the set U := {uy : k € K, N(eg Nex) # 0} in only one node.

Then this running intersection inequality defines a facet of MPg.

Proof. Consider a running intersection inequality defined by (5). We start by identifying a set of points in S¢ that
satisfy this inequality tightly. Subsequently, we show that any nontrivial valid inequality az < a for S¢ that is
satisfied tightly at all such points coincides with (5) up to a positive scaling. Because MPg is full dimensional (Del
Pia and Khajavirad [12]), this in turn implies that inequality (5) defines a facet of MPg.

Let G = (eO,E), where E is given by (4). As in the proof of Proposition 1, we denote by Gy,...,G, the
connected components of G. Consider a partition of K given by K = U%, K;, where K; contains the indices of the
edges of G;. Let Q contain those indices i € {1, ..., w} for which K; # 0. By Lemma 2, for each i € () there exists a
unique index r; in K; with N(ep Ney,) = 0. Define

Ve == D Zu+ D, Ze.

keKi\{r;} keK;

Then, it can be checked that

Claim 3. Let z € Si. Then
(i) If zy, =1 for all k€ K; \ {r;} and z, =1 for all k € K;, then yg, =1;
(ii) If z,, =z, for all k € K;\ {r;} and z,, =0, then yg, =0.

For notational simplicity, in the following, let Vjy = ¢y \ Uiexer. To identify the tight points of (5), we consider
two cases:
(I) Case z,, =1: a point in S satisfies (5) tightly if and only if yg, =1 for all i € Q;
(II) Case z,, = 0: a point in Sg satisfies (5) tightly if and only if one of the following is satisfied:
(I') We have z, =1 for all v € Vy, yg, =0 for some j€ Q and yg, =1 for all i € Q\ {j};
(") We have Vi # 0, z, =0 for some w € Vy, z, =1 for all v € Vi \ {w}, and yg, =1 for all i € Q.
If Vo #0, by part (i) of Claim 3, it is simple to check that substituting tight points of type (I) and (II”) in
az < a, yields

ay+4a, =0, VYveV,. (13)

Define U; = Ukek,\{r;} Uk for all j € Q. For each j € QO with Ukek; €k \ U; # 0, by part (ii) of Claim 3, we construct two
tight points of type (II') as follows: the first tight point is obtained by letting z, = 0 for all v € Uyex,er. The
second tight point is obtained by letting z,, = 1 for some w € (Ugex,ex) \ U; and z, = 0 for all v € Ukeg,er \ {w}.
From condition 1, it follows that eg N Ukek €k \ {w} # 0. By construction, in both tight points we have z,, =
z,, = 0 for all k € K; \ {r;} and 2, = 0. Substituting these two points in az < a and subtracting the resulting
expressions gives a, = 0. Using a similar line of arguments for each w € (Ugex,ex) \ U; and each j € Q, we obtain

a,=0, Yoel e\ JU,. (14)

keK j€eQ

Let e, denote a leaf of E(G]-). We claim that ey Ne, \ U; is nonempty. If U; = @, then the statement is trivial.
Otherwise, by definition of a leaf eg Ne, \ U; 2 eg Neg \ eg N ey for some h € K; such that i # £. Moreover, from
condition 2 it follows that ey N (e¢ \ e;) # 0. Now we construct two tight points as follows: the first point is a
tight point of type (I). The second point is obtained by letting z,, = 0 for some w € ey Ne, \ U; and z, = 1 for all
v € Ureex \ {w}. This point is a tight point of type (II'). To see this, consider a running intersection ordering of
E in which ey N ¢, is the first element. By part (II) of Lemma 1, such an ordering exists. It then follows that at
this tight point we have z, =z, =1 for all k € K; \ {¢} and z, = 0. By (14), we have a,, = 0. Substituting these
two points in az < a and subtracting the resulting relations we obtain

Gy, +a, =0, VkeK:eisa leaf of E. (15)

Again consider a tight point of type (II') in which yg, = 0 for some j € Q by letting z, = 0 for all k € K; and
zy, = 0 for all k € K; \ {r;}. Consider a node w in the set U; defined previously. Denote by K’ the index set of all
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edges in K; with ¢, D w. Let £ € K’ and consider a running intersection ordering of E in which ey Ne; is the first
element. The existence of such an ordering follows from part (ii) of Lemma 1. Now, construct a second tight point
of type (I') in which we have z, = 1. By condition 3, we have u; = w for all k € K’ \ {¢}, as by construction,
N(eg Nex) 2 w for all k € K"\ {£}. Moreover, by condition 2, there exists a node v, € eg N (e \ Uegr\(3€)- It then
follows that by letting z,, = 0 and z, = 1, we can construct a tight point of type (II') in Sg such that z,, =0,
Zy, = 2z, = 1 for all k € K"\ {¢} and z,, =z, =0 for all k € K; \ K". Substituting these two points in az < @ and
using (14), yields

(|KI| - 1)1110 + Z Qe = 0, VeeK.

keK'\{¢}
It then follows that for each w € U, we have
ay +a, =0, Vk e Ksuch that e, D w. (16)
Together with (15), this implies that
a, +a, =0, VkeKk. (17)

Finally, by substituting the tight point of type (I) we get & = X,cvur 4,. Together with (13), (14), (16), and (17),
this implies that az < a coincides with inequality (5) up to a positive scaling, implying that (5) defines a facet
of MPs. O

In particular, Proposition 4 implies the following.

Corollary 2. Consider a running intersection inequality centered at ey with neighbors ey, k € K. Suppose that ey N ex| > 2 for
all ke K and |eg Nex Nep| <1 for all k, k' € K. Then this inequality defines a facet of the multilinear polytope of its sup-
port hypergraph.

Proof. To prove the statement, it suffices to show conditions 2 and 3 of Proposition 4 are satisfied. First consider
condition 2; because |eg N ex Nep| < 1forallk, k’ € K, it follows that for any K" C K, the set ey N (Nkex-€x) consists of at
most a single node. Moreover, if ey N (Nkex-ex) = {v}, then eg Nex Nep = {v} for all k, k’ € K. Hence, for each i € K’
wehaveeg N (e; \ Ukexn(iex) = (eg N e;) \ {v}, and the latter is nonempty as by assumption |eg N e;| > 2. Condition 3 is
satisfied as the assumption |ep Nex Nep| <1 for all k, k' € K implies that [N(eg Ne)| <1 forallke K. O

We should remark that the converse of Proposition 4 does not hold in general; namely, although by
Proposition 3, condition 1 is necessary, one can construct facet-defining inequalities that do not satisfy
conditions 2 and 3. In fact, in Example 1, inequalities (7) are facet defining but they do not satisfy condition 3
of Proposition 4. We believe that a complete characterization for facetness of running intersection inequalities
depends on the precise structure of the support hypergraph.

2.5. Computational Impact

Del Pia et al. [15] demonstrate the effectiveness of running intersection inequalities in constructing strong
polyhedral relaxations for general multilinear polytopes. Namely, they devise an efficient algorithm for separating
running intersection inequalities that they embed at every node of the branch-and-reduce global solver BARON
(Khajavirad and Sahinidis [20]). Results for multilinear and polynomial optimization problems of degree three
and four show that running intersection cuts significantly improve the performance of BARON.

As we detailed before, running intersection inequalities serve as a generalization of flower inequalities (Del
Pia and Khajavirad [13]). Indeed, running intersection cuts have a more complex form than flower cuts, and
the corresponding proof techniques are more involved. In the following, we demonstrate the significance of
running intersection cuts in global optimization via a simple numerical study. We consider a test set con-
taining computer vision instances from an image restoration problem. This test set consists of 45 uncon-
strained binary polynomial optimization problems of degree four. Crama and Rodriguez-Heck [11] provide
the problem formulation and a detailed description of the test set. It can be checked that corresponding
hypergraphs are not -acyclic. To highlight the benefits of running intersection cuts, we devise two relaxation
construction strategies. We use the cut generation scheme of Del Pia et al. [15] to add (i) running intersection
cuts and (ii) only flower cuts to BARON'’s polyhedral relaxation. We compare the root-node relaxation gap,
defined as the difference between the upper and lower bounds for the problem at the root node of the tree for the two
relaxation strategies. We call a problem trivial if it is solved to global optimality at the root node by both algorithms.
Of 45 problems, 10 were trivial. Results for the nontrivial problems are shown in Figure 3. For 27 instances, that is,
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Figure 3. (Color online) Relaxation gap reduction at the root node of BARON when using running intersection cuts instead of
flower cuts for 35 computer vision instances.
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for about 80% of the problems, running intersection cuts result in more than 95% reduction in root node
relaxation gap. This experiment demonstrates the usefulness of these inequalities in their most general form.

3. Convex Hull Characterizations

In Del Pia and Khajavirad [13], we defined the flower relaxation as the polytope obtained by adding all flower
inequalities for a multilinear set to its standard linearization. Subsequently, we showed that the flower re-
laxation coincides with the multilinear polytope if and only if the underlying hypergraph is y-acyclic. In the
remainder of this paper, we study the tightness of the running intersection relaxation. Namely, we provide a
necessary condition and a sufficient condition for the tightness of the running intersection relaxation in terms
of the acyclicity degree of the hypergraph. To this end, we briefly review different types of cycles in hypergraphs.

3.1. Hypergraph Acyclicity

Unlike graphs for which there is a single natural notion of acyclic graphs, there are several nonequivalent
definitions of acyclicity for hypergraphs, which collapse to graph acyclicity for the special case of ordinary
graphs (Fagin [18]). Among the most widely used ones one can cite, in increasing order of generality, Berge-
acyclicity, y-acyclicity, and p-acyclicity. Next, we briefly review these concepts as they play a crucial role in
our subsequent developments (see Berge [5] for an exposition).

A Berge-cycle in G of length t is a chain C = vy, e1, 2,6y, ...,0, 6, U1 such that v,y =1 and t > 2. A y-cycle in
G is a Berge-cycle such that ¢ > 3, and the node v; belongs to e;_1, e; and no other ¢;, foralli=2,...,t. A B-cycle
in G is a y-cycle such that the node v; belongs to e1, e; and no other ¢;. A hypergraph is Berge-acyclic (re-
spectively, y-acyclic, p-acyclic) if it does not contain any Berge-cycle (respectively, y-cycle, f-cycle). Throughout
this paper, given any cycle C = vy,e1,vy,€2,..., 0, 6,01, we denote by V(C) = {vy,..., v} the nodes of C, and by
E(C) ={ei,..., e} the edges of C.

Consider a hypergraph G = (V,E) and let V' be a subset of V. We define the subhypergraph of G induced by
V’ as the hypergraph Gy with node set V' and with edge set {e NV’ : e € E,|eN V’| = 2}. For every edge e of Gy,
there may exist several edges ¢’ of G satisfying e = ¢’ N V; we denote by ¢’(e) one such arbitrary edge of G. For
ease of notation, we often identify an edge e of Gy with an edge ¢'(¢) of G. Next, we present a couple of basic
properties of B-acyclic hypergraphs that will be used to prove our main results.

Lemma 3. Let G = (V, E) be a hypergraph. If the subhypergraph Gy contains a B-cycle of length t, then G contains a f-cycle
of length t. In particular, if G is p-acyclic, then Gy is B-acyclic as well.

Proof. Suppose that Gy contains a B-cycle vy,e1,vp,6,...,01,6,01. It is simple to check that vq,e'(eq),v2,
e'(e),...,v,€(er),v1 is a pcyclein G. O

The following result, first appearing in Beeri et al. [4], relates the concepts of f-acyclicity and running
intersection property.

Lemma 4. A hypergraph G = (V,E) is B-acyclic if and only if every E’ C E has the running intersection property.
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3.2. A Necessary Condition for the Tightness of the Running Intersection Relaxation
Denote by R a relaxation of the multilinear set; namely, R is a function that associates to each hypergraph G a
set Rg containing all points in Sg. Consider a hypergraph G = (V,E) and let V be a subset of V. Define

Ly:={zeRVE:z,=1VoeV\V}L (18)

Denote by proj; (Rg N Ly) the set obtained from Rg N Ly by projecting out all variables z,, forallv € V'\ V, and
zp, forallf € E'\ {e (e) : e € E(Gy)}. In Del Pia and Khajavirad [13], we showed the following equivalence for the
multilinear polytope.

Lemma 5. Let G =(V,E) be a hypergraph and let the set Ly be defined by (18) for some V C V. Then MPg, =
projg, (MP¢ N Ly).

Next, we present a weaker version of this result for the running intersection relaxation. We state this result
without a proof, as the proof is a straightforward generalization of the proof of Lemma 13 in Del Pia and
Khajavirad [13], wherein we show that a similar inclusion relation holds for the flower relaxation.

Lemma 6. Let G = (V,E) be a hypergraph and let the set Ly be defined by (18) for some V C V. Then MPéf/ c
proj, (MP' N Ly).

The following proposition provides a necessary condition for the tightness of the running intersec-
tion relaxation.

Proposition 5. If the hypergraph G is not B-acyclic, then MPg ¢ MPRL.

Proof. Suppose that G contains at least one f-cycle. Denote by C a f-cycle of minimum length, say t. To show that
MP¢ c MPg!, by Lemmas 5 and 6, it is sufficient to prove that MPg, . ¢ MPf| .

Define the set E:={enV(C) : e € E(C)}. Clearly, E C E(Gy(c))- First suppose that E= E(Gy(c)); thatis, Gy(c) is a
graph that consists of a chordless cycle. The inclusion MPg,, ., C MPRI is then valid as the odd-cycle inequalities
are facet defining for MPg, ., (Padberg [25]) and are clearly not 1mp11ed by MPGV(C)

Next, suppose that E C E(Gy(c))- Let & be in E(Gyc)) \ E. We claim that & = V(C). To obtain a contradiction,
suppose that e C V(C). Then it is simple to check that Gy(c) contains a f-cycle of length + with #' < t. By Lemma 3,
also G contains a -cycle of length t'. However, this contradicts the assumption that C is -cycle of G of minimum
length. Hence, e = V(C). This shows that E(Gy(c)) = E U V(C); that is, the hypergraph Gy c) consists of a chordless
cycle enclosed by the edge e. Denote by az < & an odd-cycle inequality corresponding to the chordless cycle in Gy (c).
Suppose thata, = =1 fore € M C E(C) such that|M| = 2 I + 1 for some h > 1. It can be checked that any inequality of

the form az + hz; < a defines a facet of MPg,, . However, such inequalities are not present in MP .- Consequently,
if the hypergraph G contains a f-cycle, we have MPg, ., c MP§| . O

Henceforth, we consider a p-acyclic hypergraph G = (V,E). By Lemmas 1 and 3, given any edge ¢y € E and a
collection of adjacent edges e, k € K, the set {eg N e : k € K} has the running intersection property. Hence, the
polytope MPE! can be simply obtained by adding to MPE all inequalities of the form (5) with any e € E as the
center edge and any collection of adjacent edges e, k € K. The following example indicates that even for
B-acyclic hypergraphs, the running intersection relaxation may not coincide with the multilinear polytope.

Example 2. Consider the hypergraph G = (V,E) with V = {v1,v2,v3,v4} and E = {e12, €123, €124, 1234}, where the
edge ¢; contains the nodes with indices in I. It is simple to check that G is p-acyclic. It can be shown that the
inequality —ze,, + Zeyy; + Zeyp, — Zepsy, < 0 defines a facet of MP¢ and is not valid for the running intersection relaxation
of Sg. O

More generally, it can be checked that the multilinear polytope of S-acyclic hypergraphs can have dense
facet-defining inequalities. By dense facets, we mean facets whose support hypergraph contains almost all
edges of the original hypergraph. This is in major contrast with the support hypergraph of running inter-
section inequalities that consists of a center edge that is adjacent to all other edges. In the following, we
characterize a class of p-acyclic hypergraphs for which we have MPg = MPRL. We believe that for general
B-acyclic hypergraphs, MP; has a far more complicated facial structure than MPXL

3.3. A Sufficient Condition for the Tightness of the Running Intersection Relaxation

We now introduce the class of kite-free f-acyclic hypergraphs. As we will show in the following, for this class
of hypergraphs the running intersection relaxation coincides with the multilinear polytope. A kite in a hypergraph
G = (V,E) consists of three edges ey, e1,e; € E such that [egNe; Ney| =2, (g Ner)\ex #0, and (eg Nea) \ eg # 0.
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Figure 4(a) provides an illustration of a kite. A hypergraph G = (V, E) is said to be kite-free if it contains no kite.
Figure 4(b) shows an example of a kite-free f-acyclic hypergraph. The hypergraph in Example 2 is f-acyclic but
is not kite-free; that is, it contains a kite consisting of edges {v1,v2,v3, va}, {v1,v2, v3}, {v1, 2, v4}.

As we mentioned before, a polynomial-time algorithm for determining f-acyclicity of hypergraphs is
available (Fagin [18]). Moreover, one can check in O(|E’) operations whether a hypergraph G = (V, E) is kite-
free; hence, the detection problem for kite-free f-acyclic hypergraphs runs in polynomial time.

As we detail in the following, if G is a kite-free f-acyclic hypergraph, then the subhypergraph G, of G
induced by any edge e € E(G) has a particular structure that enables us to characterize MPg, using a lift-and-
project technique. Let us first define a t-laminar hypergraph. A hypergraph G = (V, E) is t-laminar if for any
two edges e1,e; € E with |e; Ney| > £, we have e; C e, or e C e1 (see Dukes [17] for more details on t-laminarity).
In particular, one-laminar hypergraphs are referred to as laminar hypergraphs. The following is the key
connection between kite-free hypergraphs and two-laminar hypergraphs.

Lemma 7. Let G be a kite-free hypergraph, and let ey € E(G). Then the subhypergraph G,, of G induced by ey is a two-
laminar hypergraph.

Proof. Assume by contradiction that G,, is not two-laminar. Then there exist two edges e;,e; of G such
that [(eoNer)N(egNex)l =2, egNer EegNey, and egNex ¢ eg Nep. Then edges ep, e1, e, satisty lep Ney Nea| > 2,
(egNe)\ex=(egner)\(egNex)#0, and (egNey) \er = (eg Nea) \ (eg Ney) £ 0. This contradicts the fact that G is
kite-free. O

The running intersection inequalities (5) can be greatly simplified if G is a kite-free f-acyclic hypergraph.
Consider a collection of edges e, e, k € K, satisfying conditions (i) and (ii) of Proposition 3, that is, ep N e /
CeyNep for any k k' € K, and |ey N e = 2 for all k € K. By construction, G = (e, E), where E is defined by (4),
is a partial hypergraph of the subhypergraph of G induced by ej. Hence, by Lemma 7, G is a two-laminar
hypergraph; it then follows that each set N(ey Ney), k € K, as defined by (3) consists of at most a single node.
For each node v € ¢y, denote by 6x(v) the number of edges in ¢, k € K, that contain v. Then, there exists only
one running intersection inequality centered at ¢y with neighbors ¢, k € K, and it can be checked that this
inequality is of the form

D= 0k(0)zo+ D 2o, — 2y Sw -1, (19)

vEey keK

where, as before w denotes the number of connected components of G.

In the remainder of this section, we state the results that we need to establish that the multilinear polytope of
kite-free p-acyclic hypergraphs coincides with the running intersection relaxation. To streamline the pre-
sentation, the technical proofs are given in Section 5. In Section 3.3.1, we characterize the multilinear polytope
of two-laminar f-acyclic hypergraphs using a lift-and-project type technique. Subsequently, in Section 3.3.2,
we present a sufficient condition under which a multilinear set is decomposable into a collection of simpler
multilinear sets. In Section 3.3.3, we use the results of Sections 3.3.1 and 3.3.2 to obtain a compact extended
formulation for MPg. More precisely, we show that in a lifted space, the multilinear polytope of a kite-free
B-acyclic hypergraph G is representable as the intersection of a collection of multilinear polytopes of two-
laminar f-acyclic hypergraphs. Finally, in Section 3.3.4, by projecting out the extra variables, we show that in
the original space we have MPg = MPRL

3.3.1. Multilinear Polytope of Two-Laminar g-Acyclic Hypergraphs. By definition, a laminar hypergraph is also
two-laminar. However, although laminarity implies y-acyclicity, a two-laminar p-acyclic hypergraph contains
y-cycles in general, resulting in an increased complexity of the corresponding multilinear polytope. In Del Pia

Figure 4. (Color online) Kites in hypergraphs (a) An illustration of a kite and (b) a kite-free f-acyclic hypergraph.
(@)
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and Khajavirad [13], we showed that the subhypergraph induced by an edge of a y-acyclic hypergraph is
laminar. Subsequently, we characterized the multilinear polytope of laminar hypergraphs by leveraging on a
fundamental result from Conforti and Cornuéjols regarding the connection between integral polyhedra and
balanced matrices (Conforti and Cornuéjols [9]). Namely, we showed that the constraint matrix corresponding
to the facet description of the multilinear polytope of laminar hypergraphs is balanced. A similar proof
technique is not applicable to two-laminar f-acyclic hypergraphs as the concept of balancedness is only
defined for 0, +1 matrices; that is, such a technique can only be used if the constraint matrix corresponding to
the facet description of the multilinear polytope only contains 0, +1 entries. However, for two-laminar -acyclic
hypergraphs, some facet-defining inequalities have general integer-valued coefficients. We use a lift-and-
project type argument to characterize the multilinear polytope of these hypergraphs, which is significantly
more involved than our earlier proof for laminar hypergraphs.

To state the facet description of MP¢ for a two-laminar f-acyclic hypergraph G = (V, E), we make use of the
following notation. For each edge e € E, define I(e) :={pe VUE:pCe,p ¢ ¢, fore’ € E,¢’ Ce} and denote by
w(e) the number of connected components in the hypergraph H, = (¢,I(e) N E). For each v € V, let 6,(v) denote
the number of edges in H, containing v. It is simple to show that w(e) = Zye (1 — 6.(v)) + |I(e) N E|.

Proposition 6. Let G = (V,E) be a two-laminar B-acyclic hypergraph. Then MPg is described by the following system:

z, <1 YoeV
-z, <0 Vpe VUEst.p ¢ f, for every f € E
—2zp+2. <0 Ve e E, Vp € I(e) (20)
D (A =6(0)zo+ > zp—z.<w(e)—1 VeeE.

vee pel(e)nE

The proof of Proposition 6 is given in Section 5.1.

Consider the inequalities of system (20). Clearly, the first two sets are present in MPX'. The third set is
present in MPL' if p is a node, and is a running intersection inequality if p is an edge. Finally, for each e € E, the
last inequality is present in MPX' if I(e) € V and is a running intersection inequality otherwise. Hence, we have
the following characterization.

Corollary 3. Let G be a two-laminar B-acyclic hypergraph. Then MPg = MPRL.

It is important to note that for a two-laminar p-acyclic hypergraph G, the relaxation MPY! in general contains
many more running intersection inequalities than system (20). More precisely, for each edge e € E(G), in-
equalities (20) contain at most two running intersection inequalities in which e is the center edge, whereas in
the description of MPR!, the number of running intersection inequalities (19) centered at e grows exponentially
with the number of neighbors. In addition, it can be shown that all running intersection inequalities in
system (20) are facet defining, whereas many of the running intersection inequalities present in MP{! are
redundant, and identifying such redundant inequalities is not simple in general. This compact representation
is the key property of two-laminar -acyclic hypergraphs, which enables us to use a lift-and-project technique
to directly characterize their multilinear polytope.

3.3.2. A Sufficient Condition for Decomposability of Multilinear Sets. Given hypergraphs G, = (V,, E,) and
Gy = (Vy,Ey), we denote by G, NG, the hypergraph (V,NV,,E,NE,) and by G, UG, the hypergraph
(VaUV,,EqUE,). Let G be a hypergraph and let G,, G,, be section hypergraphs of G such that G, UG, = G.
We say that the set S¢ is decomposable into the sets Sg, and Sg,, if

convSg = convSg, N convSg,,

where Sg, (respectively, Sg,) is the set of all points in the space of Sg whose projection in the space defined by
Gy (respectively, G,) is Sg, (respectively, Sg, ).

In Del Pia and Khajavirad [13, 14], we derived sufficient conditions for decomposability of multilinear sets.
In Del Pia and Khajavirad [14], we showed that S¢g is decomposable into Sg, and Sg, if the hypergraph
Guo N G, is complete. In Del Pia and Khajavirad [13], we showed that S; is decomposable into S, and Sg,, if
e =V(G,) N V(G,) is an edge of G and every edge that is only present in G, either contains € or is disjoint from
it. In particular, our decomposition result in Del Pia and Khajavirad [13] enables us to characterize multilinear
polytopes of Berge-acyclic and y-acyclic hypergraphs by showing that the corresponding multilinear sets are
decomposable into a collection of simpler subsets whose convex hulls can be obtained directly.
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Next, in Theorem 1, we provide a new sufficient condition for decomposability of multilinear sets. The
setting considered in Theorem 1 is significantly more involved than the ones described above. Namely, the
edges of G, may only contain a subset of nodes in V(G,) N V(G,), and as a result our earlier tools in Del Pia
and Khajavirad [13, 14] are not applicable to the current setting. More precisely, the key step in proving all
these decomposition results is to show that a vector (2,,2n,2,) can be written as a convex combination of
vectors in Sg if (24, 2n) can be written as a convex combination of vectors in Sg, and (2n, Z,,) can be written as a
convex combination of vectors in Sg_ . To prove the decomposition results in Del Pia and Khajavirad [13, 14],
it is sufficient to consider vectors in Sg obtained by combining only one vector in Sg, with only one vector
in Sg,. However, to prove Theorem 1, it seems no longer sufficient to consider vectors in Sg obtained by
combining only one vector in Sg, with one vector in Sg,. To address this issue, we exploit the special structure
of G, and partition its edge set into k subsets based on the nodes in V(G,) N V(G,) to which they are
connected. This allows us to combine one vector in S, with k vectors in Sg, (one per each element of the
partition) that coincide in certain components of G, N G, and obtain a vector in Sg. Finally, we show that any
vector (24,2n,2,) € MPg can be written as a convex combination of the obtained vectors in Sg.

We now state our decomposition result. The proof is given in Section 5.2.

Theorem 1. Let G be a hypergraph, and let G,, G, be section hypergraphs of G such that G, U G, = G. Denote by
p = V(Gy) N V(G,). Suppose that p € V(G) U E(G) and that G, is a two-laminar B-acyclic hypergraph. Then the set Sg is
decomposable into Sg, and Sg, .

3.3.3. A Compact Extended Formulation of MPs;. We now use the result of Theorem 1 to obtain a compact
extended formulation for the multilinear polytope of kite-free f-acyclic hypergraphs. We say that an edge is
maximal if it is not strictly contained in any other edge. Consider a kite-free S-acyclic hypergraph G = (V, E).
If V is an edge of G, by Lemmas 3 and 7, G is a two-laminar f-acyclic hypergraph, and consequently by
Corollary 3, we have MP; = MPRL Henceforth, suppose that G has at least two maximal edges. Denote by E
the set of all maximal edges of G, and define «x := |E|. Then by Lemma 4, there exists a running intersection
ordering O =¢,...,&c of E. Let the sets N(¢), j€ {1,...,x} be as defined in (3). We now construct the
hypergraph G* = (V,E*) obtained from G by adding at most x — 1 auxiliary edges to E, defined as follows:

E':=EU{N(Z): IN@E) =2 je{2...,x}}. (21)

The following theorem provides an extended formulation of polynomial size for MPg, which contains at most
|V| + 2|E| variables and 2(|V| + (r + 1)|E|) inequalities, where r denotes the maximum cardinality of the edges of
G. In essence, via a recursive application of our decomposition result stated in Theorem 1, we show that Sg- is
decomposable into a collection to multilinear sets of two-laminar p-acyclic hypergraphs.

Theorem 2. Let G = (V, E) be a kite-free p-acyclic hypergraph. Denote by €;,i =1, ..., x, the maximal edges of G. Consider
the hypergraph G* = (V,E*), where E* is defined by (21), and denote by G/, i =1,...,x, the section hypergraph of G*
induced by e;. Then G}, i€ {1,...,«}, is a two-laminar B-acyclic hypergraph and

MPg- = [\ MPg;:. (22)
i=1

Proof. Consider a kite-free p-acyclic hypergraph G = (V,E). By Lemma 4, there exists a running intersection
ordering O =¢y,..., ¢, of the set of maximal edges of G. Let G;, denote the subhypergraph of G induced by eé.
Because G is a kite-free f-acyclic hypergraph, by Lemmas 3 and 7, G;, is a two-laminar -acyclic hypergraph. Now
consider the hypergraph G* = (V,E"), where E* is defined by (21). We define G! as the section hypergraph of G*
induced by é,, and G/, as the section hypergraph of G* induced by Ug+\g(g1e. It is snnple to check that G is a partial
hypergraph of Gs,. Hence, G! is a two-laminar -acyclic hypergraph as well. In addition, both G} and Gl are
different from G*, and we have Gl UGl =G*, GL NGl = N(e,), where the set N(e,) is defined in (3). Flnally,
by construction, N(é,) € E*. Thus, all assumptions of Theorem 1 are satisfied, and the set Sg+ is decomposable into
Scr and Sgi . As Gl is a two-laminar -acyclic hypergraph, MPg, is given by Proposition 6.

Now define G+ = G1 and consider the edge é.-1, that is, the element of © before ec. Let G;_, denote the
subhypergraph of G induced by é.-1. Again, by Lemmas 3 and 7, G;,_, is a two-laminar S-acyclic hypergraph.
Define G2 as the section hypergraph of Gy, induced by é,_; and G2 as the section hypergraph of Gy, induced by
UE(Gr)\EGR)E- The hypergraph G2 is a partlal hypergraph of GEH and as a result is a two—lammar p-acyclic
hypergraph as well. Similarly, we can verify that all assumptions are Theorem 1 are satisfied and the set Sg+\, is



Del Pia and Khajavirad: Running Intersection Relaxation of Multilinear Polytope
16 Mathematics of Operations Research, Articles in Advance, pp. 1-30, © 2021 INFORMS

decomposable into Si: and Sg; . By a recursively application of this argument for all elements of O in the reverse
order, we conclude that the multilinear set Sc+ is decomposable into the sets Sci,i=1,...,%, where Gl is the
section hypergraph of G* induced by é,_;.1, which as detailed previously is a two-laminar p-acyclic hypergraph
with the corresponding multilinear polytope given by Proposition 6. O

In particular, Theorem 2 implies that we can optimize over MP¢ in polynomial time.

3.3.4. The Explicit Characterization of MPg. The facet description of each polytope MPg: in (22) is given by
system (20) in Proposition 6. By projecting out the auxiliary variables z, e € E* \ E, from the description of
MPg+, using Fourier-Motzkin elimination, we obtain an explicit characterization for MPg:

Theorem 3. Let G be a kite-free B-acyclic hypergraph. Then MPg = MPXL.

The proof of Theorem 3 is given in Section 5.3.

It is important to note that, although Theorem 3 provides an explicit description of MP¢ in the original
space, the polytope MPR! may contain exponentially many facet-defining inequalities in general (see Example 2
in Del Pia and Khajavirad [13], in which we gave a y-acyclic hypergraph G for which the number of facets of
MP; is not bounded by a polynomial in [V(G)| and |E(G)|). From Theorems 2 and 3, it follows that if G is a kite-
free f-acyclic hypergraph, we can optimize over MP; in polynomial time. By the equivalence of separation and
optimization, for this class of hypergraphs, the separation problem over MP; can be solved in polynomial time
as well. In fact, our results imply that separation over MP¢ can be done in a simple way which does not rely on
the ellipsoid algorithm. Namely, given a vector z € RV*E, one can substitute Z in the system defining MP¢-+ in
Theorem 2, and obtain a system of linear inequalities only involving extended variables. Via linear pro-
gramming, we can solve the feasibility problem over the reduced system. If this system is feasible, then clearly
Z € MPg+. Otherwise, Farkas’ lemma provides a certificate of infeasibility that can be used to construct an
inequality that separates Z from MPg-.

We conclude this section by remarking that the converse of Theorem 3 is not correct, in general. Obtaining a
complete characterization of p-acyclic hypergraphs for which the running intersection relaxation coincides
with the multilinear polytope is a topic of future research.

4. Connections with the Treewidth-Based Approach
In this section, we investigate the connections between our convex hull characterization and an earlier result in
the literature that relates the complexity of MPg to the treewidth of the intersection graph of G (Bienstock and
Munoz [6], Laurent [22], Wainwright and Jordan [27]). We refer the reader to Bienstock and Munoz [6] for the
standard definition of treewidth. Recall that the intersection graph of a hypergraph G = (V,E) is the graph
= (V,E’), where {i,j} € E’ if and only if there exists e € E with {i,j} C e. The next theorem follows from results
presented elsewhere (Bienstock and Munoz [6], Laurent [22], Wainwright and Jordan [27]). In these papers, the
authors give an extended formulation for the convex hull of the feasible set of (possibly) constrained binary
polynomial optimization problems. As in our setting the multilinear polytope corresponds to the convex hull
of the feasible set of an unconstrained binary polynomial optimization problem, we state their result for the
unconstrained case.

Theorem 4. Let G = (V, E) be a hypergraph, and let w be the treewidth of its intersection graph. Then there exists an extended
formulation of MPg with O(2¥|V|) variables and constraints.

We now present a result that is equivalent to Theorem 4 and relates the complexity of MPg to its hypergraph
acyclicity. This alternative statement in turn enables us to directly compare Theorem 4 with our result stated in
Theorem 2. Recall that the rank of a hypergraph G = (V,E) is the maximum cardinality of an edge in E.

Theorem 5. Let G = (V, E) be an a-acyclic hypergraph of rank r. Then there exists an extended formulation of MP¢ with
O(2"7Y|V|) wariables and constraints.

By Theorem 5, the multilinear polytope of an a-acyclic hypergraph with constant rank has an extended
formulation of polynomial size. As we mentioned before, a-acyclic hypergraphs are the most general type of
acyclic hypergraphs. Several equivalent definitions of a-acyclic hypergraphs are known. In the following, we
will use the characterization stated in Lemma 8, which can be obtained with little effort from theorem 3.4 in
Beeri et al. [4]. Before stating this lemma, we recall a couple of graph theoretic concepts. A hypergraph G is
conformal if for every clique K in its intersection graph, there is an edge of G that contains K. A graph is chordal
if every cycle with at least four distinct nodes has a chord.
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Lemma 8. A hypergraph G is a-acyclic if and only if its intersection graph U is chordal, and the set of maximal cliques of U
coincides with the set of maximal edges of G.

Proof. Let G be a hypergraph and let U be its intersection graph. From theorem 3.4 (1) «< (3) in Beeri et al. [4], we
know that G is a-acyclic if and only if it is conformal and U is chordal. Therefore, it suffices to show that the
following two conditions are equivalent: (a) G is conformal, and (b) the set of maximal cliques of U coincides with
the set of maximal edges of G.

Clearly (b) implies (a); thus, in the remainder of the proof we show that (a) implies (b). Let G’ be obtained from G
by removing from E each edge that is a proper subset of another edge. Clearly, in G’ no edge is a proper subset of
another edge. Note that U is the intersection graphs of both G and G’. The hypergraph G is also conformal. In fact,
since G is conformal, for every clique K in U there is an edge e of G that contains K. By definition of G’, there is an
edge ¢’ of G’ that contains e. Therefore, K C ¢’ and so G’ is conformal. Because G’ is conformal and no edge of G’ is a
proper subset of another edge, from theorem 3.2 in Beeri et al. [4], we know that the edges of G’ are precisely the
maximal cliques of U. However, the edges of G’ coincide with the maximal edges of G. This concludes the proof
that (a) implies (b) and hence the lemma holds. O

The following two lemmas enable us to prove the equivalence of Theorems 4 and 5.

Lemma 9. Let G be an a-acyclic hypergraph of rank r. Then the intersection graph of G has treewidth r — 1.

Proof. Let G be a hypergraph as defined in the statement and let U be its intersection graph. From Lemma 8§, it
follows that U is chordal and the set of maximal cliques of U coincides with the set of maximal edges of G. Because
U is chordal, the treewidth of U is one less than the cardinality of the largest clique in U (Heggernes [19]). Therefore,
the treewidth of U is one less than the cardinality of the largest edge of G, thatis, r—1. O

Lemma 10. Let G be a hypergraph, and let w be the treewidth of its intersection graph. Then G is a partial hypergraph of an
a-acyclic hypergraph G’ of rank w + 1.

Proof. Let G = (V, E) be a hypergraph, let U be its intersection graph, and assume that U has constant treewidth.
We refer the reader to Bienstock and Munoz [6] for the standard definitions of tree decomposition, width, and
treewidth. Let V = U;er W, be a tree decomposition of U of minimum width, and let G’ be the hypergraph defined
by G’ := (V,EU{W,; : t € T}). Clearly G is a partial hypergraph of G’. We show that each edge of G’ contains at most
w + 1 nodes. Because by assumption, the width of the tree decomposition V = U,erW; of U is w, it follows that
max{|W;| : t € T} = w + 1. By definition of intersection graph, each e € E is a clique in U. It is well known that each
clique in U is contained in a set W;, for t € T (see lemma 2.2 in Heggernes [19]). Therefore, each ¢ € E contains at
most w + 1 nodes. This completes the proof that G’ has rank w + 1.

Next, we show that G’ is a-acyclic. Let U’ be the intersection graph of G’. By Lemma 8, it suffices to show that U’
is chordal and that the set of maximal cliques of U’ coincides with the set of maximal edges of G’. Note that U’ is
obtained by adding edges to U so that each W; becomes a clique. This implies that U’ is chordal (see lemma 5.16 in
Heggernes [19]). Furthermore, each clique in U’ is contained in a set Wy, for t € T, which is an edge of G’. Vice versa,
we have already seen that each edge of G’ is contained in a set W;, and so it is contained in a clique in U’. Therefore,
the set of maximal cliques of U’ coincides with the set of maximal edges of G’. O

The equivalence of Theorems 4 and 5 can now be seen as follows. Theorem 5 follows directly from Lemma 9 and
Theorem 4. We now show that Theorem 4 can be proven using Theorem 5. Let G = (V, E) be a hypergraph, and
let w be the treewidth of its intersection graph. From Lemma 10, it follows that G is a partial hypergraph of an
a-acyclic hypergraph G’ of rank w + 1. By Theorem 5, there exists an extended formulation of MPs: with O(2“|V])
variables and constraints. Because each edge of G is also an edge of G, this is also an extended formulation of MPg.

Let us now compare the strengths of Theorems 2 and 5. We demonstrate that neither of these results implies
the other one by showing that neither of the two classes of kite-free f-acyclic hypergraphs and constant-
treewidth a-acyclic hypergraphs contains the other class. First, consider the hypergraph G; = (V,E), where
V ={v1,..., 0241}, for some integer m > 1, and where E contains all subsets of {v;,vi41,vi2} for every odd
ie{l,...,2m—1}. It is simple to check that G; is an a-acyclic hypergraph with rank r = 3, while it contains
many f-cycles. Hence, G; satisfies the assumptions of Theorem 5 but does not satisfy the assumptions of
Theorem 2. Now consider a laminar hypergraph G, with an edge containing all of its nodes. As we detailed in
Section 3.3.1, G, is y-acyclic and hence is kite-free f-acyclic, and therefore, a compact extended formulation for
its multilinear polytope is given by Theorem 2. However, the rank of G, is equal to n and hence is not a
constant, implying that this hypergraph does not satisfy the assumptions of Theorem 5.
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5. Technical Proofs
In this section, we provide the proofs omitted in Section 3.

5.1. Proof of Proposition 6

Let G = (V,E) be a two-laminar -acyclic hypergraph. We prove the theorem by induction on the number of
nodes of G. In the base case, G consists of a single node v. In this case, system (20) simplifies to 0 <z, <1,
which is clearly the multilinear polytope. To perform the inductive step, we a select a particular node 7 in G.
To do so, we first define an extremal element.

For each e€E, define I(e):={pe VUE:pCep ¢, fore eE e Cce} and Ule):={veV:{v} =e1Ney,
for some e1,e; € I(e) N E}. Let & € E and consider a partial hypergraph of G denoted by H; with V(H;) = é and
E(H;) =1(2) N E. We refer to an element p € I(¢) as an extremal element of H; if the set w, = p N (U2 U(e)) is
either empty or consists of a single node and w, # p. If an extremal p is an edge, we refer to it as an extremal
edge. Because p C ¢, it follows that p N (U U(e)) = p N (€ N (U U(e))) = p N we. Hence, we have w, = (p Nw;) U
(p N U(@)). The hypergraph H; is a partial hypergraph of the f-acyclic hypergraph G. Hence by part (i) of
Lemmas 1 and 4, the set E(H;) has at least two leaves. From the definition of H;, it follows that an edge & is a
leaf of E(H;) when the set N(2) = & N (Ueer(,)\(z1€) = € N U(8) consists of at most one node. Because N(&) C wy, it
follows that every extremal-edge of H; is a leaf of E(H;) but the converse is not true. In fact, H; may not have
any extremal edges in general. However, as we show next, in the special case where & is already an extremal
edge, H; has an extremal edge as well.

Claim 4. Let ¢; € I(e;) and suppose that ¢; is an extremal edge of H,,. If I(¢;) N E # 0, then H,, has an extremal edge.

Proof of Claim. We show that H,, has an extremal edge e;. We have w,, = (ex N wg;) U (ex N U(e;)). Because e; is an
extremal edge of H,, the set w,, is either empty or consists of a single node. If H,, has a connected component
consisting of a single edge ey, then ¢; is an extremal edge of H,, as ex N U(e;) = 0, implying w,, < w,,. Hence, suppose
that each connected component in H,, has at least two edges. By part i of Lemma 1, the edge set of each connected
component in H,, has at least two leaves ¢’ and ¢”; that is, each of the two sets ¢’ N U(e;) and e” N U(e;) consist of a
single node. Clearly, if (i) W, C € and we, Ce”, which implies We C U(e)) or (ii) we, ¢ € and we & €7, then we have
we =€ N U(ey) and wer = e” N U(e;), implying both ¢’ and ¢” are extremal edges of H,,. Hence, the only remaining
caseisw, C ¢ and w,, ¢ ¢” (respectively, w,, ¢ ¢’ and w,, C €¢”), in which case ¢” (respectively, ¢’) is an extremal edge
of H,. Hence, H,, has an extremal edge. O

We now describe the algorithm to select the node ¥ for the inductive step. Without loss of generality, we
assume that G has an edge containing all its nodes; that is, ¢y := V € E, as otherwise by theorem 1 in Del Pia
and Khajavirad [14], the multilinear set S is decomposable into a collection multilinear subsets, each of which
corresponds to a two-laminar $-acyclic hypergraph with an edge containing all of its nodes. First consider the
edge ey; if I(eg) = V, we let & be any node in ¢y. Otherwise, by Claim 4, we select an extremal edge of H,,
denoted by e;. If I(e;) € V, then we let ¥ be a node in ¢; \ w,,. Otherwise, we apply Claim 4 recursively, until we
obtain an extremal edge e; of H,,_, with I(e;) C V and we let 0 € ¢; \ w,,. Note that ¢; \ w,, # 0 for all j € {1,...t},
as for the extremal edge ¢;, the set w,, is either empty or consists of a single node. Denote by L the set of all
edges of G containing the node 7. By this construction, the set E consists of a sequence of nested edges

eoDe; D...De, where each ¢;, i € {1,...,t} is an extremal edge of H,, ,.

5.1.1. The Inductive Step. Denote by Gy (respectively, G;) the hypergraph corresponding to the face of MP¢
with zz = 0 (respectively, z; = 1). We have MP¢ = conv(MPg, U MPg,). Clearly, both Gy and G; are two-laminar
B-acyclic hypergraphs and |V(Go)| = |[V(G1)| = |V(G)| — 1. Hence, MPg, and MP¢, can be obtained from the
induction hypothesis.

Then MPg, is given by

z5=0

z, <1 YoeV\?

z.=0 Yee E

-z, <0 Vpe VUE\E,p¢f,feE\E

-zp+2, <0 VYee E\E, Vp el(e)

D A =8.0)z0+ D) zp— 2z < wle) — 1 Vee E\ E. (23)

vel(e) pel(e)
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Moreover, MPg, is given by

z5 =1

z, <1 Yoe V\D

Ze = Zo\ (5} VecE:e\ {0} e VUE

~Zey <0 (24)

-z +2, <0 Ve € E, Vp € I(e)

DT A =8:(0)z0 + D zp — 2 < wle) — Ve € E.

veli(e) pel(e)
The last inequalities of systems (23) and (24) follow from the facts that for each ¢ € E, we have 9,(v) = 0 for all

vel(e)and 6.(v) = 1 forall v e e \ {U(e) U I(e)}. Using Balas formulation for the union of polytopes (Balas [1]), it
follows that the polytope MPg is the projection onto the space of the z variables of the polyhedron defined by
the following system:

NN
Il
N
= o
+
N
= =

NN
NO QO Qo
IA
N o >~ o
o

|
N
o

|
N
O T O Il

+
N
o
IA
o

> (=82 + 3 2~z

vel(e) pel(e)
Z1 = )\1

< (w(e) = Ao

> (=802 + D 2=z < (w(e) = DAy

vel(e) pel(e)
A+A =1
Ao, A1 > 0}

Vpe VUE

VoeV\d

Vee E

Vpe VUE\E,p¢f,feE\E
Vee E\E, Vp € I(e)

Vec E\E

YoeV\?D
VeeE:e\ {0} e VUE

Ve € E, Vp € I(e)
Ve € E

(25)

We now project out the variables 2%, 2!, Ay, A1 from system (25) and obtain an explicit description for MPg.
From (25), it follows that z~ =0, z~ =z A =1—-2, A1 =z, and z =2z, — 21 for all v e V\ {9}, z =z, for all

ecE, andz

5 =2 forallee E such that e\ {0} € VUE and 20 = z, - 2! for all e € E\ E. Hence, by projecting

out Ay, Aq, and ZO for all p € VUE and z1 for all p € {8} UE, we obtain

and

Zy —z <1-2z;
(zp—z ) <0
—(zp—zp) +(ze—2) <0

>0 (1= 06e(0))(z0 — z)) +

vel(e)

> (zp - z;) - (ze

pel(e)

—Zgy £ 0

1

Z, < Zy
1,1

-2z,+2, <0

> (1=0.0)zh + D 2 -2

vel(e) pel(e)

—z}) < (w(e) —

< (w(e) —

YoeV\?o
Vpel(e),ecE

Yee E\E, Vp el(e)

1)(1 - z5) VecE\E (26)
Yoe V\?D
Ve€ E, Vp € I(e)
1)z5 Ve € E. (27)
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In the following, we project outzl, v € V\,z}, and e € E \ E from systems (26) and (27) in a specific order and
show that the projection is given by (20).

5.1.2. Projection Orderings for /(e). For any e € E, the elements of I(¢e) have the running intersection property.
To see this, note that the set of edges in I(e) is a subset of the edge set of a f-acyclic hypergraph G, and hence
by Lemma 4 has the running intersection property. In addition, by construction, the nodes in I(e) are not contained
in any edge in I(e). Now suppose that e is an extremal edge of Hy, where e € I(f). Let p; be an element of I(e) that
contains w,. Clearly, if w, = 0, then p, can be any element of I(¢). We define a projection ordering for I1(e), denoted
by O(e), as a running intersection ordering of I(e) in which p; is the first element. By part (i) of Lemma 1, such an
ordering exists. We define the hypergraph (V’, E’) obtained from H, by removing some p € I(e) as V' := V(H,) \ {v :

v € p}and E' := E(H,) \ {p}. For any p € I(e), we denote by H;?, the hypergraph obtained from H, by removing
all elements appearing after p in O(e). By definition of O(e) and the proof of Claim 4, we have the following.

Claim 5. Let e be an extremal edge of Hy, where e € I(f) and let O(e) = p1,...p,, where r = |I(e)|, be a projection
ordering for I(e). Then p; is an extremal element of HSpf forallje{l,...,r}

Consider the projection ordering O(e) as defined in Claim 5. Define U<Fi(e) := {fveV:i{v}=e1Neyerer €
E(H:")} and wy, == (p; Nw,) U (p; N U=Pi(e)). By definition of a projection ordering O(e), we have

Wy, =w,, Wy, =N(p), VY2<j<r, (28)

where the sets N(p;) are as defined in (3). Because e is an extremal edge of Hy and py,...p, is a running
intersection ordering of I(e), it is simple to see that @, is either empty or consist of a single node. In the
remainder of the proof, given an edge e € E, we use a projection ordering O(e) = p1, ..., p, to recursively project
out variables z,, j€{1,...,r}.

Projecting Out z; Corresponding to G. for Some e € E \ E. Consider an edge ¢ € E\ E and let G; denote the
section hypergraph of G induced by e. For a two-laminar hypergraph, the section hypergraph induced by an
edge coincides with the subhypergraph induced by the same edge. Suppose that e is an extremal edge of Hy,
where ¢ € I(f). Our objective is to project out variables z} for all v € V(G;) \ w; and z! for all e € E(G;) \ {e} from
systems (26) and (27). To this end, we make use of the following result.

Claim6. Lete € E \ E and suppose that ¢ is an extremal edge of H, where e € I(f). Let O(e) be a projection ordering
for I(e) with the corresponding sets w,, p € I(e) as defined by (28). Consider the following inequalities:

z, < 2 if @, =0, orp =w,, Vp €le) 29)
z,<1z,2, <z if @, ={oy}, Vpelle),
zy < z; Vp € I(e), (30)
Z (1= 6.(0))z) + > z,l, -zl < (w(e) - 1)zs, (31)
vel(e pel(e)
zp—zésl—zv if W, =0, orp =w., ¥p €I(e)
zp—2h Szy =2, 20, — 25 <1—2z5 if W, ={v,}, Vpelle) (32)
P p = vy’ “p vy = © p =Upy, VP 4
Ze—zp <zp— zrlj Vp € I(e), (33)
> (1= 08.(v)) (20 — z) + > (zp - z;) (ze — 2}) < (w(e) — 1)(1 — za). (34)
vel(e) pel(e)
Then by projecting out z; for all p € I(e) U U(e) \ w,, we obtain
z, <1 Vp € U(e) and Vp € I(e) s.t. W, = 0
2y < 2y, Vp € I(e) s.t. @y = {0}
ze < zp, Vp € I(e) (35)
DA =8:(0)z0+ D zp — 2 < wle) —
vel(e) pel(e)
together with
z} <z
(36)

zg—ze <1-2z;,
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if w, =0, and

zy <z}

Ze— 24 S 2y, — Z),

Zzlh, S Zy

Zy, — 25 <1-25, (37)

if we = {v,}.

Proof of Claim. First suppose that w, = 0. Let p be the last element of O(e). We project out the variable z}, from
inequalities (29)-(34) using Fourier-Motzkin elimination. From (29) and (32), we obtain

25, i @
whereas from (30) and (33), we obtain
ze < Zp. (39)
From (31) and (34), we obtain
D (A= 6e(0)zo + D) zp — 20 < wle) — 1. (40)
veU(e) pel(e)
From (30) and (31), we obtain
> A=8@)zy+ Dz, < (w(e) = 1)z (41)
vel(e) pele\{p}

We claim that inequality (41) is redundant. To see this, consider a running intersection ordering O of I(e) in
which p is the first element. By part (ii) of Lemma 1, such an ordering exists. Let the sets N(p), p € I(e) be
defined by (3). Now for each p € O\ {p}, consider the following inequalities all of which are either present in
system (27) or are implied by it: zl}, <z if N(p) =0, and z; < zzl) if N(p) = {v,}. By summing up these in-
equalities for all p € O\ {p}, we obtain (41). By symmetry, pro]ectmg out z1 from (33) and (34) yields a re-
dundant inequality. By projecting out 21 from (29) and (30), we obtain

zg <z, (42)
if W =0, and z} < zv if W = {vp}. The latter inequality is redundant as it is implied by inequalities (29), for
some p # p such that p O v5. By symmetry, from (32) and (33), we obtain

ze—ze <1-z (43)

if w; = 0, and we obtain a redundant inequality if @w; = {v5}. From (31) and (32), we obtain

> =0z +z+ >, z -z <(w(e)-2)z+1 if Wy =0
vell(e) pele\{p}
2-0(vp))zly, — 2o+ D) (I=b@)zi+z+ 1< (44)
vell(e)\{op} pelie)\{p}
< (a)(e) - 1)25 if 7’_()7_7 = {Uﬁ}
Finally, the inequalities obtained by projecting out z}, from (29) and (34) are given by
> =80 zo—z) +zp+ > (z,, - z,l,) —(ze-z)) <
vell(e) pele\{p}
<(w(e)-2)(1—-2z5)+1 if w; =0
(2 = 6e(vp)) (zvﬁ - z}]ﬁ) —zo,+ >, (1-6(0))(20 — z3) + 25+
vel,l(e)\{v;,}
+ > (zp - z;) — (ze = z}) < (w(e) = 1)(1 - z5) if Wy = {vz}. (45)
pele)\{p}
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Hence, projecting out z% from inequalities (29)—(34) yields inequalities (38), (39), (40), (42), (43), (44), and (45).
Denote by p the element before p in O(e). Clearly, among the inequalities obtained as a result of the previous
projection, the only ones containing z! are inequalities (44) and (45). Hence, to project out z}a from system (29)-(34),
it suffices to consider inequalities (44) and (45) together with inequalities (29), (30), (32), and(33), for p = p.
Using a similar line of arguments as previously, it follows that the only nonredundant inequalities obtained
from this projection are of the form (38) and (39) with p replaced by p together with those obtained by
projecting out z1 from inequalities (32) (respectively, (29)) and (44) (respectively, (45)).

We now apply this approach recursively to project out z; for all elements p € O(e) in reverse order. From (44)

and (45), it follows that for a node o € U(e), after projecting out z corresponding to the 0,(9) — 1 edges with

= {0}, the coeff1c1ent of zL in these inequalities becomes zero. Moreover, at this point, the only inequalities
contalnmg zl are zl < zz and z; — z} <1 - z;. Hence, projecting out z! yields z; < 1. As the number of elements p in
O(e) with Z'Up =0 is equal to w(e), after projecting out 21 forallp € @(e) from inequalities (32) and (44), we obtain
Soet(e) (1= 06(0))z0 + Zpere) Zp — zh < —z5 + w(e). However this inequality is implied by mequahtles (40) and (43).
By symmetry, we conclude that the inequality obtained from the recursive projection of z p € O(e) from (29)
and (45) is redundant. Hence, by projecting out z for all p € I(e) U U(e) from inequalities (29) (34), we obtain
inequalities (35) and (36).

Next, suppose that w, = {v,} for some v, € V. Denote by p; the first element in O(e). Recall that by definition of
O(e), we have ps = 0. if v, € I(e) and p; = € where & D v, is an edge in I(e), otherwise. We use the recursive pro-
jection as detailed above to project out z; for all p € U(e) U I(e) \ {ps}. It then follows that projecting out z; for all
p € Ule) UI(e) \ {ps} from inequalities (31) and (32) yields Soeuie) (1 = 06(v))z0 + Zperionp) 2p + 2, — 20 < wl(e) =
However, this inequality is implied by inequality (33) for p = p; and inequality (40). Symmetrically, we conclude
that the inequality obtained by projecting out z1 for all p e U(e) UI(e) \ {ps} from inequalities (29) and (34) is
redundant. Finally, if p; = €, we project out zp whlch is only present in inequalities (29), (30), (32), and (33) with
p = éand w, = {v,}, implying its projection yields inequalities (37). Hence, we have shown that the final projection
is given by inequalities (35) and (37). O

Recall that our objective is to project out z! for all v € V(G;) \ w; and z! for all e € E(Gz) \ {e} from sys-
tems (26) and (27), where G; is the section hypergraph of G induced by ¢ and ¢ € E \ E is an extremal edge of Hy
and € € I(f). More precisely, we consider the following inequalities:

Zy—zh <1-1z; Voee
_(zp - z;) +(ze—2) <0 Ve € E(Gz), Vp € I(e)
S 1-60)(z-2)+ (z,, - z;) — (2= 7)) < (w(e) = 1)(1 - z5) Ve € E(Gs), (46)
vel(e) pel(e)
and
zk <z Vo ee
~z,+2, <0 Ye € E(Gz), Vp € I(e)
> (=062 + 2 2, =2 < (wle) = 1)z Ve € E(Gy). (47)
vell(e) pel(e)

Claim 7. Consider the section hypergraph G; as defined previously. By projecting out z, v € V(G;) \ w; and z}, e €
E(Gs) \ {¢} from inequalities (46) and (47), we obtain

zp <1 Yoee

—2Zp+2. <0 Ve € E(Gg), Vp € I(e)

D (1=06e(0)z0+ D) zp—z. < w(e) =1 Ve € E(Gy), (48)
vell(e) pel(e)

together with

1
z; < Zp
Zs — z% <1-2z; (49)
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if w; =0 and

z <z

1 1
Zg —Zp S Zo, — Zy,
1

Zy, <zz
Zy, — z},? <1-z (50)
if w; = {vz}.

Proof of Claim. The proof is by induction on the number of edges of G;. In the base case, we have |[E(G;)| =1,
implying I(e) € V and U(e) = 0. In this case, inequalities (46) and (47) coincide with inequalities (29)-(34) of Claim 6,
by letting e = ¢, in which case we have @, = 0 for all p € O(2) \ w;. Hence, by projecting out z;l7 for all p € I(e) \ ws,
we obtain inequalities (35) and (36) (respectively, (35) and (37)), which coincide with inequalities (48) and (49)
(respectively, (48) and (50)) for w; = 0 (respectively, w; = {v}).

Suppose that |E(G;)| > 2. Because ¢ is an extremal edge of Hy, where e € I(f), we can construct a projection
ordering O(e) of I(e) with the corresponding sets @, defined by (28). Define O@) = O@) \ V(G;) and let r := |O(2)).
Denote by p, the last element in O(¢) and let G,, denote the section hypergraph of G; induced by p,. Clearly, G,, has
atleast one fewer edge than G; and by construction p, is an extremal edge of H;. Hence, by the induction hypothe51s,
by projecting out z! for all v € V(G,,) \ @y, and z! for all e € E(G,,) \ {p;} from inequalities (46) and (47), we obtain
the system deﬁned in the statement of the claim with 2 replaced by p,. 81m1larly, we consider in reverse order, each
element p; € (’)(e) and because by Claim 5, p; is an extremal edge of H;’ =, we can use the induction hypothesis to
project out z!, v € V(Gy) \ Wy, z, and e € E(Gp) \ {p;} from 1nequa11t1es (46) and (47). It then follows that the
remaining 1nequa11t1es contalmng z and p € I(e) U U(e) are identical to inequalities (29)—(34) defined in Claim 6
with e = g; hence, the final pro]echon can be obtained accordingly and this completes the proof. O

Projecting out z1 Corresponding to G, for Some e € E. Let ¢ € E and denote by 7 the element of I(e) containing
the node 0. Cons1der a projection ordermg Ole) of I(e) in which p is the first element and as before, let the sets
@,, p € O(e) be given by (28). Clearly, z! =z, and Z~ = z. Consider the following inequalities:

—z,,+zr1,SO Vp € I(e) \ {p}

zp—zl<1—25 if w, =0, Vpel(e)\ {p}

Zp — 2, < Zy, — zzl,p, Z, — zzljp <1-2z; if w, = {v,}, Vpel(e)\ {p}.
z<z, Vpelle)\{p}

z, <z if w, =0, Vpel(e)\ {p}

z,<z, 27, <Z if w, = {0,}, Yp €I(e) \ {p}-

> A =6e(@)zy+ D zp +25 — 2 < (w(e) — 1)zs. (51)
vell(e) pele)\{p}

We make use of the following claim to complete the proof of this theorem; we state this result without a proof
as the proof as is similar to the proof of Claim 6.

Claim 8. By projecting out z;, for all p € I(e) U U(e) from system (51), we obtain

{zpﬁl if w, =0, Vp €I(e)

zp < 2y, if w, = {v,}, Vp € I(e).

Ze < Zp Vp € I(e)

D (A =060)z0 + D zp — 2o < wle) — 1. (52)
veli(e) pel(e)

5.1.3. Characterization of MP;. We now use the results of Claims 7 and 8 to characterize MP¢ in the original
space. Denote by E(G) the set containing the sequence of nested edges of G containing 9. The proof is by
induction on the cardinality of E(G). In the base case, we have E(G) = {eo}. By definition of 9, this implies
that E(G) = {eg}. Consider the system of inequalities defined by (51). By letting e = ¢y, p = 9, and I(ep) = V(G),
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which implies @, = 0 for all p € I(e), these inequalities coincide with systems (26) and (27). Therefore, by
Claim 8, in this case, MP; is given by system (52), which coincides with system (20) with I(ep) = V

Now, suppose that |E(G)| > 2 and define {¢} := I(ep) N E(G). Consider a running intersection ordering O(ey) of
the edges in I(ep) in which € is the first element. The existence of such an ordering follows from Lemmas 1 and 4.
Denote by w, the intersection of each edge with all previous ones in O(ey). Let € be the last element in O(ey) and
denote by G; the section hypergraph of G induced by . Clearly, ¢ E(G) and ¢ is an extremal-edge of H,,.
Hence, by Claim 7, by projecting out z! for all v € V(G;) \ w; and z! for all e € E(G;) \ {e} from inequalities of
systems (26) and (27) containing these variables, we obtain system (48) together with inequalities (49) if w; = 0
and inequalities (50) if w; = {vs}. Similarly, apply this projection recursively for each element & in O(ep) \ {¢}
in a reverse order to project out z! for all v € V(G;) \ w; and z! for all e € E(G;) \ {¢}, where G; denotes the
section hypergraph of G induced by é.

Let G’ denote the section hypergraph of G induced by é. Clearly, G’ is a two-laminar -acyclic hypergraph
with |E(G")| = |E(G)| - 1. In addition, w; =0 as by construction, & is first element of O(ey). Hence, by the
induction hypothesis, projecting out z1 for all p € V(G') U E(G’) gives system (20) with G replaced by G’. It can
now be seen that the remaining 1nequa11t1es containing variables z p € I(ep) U U(ep) \ {€} coincide with
system (51) by letting e = ¢y and p =é. Consequently, by projecting out these variables using Claim 8, we
conclude that MPg is given by (20). O

5.2. Proof of Theorem 1
In this proof we often consider -cycles. It can be checked that a sequence C = vy,e1,vp,€5,...,04, 6,041 =01 is @
p-cycle in G if and only if ¢t > 3 and the edge e; contains v;,v;;; and no other v, fori=1,...,t

If p =0, the result is obvious; thus, we assume that p is nonempty. Similarly, we assume that the sets
V(G)\ V(G,) and V(G) \ V(G,) are nonempty.

To proceed with the proof, we need a structural result regarding the hypergraph Gy = (Va, E"a) obtained
from G, = (Va, E;) by removing edge p, all the edges that strictly contain p, and all the edges strictly contained
in p. Because G, is two-laminar, every edge in E, contains at most one node of p. Let wy, ..., wy be the nodes in
p. Forevery i € {1,...,p}, let U; contain node w; and the nodes w € V,, for which there exists a chain in G, from
w; to w.

Claim 9. The sets Uy, ..., Uy are pairwise disjoint.

Proof of Claim. First we show that no node w; belongs to a set Uj, for distinct indices 7,j in {1,...,k}. By con-
tradiction, assume that there exists a chain P in G, from w; to wj. Without loss of generality, choose i, j, and P such
that the length of P is minimal. We now show that C = P, p, w; is a f-cycle in G,. Because every edge in E, contains at
most one node of p, the chain P must have length at least two. By the minimality assumption, p contains only the
first (w;) and last (w;) nodes of P. Again, by minimality, each edge of P contains only the preceding and succeeding
node of P. Hence, C = P,p, w; is a f-cycle in G,, which is a contradiction.

Consider now a node w € V, that is not in p. We show that w cannot belong to U; N Uj, for distinct indices 7, j
in {1 ., k}. By contradiction, assume that w € U; N U;. Then there exists a chain P'in G, from w to w; and a chain P/
in G, from w; to w. Without loss of generality, choose w, i, j, P, and P/ such that the sum of the lengths of P’ and P/
is minimal. We now show that C = P/,p, P/ is a B-cycle in G,. All nodes of P' (respectively, ) except for w;
(respectively, w;) are not in p, as otherwise such node w; € p would be in U; N U; (respectively, U; N U;). By the
minimality assumption, each edge of P’ contains only the preceding and succeeding node of P'. Symmetrically,
each edge of P/ contains only the preceding and succeeding node of P/. Again, by minimality, no edge of P’
(respectively, P/) contains nodes of P/ (respectively, P') different from w. Hence, C = P, p, P/ is a f-cycle in G,, which
is a contradiction. O

To simplify the notation in the remainder of the proof, it will be useful to consider the nodes in V, \ (Uf;1 u;)
together with one of the sets Uy, ..., Uy, instead than on their own. For this reason, we define the sets W; := U;,
fori=1,...,k=1, and Wy := W, U (V, \ (UL, 1))).

Claim 10. The sets Wi, ..., Wi form a partition of V,,. Moreover, every edge of G, is contained in exactly one of
these sets.

Proof of Claim. Claim 9 d~irectly implies that the sets Wy, ..., Wy form a partition of V. By definition of the sets
Uy, ..., Uy, every edge of G, is either contained in one of these set, or it is contained in V,, \ (Ui-‘=1 U;). Hence, every
edge of G, is contained in exactly one of the sets Wy,...,Wy. O
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In the next two claims, we use Claim 10 to obtain vectors in Sg by combining a number of vectors in Sg, and
Sc,- We now explain how we write a vector z in the space defined by G in the rest of the proof by partitioning
its components in a number of subvectors. The vector z» contains the components of z corresponding to nodes
and edges that are both in G, and in G, (i.e., the nodes wy, ..., wy, the edge p, and any other edge contained
in p). The vector zy contains the components of z corresponding to edges that are in G, and strictly contain
edge p. For i =1,...,k, the vector z; contains the components of z corresponding to nodes in W;\ {w;} and
edges contained in W;. Finally, the vector z;,; contains the components of z corresponding to nodes and edges
in G, but not in G,. Using these definitions, we can now write, up to reordering variables, z = (zo, z1, . . . , Zk, Zn, Zk+1)-
Similarly, we can write a vector z in the space defined by G, as z = (2o, z1, - - ., 2, 2n), and a vector z in the space
defined by G, as z = (zn, Zk+1)-

Claim 11. Let z* = (z§,z{,...,2},2z3) be a vector in Sg,, and let z¢ = (z%,z},,) be a vector in S, such that
zg = zg’ = 1. Then the vector z = (2§, z{,...,2},2z4, 2,,) is in Sg.

Proof of Claim. To prove the claim, we show that for each edge e of G, we have Z, = [Tqe, Zo. First, we consider the
edges of G,,. For each edge e of G, we have Z, = z¥’ = [1ye, 2’ = [1pee Zo. Next, we consider the edges of G,. For each
edge e of G,, we have Z, = z§ = [Tyee 25 = [Toee\p 2y * [Toeen 25 - For every node v € p, we have zj = z{' = 1 because
z5 = zg = 1. Hence, we have Z, = [Toee\p 25 * [Toeenp 25 = [Toee Zo- O

PP
Claim12. Letz" = (zg',z{",...,2; ,z‘r? z% = (zo%, 20, ..., 2%, 2% )be k vectors in Sg,, and let z = (z%,z¢, ;) be a
vector in Sg, such that (1) z“1 == zr-,k =z5 =0 and (2) zg = zg, for every i=1,..., k. Then the vector z =

(zg', 2", 25%, ..., 2;%, 28,28, ) is m Sc.

Proof of Claim. To prove the claim, we show that for each edge e of G, we have Z, = [Tye, Zo. First, we consider the
edges of G“, For eachedgeein G,, wehave z, = z¥ = [Tye 25 = [Tovee Zo- Next, we consider the edges of G,. We have
zgt =+ =zg* =2y = 0since z3' =--- = z;* =z¥ = 0. For each edge e contained in p, we have Z, = z¢ = [Tpe 2% =
[Toee Zo- For each edge e that strlctly contains p, we have Z, = z0' = 0 because z;' = 0; moreover, [Tpe, Zo < [Toep 2o =
[Toep 25 = 25 = 0 because zg = 0. Fmally, let e be an edge that contains at most one node of p. We have that, by
Clalm 10, e C W;, forsomei € {1,...,k}; thus, we have Z, = z§' = [Ty 2. If w; ¢ ¢, then z§' = Z, for every v € ¢; thus,
Ze = [vee Zo- Otherwise, if w; € e, we have that zj/ = z{ ; hence, Z, = z{) - [Toee\{w} 25" = [Tvee Zo- O

We now proceed with the proof of the statement of the theorem. The inclusion conv Sg € conv Sc, Nconv S,
clearly holds, because Sg < Sg, N Sc,- Thus, it suffices to show the reverse inclusion. Let 2 € conv Sg,N
conv SGA,. We will show that Z € conv Sg.

By assumption, the vector (29,21, ..., 2k Zn) is in conv Sg,. Thus, it can be written as a convex combination of
points in Sg,; that is, there exists u > 0 with Y,es o =1 such that

(Zo,21, -+ 20 20) = D pal2l, 25, - - 28, 20), (53)
acA
where the vectors (zf,z{,...,z{,23), for a € A, belong to Sg,. For each i =1,...,k, we partition the index set A
into A U A", where a € A" if and only if z, = 1. Similarly, the vector (£n,241) is in convSg,, and it can be
written as a convex combination of points in Sg,; that is, there exists v > 0 with ¥, eq Ve =1 such that

(20/ 2k+l) = Z Va)(z?\)/ Zk+1) (54)
weQ)
where the vectors (z%,z},,), for w € Q, belong to Sg,. We partition the index set Q differently to how we
partition A. Namely, we partition Q into Q7, for T C p, where w € QT if and only if for every v € p, we have
z¢ =1 if and only if v € T.
We now obtain some relations between the multipliers u, v, and the vector Z that will be used in the
remainder of the proof. By considering the component of (53) and of (54) corresponding to p, we obtain

25 = Z Uo = Z Vo, thus

aeALIN--NAKL weP

1-2; = D e= D, Vo

acA\(AVIN--NAkT) Tcp, weQl

(55)
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By considering the component of (53) and (54) corresponding to w;, for i=1,...,k, we obtain

2= D, Ha= D Vo, thus

acAil TCh:wieT, weQT
1 —_ 2‘771' = Z ‘ua = Z Vw.
a€eAi0 TCp:wi¢T, weQT
By defining, for T C p,
w2 ifweT, P
pre) = 1s " twgr,  PD=]Ter@) (56)
i ’ i=1

we obtain the following relation regarding multipliers u:

2. ta = pr(w). (57)

acAT(@)\(ALIN..NART)

For multipliers v, we derive

Vo = Z Vo — Z sziwi_iﬁ/
Tcp:wieT, weQT TCp:wieT, weQT weQP
. (58)
Vo = Z Vo =1~ Zy; -
Tcp:wi¢T, weQl TCp:wigT, weQT

Forevery @ € A1 n--- N AF! and w € (7, we denote by z4¢ := (28,2, ...,2¢,2%,22,,), which is in Sg by Claim 11.
For every T C p, a; € AWr@) \ (A1 n...n AR, for i=1,...,k and w € QT, we denote by z-@@ := (2!, 2],
zgz,...,zzk,zﬁ,z,‘fﬂ). The vector z**“ is in Sg by Claim 12.

Claim 13. The vector Z can be written as 252" + (1 — 2;)2°, where 2! and 2° are defined as the following convex
combination of vectors in Sg:

A %
.= Z “ft r; g (59)
weY, (Zﬁ)
acAV n-nARL
20 : Z M o U@ (60)
Tcp, weQl, (1 - Zﬁ)P(T)
AT\ (AL - AR ), i=1,... K

Proof of Claim. All the multipliers are nonnegative. We verify that they sum up to one. First consider the
multipliers in (59). We obtain

1
IR et
wel?, (Zp) (Zp) weQP acALIN--NAkL
acAln...nAk1

where the last equation follows from (55). Next consider the multipliers in (60). We have

Hay " Ha Vo —
Tcp, weQT, (1 - iﬁ)p(T)
aEeAT N\ (AV NN AR, i1,

1 Ve k
=1o5 2 oyl 2 Ho
i=1

P Tcp,weq” p(T) a; e AT\ (AL AN AR

= . Z Ve =1,
Tcp, weQl

where the second equation holds by (56) and (57), and the last equation follows from (55).
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In the remainder of the proof, we show that 2;-,21 +(1- 2';-,)20 = 2. First, we consider components e € {0,k + 1}. We
calculate Z52) using (59):

1
2 21 @ _ @
Zpz, = Eol E HaVoZe = E Voz¥ E ta = E VewZe s
p weQP, wey acAllN..nAk1 wey
acAln-nARL

where the last equation holds by (55). Next, we calculate (1 — 2’,;,)29 using (60):

(1-2)20 = > Hoo =Bl g
TCf),mEQT, ‘O(T)
aEART\(AV NN AR, i1, k
Vo ol £ @
S Ry R S
TCp,a)EQTp i=1 a,GA")"T(wi)\(AMﬂ"-ﬁAk'l) Tcp, weQT

where in the third equation we used (56) and (57). We obtain that

252+ (1—25)20 = D vzl + D) vzl = D vezd =1,
weP Tcp, weQT WeQ)
where in the last equation we used (54).
To simplify our calculation of 232! + (1 — 2;)2° for the remaining components e € {0,1,....,k}, we calculate 2;2'
using (59). We obtain

1 1
T a _ @ _ a
D VN A D VN [ AD IR T DR (61)
P wey?, P acAlln--nAkl weQdP aeAlln..NAkL
aeAlN..NAK

where the last equation holds by (55).

We now consider the components zg, and we show that 232} + (1 — 25)z) = Zo. We will be using the fact that for each
a €A\ (A N---N A1), we have that z§ = 0 because each component corresponds to an edge that strictly contains
edgep and at least one node in p has its component in z§ equal to zero. First we show that 2} = 0. For each vector zy"**
in the sum (60), we have zj"*“ = z§' and a; € A \ (A1 N --- N AFY); thus, 25 = 0 and 2 = 0. We obtaln

Zpgg+ (L—2p)20 = 2520 = D, HaZi = D HaZ) = 20,
acAlIN-NAk1 acA
where the second equation holds by (61), and the third equation follows by the previous observation.
Finally, we consider the components z;, for j=1,...,k, and we show that Apil +(1- zp)z = Z;. We calculate
(1 - 25)2) using (60):

e Vv a;
(1 7) 20 xufh Hak w g
P
’ Tc,-,,%em, P
ae AT\ (AVIN--NARY), i=1,...k

baVo a
- 2 e I I
Tcp, weQT, ie{L.. k{7 \ayeAixr @)\ (A11n..nAkY)
ayeaT(9)\(A110-0a01)

[Ll“jvﬂ) a;
= . Z]
Tcp, e, PT(wj)
a/-eAj/XT(”’/)\(Al/lmn-ﬁ/ik'l)
HaVw aj UV o
= Z —— -z + Z L=z
5 T Zw; —Zp J _ 1=z,
Tcp:wieT, we)’, ] Tcp:wigT,wel, j
ae A\ (A n-nAFT) aeAi®
1 a
- = . 7 X
=55 2. Mg 2 ety b DL Ve
wj P ajeAi\(AL1N--NAkL) TCp: wieT, weQ” Wi q;e A0 TCh: wi¢T, weQT

= > BaZ + D) Mo,

QEAI\ (AL NN AKT) a,€Al0
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where in the third equation we used (56) and (57), in the fourth equation we used the definition of pr(w;)
in (56), and in the sixth equation we used (58). Using the obtained expression and (61), we have that 2;;2]1 +
(1- 2,—7)2]9 equals

S e S e S - Sed

aeALIN--NAKkL aEAIT\(AVIN--NAKT) e A0 a€A

where the last equation follows by (53). O

5.3. Proof of Theorem 3

Let G = (V, E) be a kite-free p-acyclic hypergraph. The proof is by induction on the number of maximal edges
of G. If G has one maximal edge, then the proof follows from by Lemmas 3 and 7 and Corollary 3. Hence,
suppose that G has k¥ maximal edges for some « > 2. By Lemma 4, there exists a running intersection ordering
O of the set of maximal edges of G.

5.3.1. Lifting and Decomposition. Denote by é the last element of O and define p := N(¢). Let G* = (V, E*) be the
hypergraph obtained from G by adding p to E if p¢ V UE; that is, let E* = EU {p} if p¢ VUE and let E* = E,
otherwise. Denote by G, the section hypergraph of G* induced by ¢, and denote by G, the section hypergraph
of G induced by Ug+\g(c,)e. As we detailed in the proof of Theorem 2, by Theorem 1, the multilinear set Sg- is
decomposable into multilinear sets Sg, and Sg,. As we argued in the proof of Theorem 2, G, is a two-laminar
p-acyclic hypergraph. Hence, by Corollary 3, we have MPg, = MP{!.

Now consider the hypergraph G,. First note that G, has x — 1 maximal edges that are different from &. We
show that G, is a kite-free -acyclic hypergraph. If p € V UE, then G, is a partial hypergraph of G and hence
the statement follows trivially. Hence, suppose that p¢ V U E. It is simple to see that G,, is the subhypergraph
of G induced by U,z ¢, where E denotes the set of maximal edges of G. Because G is -acyclic, by Lemma 3,
G, is p-acyclic as well. To show that G, is kite-free, we need to show that exist no three edges ey, e1,¢e; € E(G,,)
such that legNe; Ney| =2, (egNer)\ex #0, and (eg Ne2) \ e1 # 0. To obtain a contradiction, suppose that such
three edges exist. Again, one of these edges, say ¢y must be the edge p, because by assumption G is kite-free.
Because & N Uyep(c, )€ = P, it follows that the three edges ¢, e;, and e, in G satisfy [ENe; Ney| > 2, ENep) \ e # 0,
and (ENey)\ e1 # 0, which is in contradiction with the assumption that G is kite-free. Hence, G, is a kite-free
p-acyclic hypergraph, and by the induction hypothesis, we have MPg, = MPg!, which together with MPg, =
MPg! and the decomposability of Sg+ into S¢, and Sg,, implies MP¢+ = MPg!.

If G = G*, that is, if p € V U E, we obtain MP¢ = MPEI and this completes the proof. Henceforth, assume that
p¢V UE. To obtain MPg, it suffices to project out the auxiliary variable z; from the facet description of MPg:.
In the following, we perform this projection using Fourier-Motzkin elimination.

5.3.2. Projection. First consider an inequality in the description of MP{! that does not contain z;. Clearly, the
support hypergraph of such an inequality is a partial hypergraph of G. The following claim establishes that
this inequality is also present in the description MP:.

Claim 14. Let G’ be a partial hypergraph of G. Then all inequalities defining MPX! are also present in the system
defining MPX!.

Proof of Claim. Clearly, MPLP contains all inequalities present in the description of MPLY, because the standard
linearization of a multilinear set is obtained by intersecting the multilinear polytopes of each edge of the cor-
responding hypergraph, and we have E(G’) C E(G). In addition, by definition of running intersection inequalities,
every running intersection inequality for S¢ is also a running intersection inequality for Sg, as again E(G") € E(G).
Hence, all inequalities defining MP{) are also present in MPR. O

To complete the proof, we need to show that by projecting out z; from the remaining inequalities of MPg.,
we obtain valid inequalities for MPEI. First, consider MP¢_; denote by e the edge of G, such that p € I(e);
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the uniqueness of e follows from the fact that G, is a two-laminar hypergraph. By Proposition 6, z; appears in
the following inequalities, which we will refer to as system (I) in the rest of the proof:

-z,+2; <0 Vpel(p), (62)

-z5+2; <0, (63)

D (1-6p)ze+ D) zZe-zp<w(p)-1, (64)
vep eel(p)NE

DA -6z + D) ze—z <w(@) -1 (65)
v eel@)NE

Now consider the polytope MPg, = MP{'. As we showed earlier, G, is a kite-free f-acyclic hypergraph.
Hence, its running intersection 1nequaht1es are of the form (19). Let &; be the set containing all subsets of edges
Ej in G, such that the center edge p together with neighbors ¢, Ve € Ej sat1sfy conditions i and ii of Proposition 3.
Note that £ contains the empty set. Let E denote the set of all edges ¢ of G, such that [p N¢| > 2. For each ¢ € E,
denote by S the set containing all subsets of edges E; in G, such that p € E; and the center edge é with
neighbors e, Ve € E; satisfy conditions (i) and (ii) of Proposition 3. Denote by w(Ej) (respectively, w(E;)) the
number of connected components in the hypergraph with the node set p (respectively, &) and the edge set
{p Ne Ve € Es} (respectively, {é Ne, Ve € E;}). Finally, for each v € p (respectively, v € ¢) denote by 6, (v) (re-
spectively, O, (v)) the number of edges in E; (respectively, E;) containing v. Then, the inequalities of MPg!
containing z; are given by

-2z, +2p <0 Vp € I(p), (66)
S (1-05@)z+ Dz -z <wE) -1 VE &, (67)
vep e€E;
> (1=660)z0+ D)z —z <w(Ez) -1 Ve €E,VE; €&, (68)
vee e€E;

In the remainder of the proof, we will refer to inequalities (66)-(68) as system (II).

Now consider the system of linear inequalities (I) and (II). We eliminate z; from this system using
Fourier-Motzkin elimination. First suppose that we select two inequalities from system (I). Denote by G/, the
hypergraph obtained by removing the edge p from G,. It then follows that the inequality az < a obtained as a
result of such projection is valid for MPg, . Because G, is a two-laminar p-acyclic hypergraph, by Corollary 3,
we have MPg, = MPg. Finally, because G’ is a partlal hypergraph of G, by Claim 14, az < a is a valid in-
equality for MPRI Similarly, we argue that by projecting out z; from two inequalities of system (II), we obtain
an inequality that is valid for MPRL To see this, observe that the hypergraph G/, obtained by removing p from
Gy is Kkite-free, p-acyclic, and has x —1 maximal edges for which by the induction hypothesis we have
MP¢, = MPIé, . Therefore, it suffices to examine inequalities obtained by projecting out z; starting from two
1nequa11t1es one of which is only present in system (I), whereas the other one is only present in system (II).

We start by selecting one inequality in (62) from system (I). Clearly, this inequality is identical to in-
equality (66) present in system (II). Hence, by the above discussion, we do not need to consider inequal-
ities (62). Next, consider inequality (63) from system (I). Since the coefficient of z; in (63) is negative, it suffices
to consider inequalities (66) and (68) from system (II). In addition, we do not need to consider (66) since it is
already present system (I). By summing inequalities (63) and (68), for each ¢ € E and each E; € £ we obtain

DI -050)z+ D) zet+ze—2z < w(Ep) - 1. (69)

ved ecEx\{p}

We claim that inequality (69) is a running intersection inequality of the form (19) centered at & with neighbors
= (E; \ {p}) U {e}. As before, let Ok, (v) denote the number of edges in E} containing the node v € & and denote
by w(E’) the number of connected components in the hypergraph with the node set 2 and the edge set {¢Ne,
Ve € E}}. For each e € E and each E; € &, we have N p=éneand enp=ene for all e € E;, as by definition
p=N@),ecéedp,ece ande ¢ é forall e € E;. This implies that conditions i and ii of Proposition 3 are satisfied
for ¢, e € E}. Moreover, 0g,(v) = 0g;(v) for all v € ¢ and w(E;) = w(E}). It then follows that for each ¢ € E and each
E; €&, 1nequahty (69) is a running intersection inequality of the form (19) is therefore present in MP{'.
By construction, there exists a set E; € £ such that E; = I(p) N E. Therefore, inequalities (64) are 1rnphed by
inequalities (67), and as a result, we do not need to consider these inequalities. Hence, we proceed with



Del Pia and Khajavirad: Running Intersection Relaxation of Multilinear Polytope
30 Mathematics of Operations Research, Articles in Advance, pp. 1-30, © 2021 INFORMS

inequalities (65) from system (I). Because the coefficient of z; in (65) is positive, it suffices to consider in-
equalities (67) from system (II). By summing inequalities (65) and (67), for each E; € £ and defining E; :=
Ep U ((I(e) \ {p}) N E), we get

S (1 =50z + D) (1 — b, (v))zv + 32—z < w(@) + w(Ep) - 2. (70)

vee veEP e€E;

For each v € ¢, denote by 6g,(v) the number of edges in E; containing v and denote by w(E;) the number of
connected components of the hypergraph (¢,E), where E={eNé:e€E;}. It can be checked that w(E;) =
w(e) + w(Ep) — 1. Clearly, for any node v € e\ p, we have 0, (v) = 0:(v). Now consider a node v € p; because
p €l but p¢E;, we have 0 (v) = 0g,(v) + 6:(v) — 1. Because &> p, inequality (70) can be equivalently
written as

1—-0r0)zo + > ,ze —2s < w(Ez) — 1. (71)
25 Jzo + 2

vee eck;

To complete the proof, we need to show that ¢,e:e € E; satisfy conditions (i) and (ii) of Proposition 3:
condition i is clearly satisfied as e D e for all e€ I(e) NE and |eNe| > 2 for all e € E; because [pNe| > 2 for all
e € E; and e D p. To demonstrate the validity of condition (ii), we need to show thatene ¢ ¢’ Ne for alle, e’ € E;.
By definition [eNe’| <1 for all e,¢’ € I(e) N E; moreover, by construction eNp=ene for all e€ E; and enp /
ce' Np for all e,e’ € E;. Finally, lene’| <1 for all e € (I(e) \ {p}) NE and for all ¢’ € E; as leNp| <1 for all e €
(I@ \ {p}) N E and by definition p = N(€). Therefore, for each Ej; € &;, inequality (71) is a running intersection
inequality of the form (19) centered at ¢ with neighbors ¢, e € E; and hence is present in MPRL. O
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