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A B S T R A C T   

Past research in tribocorrosion mainly relies on costly and trial-and-error experimental methods to study the 
materials’ deformation and degradation under extreme conditions. This work developed a finite element based 
multiphysics model, validated by existing tribocorrosion experiments of two Al alloys, to analyze the synergistic 
effects of mechanical and corrosion properties on the material degradation mechanisms of tribocorrosion. During 
consecutive passes of the counter body, significant residual stress was found to develop near the edge of the wear 
track, leading to highly concentrated corrosion current than elsewhere. Such non-uniform surface corrosion and 
stress-corrosion coupling led to variations of tribocorrosion rate over time, even though testing conditions were 
kept constant. Tribocorrosion rate maps were generated to predict material loss as a function of different me
chanical and electrochemical properties, indicating a hard, complaint metal with high anodic Tafel slope and low 
exchange current density is most resistant to tribocorrosion. Finally, two surrogate models, Gaussian process and 
neural network with dropout, were used for uncertainty quantification of the finite element model.   

1. Introduction 

The design of robust and reliable metals and alloys that are simul
taneously wear and corrosion resistant is crucial for various applications 
such as oil and gas pipelines, underwater vehicles, batteries, and 
biomedical devices where high mechanical stress and corrosive envi
ronment coexist [1–6]. During tribocorrosion, the coupling of stress 
(either external or residual) and corrosion is a major potential threat to 
jeopardize materials’ long-term sustainability and structural integrity. 
The stresses at the contacting asperities not only plastically deform the 
surface material, leading to the formation of wear debris, tribolayer, and 
mechanically deformed layer, but also enhance localized corrosion on 
the wear track [7–9]. Such wear-corrosion synergy is especially signif
icant for passive metals such as aluminum (Al) alloys, which relies on 
the presence of an ultrathin (~ a few nm) surface oxide layer (i.e., 
passive layer) for corrosion protection under passivating conditions (e. 
g., neutral aqueous solution for Al) [8,10]. When this delicate passive 
layer is mechanically removed, the wear-corrosion synergy has often 
been found to enhance the corrosion process and accelerate total ma
terial loss [1,11–14], although the opposite has also been reported [15, 
16]. For example, Jemmely et al. [11] reported an experimental 

investigation on the tribocorrosion behavior of Fe–17Cr stainless steel 
under reciprocal wear using alumina pin as a counter body in acid and 
alkaline solutions. They found that the interdependence of the me
chanical and the electrochemical response is affected by the solution pH, 
in which the metal exhibited different repassivation behavior. Vieira 
et al. [14] studied the tribocorrosion resistance of Al alloys in NaCl and 
NaNO3 solutions and proposed a theory attributing the enhanced 
localized corrosion to the galvanic coupling between the passive area 
and depassivated wear track during tribocorrosion. While many studies 
reported a positive wear-corrosion synergy, the opposite has also been 
reported. For example, Bello et al. [15] observed a negative synergy in 
S31603 and S32760 stainless steels under a low abrasion rate. It was 
argued that under such conditions, the tribocorrosion material loss is 
smaller than that of pure wear condition due to the simultaneous me
chanical and electrochemical attack, where corrosion-induced passive 
film on the surface reduced the overall two-body abrasion. 

So far, most works focus on experimental study and phenomeno
logical modeling of tribocorrosion [12], only limited work has been 
done to develop a numerical simulation framework that couples mate
rials’ mechanical and electrochemical responses as well as their synergy. 
Despite limited research, several studies have been carried out to 
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investigate wear [17–20], corrosion [21–24], and stressed corrosion 
[25–27] of metals and alloys using finite element analysis (FEA) based 
methods. For example, Xu et al. published a series of works [25,26] 
investigating the corrosion of steel in pipelines under tensile stress using 
FEA methods. Wang et al. created a model using a combination of 
cellular automata and FEA methods for metastable pitting corrosion 
under mechanical stress [27]. However, such models cannot be directly 
applied to tribocorrosion, where the material degradation and defor
mation is multi-physics in nature, requiring consideration of the 
time-dependent surface evolution and material loss caused by elastic/
plastic deformation, corrosion, and stress-corrosion synergy on the wear 
track. This work aims to develop an experimentally validated compu
tational framework to model and predict tribocorrosion behavior of 
metals, using Al alloys as examples. It is believed that the developed 
model, material property extraction, validation, and uncertainty quan
tification processes can be extended to metal systems beyond Al alloys in 
future studies. 

Due to its lightweight, high specific strength, and good corrosion 
resistance, Al alloys have been heavily used in seawater such as offshore 
infrastructures, ships, and undersea vehicles, whose structural integrity 
and useful lifetime rely heavily on the tribocorrosion properties of the 
alloy [28,29]. The pure corrosion mechanisms of Al in seawater (often 
approximated as neutral 0.6 M NaCl solution) has been subjected to 
extensive prior study [8,30]. Despite diverse corrosion kinetics that is 
heavily dependent on their composition and microstructure, the ther
modynamics of Al alloy corrosion is well understood. The anodic reac
tion is mainly aluminum oxidation, expressed as Al = Al3+ + 3e− , which 
has a standard equilibrium potential of -1.662 V (vs. SHE) [31]. The 
cathodic reaction is governed by oxygen reduction in neutral solution 
via O2 + 2H2O+ 4e− = 4OH− , with a standard equilibrium potential of 
0.82 V [31]. According to Nernst equation, the equilibrium potential of 
aluminum oxidation is affected by the concentration of aluminum ions 
following the equation: 

E Al
Al3+

= − 1.66 +
0.059

3
log

ʀ
Al3+) (1)  

and the equilibrium potential of oxygen reduction is affected by the pH 
of the solution following 

EH+

H2
= 0.82 − 0.059pH (2) 

The corrosion kinetics of Al and its alloys is often measured 

experimentally using polarization methods. For example, Fig. 1 dem
onstrates the potentiodynamic polarization curve of pure Al in neutral 
0.6 M NaCl. Assuming the electrochemical reaction takes place directly 
on the metal and the system has only one time constant, given the 
theoretical equilibrium potential (i.e. Ea and Ec for the anodic and 
cathodic reaction respectively), kinetic parameters such as Tafel slopes 
and exchange current densities (ia and ic) of the reactions could be 
obtained. 

During tribocorrosion of Al alloys in seawater, our prior work 
showed that both alloy composition and testing parameters affect the 
overall tribocorrosion kinetics [6,28]. Briefly, two tribocorrosion resis
tant Al-Mn alloys were prepared by magnetron sputtering with 5.2 at% 
and 20.5 at% Mn (named A5 and A20 respectively hereafter). Both the 
mechanical strength and corrosion resistance of Al increased with Mn% 
content in the alloy. During the tribocorrosion test in 0.6 M NaCl solu
tion with a pH of ~ 6.4, it was found that when the surfaces of the 
samples were scratched, the open circuit potential experienced a 
cathodic shift and the current flowing through the electrode/electrolyte 
interface increased, indicating a positive wear-corrosion synergy. In 
addition, A20 experienced less wear-corrosion synergy and higher 
repassivation rate than that of A5. In a follow-up study [28], it was 
found that the total tribocorrosion rate, including both mechanical and 
chemical wear, increased with increasing scratching frequency (hence 
depassivation rate). The percentage of depassivated area on the wear 
track of A20 decreased from 70 % to 63 % when the sliding frequency 
was increased from 0.1 Hz to 1 Hz. 

The goals of this work are to (1) develop an experimentally validated 
finite element based multiphysics model to quantify the effects of ma
terials’ mechanical and electrochemical properties on their tribocorro
sion behavior, (2) evaluate the effects of applied surface stress as well as 
residual subsurface stress/strain on the corrosion kinetics, (3) develop a 
tribocorrosion map for material loss prediction based on both mechan
ical (e.g., elastic modulus and yield strength) and electrochemical (e.g., 
Tafel slopes) properties, and (4) quantify the FEA model uncertainty 
using surrogate models. In the present work, the developed FEA model 
will be validated using A5 and A20, whose corrosion, mechanical, and 
tribocorrosion properties have been well characterized by our prior 
experimental work [6,28,32]. In addition, the difference in alloy 
composition between the two allows the evaluation of different me
chanical and corrosion properties on the overall tribocorrosion 
response. This model differs from existing phenomenological models in 
a way that it considers not only the dynamic process of scratching, but 
also the time-dependent evolution of the dissolving surface during tri
bocorrosion. The model paves way for a numerical method of investi
gating materials’ tribocorrosion resistance, which could be further 
developed to analyze the reliability of structures and devices under 
extreme conditions where stress and corrosion coexist. Finally, since 
materials’ behavior during tribocorrosion is complicated and nonlinear, 
uncertainty quantification (UQ) was carried out to evaluate the accuracy 
of the FEA model. Traditionally, Monte Carlo simulation [33] is 
considered as a standard approach to implementing UQ in the simula
tion of complex nonlinear systems. This method will repeat simulations 
multiple times assuming different values of unknown input parameters, 
which makes the computational cost grow significantly when the system 
has a large number of unknown parameters (e.g., various mechanical 
and electrochemical properties in tribocorrosion). To reduce the 
computation cost, two data-driven surrogate models, Gaussian Process 
(GP) [34] and Neural Network (NN) with dropout [35], were used here 
to evaluate the UQ of the developed FEA simulations [36,37]. The 
structure of the paper is as follows. FEA model setup is presented in 
Section 2. Section 3 discusses the procedures for extracting material 
properties from experiments. Section 4 summarizes FEA model results 
and validation from theories and prior experiments. Section 5 discusses 
the uncertainty quantification study. Concluding remarks are presented 
in Sections 6. Fig. 1. Typical potentiodynamic polarization curve of Al corrosion in 0.6 M 

NaCl at pH = 6.4. 
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2. FEA model setup 

2.1. Model geometry setup and meshing 

FEA models were developed using the COMSOL Multiphysics soft
ware of version 5.3. The simulation contains three parts: nano
indentation, corrosion, and tribocorrosion. The first part is required to 
simulate the nanoindentation behavior of the alloys to correctly extract 
key mechanical properties of the alloy, Young’s modulus and hardness, 
which are then used as inputs in the tribocorrosion model. It is noted 
here while these properties are typically reported from experimental 
measurements using the Oliver-Pharr method [38], it is shown later in 
Section 3, that directly using such values leads to measurable discrep
ancies between simulated and measured load-displacement curves. The 
second part considers pure corrosion of the indented surface, and the 
third part simulates material loss due to simultaneous scratch and 
corrosion. 

Fig. 2 shows the geometry and meshing of the simulation. A conical 
diamond tip with a radius of 1 μm and an alumina ball tip with a radius 
of 2 mm were used for the indentation and tribocorrosion test, respec
tively, in consistent with the experiments. 2D axisymmetric model was 
used to save computational time and resource for indentation simula
tion. As shown in Fig. 2(b), the conical indenter with a semiapical angle 
of 70.3◦ was smoothed at the tip using the fillet option [39]. For tribo
corossion, a ball-on-plate configuration shown in Fig. 2(c) was used for 
the 3D model geometry. Both dimensions of the counter body and 
sample were the same as those from experiments. The 3D FE model was 
simulated by half in geometry due to the presence of mirror symmetry 
along the symmetry (x–z) plane (Fig. 2(d)). Friction coefficient for both 
samples is set to be 0.6, as measured from experiment. The meshing 
schemes are shown in Fig. 2(b) and (d), where mesh size increases from 
the contact areas to areas far away. Specifically, for the indentation 
model, triangular mesh of 0.02~0.05 μm was used in the contact area 

and 0.2 μm far away. For the tribocorrosion model, the mesh size was 
0.1 mm in the contact area and 0.5 mm far away. All meshing sizes were 
chosen after convergence analysis by balancing computational time and 
model accuracy where further reducing the mesh size does not affect the 
simulation results. 

2.2. Equations and boundary conditions for contact mechanics 

With the meshed geometry, mechanical module within COMSOL was 
applied to investigate the stress and strain responds to the external force. 
The contact problems are solved by defining a contact pair with a source 
boundary, which is the boundary of the harder material typically, and a 
destination boundary, which is the softer material in comparison. The 
normal contact pressure between destination and source boundaries is 
matched using the augmented Lagrangian method. 

The Al alloy and indenter are modeled as elastic-perfectly plastic 
materials with no strain hardening during plastic deformation. The 
correlation between stress and strain within the elastic limit of the 
material could be expressed as: 
⎡
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(3)  

where σ and ε stands for the 3D stress and strain components, εinel stands 
for the inelastic part of the strain, and D is the elasticity tensor defined as 
a function of elastic modulus (E) and Poisson’s ratio (ν) as: 

Fig. 2. (a, c) Schematic and (b, d) FEA meshing setup of the nanoindentation and tribocorrosion test model.  
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The yield surface was calculated using von Mises criterion, which 
could be generally expressed as 

F =
̅̅̅̅̅̅̅
3J2

√
− σy = 0 (5) 

In eq. (5), the first term is the von Mises stress, in which J2 =

1
6

(ʀ
σx − σy

)2
+
ʀ
σy − σz

)2
+ (σz − σx)

2
)
+ σ2

xy + σ2
yz + σ2

xz, and the second 

term is the yield strength (σy). The load is defined using the surface 
integration reaction pressure on the top surface of the indenter, imposed 
using auxiliary sweep method with a total of 10 steps of equal increment 
and decrement respectively in the range of 0 to the maximum load to 
simulate a quasi-dynamic process. The bottom boundary of the sample is 
set as a fixed constraint with no normal displacement. 

2.3. Material removal by abrasive wear 

After simulating the sliding contact, a strain-based material removal 
model was applied to simulate the wear debris generation process where 
contacting asperities experience highly plastic deformation and detach 
from the bulk. Following that proposed by Nélias et al. [40] and Bosman 
et al. [41], it is assumed that material removal would occur when the 
plastic strain εp exceeds a critical value εc. In this work, εc is chosen to be 
0.05, which is the threshold when material experience transition from 
small strain deformation to severe wear [40]. The algorithm is realized 
by assessing the state of every element starting from that closest to the 
surface along the -z direction. If the obtained εp is larger than εc, the 
element is considered as a worn element and removed. The same process 
was then repeated on the element beneath it until an element with εp <

εc was found (unworn element). The final worn track surface profile is 
obtained after all surface locations are evaluated using this method. 

2.4. Equations and boundary conditions for corrosion 

The current density (i) and the electrolyte potential (ϕ) satisfy the 
differential equations of: 
{

∇∙il = Ql
il = − σl∇ϕelec

(7)  

where Ql is the charge density in the solution, which is 0 in a solution 
with equal positive and negative ions. σl is the conductivity of the so
lution, which is 0.05 S/m for 0.6 NaCl aqueous solution. At the elec
trolyte/electrode interface, the local current density (iloc) was assumed 
to satisfy the Tafel equation: 

iloc = 10
η
Ai0 (8)  

in which the overpotential (η) is defined as η = ϕext − ϕelec − Eeq. ϕext is 
the external potential connected to the metal, which is 0 V in our case. 
ϕelec is the electrolyte potential and Eeq is the corresponding equilibrium 
potential of the reaction happened at this interface. The boundary 
conditions at the interface are expressed as 

{ ϕext = 0

n∙il =
∑

m
iloc,m

(9) 

Once the local current distribution is calculated by solving the 
equations above, the dissolution speed normal to the metal surface (vn) 
is calculated according to Faraday’s laws: 

vn =
ilocM
nFρ (10)  

where M is the molar mass, n is the number of electrons transferred in 
dissolving 1 metal atom, F is the Faraday’s constant (96,485 C/mol), and 
ρ is the density of the metal. The electrolyte-electrode interface was set 
as a free-deforming surface while the other boundaries of the sample are 
non-deforming ones which doesn’t allow normal displacement. The el
ements on the free-deforming surface shrink according to the calculated 
dissolution speed from eqn. (10). 

The depassivation and repassivation process was simulated using the 
thickness-dependent electrical resistor property of the surface film. The 
conductivity of the intact surface film (σ) was set to be 1× 10− 12S/m, 
corresponding to that of Al2O3. The initial film thickness is set to be 
4 nm, as observed in experiments [42]. During scratch induced depas
sivation, this thin layer is assumed to be destroyed on the wear track. In 
the subsequent repassivation, the film thickness grows from zero ac
cording to the dissolution rate and the electrical resistance at the surface 
increases. Suppose the corroded thickness of Al at a certain location and 
time is d, the accumulated passive layer thickness is 1.29d, calculated 
from their molar volume ratio (i.e. MAl2O3/MAl). A resistant barrier with 
local conductivity per unit area of 1.29σd is applied. 

2.5. Wear-corrosion synergy and tribocorrosion 

The wear-corrosion synergy during tribocorrosion was modeled by 
incorporating the change in electrochemical performance caused by 
mechanical deformation. Specifically, the anodic potential ( φa) is 
assumed to shift cathodically from its equilibrium value (φa0) depending 
on the elastic and plastic strain following [25,43]: 

φa = φa0 −
σVm

nF
−

TR
nF

ln
ʀ
Kα

ʀ
εp
) )

, (11)  

where the second and third term is the shift of equilibrium potential due 
to elastic and plastic deformation respectively. In Eq. (11), the stress σ is 
taken as the stress within the elastic deformation and for the area that is 
plasticly deformed, it equals to the yield strength, Vm is the molar vol
ume of aluminum (Vm = 9.99× 10− 6m3/mol), T is temperature 
(T = 298 K at room temperature), R is the ideal gas constant (R=
8.3145J/(mol∙K)), εp is the effective plastic strain, and Kα(εp) is a 
function denoting the dislocation density increment under plastic strain 
(εp), obtained by interpolating data from [44]. 

The flowchart of the whole tribocorrosion model is illustrated in 
Fig. 3. In the simulation for tribocorrosion test, the deformed surface 
geometry and plastic strain after unloading obtained from wear simu
lation was imported as input to calculate φa following the Eq. (11) above 
at each single location on the sample surface. All the other parameters 
and settings are the same as the pure corrosion model. 

3. Extraction of material properties from experiments 

3.1. Extraction of mechanical properties 

Prior nanoindentation results of A5 and A20 are used to extract 
Young’s modulus (E) and hardness (H) of both samples. As shown in 
Fig. 4(a), directly using E and H values obtained experimentally from the 
Oliver and Pharr method (listed in Table 1) leads to a large discrepancy 
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between the experimental and simulated load-displacement curves. An 
accurate capture of such relationship is critical to model tribocorrosion, 
during which each location along the wear track experiences cyclic 
loading and unloading as the indenter passes through. 

To extract the mechanical properties that can be used in the FEA 
indentation simulation to reproduce the experimentally measured load- 
displacement curves, the following procedure was developed using the 
optimization module of COMSOL. Starting from an initial guess of E and 
σy, a corresponding load-displacement curve is generated through FEA 
simulation. The sum of the square of the difference between experi
mental and FEA simulation results at assigned data point is called the 
least-square objective. The parameters that minimize the least-square 

objective were found using BOBYQA method in the optimization mod
ule. Finally, these fitted E and H values are shown in Table 1 for A5 and 
A20. Fig. 4(b) demonstrates good agreement between experiment and 
simulation by using these fitted parameters. Such mechanical properties 
are then used in the tribocorrosion simulation in Section 4. 

3.2. Extraction of corrosion properties 

The corrosion properties of Al alloys were extracted from the 
experimentally measured polarization curves of A5 and A20, as shown 
in Fig. 5. Because all potentials were measured versus a Ag/AgCl 
reference in the experiment, all potential is reported with respect to Ag/ 
AgCl for all following calculation and results. After considering the ion 
concentration and pH value, the equilibrium potential is -1.98 V vs. Ag/ 
AgCl for the cathodic and -0.25 V vs. Ag/AgCl for the anodic reaction, 
calculated using Eqs. (1) and (2). First, the anodic and cathodic Tafel 
slopes are generated by fitting two straight lines tangent to the polari
zation curve at 100 mV higher and lower than the open circuit potential 
respectively (Fig. 5). The exchange current densities for anodic and 
cathodic reactions are then determined based on the procedure 
described in Fig. 1. The complete set of corrosion parameters are 

Fig. 3. Flowchart of the FEA tribocorrosion model.  

Fig. 4. Comparison of nanoindentation load-displacement curves between experiments and FEA simulations for A5 and A20 samples using (a) experimentally 
obtained, and (b) FEA fitted mechanical property data. 

Table 1 
Summary of mechanical properties from experiments and FEA simulation. E and 
σy represents elastic modulus and yield strength respectively.  

Sample ID 
Experiment FEA simulation 

E (GPa) σy(GPa)  E (GPa) σy(GPa)  

A5 77.65 0.53 55.11 1.26 
A20 97.54 1.80 108.83 2.59  
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summarized in Table 2 for both alloys. 

4. FEA simulation results and validation 

4.1. Contact mechanics validation using analytical theory 

The FEA model was first validated using analytical Hertzian contact 
theory [45] by simulating an elastic non-adhesive ball-on-plate contact 
problem. The ball was assumed to be 4 mm in diameter, with 
E = 1144.98 GPa and ν = 0.3, indenting on a plate under 10 N load. The 
plate material was assumed to have E = 108.83 GPa and ν = 0.3. Fig. 6 
shows the FEA results of maximum shear stress distribution along the 
loading direction in the plate material as a function of distance from the 
surface. It can be seen that the simulated results are in good agreement 
with those calculated by Hertzian theory, validating the FEA model for 
an accurate representation of the contact mechanics between two 
bodies. 

4.2. FEA simulation results and experimental validation 

Next, the FEA model was applied to simulate the pure wear, pure 
corrosion, and tribocorrosion of A5 and A20, following the procedures 
detailed in Section 2, using material properties extracted from Section 3. 
The 3D plot in Fig. 7 shows the von Mises stress and plastic strain dis
tribution inside A5 sample during wear. To make a more straightforward 
comparison between mechanical state of A5 and A20, the y-z plane at 
x = 0 was sliced out to demonstrate the 2D plot of stress and strain 
distribution, as shown in Fig. 8. Fig. 8 (a) and (e) show the von Mises 
stress (σvM) distribution inside the sample and indenter at the maximum 
load, which corresponds to the situation when the counter body slides 
right onto this cross-sectional area of the sample during wear. Fig. 8 (b, 
f) and (c, g) show the residual stress σvM and plastic strain distribution 
respectively when the indenter has passed the area (note all elastic 
strains were completely recovered during unloading). The wear tracks 
were generated by the algorithm as discussed in Section 2.3 using the 
result of plastic strain are plotted in Fig. 8 (d, h). It could be observed 
that A5 suffers more severely plastic deformation than A20, with a larger 
plastic zone size and higher maximum strain of 25 %. The friction 

coefficient also affects the mechanical response of the sample. In the FEA 
model, three values of μ (0, 0.3, and 0.6) were studied. As demonstrated 
in Fig. 9, as μ decreases, the stress and strain decreases, especially for 
regions close to the surface. For μ = 0.6 and 0.3, the maximum stress and 
strain is concentrated at the surface. When μ decreases to 0, which re
sembles the case of a perfectly frictionless surface, the maximum stress 
and strain both shifts to below the surface, in agreement with Hertzian 
contact theory. For simplicity, corrosion simulations presented hereafter 
is carried out assuming μ = 0. 

Pure corrosion simulation results of A5 and A20 (after wear and 
unloading) are shown in Fig. 10. It is noted that the depassivation and 
wear-corrosion synergy effect is turned off in this step to resemble the 
case of pure corrosion. The deformed surface geometry, instead of flat 
surfaces, was used to demonstrate that the synergy effect observed later 
during tribocorrosion is not caused by the geometry of the wear track. 
The electrolyte potential (φelec) distributed uniformly in the solution, as 
shown in Fig. 10 (a) and (b). Since the open circuit potential φoc is 
related to the electrolyte potential as φoc = − φelec, the simulated φoc is 

Fig. 5. The experimentally measured potentiodynamic polarization curves and fitted Tafel plots for (a) A5 and (b) A20.  

Table 2 
Summary of corrosion kinetic parameters for A5 and A20, extracted from potentiodynamic polarization experiments [6,32].  

Sample ID 
Tafel slope (mV/decade) Eeq (V vs. Ag/AgCl) 

Ic (A/cm2) Ia (A/cm2) 
Cathodic Anodic Cathodic Anodic 

A5 − 215.39 270.59 − 1.98 − 0.25 1.65×10− 7 2.20×10− 13 

A20 − 274.38 272.38 − 1.98 − 0.25 3.98×10− 8 4.90×10− 13  

Fig. 6. Maximum subsurface shear stress as a function of distance from the 
surface of a plate during ball-on-plate indentation calculated from FEM simu
lation (solid line) and Hertzian contact theory (dashed line). 
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-0.493 V and -0.609 V vs. Ag/AgCl for A5 and A20 respectively. These 
values are in good agreement with experimentally measured open cir
cuit potential, which is -0.450 V and -0.564 V vs. Ag/AgCl for A5 and 
A20 respectively. During pure corrosion, material loss takes place uni
formly across the surface at a constant rate over time, as shown in Fig. 10 
(c) and (d). The simulated corrosion rate is 0.83 and 0.60 μm/year for A5 
and A20 respectively, in agreement with their experimentally measured 
corrosion current trend [32]. 

The tribocorrosion simulation results are shown in Figs. 11–15, using 
the same testing parameters as the experiments (i.e. 0.5 N normal load, 
5 mm/sec sliding speed, in 0.6 M NaCl aqueous solution [6]). The 

wear-corrosion synergy was included by accounting the effect of 
deformation on corrosion, following procedures detailed in Section 2.4. 
In Fig. 11(a) and (b), the resulting potential distribution inside the 
electrolyte is plotted along with the strain distribution to demonstrate 
how the mechanical state of material affects the electrochemical dy
namics. It could be seen that the electrolyte potential distribution at the 
center, where the plastic strain is higher, shifts to a higher value than the 
rest area for both samples. This leads to a significant increase in elec
trolyte current density near the deformed area, for example, ~ 
0.006 A/m2 for A5, which means faster material dissolution locally. 
Within the wear track, the simulated current flow during tribocorrosion 

Fig. 7. FEA simulation results of 3D (a) stress and (b) strain distribution in A5 sample under wear, and the corresponding 2D plot of (c) stress and (d) strain in x- 
z plane. 

Fig. 8. FEA simulation results of wear tests. (a, e) Subsurface stress during indenter contact, (b, f) subsurface stress, (c, g) plastic strain, and (d,h) the wear track 
morphology of A5 and A20 after the indenter has passed. All plots are represented from the y-z cross-section (as defined in Fig. 7). 
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is compared to those measured experimentally, as shown in Fig. 12. The 
sudden increase in current at the beginning of the scratching process due 
to mechanoelectrical coupling and depassivation, as well as the 
quasi-periodic fluctuation of corrosion current due to the cyclic depas
sivation/repassivation process, all agree well with experimental data. 
The difference in the evolution of surface profile is manifested later in 
the long-term simulation, as shown in Fig. 13 (a) and (b). Due to the 
wear-corrosion synergy effect, the indented area corrodes at an obvi
ously faster rate than the rest areas. The corrosion rate drops to a defi
cient value at places far away from the deformed area (at r > 0.9 mm for 
A5, and at r > 0.7 mm for A20). The overall volume loss of both samples 
is also larger than the pure corrosion circumstance. To decouple the 
mechanical and chemical wear during tribocorrosion, the total volume 

loss due to wear (Vmech) and corrosion (Vcorr) is plotted separately in 
Fig. 13(c), where the volume loss of each sample is calculated using the 
area integration of the sample domain. It can be seen that the FEA results 
show the same trend between A5 and A20 as the experiments, with 
values of the same order of magnitude. 

Interestingly, the FEA model also predicts that the mechanochemical 
synergy is time-dependent. By subtracting the volume loss due to pure 
corrosion from the volume loss of total corrosion during tribocorrosion, 
the volume loss caused by wear-corrosion synergy was calculated. The 
synergy could be further divided into two parts: residual strain induced 
synergy Sstrain and depassivation induced synergy Sdepassivation. The 
former accounts for the accelerated material loss due to the presence of 
subsurface strain, and the later due to the mechanical removal of the 

Fig. 9. FEA simulation results of stress and plastic strain left in the A5 sample with different friction coefficient μ: (a, d) μ = 0.6, (b, e) μ = 0.3, (c, f) μ = 0 on the y-z 
cross-section (as defined in Fig. 7). 

Fig. 10. FEA simulation results of the open circuit potential for (a) A5 and (b) A20 sample, and surface profile evolution as a function of time for (c) A5 and (d) A20 
after pure corrosion in 0.6 M NaCl aqueous solution. 
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passive layer. Fig. 14 shows that Sdepassivation is gradually reduced with 
time, which is a result of repassivation in the wear track. On the other 
hand, Sstrain shows little change as residual strain remains almost un
changed beneath the surface. This also indicates that the sliding fre
quency could affect the overall synergy. For example, high frequency 
wear could constantly depassivate the wear track and keep Sdepassivation 
at a high value. The depassivation induced synergy would sharply in
crease at the instance when wear takes place but only have a short-term 
effect after the scratching stops. In a larger timescale, Sstrain would 
sustain its acceleration effect on corrosion in a long period of time even 
after the scratching stops. This implies that the repassivation ability has 
more mechanochemical coupling effect during or shortly after 

scratching, while the mechanical properties have a long-term coupling 
effect until the deformed layer is completely dissolved. 

It is worth noting that the current model only takes apparent contact 
area in macroscale into account for simulating depassivation. Experi
mental investigation by Gilbert et al. has indicated that the depassiva
tion for tribocorrosion is actually related to surface morphology at 
asperity scale [46]. For example, a model developed by Ghanbarzadeh 
et al. [47] successfully address the influence of surface roughness on 
wear-corrosion synergy by modeling the real contact area for depassi
vation based on the boundary element method. Due to the complex ki
netics of asperity generation and evolution of different alloy systems, 
more work is needed in the future to implement and validate the current 
model to evaluate the effect of nano-scale asperity contact on the tri
bocorrosion kinetics. 

4.3. Prediction of tribocorrosion map 

To further explore a generalized relationship between the material 
properties and wear/corrosion resistance of metals, a parameter sweep 
was carried out and the tribocorrosion rate (unit: mm2), defined as the 
total material loss (unit: mm3) divided by the sliding distance (unit:mm), 
is plotted as contour maps against these parameters, as shown in Fig. 15. 
To evaluate the effects of mechanical properties on the material loss due 
to mechanical deformation and chemical dissolution, the Young’s 
modulus was swept from 55 MPa to 95 MPa with 6 MPa step size, the 
yield strength from 1.0 MPa to 5.0 MPa with 0.5 step size, while the 
corrosion parameters were taken from A5 sample and kept constant. As 
shown in Fig. 15 (a), materials with lower Young’s modulus and higher 
yield strength are more wear-resistant, which is as expected. Interest
ingly, it’s worth noting that even with the same corrosion properties, the 

Fig. 11. FEA simulated (a, b) electrolyte potential and subsurface plastic strain distribution, and (c, d) electrolyte current density distribution for A5 and A20 after 
tribocorrosion under 0.5 N load, 0.5 mm/s sliding speed in 0.6 M NaCl aqueous solution. 

Fig. 12. Comparison of corrosion current change during tribocorrosion of A5 
and A20 between experiments (solid lines) and FEA simulation (dashed lines). 
Arrows indicate the start and finish time of scratching during tribocorrosion. 
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corrosion rate shows a significant difference after deformation. The 
materials with more optimal mechanical properties would suffer less 
corrosion, since there will be fewer surface defects caused by plastic 
deformation. 

Fig. 15 (c, d) shows the effects of corrosion parameters on the tri
bocorrosion behavior, where the cathodic Tafel slope was varied from 
-280 to − 210 mV/decade, the cathodic exchange current density from 
2.0 × 10− 8 to 2.0 × 10− 7 A/cm2, the anode Tafel slope from 250 to 
290 mV/decade, and the anodic exchange current density from 1.0 ×

10− 13 to 5.0 × 10− 13 A/cm2. Fig. 15 (c) shows that the Vcorr is insensitive 
to the cathodic Tafel slope but increases with increasing cathodic ex
change current. Fig. 15 (d) shows Vcorr increases with increasing anodic 
exchange current density and reducing anodic Tafel slope. Summarizing 
results in Fig. 15 indicate that materials with low anodic and cathodic 
exchange current density, low anodic Tafel slope, high yield strength, 
and low Young’s modulus are highly tribocorrosion resistant, thus 
providing a design guideline for future metals and coatings to be used 
under extreme conditions. 

5. Uncertainty quantification (UQ) study 

Sections 3 and 4 introduced the detailed setup of the FEA model and 
simulation results given different input parameters. Apart from the 
specific simulation result, the confidence interval of each simulation 
result is especially important in the system with uncertainties in input 
parameters and parametric variability. However, because of the 
computational cost of the FEA model, it is computationally expensive 
and time-consuming to apply the Monte Carlo simulations method [33] 
directly for uncertainty quantification. In this work, Gaussian Process 
(GP) [34] and Neural Network (NN) with dropout [35], two data-driven 
surrogates, were selected to approximate the FEA model and realize 
efficient uncertainty quantification [36,37]. 

The simulation results from the FEA model were preprocessed and 
split into training and testing data. In data preprocessing, each variable, 
including six input variables (i.e. Young’s modulus, yield strength, 
anodic and cathodic Tafel slopes, anodic and cathodic exchange current 
densities) and one output (tribocorrosion rate) variable, was normalized 
into [0,1] by using the max-min normalization method. Since each 
variable has different physical meanings and scales, normalization was 
necessary to reduce the possibility that the output of the data-driven 

Fig. 13. FEA simulated surface profile change during tribocorrosion for (a) A5 and (b) A20, and (c) comparison between FEA simulated and experimentally 
measured mechanical and chemical wear for A5 and A20. 

Fig. 14. Volume loss rate from pure corrosion, strain induced synergy and depassivation induced synergy for (a) A5 and (b) A20 with respect to time.  
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model be dominated by extremely large or small values in these vari
ables. After normalization, 89 simulations were selected as training data 
to build the surrogates and 17 simulations were selected as testing data 
to evaluate the surrogates. 

In the GP model, instead of finding a deterministic function, it de
rives the probability distribution over all possible functions that fit the 
data [34]. The distribution over functions enables the GP to not only 
generate the predicted value but also generate a confidence interval (CI) 
associated with each prediction. Similarly, NN with dropout can also be 
regarded as a distribution over all possible functions [35], which enables 
the model to estimate the expectation and variance of the predictive 
distribution empirically. The advantages of these two surrogates include 
(i) they are proved to be powerful methods in modeling non-linear 

functions; (ii) both of them are efficient to reduce the computational 
cost of the original FEA simulations; (iii) as data-driven surrogates, they 
can learn model parameters from historical data to estimate the average 
and variance of output value for new samples (i.e. new FEA simulations). 

After building the surrogates on the training data, the surrogates 
were evaluated on the testing data. Firstly, the accuracy of surrogates 
was evaluated. Only surrogate model with high accuracy could precisely 
approximate the FEA model and replace FEA in UQ analysis. Because the 
scale of the output is around 10− 10, the mean absolute percentage error 
(MAPE) was selected as the evaluation metric to avoid the impacts of 
ultra-small scale. There might be slight differences between the outputs 
from the surrogate model and FEA, but as long as the differences are 
within a certain confidence interval (CI), i.e. 95 % CI, the UQ analysis 

Fig. 15. FEA predicated volume loss rate due to (a) wear and (b) corrosion for materials with different Young’s modulus and yield strength, and corrosion rate for 
materials with different (c) anodic and (d) cathodic reaction properties. 

Fig. 16. Visualization of UQ analysis where the vertical axis f(x) represents the output values and the horizontal axis x represents the index of observations.  
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given by the surrogates are meaningful to our FEA. The results of sur
rogates show that the MAPE of GP is 1.1 %, while the MAPE of NN with 
dropout is 1.5 %. GP is marginally better than NN with dropout. The 
confidence intervals of these two models are plotted in Fig. 16, where 
the vertical axis f(x) represents the output values and the horizontal axis 
x represents the index of observations (17 in total). These results show 
that most of predictions given by GP and NN were quite close to ob
servations, which means that the surrogates are accurate enough to 
replace FEA in UQ analysis. Specifically, only one observation from FEA 
was found outside the 95 % CI according to NN with dropout, while all 
the FEA results in Section 4 were located within 95 % CI according to the 
GP surrogate. Based on these results, several additional conclusions can 
be drawn: (1) UQ analysis and the corresponding confidence interval 
could be used to augment each simulation result given by FEA; (2) GP is 
more accurate than NN with dropout for UQ of tribocorrosion datasets; 
(3) the learned GP model can be used to approximate the UQ in FEA and 
calculate CI for new simulation inputs. 

6. Conclusions 

A multiphysics FEA model was successfully built for metal tribo
corrosion and validated using experimental results of Al alloys. A pro
cedure for material property extraction from experiments was 
developed to extract Young’s modulus, yield strength, exchange current 
density, and Tafel slopes to be used as model inputs. Using the developed 
FEA model, the effects of material properties on the degradation 
mechanism during tribocorrosion was studied. The results showed 
accelerated corrosion at areas near the wear track that suffered from 
severe deformation, as well as a time-dependent behavior of the wear- 
corrosion synergy due to non-uniform subsurface residual stress. The 
model helped not only in understanding the mechanism of tribocorro
sion, but also predicted material loss under different mechanical and 
electrochemical properties, providing a guideline for future material 
design and optimization against tribocorrosion. Finally, the FEA results 
were successfully augmented with a confidence interval by imple
menting uncertainty quantification using data-driven surrogates. 
Gaussian Process was chosen over Neural Network due to its better 
correspondence with the FEA result. In this way, the FEA model not only 
generate specific simulation results but also the confidence interval for 
each simulation, which takes the uncertainties and variabilities in input 
parameters into consideration. 
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