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Recent works have shown that deep networks can be trained for optical flow estimation without super-
vision. Based on the photometric constancy assumption, most of these methods adopt the reconstruction
loss as the supervision by point-based backward warping. Inspired by the traditional patch matching
based approaches, we propose a patch-based consistency to improve the vanilla unsupervised learning
method Ren et al. [1]. Instead of only comparing the corresponding pixel intensity, we locate the corre-
spondence by using the image patches with census transform, which is more robust for the illumination
variation and occlusion. Moreover, a novel parallel branch is devised to estimate a soft occlusion mask
jointly in an unsupervised way. The mask is adopted to weight our patch-based consistency loss to alle-
viate the influence of the occlusion. The plenty of experiments have been implemented on Flying Chairs,
KITTI and MPI-Sintel benchmarks. The results show that our method is efficient and outperforms the peer
unsupervised learning methods that are using the FlowNet-liked network.

© 2019 Published by Elsevier Ltd.

1. Introduction

Optical flow, introduced by Gibson [2] in the 1950s, refers to
a 2-D vector field caused by the relative motion between frames,
which can provide motion-related information under an egocen-
tric coordinate system. Optical flow estimation has been a building
block for many computer vision problems, ranging from low-level
tasks such as object segmentation [3.,4], saliency detection [5], ob-
jection registration [6] to high-level tasks like video action recog-
nition [7], facial expression recognition [8] and object tracking [9].
Despite the tremendous progress that has been made over the
years, optical flow estimation is still recognized as an open prob-
lem far from being solved [10], challenged by benchmarks includ-
ing large motion and appearance variation e.g., KITTI [11,12] and
MPI-Sintel [13].

Traditionally, the seminal work [14] first proposes a variational
energy optimization model under the assumption of brightness
constancy and local smoothness constraint. Based on this model,
a large number of works [15-17] are raised to make improvements
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in different aspects. Tu et al. [15] improve the performance by first
detecting the edge and occlusion regions and then post-smooth
these parts with different filters respectively. [16] proposes to fuse
optical flow estimation from different methods by the intensity er-
ror of corresponding matching patches. Tu et al. [17] improve the
joint optical flow estimation and image restoration model by an
edge-aware constraint for better edge preservation. However, this
type of method usually requires small displacement as a prerequi-
site. Although large displacements can be solved by incorporating
the coarse-to-fine warping technique [18,19], the errors caused by
missing details in the coarse level will be propagated and accumu-
lated through the whole process.

For better solving the large displacement problem, Brox and
Malik [20] introduce the patch-based descriptor matching into the
variational model so that sparse accurate matches can be obtained
as a strong prior knowledge. Some works further resort to the
PatchMatch [21,22] method, which is an efficient approximate al-
gorithm for finding the nearest neighbors of image patches be-
tween two related images. All these works show that the image
patch is more robust and reliable to be used to find correspon-
dence than one single pixel point. Even though patch matching
based approaches have no restriction for the displacement dis-
tance, they are usually time-consuming and can not be used in the
real-time system.
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As the triumph of deep learning in computer vision society,
recent works [23,24] start a trend to adopt convolutional neural
networks (CNNs) to estimate the optical flow directly by learn-
ing from massive data. The state-of-the-art supervised method,
PWCNet [25] has even outperformed nearly all former non deep
learning based methods on popular public datasets KITTI and MPI-
Sintel, which suggests a promising direction for solving optical
flow problem.

Besides, thanks to the fast development of modern GPU, deep
learning based methods in practice can be more efficient (typi-
cally 100 milliseconds or less per frame on a typical modern GPU)
than non deep learning methods, which usually include multi pro-
cedures and cost up to one or few minutes per frame.

However, the performance of supervised approaches largely de-
pends on the plenty of labeled data, which is known very difficult
to acquire in real-world scenes. Existing works often turn to the
synthetic data for help, which significantly restricts their practical
application. Hence unsupervised methods [1,26] recently receive
more and more attention. The main idea is to replace the regres-
sion loss on the ground truth with the reconstruction loss by warp-
ing, of which the origin can be found in traditional energy-based
flow estimation algorithms. Although no ground truth is needed,
the results of these methods still have a notable gap against their
supervised counterparts.

In particular, we make two observations for current unsuper-
vised optical flow methods: First, point-based image warping is
used to compute the reconstruction loss, which means the corre-
spondence found by networks only depends on the intensity of one
pixel, which can be locally ambiguous. Second, occlusion is still a
severe challenge for unsupervised optical flow learning methods,
and no approach tries to estimate the occlusion mask by network
directly.

In this paper, according to the patch consistency, we propose
a patch-based census constancy loss by patch-based warping to
increase the matching accuracy. Instead of only considering one
point, we make use of a local patch as the representation of
the center point to locate its correspondence. Following the work
EPPM [27], we compare the difference of patches with census
transform, which is insensitive to the illumination variation. Be-
sides, we also devise another branch to estimate a soft occlusion
mask simultaneously in an unsupervised way. The estimated occlu-
sion mask is supervised by the pixels with large patch constancy
error and bad forward-backward flow consistency. It is also used
in turn to reduce the effect of the occlusion region. In a nutshell,
the main contributions are as follows:

(1) A novel patch-based warping is proposed to construct a cen-
sus constancy loss for measuring the patch consistency.

(2) A soft occlusion mask is estimated and learned in an un-
supervised way by devising a new decoder branch parallel
with the optical flow estimation, to alleviate the influence
of the occlusion.

(3) Extensive experimental results show the efficiency of our
techniques, which realizes the state-of-the-art results among
the unsupervised learning methods that are using the
FlowNet-liked structure.

The rest of the paper is organized as follows. Related work is re-
viewed in Section 2. In Section 3, the main techniques for the pro-
posed approach are presented. Experimental results are reported in
Section 4 and Section 5 concludes this paper in the end.

2. Related work
Intensive research has been conducted in the field of optical

flow estimation since the seminal work [14]. In their proposed
classical variational formulation, the algorithm aims to minimize

an energy function derived from the brightness constancy with an
extra smoothness constraint. Readers can refer to [10] for a com-
prehensive study on these methods. In this part, we mainly fo-
cus on some milestone works, which are closely related to our
approach. They will be reviewed from three aspects: Patch-based
methods, unsupervised learning methods, and occlusion handling
for flow estimation.

2.1. Patch-based methods

Compared with the image point, there is a better choice to
find correspondence by using the image patch, which provides
more context information. In order to address the classical aper-
ture problem in optical flow, the famous Lucas-Kanade method
[28] assumes the optical flow is constant in a local neighborhood,
which is actually using patches for matching implicitly. With more
discriminative features [29,30] extracted from image patches are
proposed, some works [20,31] implement sparse matching by the
patch-based descriptor and make the result as the initial flow
of the variational model. In [20], SIFT-like features are extracted
from segmented patches and correspondences are computed by
the nearest neighbor method. Weinzaepfel et al. [31] adopt a hi-
erarchical patch matching method [32], in which patch similar-
ity is calculated by collecting the correlation maps from its sub
patches. Once the correspondence of a patch is determined, it will
be used to trace back to the correspondence of its sub patches that
make up of its optimal similarity. Inspired by the work PatchMatch
[21,22], many approaches [27,33,34] utilize this approximate near-
est neighbor method to obtain dense correspondence efficiently.
EPPM [27] proposes an edge-preserving PatchMatch so that more
details are captured near the motion discontinuities. In order to
deal with the drawback of the PatchMatch that the estimated cor-
respondence is noisy, Bailer et al. [33] propose a kd-tree based ini-
tialization with a novel multi scales matching to reduce the initial
outlier. A further improvement is realized in [34] that PatchMatch
is implemented in a coarse-to-fine strategy with a limit range of
random search to exclude outliers in the final estimation.

However, the performance of these methods heavily relies on
the estimated correspondence, whose accuracy is fixed and can
not be improved by making use of a large scale of data. In other
words, these methods have no learning ability like deep learn-
ing based methods. Moreover, because of the post processing for
outlier handling and refinement, patch-based methods are usually
time-consuming and are difficult to be used in a real-time system.
By introducing the patch consistency into the unsupervised deep
learning framework, our approach not only enjoys the robustness
of the patch matching but also have the learning ability to improve
the performance from massive data. What is more, our method
also inherits the speed advantage from the deep learning methods.

2.2. Unsupervised learning method

Although supervised deep learning methods have dominated
many tasks in the computer vision community, ravenous appetite
for labeled data greatly hinders their applicability. For this rea-
son, many works try to train the networks with unlabeled data in
weakly supervised [35,36], semi-supervised [37] or completely un-
supervised ways [38]. In the optical flow field, the pioneer works
[1,39] first make use of the reconstruction loss from the variational
model to train a CNN and adopt the differentiable bilinear inter-
polation for point-based warping such that the whole network can
be trained end-to-end without ground truth. UnFlow [26] improves
the results a lot via stacking several networks with a novel bidirec-
tional census loss. They instead compute the reconstruction loss
with a differentiable ternary census transform, which is more ro-
bust for the illumination changes in the real scene. In [40], a new
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backward warping with a larger search space is proposed to over-
come the problem that point-based warping easily gets stuck at
the local optimal solution. By incorporating 3D scene geometry,
GeoNet [41] decomposes the optical flow into static and dynamic
parts separately by estimating flow along with depth and camera
pose simultaneously. DF-Net [42] further improves the accuracy of
both optical flow and depth estimation by adopting cross-task con-
sistency. Even though performance is promoted progressively by
these methods, it is still far from satisfaction. In fact, all these ap-
proaches are still based on point-based warping, which is signifi-
cantly distinguished with our method using patch-based warping.

2.3. Occlusion handling for flow estimation

Occlusion is one of major challenges in optical flow estimation.
Because of occlusion, the fundamental assumption of brightness
constancy is not valid any longer. So, it is necessary to involve oc-
clusion handling for optical flow approaches. In early work [43],
occlusion is explicitly reasoned by the forward-backward consis-
tency and the range of opposite direction flow. The reasoned occlu-
sion mask is then used to assist the optimization of the variational
model. Forward-backward consistency is based on the fact that if
the pixel is visible in both images, its forward flow should be the
same as the backward flow of its corresponding pixel but in the
opposite direction. In the PatchMatch based methods [27,33,34],
they usually filter the outlier matches in the occlusion area by the
forward-backward consistency and interpolate the missing flows
by following the Epicflow [44]. Instead of solving occlusion by
post processing, some works implement a joint optimization of
optical flow and occlusion mask estimation by assigning a con-
stant penalty for occlusion pixels [45,4G]. In the recent deep learn-
ing methods, Unflow [26] is the first to introduce the forward-
backward consistency into the unsupervised framework. Based on
the idea that the pixels mapped by the backward flow should not
be occluded, OccAwareFlow [40] models the non-occluded region
as the range map of the backward flow by a differentiable for-
ward warping. Different from existing methods that are just rea-
soning out occlusion from the estimated optical flow, we devise
another CNN-based branch to estimate a soft occlusion mask ex-
plicitly. Besides the supervision from the patch consistency error, a
novel pseudo labels extracted from the forward-backward consis-
tency check are proposed to learn the occlusion mask in an unsu-
pervised way.

In this paper, we improve the vanilla unsupervised flow learn-
ing framework [1] via two novel techniques: patch-based census
consistency and CNN-based occlusion learning branch, which can
be easily integrated into the optical flow network for end-to-end
unsupervised learning. The learning pipeline and network structure
used in the paper are shown in Figs. 1 and 2 respectively. More
details of the method are illustrated in Section 3 and plenty of ex-
periments are exhibited in Section 4.

3. Main approach

In this section, we first review the widely used point-based
photometric constancy loss and propose our patch-based census
constancy loss in Section 3.1. We further introduce our mask loss
for unsupervised occlusion mask learning in Section 3.2 and edge-
aware smoothness constraint in Section 3.3. Finally, the overall loss
function is described in Section 3.4.

3.1. Patch-based census constancy
We believe patch consistency between two related images that

not only the two corresponding pixel points but also the surround-
ing context should be as similar as possible. Concretely, given two
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Fig. 1. The learning pipeline of our method. The blue arrow denotes the forward
information flow, and the orange arrow denotes the backpropagation from losses.
The Estimated flows and masks are the output from the network by feeding a pair
of images. Patch census constancy loss warps the images to compute patch consis-
tency according to the estimated flows. It is further weighted by the estimated soft
occlusion masks so that the effect of the loss over the occluded region is relatively
lightened. The estimated flows are also constrained by the smoothness loss while
the estimated masks are supervised by two other losses: the mask loss and the
regulation loss. See Eq. (7) for the overall loss function. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 2. Network structure used in our method. Based on the FlowNetS network in
[23], a parallel decoder branch is added for the occlusion mask estimation. The
structure of the occlusion branch is nearly the same with the flow branch, which
includes multiscale estimation and multiple skip connections from the lower lay-
ers to the higher layers. The estimate of each scale is also made as the input for
the next scale prediction. The only difference between the two branches is that the
channel dimension of each layer in the occlusion branch decrease to 512, 256, 128,
64 and 32 respectively. Both in training and testing, two branches share the same
encoder features,

images I; and I, optical flow estimation is aimed to estimate the
pixel-wise correspondence. Assuming forward flow, which is from
I} to Iy, at any point (x;, ;) in source image I; is F(x;,y;) = (u.f, Ulf),
where u'f and I,l_f is the displacement at the width and height di-
rection respectively. Sometimes, superscript “f” for flow is omitted
for brevity. To better understand the idea of our approach, we first
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Fig. 3. Illustration for point-based warping and patch-based warping, In (a), we
project point (x;, y;) to its corresponding point by the estimated optical flow (u;,
v;) at (x;, y;). The pixel value of the corresponding point is obtained by the bilinear
interpolation from its four nearest neighbors. In (b), we instead warp a 3 x 3 patch
centered at (x;, y;) to the patch centered at (x; +u;, ¥; +1;) by the estimated flow
(u;, v;). The pixel value of each patch point is acquired by the bilinear interpolation.
In training, the consistency loss will backpropagate the gradient to the estimated
optical flow (u;, v;) so that the flow can be updated to make the corresponding
points or patches as similar as possible. We highlight the pixels used to interpolate
corresponding pixel values by the red color. It is obvious that compared with the
point-based warping, patch-based warping will consider more context information
for finding each single optical flow estimate (u;, v;). (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article,)

Cpatch K2
(Xi.Y1)

review the point-based photometric constancy loss [1,26,40]:

Cpoine = 3 V(12X +up yi + 1) — L (xi, y)[?) (1)
(x.y1)

where (X;, ¥;) indexes all the points in I; and W(s) = (s +C)”,
which is the Charbonnier penalty widely adopted for its robust-
ness [10].

For the guarantee of the gradient backpropagation, the im-
age value I(x; +u;, y; +v;) is usually calculated by a point-based
warping with the differentiable bilinear interpolation technique
[47]. Following the same reason, we also adopt this standard tech-
nique in our patch-based warping operation so that our method
can be trained in an end-to-end manner. To better illustrate the
difference between two warping methods, we make a straightfor-
ward comparison in Fig. 3.

In contrast to the point-based photometric constancy loss in
Eq. (1), our patch-based census constancy loss is as follows:

1 |Cen[1 (%) + u;.y; + ;)] — Cen[Iy (xj,yj)]!z
Eparch: Z ﬁ

.3 (%.35)eN; [CEH[[Z(XJ' +up Y+ l?,-)] — CE’H[I] (Xj,yj)]lz +0.1
(2)

_ Z 01 (%1, ¥i)

where K is the patch size and (x;,y;) € A; denotes the point
within the K x K square neighborhood of the point (x;, y;). Cen| - |
represents the census transform of the patch, which is proved
more robust for illumination changes [48]. In practice, we first
sample the patches from two images via interpolation and then
adopt a differentiable ternary census transform used in [26]. The
similarity of patches is measured by the Hamming distance be-
tween the corresponding census features. Note that each step
above is differentiable so that the loss can be directly used for the
training of CNN network.

Compared with the loss of Eq. (1), our patch-based loss will be
more robust because more context information is considered for
estimating each flow (u; v;) by an additional inner summation of
each point within the neighborhood. In other words, we find the
pixel-wise correspondence by using the surrounding patches A in-
stead of the single pixel (x;, y;). In the training stage, losses prop-
agate gradients back to the estimated optical flow, which can be
viewed as the searching direction for finding the correspondence.
The gradient for point-based loss is only obtained from its four
nearest neighbors while that for our patch-based loss comes from
more pixels in the neighborhood.

3.2. Occlusion mask estimation

In contrast to the existing methods, we propose a CNN-based
branch to estimate a soft occlusion mask explicitly. As shown in
Fig. 2, by adding another decoder branch, which is parallel with
the flow branch, a soft occlusion map with two channels is pre-
dicted. After conducting a softmax operation, the value in two
channels is normalized into [0,1]. Specifically, we let the first chan-
nel as the possibility of the pixels being occluded. The estimated
soft mask is utilized for weighting the patch-based consistency loss
so that the pixel that is more likely being occluded has less effect
on the final result. Consequently, our patch-based loss is reformed
as follows:

!Cen[[z(xj + U, yj+ U,-)] - Cen[h (xj.yj)]|2
(oot [Cen[la(x; + i, y; +vi)] = Cen[h (x;.v) ]| + 0.1

where 0; is the possibility of pixels in image I; that are not oc-
cluded. In fact, O; is the second channel in our mask estimation.

The supervision for training mask mainly comes from two
sources: one is the patch-based consistency loss, and the other is
the forward-backward consistency check. We argue that the pixel
with more possibility being occluded will derive larger error from
patch consistency loss. In Eq. (3), the loss is differentiable over Gi
so that patch consistency errors can backpropagate into the occlu-
sion mask branch.

Another source we use is the idea that the optical flow of the
occluded pixel will be inconsistent with that of the pixel it maps.
During training, we estimate the forward and backward optical
flow F(x;,y;) = (ul.f, v{) and B(x;,y;) = (ul, vP) respectively. Assum-
ing that (x,, y») in I, corresponds to (X1, ¥1) in Iy by (x3,y,) =
(X1,¥1) + F(X1.Y1), the consistency will be validated by the follow-
ing condition:

[ (X2, ¥2) + B(x2,¥2) — (x1,¥1)]| )
[|F(x1,y1)]] <€, if [[F(xr.y)|l#0,

[[(x2,y2) + B(x2,y2) — (x1,y1)1] e
05 e

if ||F(x1.y0)|l=0.
(4)

where || - |] is the €3 norm.
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As a result, a map Oﬁ’m” for image I; is obtained where all the
points that satisfy the conditions above are labeled as 1 and others
as 0. We regard this map as a pseudo label for the mask learning
so that a mask loss is proposed as:

Cinask = Z 1101 (xi, yi) — éfm(xf-yl')u (5)
(%;.¥:)

Similarly, the pseudo label ﬁ‘z’m for image I can be derived in
the same way.

Following a similar technique in [49] used for depth estimation,
a regularization term greg(o_[) is imposed on occlusion mask O; to
prevent the trivial solution of an all-zero mask by minimizing the
cross-entropy loss with constant label 1 at each position, which
means all points are assumed to be non-occluded initially.

3.3. Edge-aware smoothness constraint

Smoothness is an essential constraint for optical flow estima-
tion, which assumes each flow should be similar to its neighbors in
the local area. Different from existing methods that are using the
numeric approximation of the first-order or second-order deriva-
tion for smoothness measurement, we directly minimize the differ-
ence of each flow estimate with its four neighbors. However, the
smoothness assumption does not hold at the motion boundaries
where flows from two sides are different. To preserve the disconti-
nuity of flow at these areas, we use the edge of images as the cue
for the motion boundaries and weight each pair of neighbors by
their intensity difference in the Lab color space.

Lsmooth = Z Z w("j['ubv (X,‘._V,'), (Xj-y;'))

(xi.y1) (X)) eN;

x\ll((u;—uj)z-f-(l’i—l’j)z), (6)
where A is the collection of 4-connected neighbors of point (x;,
¥;) in vertical and horizontal directions. Il.“‘” is the image by con-
verting I; in the Lab color space and (X%, (x;y;), (x;.y;)) =
—JIEP (x; y;) 1190 (x y ) 2 )

ol :

exp(
3.4. Overall loss function

The overall loss is the weighted sum of patch consistency term
Cparcn (weighted by the mask O), smoothness term £gnoorh, mask
term £pge, and the regularization term frg for both forward and
backward optical flows F and B:

K(F. B. 0y, 62) = Lpaech (F) + Lpatcn (B) + a1 (Lsmooth (F) + £smootn (B))
+ 0 (fnmsk(éi ) + Emask(éz)) + o3 (zrcg(él )+ Er{’g(éz)) (7)

where ¢, a5 and «g are the weight parameters.
4. Experiments and discussion
4.1. Datasets

Evaluation is performed on three popular benchmarks whose
statistics are summarized in Table 1. Generally, we follow the pro-
tocol of DSTFlow [1] for the unsupervised flow method evaluation.

Flying Chairs is a synthetic benchmark [23] that consists of
segmented background images from Flickr overlayed by random
images of chairs. In line with [23], we split the data into 22,232
and 640 image pairs for training and testing respectively.

KITTI dataset [11] collects photos in city streets captured by a
driving platform. Optical flow methods have been challenged by
its large displacements, various lighting conditions, and severe oc-
clusion. ‘KITTI2012’ [11] consists of 194 training pairs and 195 test

Table 1

Benchmark statistics. KITTI has two versions where single-view (s-view) samples
are in pairs and are labeled with sparse ground truth (GT). The multi-view (m-view)
one is an extension set without GT.

Statistics MPI- Flying KITTI Benchmark
Sintel Chairs

2012 2015

s-view m-view s-view m-view
#Pairs 1593 22872 389 7736 400 8000
#Train Set 1041 22232 194 - 200 -
#Test Set 552 640 195 - 200 -
Has GT? yes yes sparse no sparse no

pairs while 'KITTI2015" [12] consists of 200 training pairs and 200
test pairs. In line with [1]|, we combine the multi-view extended
image data (20 frames per scene without ground truth) from the
two datasets as the training set with 13,372 image pairs,' and use
the data with ground truth as the validation set (194 pairs for
‘KITTI2012" and 200 for ‘KITTI2015"). Evaluation of the test set is
performed via KITTI's online protocol.?

MPI-Sintel dataset [13] is obtained from an animated movie,
which contains large and non-rigid motions. It has the ‘Clean’ and
‘Final' version data. Compared with ‘Clean’ version data that is ren-
dered with the real illumination effect, ‘Final’ version data is more
challenging with extra atmospheric effects and motion blur.

4.2. Experimental settings

In this paper, patch size K is set as 9 and batch size is chosen
as 4. 0 =10, ¥ =0.45 and C = 106, Adam optimization method
is used with parameter f; =0.9 and f; =0.999. In overall loss
(Eq. (7)), we set «q, oy and w3 as 0.0045, 0.178 and 0.31 for the
KITTI and MPI-Sintel dataset and make them as 0.009, 0.267 and
0.467 for the Flying Chairs dataset. The start learning rate A is
set by 104 and decreases by half after a number of iterations. In
general, we train 300 K iterations for Flying Chairs and 240k it-
erations for KITTI. Because too few data in MPI-Sintel, we use the
model trained on Flying Chairs as initialization and train on MPI-
Sintel for 120k iterations with 10~ as the starting learning rate.
We first train the network with only optical flow estimation and
then make the occlusion mask learning simultaneously. On KITTI
and MPI-Sintel datasets, images are resized to the 384 x 896 for
both training and testing. The evaluation results are measured by
the widely used end-point error (EPE), which is the average ¢,
norm distance between the estimated flow and the ground truth
for all pixels. Another metric ‘FI', which is used especially in the
KITTI2015 benchmarks, is the percentage of the outliers, which are
defined as the pixel with end-point error larger than 3 and 5% of
its ground truth at the same time. All experiments are conducted
on a server installed with Titan XP GPU. Note that we have tested
the speed of our method in the inference phase and the running
time of our approach for single 370 x 1226 KITTI image is 0.035 s,
which is much faster than traditional patch-based methods.

4.3. Ablation study

In order to show the efficiency of each component in our
method, we conduct comparison experiments with different func-
tion modules on the KITTI dataset in Table 4. The ‘Point’ model
is the method trained only by point-based photometric constancy
loss (Eq. (1)) and edge-aware smoothness constraint (Eq. (6)). We

1 We have excluded the pairs with ground truth (GT) and their two neighbor-
ing frames in multi-view datasets for unsupervised training to avoid the mixture of
training and testing samples.

2 http://www.cvlibs,net/datasets/kitti/user_login.php
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Table 2

Comparison with peer methods on Flying Chairs and MPI-Sintel datasets. Average
EPE (End-Point Errors) metric is used for the measurement. Parentheses mean train-
ing and testing are on the same dataset. Note that the result of OccAwareFlow on
the Flying Chairs is tested based on a different training-test split with other meth-
ods.

Method Chairs MPI-Sintel Clean MPI-Sintel Final
Test Train Test Train Test
LDOF [20] 3.47 429 7.56 6.42 9.12
EpicFlow [44] 294 240 412 3.70 6.29
EPPM [27] - - 6.49 - 8.38
FlowFields [33] - - 3.75 - 5.81
FlowNetS [23] 2.71 4.50 7.42 5.45 8.43
FlowNetS+ft [23] 3.04 (3.66) 6.96 (4.44) 7.76
FlowNet2 [24] - 2.02 3.96 3.14 6.02
FlowNet2+ft [24] - (1.45) 4.16 (2.01) 5.74
PWCNet [25] - 2.55 - 393 -
PWCNet+ft [25] - (1.70) 3.86 (2.21) 5.13
DSTFlow [1] 5.11 6.93 10.40 7.82 11.11
Unflow-C [26] - - - 8.64 -
OccAwareFlow [40] 3.30 (4.03) 7.95 (5.95) 9.15
PatchFlow 3.65 (4.45) 7.70 (4.99) 7.98

further replace the point-based loss with the proposed patch-
based census constancy loss (Eq. (2)) as the ‘Patch Consis’ model.
The full model of our method is denoted as ‘Patch+Mask’, which
consists of patch-based consistency and extra mask estimation. It is
trained by the overall loss (Eq. (7)). All the experiments are made
in the same setting.

In Table 4, it can be found that both components are benefi-
cial to the flow estimation performance. By comparing the first
row with the second row, the proposed patch-based census con-
sistency improves the results by a large margin on all the metrics,
which demonstrates it is helpful not only on the non-occluded re-
gion but also on the occluded region. From the second row and
the third row, the occlusion branch further decreases the EPE error
over the occluded region.

For a better presentation, we also visualize the estimated re-
sult of each model in Fig. 4. Estimates from the patch consistency
model are obviously better than those of point-based model, espe-
cially at the bottom part with large displacement and on the oc-
cluded region. ‘Patch+Mask’ model further corrects the wrong esti-
mation over the occluded region.

4.4. Influence of different patch sizes.

We did the comparative experiments for patch-based census
consistency with different patch sizes on the KITTI dataset. Other
settings are made the same.

As is shown in Table 5, our method is robust when the patch
size changes. With the patch size increasing, the result is getting
better. The optimal patch size is 9 x 9. Too large patch size makes
the performance begin to drop. We think this may because larger
patch induces larger errors near the motion boundary and over the
occlusion region.

4.5. Results and discussion

The comprehensive comparison with peer methods are con-
ducted on the Flying Chairs and MPI-Sintel datasets in Table 2 and
on the KITTI dataset in Table 3. We term our method as PatchFlow
and compare it with many peer methods including non deep learn-
ing methods: EpicFlow [44], EPPM [27], FlowFields [33], LDOF [20];
Supervised learning methods: FlowNet [23], FlowNet2 [24], PWC-
Net [25]; And unsupervised methods: DSTFlow [1], Unflow [26],
OccAwareFlow [40], and DF-Net [42]. Note that all the unsuper-

Table 3

Comparison with peer methods on the KITTI dataset. Besides the average EPE (End-
Point Error) metric, Fl-all means the ratio of the outliers over the whole region. A
pixel is considered to be correctly estimated if its end-point error is < 3 or < 5%
of the ground truth.

KITTI2015 KITTI2012
Method - -

Train Test Train Test

EPE Fl-all Fl-all EPE EPE
LDOF [20] 18.23 37% - 13.73 124
EpicFlow [44] 9.57 28% 27% 347 3.80
EEPM [27] - - - - 9.20
FlowFields [33] 8.33 24.43% - 333 3.50
FlowNetS [23] - - - 8.26 -
FlowNetS+ft [23] - - - 752 9.10
FlowNet2 [24] 10.06 30.37% - 4.09 -
FlowNet2+ft [24] (2.30) (8.61%) 10.41% (1.28) 1.80
PWCNet [25] 10.35 33.67% - - -
PWCNet+ft [25] (2.16) (9.80%) 9.60% (1.45) 1.70
DSTFlow [1] 16.79 36.00% 30.00% 1043 12.40
Unflow-C [26] 8.80 28.94% 29.46% 3.78 4.50
OccAwareFlow [40] 8.88 - 31.20% 3.55 4.20
DF-Net [42] 8.98 26.01% 25.70% 3.54 4.40
PatchFlow 6.91 21.82% 23.46% 3.34 4

Table 4

Ablation study of each component in our method. ‘Point’ is the model trained only
by the point-based photometric loss (Eq. (1)) and our edge-aware smoothness loss
(Eq. (6)). ‘Patch Consis’ represents using our patch-based census constancy loss
(Eq. (2)). ‘Patch+Mask’ is the full model of our method, which includes patch-based
loss with occlusion mask branch.

Methods KITTI2012 KITTI2015

ALL NOC  OCC ALL NOC  OcCC Fl-all
Point 6.85 2.65 30.26 13.07 594 45.16 32.96%
Patch Consis 354 1.44 15.04 7.18 325 24.62 23.34%
Patch+Mask 3.34 1.31 14.51 6.91 3.04 23.76 21.82%

Table 5
EPE results on KITTI2015 training set for patch-based census consistency with dif-
ferent patch sizes.

Patch Size 3ERB 5 %:5 77 9 %9 T 61

EPE 7.44 737 727 7.18 7.26 732

13 x 13

vised methods considered here are using the FlowNet-like network
structure.

In general, the proposed PatchFlow consistently outperforms
other unsupervised methods. In Table 2, because OccAwareFlow
[40] did not adopt the same training-test split with other meth-
ods on the Flying Chairs dataset, it is meaningless to compare its
result with other methods directly. On the MPI-Sintel, our method
performs better than other unsupervised methods on the ‘Final’
version data. Although PatchFlow is interior to the OccAwareFlow
on the training set of ‘Clean’ version, it still achieves a better re-
sult on the test set, which shows that OccAwareFlow is prone
to be overfitting than ours. Compared with supervised methods
and non deep learning based methods, due to the lack of large
scales of data on MPI-Sintel, unsupervised methods still lag be-
hind other methods except that our method performs better than
FlowNetS and LDOF methods on the ‘Final’ version data. On the
KITTI dataset, our method realizes the best results among the un-
supervised methods, Moreover, on the KITTI2015 dataset, which is
more challenging with large displacement and severe occlusion,
our method exceeds all the non deep learning methods and even
performs better than the supervised method FlowNet2 and PWC-
Net without finetuning. Both of these two methods also use more
powerful networks than ours. It fully indicates that unsupervised
methods have an advantage of estimating optical flow in the real
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(a) Input Images

(b) Point

(¢) Patch Consistency

(d) Patch+Mask

(e) GT

Fig. 4. Qualitative results of the models in the ablation study on the KITTI dataset. The Left column is from the KITTI2012 and the right one comes from KITTI2015.
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A

Fig. 5. Qualitative results of our full model method on the KITTI2015. From the second row to the third row, the left images are the estimated optical flow and occlusion
mask respectively. The right images are the corresponding ground truth. The mask is demonstrated by the threshold 0.5.

Fig. 6. Qualitative results of our full model method on the MPI-Sintel-final. From the second row to the third row, the left images are the estimated optical flow and
occlusion mask respectively. The right images are the corresponding ground truth. The mask is demonstrated by the threshold 0.5.

scene, where supervised methods are greatly limited if no ground
truth is available.

We also demonstrate the estimated results of optical flow and
occlusion mask in Figs. 5 and 6. On the KITTI2015 dataset, com-
pared with the sparse ground truth, our method estimates the op-
tical flow and occlusion mask successfully. Note that our estimate
also includes the shadow movement of the car while ground truth
is missing. Similarly, the occlusion region caused by car moving is
also estimated by our method while it is lost in the ground truth.
In the MPI-Sintel dataset, although there is a complex non-rigid
motion, our method also makes a reasonable estimation for both
optical flow and occlusion mask.

5. Conclusion

In this paper, we have presented two novel techniques to fur-
ther improve the performance of the vanilla framework [1] for
unsupervised optical flow estimation: 1) Patch-based consistency,
which locates correspondence by the patches with more robust
census transform; 2) Occlusion mask estimation, that extra occlu-
sion branch is devised to estimate soft mask for occlusion han-
dling explicitly. With more context information considered, our
patch-based loss derives a more accurate flow estimation than the
widely used point-based photometric loss. The census transforms
also strengthen the robustness for the illumination changes and
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occlusion by comparing the relative ordering of intensities. By pro-
viding the pseudo label from the patch-based census consistency
error and the forward-backward consistency validation for the un-
supervised mask learning, our method succeeds in estimating the
reasonable occlusion mask, which is used in turn to weight the
patch-based constancy loss to alleviate the influence of the oc-
clusion problem. As a result, our techniques efficiently improve
the performance of the vanilla method [1] by a large margin and
achieves the state-of-the-art results among the unsupervised ap-
proaches by using FlowNet-like network.

Limitations: Although a patch with a larger radius makes it
more discriminative for matching, it also increases the burden of
computation so that training will become more time-consuming.
The proper patch size should be a compromise between the accu-
racy of the estimation and the training speed. Besides, patch con-
sistency will be violated near the motion boundary so that the
estimate near the boundary is blurred. So, it is an interesting di-
rection to study how to maintain the motion boundary while us-
ing the larger patch. The hyperparameter €; used to validate the
forward-backward consistency is important to set for the occlusion
mask learning. Too small €; at the beginning will make it sensitive
for the noisy estimation while too large at the end of training will
miss some true occlusion region. It is better to design an adaptive
method to decide the €; automatically. For optical flow estimation
over the occlusion region, there is still no strong supervised signal
for learning.

Future work: Also, we will leave these limitations for future
study. For maintaining the motion boundary, it may be helpful to
introduce the image edge information into the patch. To prevent
too much computation burden by large patches, we may try to en-
large the size of patches by sampling each point at intervals of
several pixels. As for the value of €1, a possible alternative is to
decrease the €y gradually during the training process. For occlu-
sion handling, it is possible to use interpolation to provide strong
supervision for estimation learning over the occlusion region.

Outlook: To make deep learning based flow methods applica-
ble in the real scene, unsupervised learning methods will play
an important role in the process. We believe our work can ben-
efit not only the practical application but also future research.
Our techniques proposed in the paper can serve as the building
blocks to construct a practical real-time flow system. The subse-
quent works may develop better approaches based on our tech-
niques. The model trained by our method is able to be used as a
good initialization of training for the supervised learning method.
It is also possible to utilize the estimation of our method as the
input to provide motion information for solving other tasks.
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