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We consider domain walls in nematic quantum Hall ferromagnets predicted to form in multivalley
semiconductors, recently probed by scanning tunnelling microscopy experiments on Bi(111) surfaces.
We show that the domain wall properties depend sensitively on the filling factor ν of the underlying
(integer) quantum Hall states. For ν = 1 and in the absence of impurity scattering we argue that
the wall hosts a single-channel Luttinger liquid whose gaplessness is a consequence of valley and
charge conservation. For ν = 2, it supports a two-channel Luttinger liquid, which for sufficiently
strong interactions enters a symmetry-preserving thermal metal phase with a charge gap coexisting
with gapless neutral intervalley modes. The domain wall physics in this state is identical to that of a
bosonic topological insulator protected by U(1)×U(1) symmetry, and we provide a formal mapping
between these problems. We discuss other unusual properties and experimental signatures of these
‘anomalous’ one-dimensional systems.

I. INTRODUCTION

Topology and symmetry play central and intertwined
roles in condensed matter physics. In Landau theory,
different ordered phases are associated to distinct broken
symmetries, with magnetism being the canonical exam-
ple. Topology is then used to classify defects — such
as vortices, disclinations, or dislocations — whose pro-
liferation destroys order and restores symmetry. On the
other hand the modern theory of topological states of
matter distinguishes zero-temperature phases by global
properties of their quantum wave functions, even in the
absence of any symmetries — as most famously exempli-
fied by two-dimensional electron gases (2DEGs) exhibit-
ing the quantum Hall (QH) effect. When such phases also
spontaneously break symmetry, the interplay of broken
symmetry and topological order can lead to new routes
to stabilizing and manipulating topological phenomena.

Quantum Hall ferromagnets (QHFMs) furnish one
such example, where the formation of a topological
QH state is driven by interaction-induced spontaneous
breaking of a global symmetry, such as that associ-
ated with electron spin, or valley or layer pseudospin1.
QHFMs thus exhibit manifestations of both topological
order—notably, quantized response and a vanishing en-
ergy gap for edge transport—as well as classic broken-
symmetry phenomena, e.g. Goldstone modes and finite-
temperature phase transitions 2. Topological defects gain
additional structure from the topological order of the un-
derlying QH state—e.g., in spin QHFMs, skyrmion tex-
tures bind quantized electrical charge and can dominate
low-energy charge properties1. Studying these unusual
topological defects can yield insight into an array of phe-
nomena emerging from the interplay of interactions, sym-
metry, and topology.

Here, we focus on a particularly rich class of QHFMs,
where the symmetry in question permutes distinct min-
ima (‘valleys’) of the low-energy electronic dispersion3–9.

Such systems10 are best described11 as discrete nemat-
ics: QH states with a symmetry-breaking order param-
eter that breaks the discrete rotational symmetry of the
crystalline point group, and whose natural topological
defects are domain walls, introduced e.g. by spatially
varying uniaxial strain8. Such a nematic QH liquid
was recently observed via high-field scanning tunneling
microscopy (STM) experiments on the sixfold valley-
degenerate (111) surface of bismuth (Bi)12. Orientational
symmetry breaking is detected by imaging local density
of states (LDOS) modulations near atomic-scale impuri-
ties, while energy-resolved measurements clarify the role
of interactions. Similar studies have now been performed
at isolated domain walls between distinct nematic regions
in the interior of a sample, far from physical edges13.
These reveal gapless domain wall modes when the bulk
QH state is at Landau level filling factor ν = 1 but a
tunneling gap when it is at ν = 2.

Usually, metallic conduction along edges of QH sys-
tems is protected by the fact that chiral edge modes
transport charge unidirectionally; in contrast, at do-
main walls, one-dimensional (1D) charge modes counter-
propagate. Since position and momenta are locked in
the QH regime, interactions can strongly couple such
counter-propagating modes without any constraints from
momentum conservation, and it is natural to expect these
modes to become gapped and insulating. New ideas are
therefore necessary to explain the dichotomy between the
tunneling spectra at different filling factors. Accordingly,
we develop a theory of electronic degrees of freedom at
these domain walls. We find that like in many 1D sys-
tems the relevant theory is that of a (multi-component)
Luttinger liquid, but one in which interactions are con-
strained by momentum conservation in two dimensions
(that origin of the valley symmetry). This structure is
peculiar to the QH setting: such symmetry constraints
cannot emerge in a local 1D quantum system. We de-
velop these ideas quantitatively, place them within the
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FIG. 1. (a) Four-valley model. (b) Sketch of nematic domain
wall. (c) Symmetry-allowed interactions at ν = 1 map to
forward scattering and cannot open a gap; example of allowed
process that can open a charge gap at ν = 2.

framework of quantum anomalies, and use them to both
explain STM data and explore their further implications.

II. MICROSCOPIC MODEL

We study a 4-valley model (Fig. 1) of spin-polarized
electrons described in a continuum effective mass approx-
imation (valid when λF , `B � a, where λF is the Fermi
wavelength, a is of the order of the lattice spacing, and
`B =

√
~/eB is the magnetic length); we discuss later

how to adapt this to Bi(111), which has 6 valleys. The
mass tensor is generically anisotropic, but respects C4

point-group symmetry, so that discrete spatial rotations
also permute valley indices. We consider integer filling
factors νT = 4p+ν, where p is a nonnegative integer and
ν = 1, 2. (ν = 3 maps to ν = 1 under the ‘particle-hole’
transformation.) For simplicity, we will also restrict to
the lowest Landau level (LLL; p = 0) though our results
can be generalized to any p. (barring competing density-
wave instabilities which may be relevant for p ≥ 3)

The single-particle Hamiltonian for valley α ∈
{A,B, Ā, B̄} can be approximated as

Hα =
(p‖ −K + eA‖/c)

2

2m‖
+

(p⊥ + eA⊥/c)
2

2m⊥
, (1)

where v‖ = vx cos θα+vy sin θα, v⊥ = vy cos θα−vx sin θα
for any vector v, and θα are angles shown in Fig. 1.
The valleys are centered at Kα = K(cos θα, sin θα)and
we define Kαβ = Kα − Kβ . We assume that devia-
tions from ellipticity (e.g., from the teardrop shape of
Bi(111) valleys) denoted δHα, are smaller than the mass
anistropy λ2 = m‖/m⊥; we discuss their role further in
Appendix A. Working in Landau gauge A = (0, Bx), and
introducing a guiding center X related to the momen-
tum via X = `2Bpy, yields single-particle wavefunctions
φα,X(r) in valley α

φα,X(x, y) =
eiXy+iKα·r√

Ly

(
z′α
π

)1/4

e−
zα(x+X)2

2 , (2)

where Ly is the length of the QH sample in the y-
direction, λ2 = m‖/m⊥ is the mass anisotropy, zα =

λ
λ2 sin2 θα+cos2 θα

+ i sin 2θα(1−λ2)
2(λ2 sin2 θα+cos2 θα)

, and z′α = Re [zα].

Each non-interacting LL has an exact four-fold valley
degeneracy. Therefore the formation of incompressible
QH states for integer ν < 4 requires interactions; pro-
jecting these into the LLL yield the effective Hamiltonian

Hi =
1

2A

∑
qαβγδXX′

V (q) : ρ̄αβ(q̄αβ , X)ρ̄γδ(−q̄δγ , X ′) : .

(3)
Here, : . . . : denotes normal ordering, V (q) is the

Fourier transform of the interaction. In terms of cre-
ation operators c†κ,X which create an electron in the LLL
orbital φκ,X , the density at wave-vector q, projected into
the LLL is given by ρ̄(q) =

∑
αβX Fαβ(q, X)ρ̄αβ(qαβ , X),

where

q̄αβ = q + Kαβ , (4)

ρ̄αβ(q̄αβ , X) = Fαβ(q̄αβ , X)c†
κ,X−

q̄y,αβ
2

c
κ′,X+

q̄y,αβ
2

,

Fαβ(q, X) = eiqxX
(4z′αz

′
β)1/4

√
z∗α + zβ

e
−

(qx+iz∗αqy)(qx−izβqy)

2(z∗α+zβ) .

A. Hierarchy of terms

The ‘form factors’ Fαβ(q) are exponentially sensitive
to the momentum difference between the valleys α, β.
Accordingly, at leading order we may restrict to

Hi,0 : terms in Hi, for α = β γ = δ. (5)

Going to higher order, we find that valley mixing in-
teractions corresponding to near zero total momentum
transfer in the 2D Brillouin zone are only polynomially
suppressed in a/`B . Such terms fall into two categories:

Hi,1 : terms in Hi, for (γδ) = (βα),

Hi,2 : terms in Hi, for (γδ) = (ᾱβ̄). (6)

Note that for both of the above terms, q̄δγ = q̄αβ .
Then, a transformation q → q+Kβα transfers all depen-
dence on K into the argument V (q), leading to an overall
factor of O(a/`B) relative to Hi,0. In both Hi,1, Hi,2 we
require β 6= α, and additionally in Hi,2, β 6= ᾱ.

All other terms describe scattering processes with a
large net 2D momentum transfer. While these are al-
lowed in principle because of LLL projection, they are

exponentially small ∼ e−(K`B)2 ≈ e−(`B/a)2

and can be
neglected. Thus, valley symmetries emerge as good ap-
proximate symmetries (see below). Strain will generi-
cally split the valley degeneracy fully at single parti-
cle level, but at leading order valleys A, Ā are approx-
imately degenerate. Note also that a strain field will
generically split the valley degeneracy fully at single par-
ticle level, but at leading order valleys A, Ā are approx-
imately degenerate and split only by δHα, as are B, B̄;
we term these ‘anisotropy pairs’. For notational conve-
nience, we dub the degree of freedom between two val-
leys that share the same anisotropy for δHα = 0 (i.e.,
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X ↔ X̄ for X = A,B) ‘pseudospin’ and that between
such anisotropy pairs (A ↔ B), ‘isospin’. Domain walls
between QHFMs polarized in different valleys are pinned
by strain, that we model as a slowly varying valley Zee-
man field that couples only to isospin.

B. Symmetries

In the elliptical-valley limit, δHα = 0, Hi,0 is invari-
ant under SU(2) pseudospin rotations. This yields a
rich symmetry structure14 but for our discussion we take
δHα 6= 0 (as is likely case in Bi(111)). However we will
approximate the form factors by (5). Hi,0, Hi,1 enjoy an
emergent [U(1)]4 symmetry, namely independent conser-
vation of the electron number Nα in each valley. (we
assume δHα also respects this). We can rearrange these
into the following 4 U(1) charges

N = NA +NB +NĀ +NB̄ , (7)

Pz =
1

2
(NA +NB −NĀ −NB̄), (8)

Iz =
1

2
(NA −NB +NĀ −NB̄), (9)

Qz =
1

2
(NA −NB −NĀ +NB̄). (10)

These correspond to the total charge, N , generators of
rotations about the z-axes in pseudospin space, Pz, and
isospin space Iz, and simultaneously in both, Qz. Hi,2

preserves N , Pz, and Qz, but breaks isospin U(1) to Z2,
by allowing AĀ↔ BB̄ processes that change Iz in units
of two. We will use these symmetries below to strongly
constrain terms allowed in the low-energy theory of the
domain wall. We comment here that the model has en-
hanced symmetry in the elliptical valley limit δHα = 0,
where Hi,0 is invariant under SU(2) pseudospin rota-
tions. The rich symmetry structure14 in this case may
lead to additional interesting effects; however here we as-
sume that δHα 6= 0

C. QHFM ground states at ν = 1, 2.

Ignoring intervalley contributions from Hi,1,2, at ν = 1
a Hartree-Fock (HF) calculation indicates electrons are

polarized entirely in one of the valleys, |Ψ〉 =
∏
X c
†
α,X |0〉.

Inter-valley coherent states that mix isospins are sup-
pressed by the ‘large’ anisotropy11 present already in
the elliptical approximation, while pseudospin-mixing
states are suppressed by the smaller anisotropy cap-
tured by δHα, in accord with the microscopic symme-
try15. Bulk excitations far from the wall are gapped for
δHα 6= 0. The relevant topological defects in this sys-
tem, and our focus below, are isospin domain walls where
the QHFM order parameter switches between anisotropy
pairs. These can be induced by a spatially-varying uni-
axial strain that splits isospin states at the single-particle

level (but couples negligibly to pseudospin); this is cap-
tured by a parameter Γ in our model, which we take
to characterize the strain graident near the domain wall
centre (where the strain vanishes).

For ν = 2, we focus on pseudospin-singlet states where
both partners in an anisotropy pair are occupied; a strain
field will lower the energy of one anisotropy pair relative
to the other so that an isospin domain wall again forms
where the strain changes sign.

Absent interactions, our model has 4 U(1) symme-
tries, associated with charge conservation in each of the
4 valleys independently. At domain walls, these charges,
which are associated with anomalous (quantum Hall) re-
sponse in the bulk, give rise to gapless chiral edge modes
by the Callan-Harvey mechanism16. Interactions break
some of these symmetries, and depending on the filling
factor ν (defined modulo 4 which corresponds to the fill-
ing of all 4 valleys in a given Landau level), the residual
symmetries suffice to protect some or all of the gapless
domain wall modes. In what follows, we construct a Lut-
tinger liquid theory for these domain walls using only
symmetry arguments. A more microscopic calculation of
the parameters is discussed in the Appendix C.

III. DOMAIN WALLS AT ν = 1:
SYMMETRY-PROTECTED METALLIC STATE

A. Luttinger Liquid Description

At ν = 1, only valleys A,B are occupied and Hi,2

is thus irrelevant. We therefore only consider the re-
maining valley-U (1)-conserving interactions, Hi,0,1 and
the smoothly varying valley Zeeman field ∆v that ener-
getically stabilizes the domains.

Without loss of generality, we will assume that on
the left of the domain wall, valley A is occupied (states
X < 0), and on the right, valley B is occupied (states
X > 0). For ∆v = 0, the domain wall has a zero mode
corresponding to a rigid translation of the wall17,18. Mi-
croscopically, this mode changes a fixed number of left
moving electrons into right movers. This corresponds to
the transformation ρR → ρR + ε, ρL → ρL − ε, where we

identify ρr(qy) ∼
∑
X c
†
X+qy,α(r)cX,α(r), with r = L,R

labeling left/right moving electrons, and corresponding
valley indices α(L) = A,α(R) = B.

Since Hi,0, Hi,1 respect this symmetry corresponding
to the free translation of the domain wall transverse to
itself, the corresponding terms in the effective Hamilto-
nian must take the form

H0 ≡ H(Γ = 0) = πv0
F

∫
dy [ρR(y) + ρL(y)]

2
, (11)

where v0
F is a renormalized effective velocity and Γ

parametrizes the gradient in ∆v (see Appendix C). Note
that the effective Hamiltonian corresponding to the val-
ley Zeeman field is a single-particle term that corresponds
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exactly to the usual Tomonaga-Luttinger electron gas,
and thus has the form

Hv = πΓ

∫
dy
[
ρ2
R(y) + ρ2

L(y)
]
, (12)

Writing the densities in terms of the canonically con-
jugate fields φ, πΠ, with ∇φ = −π [ρL + ρR] ,Π = ρR −
ρL

19, we find the effective Luttinger liquid Hamiltonian
for the ν = 1 domain wall

Hν=1
DW =

u

2π

∫
dy

[
1

K
(∇φ)2 +K(πΠ)2

]
. (13)

Here K =
√

Γ/(v0
F + Γ), u =

√
v0
FΓ
√

1 + Γ/v0
F are

strain-dependent and vanish for Γ = 0, reflecting the
zero mode in the limit Γ→ 0.

Note that unlike usual 1D systems such as nanotubes,
here scattering between left- and right-moving states in-
volves no change in momentum along the wall, since the
position-momentum locking in the LL ensures that states
at the same guiding center X are proximate in momen-
tum py. Naively, it seems that interactions could then
lead to a quantum-disordered gapped phase as T → 0.
However, here the valley momentum difference KAB en-
sures that such processes are in fact suppressed exponen-
tially, hence the domain wall remains gapless. The chiral
modes in each direction carry distinct valley quantum
numbers; this valley-filtered nature provides an intuitive
explanation for the symmetry protection.

B. Symmetry Analysis and Gapping Perturbations

The Luttinger Hamiltonian in Eq. (13) describes a
gapless system, where the Luttinger parameter K grows
smaller (and thus interactions grow stronger) as the val-
ley Zeeman field grows weak (smaller Γ). We now discuss
potential gapping perturbations and identify the symme-
tries that forbid these.

We use the standard bosonization dictionary for spin-

less electrons, where ψr(y) =
Ur,s√
2πα

e
− i√

2
[rφ(y)−θ(y)]

where

r = ± for R,L, and we map {L,R} ≡ {A,B}. In this
notation, we have

∇φ = −π[ρR + ρL] = −π[ρB + ρA], (14a)

∇θ = π[ρR − ρL] = π[ρB − ρA] (14b)

Cosines and sines of linear combinations of these phases
φ, θ then comprise the usual gapping perturbations of the
system. In terms of these, the conserved charges may be
obtained by integrating appropriate linear combinations:

N = NA +NB = − 1

π

∫
dy (∇φ) (15a)

Iz =
1

2
(NA −NB) = − 1

2π

∫
dy (∇θ) (15b)

where we use the fact that Nα ∼
∫
dyρα. Further, recall

the commutation relation

[φ(y),
1

π
∇θ(y′)] = [θ(y),

1

π
∇φ(y′)] = iδ(y − y′), (16)

Using the identity that [A, eiB ] = i[A,B]eiB for
[[A,B], B] = 0, we find

[N , e±iθ(y)] = ∓e±iθ(y), (17a)

[Iz, e±iφ(y)] = ∓e±iφ(y). (17b)

Thus, e±iθ and e±iφ correspond to lowering/raising op-
erators for the charges N , Iz. Since these operators are
conserved in our system, any operator built from these
is forbidden by symmetry. As a consequence, there are
no symmetry-allowed perturbations to the ν = 1 domain
wall, which is thus always in a gapless phase as long as
charge and valley U(1) symmetries are preserved.

To see how the symmetry protection is linked to the
topological response, imagine applying an electric field
parallel to the domain wall. Owing to the QH response,
this induces an electrical current perpendicular to the
wall. Therefore, electrons in valley A flow towards the
wall from the left, and valley B electrons flow away from
it on the right. As long as the valley quantum number
is conserved, there is then a net current of valley isospin
into the wall. If the wall were insulating, this would
lead to an inconsistency: it must therefore carry gapless
isospin excitations. Reversing this argument, we see that
a ‘isospin field’ parallel to the wall (i.e., a positive (neg-
ative) electric field for valley A (B)) would drive charge
current into the wall. Thus, the domain wall excitations
are also electrically charged. This can be viewed as the
Callan-Harvey ‘anomaly inflow’ argument16 adapted to
the QHFM setting.

C. Alternative approach via nonlinear sigma model

For completeness, we present an alternative discussion
of protected conduction at ν = 1 in a field-theoretic
framework that is often used to discuss quantum Hall
ferromagnets. For the nematic case, this takes the form
of an easy-axis non-linear sigma model for the ferromag-
netic order parameter, ~m = (mx,my,mz) (with ~m2 = 1):

S[~m] = SB [~m] + Sg[~m] + SQH[~m], (18)

where the first term

SB =

∫
d2rdτ iS ~A[~m] · ∂τ ~m (19)

is the standard Berry phase kinetic term for a ferromag-
net, with ∇~m ×A[~m] = ~m and S = 1/2, and

Sg[~m] =

∫
d2rdτ

[ρs
2

(∇m)
2

+
α

2
~m2
⊥ + Γxmz(~r)

]
(20)
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is the usual gradient energy of an easy-axis sigma model
with stiffness and easy-axis anisotropy α > 0, and we
have included a “Zeeman gradient” Γ; for the moment
we ignore possible anisotropic stiffness terms as they
only give small corrections. The gradient term this has
[U(1) o Z2]s pseudospin rotation symmetry, where the
U(1) corresponds to rotations about the mz-axis, and
the Z2 takes mz → −mz, and the semidirect product
(o) indicates that these two operations do not commute.

In addition are two special features of this nonlin-
ear sigma model due to the underlying quantum Hall
physics, captured in SQH. First, textures of the or-
der parameter ~m with a nonzero Pontryagin index C =∫
d2r
4π εabcε

µνma(∇µmb)(∇νmc) carry an electric charge
Q = νeC (To avoid confusion with the U(1)s spin ro-
tation, we will refer to the corresponding charge conser-
vation symmetry as U(1)c); second, SQH also contains
topological ‘Hopf’ term that does not have a simple lo-
cal expression20 in terms of ~m. This is essentially the
transcription of the Chern-Simons term of the underlying
quantum Hall state and at ν = 1 endows the skyrmions
with fermionic statistics. The explicit form of SQH[~m]
is not particularly important, but its physical manifesta-
tions — namely that skyrmions are fermions with unit
U(1)c charge — are crucial in distinguishing the QHFM
from a conventional ferromagnet, and will be significant
when discussing gapping perturbations to the domain
wall.

However, as a first step, let us ignore SQH; deriving the
effective domain wall theory is then a standard exercise in
soliton dynamics via the method of classical coordinates.
A slowly fluctuating domain-wall solution takes the form
~m = (sin θ cosφ, sin θ sinφ, cos θ) with

φ(~r, t) = φ(y, t), cos θ(~r, t) = tanh
x−X(y, t)

λ
. (21)

Here, the classical ‘soft’ coordinates are the phase along
the wall φ(y, t) (note that this is only meaningful near
the wall) and the location of the center of the wall X(y, t)
(defined implicitly by requiring mz(X(y, t)) = 0). Tak-
ing φ = X = const. corresponds to a static saddle-point
whose energy is minimized for λ =

√
ρs/α, and (for

any Γ 6= 0) X = 0. Note that the saddle-point en-
ergy is independent of φ and so it seems that our choice
spontaneously breaks the U(1)s symmetry; in higher di-
mensions there would be a Goldstone mode associated
with this, but of course this is precluded in 1+1D by the
Mermin-Wagner theorem, and fluctuations restore sym-
metry. The low-energy effective dynamics at the domain
wall are captured by a 1+1D action for φ,X that may
be obtained by performing a gradient expansion in fluc-
tuations of the ‘slow fields’ φ, X about the static saddle
point. This yields the domain wall effective action

S =

∫
dydτ

[
i2Sφ̇X + ΓX2 + β(∇X)2 +

ρ

2
(∂yφ)2 + . . .

]
(22)

where β, ρ > 0 are constants whose precise value is unim-
portant and . . . indicates higher-order terms. Note that

FIG. 2. A spacetime vortex in the phase on the domain
wall worldsheet (yellow) can be viewed as a 2π kink inserted
instantaneously at t = tinst. Since spins in the bulk on either
side of the DW are oppositely oriented, for t < tinst when
there is no kink at the DW, the spin configuration in the 2D
plane is defined by a great semi-circle on the Bloch sphere
that passes through the equator at φ = 0 (bottom right).
For t > tinst, owing to the presence of the kink, the spin
configurations wrap the sphere as we move parallel to the
domain wall (the color of the arrows indicates the azimuthal
angle on the Bloch sphere, top right). The skyrmion number
of the 2D spin configuration thus increases by 1 each time a
vortex event (instanton) occurs.

in the absence of a pinning term Γ, we have a z = 2
theory (this can be verified by computing the equations
of motion for β 6= 0): exactly as we found for the mi-
croscopic model for Γ → 0. Since we do have pinning,
we may set β = 0 and integrate out the fluctuations of
the domain wall position X. This yields the phase-only
effective action

Sφ =

∫
dydτ

[
S2

Γ
(∂τφ)2 +

ρs
2

(∂yφ)2

]
(23)

yielding a Luttinger liquid where both u,K ∝ Γ1/2 con-
sistent with the more microscopic approach.

At this level, it seems that it should be possible to
disorder this 1D theory by breaking the U(1)s symme-
try, either fully by adding, e.g. a term ∝ my, or down
to Z2, by adding a term ∝ m2

y, respectively resulting in
δSφ ∝ cosφ, cos 2φ. If we demand that U(1)s is pre-
served, we may rule out such terrms. However, in a
1+1D quantum theory, we can also gap the system by
a quantum vortex unbinding transition, corresponding
to driving the dual field cos θ to strong coupling. For an
ordinary ferromagnet (that is, if we ignore SQH) noth-
ing seems to obstruct this transition: there is no rea-
son in principle to forbid a trivial, gapped (quantum-
disordered) phase of the domain wall modes.

This conclusion is altered by including the effects of
SQH. A space-time vortex is an instanton: a quantum
process that inserts a 2π kink in the phase winding at
some instant in time. However, we must remember that
the domain wall does not exist in isolation: it is flanked
by two different orientations of the Z2 part of the pseu-
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dospin. So, if we view the 2D system after the insertion of
the 2π kink at the domain wall, there is now a skyrmion
present in the system. Therefore, we see that the space-
time vortex operator in the 1+1D theory is a skyrmion
creation operator (Fig. 2) (Note: this is also consistent
with the view that in spacetime this defect is a hedge-
hog, since spacetime hedgehogs change skyrmion number
by 1.) Because of the topological terms discussed above,
this carries both a unit U(1)c charge, and fermion par-
ity. Therefore, we see that the 1+1D QHFM domain
wall theory is unconventional: its instanton defects carry
electrical charge and fermion number. Single defect pro-
liferation is therefore forbidden, as it would violate the
fermion parity symmetry. Double-defect proliferation is
consistent with fermion parity, but would break U(1)c
down to Z2, corresponding to superconducting pairing.
Therefore, we conclude that the gapless Luttinger liq-
uid at the domain wall is symmetry-protected: while the
U(1)s protection is present in any NLSM (even for a con-
ventional ferromagnet), the U(1)c protection is unique
to the QHFM, and is important in ruling out a trivial
gapped phase. In this fashion, the robust gapless edge
mode protection is ultimately a consequence of underly-
ing QH anomaly, and hence can be argued to be the same
as the Callan-Harvey mechanism. It is clearly also con-
sistent with the microscopic symmetry analysis above.

IV. DOMAIN WALLS AT ν = 2:
CHARGE-INSULATING THERMAL METAL

A. Luttinger Liquid Description

We may proceed analogously for the ν = 2 case and
construct an effective Luttinger liquid description using
symmetry arguments. As mentioned above, we assume
that a valley Zeeman field, which does not distinguish
between pseudospin valley pairs (such as A, Ā), varies
spatially, and stabilizes the occupation of states A, Ā on
the left of the system (states X < 0), and B, B̄ on the
right (states X > 0). In this case, there are a pair of
counterpropagating edge modes, one from each of the
two filled Landau levels. Noting the valley index of the
left- and right-movers, we write

{A, Ā,B, B̄},≡ {(L, ↑), (L, ↓), (R, ↑), (R, ↓)}, (24)

tracking the valley polarization on either side of the wall.
Next, using standard arguments19 we decouple ‘charge’

and ‘valley’ sectors whose densities are given by sum
and difference of opposite pseudospin (↑ / ↓) densities.
Since Hv, Hi,0, Hi,1 preserve the 4 valley U(1) symme-
tries, these terms do not comprise gapping perturbations.
Thus, the effective Hamiltonian corresponding to these
terms is given by a sum of two Luttinger Hamiltonians,
that is, H = Hρ +Hσ with

Hζ =
uζ
2π

∫
dy

[
1

Kζ
(∇φζ)2

+Kζ (πΠζ)
2

]
, (25)

where the charge and valley modes are denoted ζ = ρ, σ,
and have distinct Luttinger parameters in general. Cru-
cially, by similar arguments as above, we note that these
parameters much depend singularly on Γ which parame-
terizes the valley Zeeman field. (The lack of a stabilizing
valley Zeeman field must yield a zero mode corresponding
to translations, and in this limit the Luttinger parameter
is zero.)

Now, at ν = 2, valley-mixing interactions play a crucial
role: Hi,2 (that describes a scattering process involving
electrons in all four valleys) leads to a backscattering
interaction in the charge sector given by

Hi,2 =
2

(2πα)2

∫
dyRe[gei

√
8φρ ]. (26)

(The precise form of this term is guaranteed by the ac-

tion of the operator e±i
√

2φρ which changes the charge
Iz by units of 2, which is the defining feature of Hi,2.)
Now, combining all the terms, the effective Hamiltonian
is Hν=2

DW = Hρ +Hσ +Hi,2.

The relevance of the backscattering interaction de-
pends on the value of the charge Luttinger parameter
Kρ. For repulsive interactions and weak strain gradient
Γ, generically we find Kρ � 1 so that Hi,2 is always
relevant19. Thus the theory is driven to strong coupling,
pinning φρ to a minimum of the cosine. This disorders θρ,

i.e. the correlation function 〈e
i√
2
θρ(x,t)

e
i√
2
θρ(0,0)〉 decays

exponentially. Since e
− i√

2
θρ is related to charge creation,

we see that now charge correlations decay along the wall,
which is thus electrically insulating. In contrast, the exci-
tations in the σ channel remain gapless. The domain wall
is thus fractionalized in the sense that the charge is frozen
while the valley degrees of freedom propagate freely. We
note further that when Hi,2 is relevant, the ground state
of the cosine potential has minima φρ = φ̄ρ + 2nπ√

8
, for

n ∈ Z of which one is chosen; in Appendix B we show
these minima correspond to the same physical state.

B. Symmetry Analysis and Gapping Perturbations

We now perform a symmetry analysis analogous to the
case ν = 1. Following our conventions and the map-
ping {A, Ā,B, B̄} ≡ {(L, ↑), (L, ↓), (R, ↑), (R, ↓)} we may
write

∇φ↑ = −π[ρR,↑ + ρL,↑] = −π[ρB + ρA], (27a)

∇θ↑ = π[ρR,↑ − ρL,↑] = π[ρB − ρA], (27b)

∇φ↓ = −π[ρR,↓ + ρL,↓] = −π[ρB̄ + ρĀ], (27c)

∇θ↓ = π[ρR,↓ − ρL,↓] = π[ρB̄ − ρĀ]. (27d)



7

In terms of these, the conserved charges may be obtained
by integrating appropriate linear combinations:

N = − 1
π

∫
dy (∇φ↑ +∇φ↓) = −

√
2
π

∫
dy∇φρ (28a)

Pz = − 1
2π

∫
dy (∇φ↑ −∇φ↓) = − 1√

2π

∫
dy∇φσ(28b)

Iz = − 1
2π

∫
dy (∇θ↑ +∇θ↓) = − 1√

2π

∫
dy∇θρ (28c)

Qz = − 1
2π

∫
dy (∇θ↑ −∇θ↓) = − 1√

2π

∫
dy∇θσ (28d)

where we again use the fact that Nα ∼
∫
dyρα. The

commutation relation is now

[φη(y),
1

π
∇θη′(y′)] = [θη(y),

1

π
∇φη′(y′)] = iδηη′δ(y − y′),

(29)
where η, η′ ∈ {ρ, σ}. Proceeding as for the ν = 1 case,
we find

[N , e±
i√
2
θρ(y)

] = ∓e±
i√
2
θρ(y)

(30a)

[Pz, e±i
√

2θσ(y)] = ∓e±i
√

2θσ(y) (30b)

[Iz, e±i
√

2φρ(y)] = ∓e±i
√

2φρ(y) (30c)

[Qz, e±i
√

2φσ(y)] = ∓e±i
√

2φσ(y) (30d)

with all other commutators with conserved charges being

zero. Thus we see that e
± i√

2
θρ(y)

, e±i
√

2θσ(y), e±i
√

2φρ(y),

e±i
√

2φσ(y) (note the factors of
√

2) are respectively low-
ering/raising operators for N ,Pz, Iz,Qz. [The operator

e±i
√

2θρ(y) changesN by two units; this is consistent since
such an operator is produced by ‘pairing’ bilinears of the
form ψ†ψ†, while any single-electron annihilation has the

form ψ ∝ e
i√
2
θρ .]

Since N ,Pz,Qz are good quantum numbers, all
cosines of the form cos(n

√
2θρ), cos(n

√
2θσ), and

cos(n
√

2φσ) are forbidden for any n as the corresponding
operators break these symmetries. However, processes
that change Iz in units of two are allowed, by terms in
Hi,2, and correspond to the n = 2 operator cos(

√
8φρ).

The above analysis further implies that the gapless-
ness of the valley mode is robust and protected by this
triplet of U(1) symmetries. A topological argument for
the presence of such a gapless mode may also be made
for the ν = 2 case. Let us first consider the case where
Hi,2 is not present, and each valley is associated with a
conserved charge. The QH response of the bulk pairs up
the charges N with Iz, and Pz with Qz. To see this,
note that an application of a fictitious field parallel to
the domain wall, that couples directly to one of these
charges, drives an accumulation of the complementary
charge at the domain wall due to the bulk QH response.
The latter necessitates the presence of a gapless mode
along the domain wall to carry away the excess charge.
As noted above, this is a straightforward generalization
of the Callan-Harvey argument for the presence of gap-
less edge modes associated with conserved charges that
exhibit topological response in the bulk; the subtlety here
is that a field gradient of one charge appears to drive the

accumulation of a complementary charge at the bound-
ary. Next, if we allow for Hi,2, there exists a process to
convert a pair of charges from the valleys A, Ā to charges
of valleys B, B̄, and vice-versa. Now, the application
of an electric field along the domain wall—which drives
charges from valleys A, Ā (B, B̄) into (away from) the do-
main wall—does not lead to an accumulation of isospin
charge at the domain wall because of the process men-
tioned above. The ‘charge’ mode is thus not protected
(and it is gapped).

Such a situation, where all perturbations are forbidden
based solely on symmetry without tuning parameters, is
impossible in truly 1D systems. This, like the linking of
valley index to chirality, is tied to the fact that QHFM
domain walls are ‘anomalous’ and can only be realized in
conjunction with a topologically ordered bulk , similarly
to helical edge states in 2D quantum spin Hall insulators.

C. Link between ν = 2 domain walls and bosonic
topological insulator

It is useful also to briefly make a link21 to a superfi-
cially very different problem: that of bosonic symmetry-
protected topological phases protected by U(1) × U(1)
symmetry. As argued in Ref. 22, absent interactions, un-
doped graphene bilayers can be driven into an analog of a
quantum spin Hall (QSH) state with two effective helical
modes at each edge. Each of these helical edge modes
has up spins and down spins propagating in opposite di-
rections. Since the magnetic field explicitly breaks time
reversal symmetry, unlike the usual QSH insulator, this
state is actually protected by a pair of U(1) symmetries:
total charge and total spin. Interactions can gap out the
charge modes thereby opening an electron spectral gap
at the boundary. However, this leaves a protected neu-
tral bosonic mode — whose symmetry protection follows
because the possible cosines are ruled out respectively by
the charge and spin U(1) symmetries. The formal simi-
larity between this problem and our domain wall system
may be made more concrete by ‘folding’ the system across
the domain wall, i.e., by viewing the domain instead as
a edge between a quantum valley Hall state (where the
A, Ā valleys see positive magnetic field and the B, B̄ val-
ley see a negative magnetic field) and the vacuum. After
we write down the single gapping cosine, the remain-
ing valley mode is protected precisely by a pair of U(1)
symmetries — in our case, valley pseudospin and valley
isospin. We refer the reader to Ref. 22 for a discussion of
why it is reasonable to use the term ‘bosonic topological
insulator’ despite the fact that the fundamental particles
in the system are electrons.

V. RELATION TO STM EXPERIMENTS

We may directly validate our analysis against the
STM data on Bi(111), where strain splits the six val-



8

FIG. 3. Domain walls as ‘line junctions’. For ν = 1 the wall
conducts charge (blue) even with interactions (dashed lines);
so, conductance is not quantized. For ν = 2, charge is gapped
while neutral valley modes (red) are gapless, so that electrical
(thermal) conductance is quantized (non-quantized).

leys into a (4,2) degeneracy pattern. Our model cap-
tures the remaining 4-fold degeneracy, with mirror re-
flections constraining dispersions rather than C4. In the
gapless ν = 1 case, ideal STM experiments will see a
soft gap due to Luttinger liquid suppression, with an en-
ergy/temperature dependence set by the Luttinger pa-
rameter K19. However, it is likely challenging to resolve
this in realistic experimental settings. For ν = 2 we ex-
pect a hard gap23,24 owing to charge-valley separation,
as can be seen by expressing the single-electron spectral
function using θη, φη, and using the exponential decay of
charge correlations19. Taking λ = 5, and approximating
screening crudely via a large dielectric constant ε ≈ 45,
yields a bulk exchange gap12 ∆ex ∼ 535µeV, and Lut-
tinger liquid parameters uρ ∼ 0.1∆ex`B , Kρ ∼ 0.1 for
Γ ∼ 0.01∆ex`B . For ν = 2 we estimate a charge gap of
120µeV for small Γ, a sizable fraction of ∆ex; this is is
consistent with our discussion above and the dichotomy
between ν = 1, 2 reported in Ref. 13.

VI. CONCLUDING REMARKS

Motivated by our success in explaining STM data, we
now explore other implications of our theory. The key
physical insight is that the ν = 1 domain wall is both elec-
trically and thermally conducting, whereas the ν = 2 wall
is a charge insulator but a thermal metal. This has im-
mediate consequences for two-terminal measurements in
the ‘line junction’ limit25,26 (Fig. 3) with a single domain
wall transverse to the direction of current flow. Namely,
we expect no quantized conductance in the ν = 1 case
since the wall transports charge between the edge modes,
whereas for ν = 2 we expect the quantized charge con-
ductance but no quantized thermal conductance.

This observation generalizes to the phase diagram of
the system in the presence of long-wavelength disorder,
that preserves the valley symmetry crucial for the do-
main wall structure to survive. Assuming that the ran-
dom strain produced by disorder vanishes on average,
we expect large samples to contain many domains of the
two possible nematic orientations, separated by a per-
colating network of domain walls. For ν = 1 the gap-
less charge transport along the domain walls will lead to
bulk dissipation and hence absence of a quantized Hall
plateau11,27. At ν = 2, the charge gap leaves the quanti-

zation of charge Hall conductivity intact, but the gapless
valley modes transport heat in the bulk. This destroys
the quantization of the thermal Hall conductivity lead-
ing to an unusual violation of the Weidemann-Franz law,
manifested in off-diagonal components of the conductiv-
ities. Remarkably, in this scenario the interplay of disor-
der with the QHFM domain wall physics allows a familiar
1D effect — ‘fractionalization’ of transport — to drive a
similar phenomenon in 2D. Uniform strain breaks the sta-
tistical symmetry between the domains, leading to a net
excess of one domain over the other. In this regime, the
domain wall network is tuned away from percolation, and
no longer shorts the edges; in this limit, the quantized
(thermal) Hall conductivity is restored at ν = 1 (ν = 2).
We also expect various interesting but sample-dependent
mesoscopic effects at intermediate scales. Other possibil-
ities, e.g. localization of the domain-wall network, could
lead to richer phenomenology, exploration of which we
defer to the future.

As our arguments have built primarily on symmetry
and topology, we expect that they will apply generally to
a range of multivalley systems, such as graphene multi-
layers, transition metal dichalcogenides, and semiconduc-
tor heterostructures, particularly AlAs and Si based het-
erostructures which host six-fold symmetric valleys akin
to Bi(111). In the former28,29, the pseudospin pairs of
valleys are identified by reciprocal lattice vectors. Thus
our analysis for ν = 1 is most relevant as there is effec-
tively no pseudospin degree of freedom. In the latter, a
(4, 2) valley degeneracy structure has been observed ex-
perimentally30 and our analysis should apply directly at
fields where spin splitting is substantial. There are many
avenues for further study; among them we flag especially
the possibility of exploring similar phenomena in quan-
tum magnetism, that has traditionally shared fruitful in-
teractions with QH physics31. Another exciting possibil-
ity is to extend our analysis to the fractional QH regime.
Here, different candidate QH states, e.g. at ν = 2/3,
may be distinguished via their domain-wall properties,
a traditionally challenging problem; meanwhile, the abil-
ity to introduce various gapping perturbations may allow
domain walls to serve as a platform for engineering topo-
logically protected qubits.
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Appendix A: Role of Corrections to Ellipticity

In writing the microscopic wavefunctions, we assumed
that the valleys are perfectly elliptical. In reality, there
can be corrections beyond ellipticity – e.g. valleys in Bi
have a ‘teardrop’ shape. We assume that deviations from
ellipticity (e.g., from the teardrop shape of Bi(111) val-
leys) denoted δHα, are smaller than the mass anistropy
λ2 = m‖/m⊥. Indeed our discussion we have implic-
itly assumed a small but nonzero δHα (as for Bi(111)),
although we continue to approximate the form factors
by (5). This has two main consequences. First, on the
elliptical-valley limit, δHα = 0, Hi,0 is invariant under
SU(2) pseudospin rotations. This yields a rich symme-
try structure that would complicate the discussion, in
particular making the determination of a ground state at
ν = 1, 2 much more subtle14. Formally the terms in δHα

lowers this SU(2) symmetry to Z2: therefore, they sup-
press pseudospin-coherent ground states at ν = 1, in fa-
vor of states where the pseudospin is maximally polarized
into one or other member of an anisotropy pair. Further-
more, δHα gaps bulk collective excitations far from the
wall, and allows us to focus our attention on the domain
wall.

Appendix B: Compactification at ν = 2

The cosine potential for the φρ field has several
minima—φρ = φ̄ρ + 2nπ√

8
, for n ∈ Z—of which one is

chosen. Here we show that these minima correspond to
the same physical state.

As noted, absent interactions there are 4 U(1) sym-
metries, each associated with the total charge in each
valley: NA, NB , NĀ, NB̄ . If these symmetries are not
broken, then there must exist chiral fermionic modes at
the edge of the sample, as guaranteed by the Callan-
Harvey mechanism16. These fermionic modes may be
expressed in terms of chiral bosonic fields, that is, ψA ∼
e−iϕA , ψĀ ∼ e−iϕĀ , ψB ∼ eiϕB , ψB̄ ∼ eiϕB̄ , where these
bosonic fields obey standard commutation relations19:

[ϕr(κ)(x), ϕr(κ′)] = iπr(κ)δκκ′sgn [x− x′]. Here r(A) =

r(Ā) = −1 and r(B) = r(B̄) = 1. We may then rear-
range these operators to arrive the field operators used
in the main text:

φρ =
1√
2

[
ϕA + ϕB

2
+
ϕĀ + ϕB̄

2

]
,

φσ =
1√
2

[
ϕA + ϕB

2
− ϕĀ + ϕB̄

2

]
,

θρ =
1√
2

[
ϕA − ϕB

2
+
ϕĀ − ϕB̄

2

]
,

θσ =
1√
2

[
ϕA − ϕB

2
− ϕĀ − ϕB̄

2

]
, (B1)

and check that these satisfy the usual commutation re-
lations noted above. One can further identify φ↑ =

−
(
ϕA+ϕB

2

)
, φ↓ = −

(
ϕĀ−ϕB̄

2

)
, θ↑ =

(−ϕA+ϕB
2

)
, θ↓ =(

−ϕĀ+ϕB̄
2

)
. Using the usual expression for the chiral

density, ρκ = 1
2π∇ϕκ, we can arrive at all the results of

the previous section.
We can now identify the compactification radius of φρ.

Since ϕκ are independent U(1) phases with a compacti-
fication radius 2π, that is, ϕκ ≡ ϕκ + 2π, we note that
φρ must be identified with φρ + 2nπ√

8
for n ∈ Z. Thus,

all the minima of the cosine potential correspond to the
same physical state.

Appendix C: Microsopic estimation of Luttinger
parameters

In the main text, we provided rigorous, symmetry-
based arguments for our general expectations for domain
wall excitations. We now discuss a more microscopic
procedure for constructing the Luttinger theory derived
above. This will allow us to provide estimates of the Lut-
tinger parameters relevant to experimental observations
of such modes.

1. General philosophy

We will focus on single-particle modes near the domain
wall, that is, modes with X,X ′ ≈ 0. For such modes, the
effective interaction may be approximated as

Hi =
1

2A

∑
αβγδ,X,X′,q

Gαβγδ(qy) : c†
α,X− qy2

cβ,X+
qy
2
c†
γ,X′− qy2

cδ,X′+ qy
2
:,

Gαβγδ(qy) ≡
∫
dqx
2π

VqFαβ(q̄αβ , X = 0)Fγδ(−q̄δγ , X ′ = 0) ≈ Gαβγδ(0) ∀ qy (C1)
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We made two assumptions in the above result. First,
we neglected X,X ′ dependence in the effective interac-
tion amplitude Gαβγδ, confining our attention to the
physics near X = X ′ = 0. Second, note that the in-

teraction amplitude G(qy) ∼ e−q
2
y/2. Thus, the effective

interaction is Gaussian in momentum exchanged along
the domain wall, and consequently it is also Gaussian in
spatial extent along the domain wall. This suggests that
it can be approximated by a contact interaction, which
corresponds to setting G(qy) = G(0)∀qy. Landau level
projection thus naturally leads to a theory of fermionic
modes propagating along the domain wall and interact-
ing via short-range interactions.

The density of left and right moving fermions in this
system may be defined as discussed above: for ν = 1,

ρL(y) = 1
Ly

∑
qy
eiqyy

[∑
X c
†
A,XcA,X−qy

]
, and ρR(y) =

1
Ly

∑
qy
eiqyy

[∑
X c
†
B,XcB,X−qy

]
. One may similarly de-

fine densities for the ν = 2 case.

The above problem of fermions interacting with con-
tact interactions can be treated analogous to Lut-
tinger liquid analysis developed for spinless and spinful
fermions, see Ref. 19. The various interaction amplitudes
determine the effective Luttinger parameters of our the-
ory.

2. ν = 1.

We assume, as above, that valley A is occupied for
X < 0, and valley B is occupied for X > 0. A valley

Zeeman field gradient,
∑
X ΓX

(
c†A,XcA,X − c

†
B,XcB,X

)
,

that supports such a domain wall configuration, then di-
rectly translates into the term

∫
dy πΓ

[
ρ2
R(y) + ρ2

L(y)
]
.

Thus, the parameter Γ in Hv [in Eq. (12)] may be esti-
mated directly by the gradient of the valley Zeeman field
(which in turn can be estimated by the gradient of the
strain field and the difference of its coupling to the dif-
ferent valley modes). Note that this follows analogously
to a free Tomonaga-Luttinger gas noting that the guid-
ing center X is also the momentum of the orbital in the
y−direction.

For ν = 1, Hi,2 is irrelevant. Hi,0, Hi,1 must respect
free rigid translations of the domain wall, and therefore
must be of the form given in Eq. (11). The parameter
v0
F can be read off by transforming appropriate terms in

Eq. (C1) into the Luttinger liquid variables. This yields

v0
F =

1

2π

∫
qx
2π

V (q) |FAA(q)|2 |qy=0

− 1

2π
V (q + KA −KB) |FAB(q)|2 |qy=0. (C2)

3. ν = 2.

The single-particle valley Zeeman term is given now by
two copies of the Tomonaga-Luttinger Hamiltonian

Hv = πΓ

∫
dy
[
(ρ2
L,↑ + ρ2

R,↑) + (ρ2
L,↓ + ρ2

R,↓)
]
. (C3)

As for ν = 1, Γ is directly given by the valley Zeeman
field gradient. As before, the interaction terms allow for
a rigid translation of the domain wall, and the corre-
sponding terms in the effective Hamiltonian must reflect
this symmetry. We further note that Hi,0 is symmetric
with respect to all valleys, and thus leads to a term of
the form

Hi,0 = πv0
F

∫
dy[ρL + ρR]

2
,

ρL = ρL,↑ + ρL,↓, ρR = ρR,↑ + ρR,↓. (C4)

where

v0
F =

1

2π

∫
dqx
2π

V (q) |FAA(q)|2 |qy=0. (C5)

Hi,1 involves exchange interactions between valley
pairs, with an amplitude that is generically different
for pairs separated by a momentum shift along and/or
against the domain wall. It transforms into

Hi,1 = −πv1
F (1 + χ)

∫
dy
[
(ρL,↑ + ρR,↑)

2 + (ρL,↓ + ρR,↓)
2
]

−πv1
F (1− χ)

∫
dy
[
(ρL,↑ + ρR,↓)

2 + (ρL,↓ + ρR,↑)
2
] }
(C6)

where

v1
F (1 + χ) =

1

2π
V (q + KA −KB) |FAB(q)|2 |qy=0,

v1
F (1− χ) =

1

2π
V (q + KA + KB) |FAB̄(q)|2 |qy=0.

(C7)

The above expressions may then be converted into a usual
Luttinger liquid description of charge and spin modes, as
described above in Eq. (25). The Luttinger parameters
read

Kρ =

√
Γ

4v0
F + Γ− 4v1

F

, Kσ =

√
Γ− 2v1

F (1− χ)

Γ− 2v1
F (1 + χ)

,

uρ =
Γ

Kρ
, uσ =

√
(Γ− 2v1

F (1− χ))(Γ− 2v1
F (1 + χ)).

(C8)

Finally, the form of Hi,2 in the Luttinger description
is fixed by its action of changing Iz in steps of 2, as in
Eq. (26). The parameter g is given by

g =

∫
dqx
2π

[FAB(q)]
2 ·

[V (q + KA −KB)− V (q + KA + KB)]
∣∣
qy=0

.

(C9)
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This completes our estimation of the parameters of the Luttinger theories.
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