Model theory and differential equations
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Introduction

The model theoretic approach to the study of dif-
ferential equations has a long and rich history be-
ginning with A. Robinson [Rob59]. The theory of
differentially closed fields of characteristic 0, DC'Fy,
has been studied intensively and has played an im-
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portant role in the internal development of geometric
model theory. It is also behind one the most spectac-
ular application of logic to number theory; namely,
E. Hrushovski’s celebrated proof of the function field
Mordell-Lang conjecture. Furthermore, the study of
the theory DCFj has lead to substantial development
in a Galois theory for differential equations and its
applications.

Nevertheless, only very recently have the tech-
niques from model theory been used to study clas-
sical differential equations. First in the work of the
author and A. Pillay on the Painlevé transcendents



[NP14], [NP17] and then in that of J. Freitag and T.
Scanlon [FS18] on the differential equation satisfied
by the modular j-function. More recently, in joint
work with G. Casale and J. Freitag [CFN18], the au-
thor has also studied the differential equations sat-
isfied by the Fuchsian automorphic functions and in
the process proved an old claim of P. Painlevé (1895).

In this article, we give an overview of those recent
applications of model theory to the study of differen-
tial equations. The focus will be on the role of the
classification problem for strongly minimal sets and
on results in functional transcendence. Unavoidably,
many other interesting and important aspect of the
interaction between model theory and differential al-
gebra will be omitted.

Differential Algebraic Geometry

Differential algebraic geometry, which has its origin
at the beginning of the 1930’s, was founded by J. Ritt
and E. Kolchin. Although not widely known, it gives
a general algebraic setting for the study of differential
equations and the approach is similar to that of the
study of polynomial equations in algebraic geometry.
We will in this article focus on ordinary differential
equations. Moreover, we will say a few words at the
end about the setting of partial differential and dif-
ference equations. The standard reference for this
section is Kolchin’s book [Kol73]. All fields will be
assumed to be of characteristic 0.

Definition 1. A differential field (K, ¢) is a field K
equipped with a derivation § : K — K, i.e., an addi-
tive group homomorphism satisfying the Leibniz rule

6(zy) = 26(y) + yd(z).

The field of constants C'kg of K is defined set theo-
retically as {x € K : 6(z) = 0}. We usually write 2’
for §(z) and (™ for §...80(x).

——

n
Example 1. (C(t),d/dt) the field of rational func-

tions over C in a single indeterminate, where in this
case, the field of constants is C.

Associated with a differential field (K, ), is the ring
of differential polynomials K{X} in m differential

variables X = (X1,...,X,;). An element of K{X}
is called a differential polynomial over K and is sim-
ply a regular polynomial with coeflicients in K but in
variables X, X/, X3 ..., We use here the notation
XM = (x™ X\, 1f f € K{X}, then the or-
der of f, denoted ord(f), is the largest n such that
)

. n .
for some ¢, XZ-( occurs in f.

Example 2. f(X) = (X')? —4X? —tX is a differ-
ential polynomial in C(¢){X} and ord(f) = 1.

As one can see, if f € K{X}, then f(X) = 0 is
an ordinary (algebraic) differential equation. More
generally, by a Kolchin closed subset of K™, we mean
the common zero set of a finite system of differential
polynomial equations, i.e., a set of the form

V(S)={ye K": f(y)=0for all fe S}

where S C K{X} is a finite subset. The Kolchin
closed sets are the basic closed sets in the Kolchin
topology and are the analogues of the basic closed
sets in the Zariski topology. A Kolchin constructible
set is simply a boolean combination of Kolchin closed
sets.

Given a differential field (K, §), it follows that the
derivation § uniquely extends to the algebraic closure
K9 of K. However, in order for Kolchin closed sets
to necessarily have points whose coordinates are from
the underlying field, a much stronger condition than
algebraic closedness is needed.

Definition 2. A differential field (K, J) is said to
be differentially closed if for every f,g € K{X} such
that ord(f) > ord(g), thereisy € K such that f(y) =

0 and g(y) # 0.

Differential algebraic geometry as developed by
Kolchin, studies Kolchin closed sets in a differen-
tially closed field. At this point, let us mention that
Kolchin closed sets can have very rich algebraic struc-
ture. Take for example, the field of constants: if K
is differentially closed, then from Definition 2 we see
that Ck is an algebraically closed field. Less obvi-
ous is that Ck is indeed the only algebraically closed
subfield of K that is given by a differential equation.
Another interesting well-known example is that of an
homogeneous linear differential polynomial

f(X) :X(n)+an—1X(n_1)+"'+a1Xl+(10X7 a; € K.



One has that the associated Kolchin closed set (in
a differentially closed field K) is a vector space over
Ck.

Kolchin’s approach has been instrumental in the
development of a Galois theory for differential equa-
tions that solidifies and extends the Picard-Vessiot
theory for linear differential equations. For exam-
ple, the fact that in a differentially closed field K,
the Galois group of a linear differential equation is
a linear algebraic group defined over Ck, has been
generalized in Kolchin’s strongly normal theory us-
ing algebraic groups as the Galois group of so-called
logarithmic equations.

Figure 1: Loops ¢0,91,90 in the complex plane
around the singularities 0,1, 00 of the hypergeo-
metric equation. The differential Galois group is
the Zariski closure in GL2(C) of the monodromy
group of the equation.

Kolchin’s Galois theory for differential equations
has helped answer questions related to the study of
the structure of Kolchin constructible sets. Moreover,
it can be argued that the point of view of Kolchin’s
theory coincides with that of the model theory of
differentially closed fields. This is of course our ap-
proach to studying differential equations.

Model theory

For the topics covered in this article, we recommend
D. Marker’s book [Mar02]. The starting point in

model theory is the notion of a model of a first order
theory. Here by a first order theory T' we mean a set
of axioms (or more accurately first order sentences)
in a fixed language L. The language L is simply a set
of constant symbols, function symbols and relation
symbols. We assume throughout that the language
is countable.

Example 3. A familiar example is Tz the theory for
groups which consists of the usual axioms for groups
expressed using the language Lg = (e, ) together
with the logical symbols =, (, ), 3 and V.

A structure for a language L, or an L-structure for
short is a set together with interpretations for each
symbol in L. A model of a theory T is simply an L-
structure in which the axioms are true. In Example
3, we see that both (N,0,4) and (Z,0,+) are Lg-
structures, moreover only the latter is a model of T¢.

The notion of a (well-formed) formula extends that
of an axiom, whereby free variables, that is those not
quantified upon, are allowed. Continuing with Ex-
ample 3, we see that a well-formed formula with free
variable X is ¢(X) =VY(X xY =Y x X). For a
model G (i.e., a group), if C(G) denotes the set of
elements of G which satisfy the formula ¢(X), then
we have that C(G) is the center of G. The center,
C(G), is an example of a definable set:

Definition 3. A definable setY C M™ is a set of the
form
Y ={yeM":¢(y) is true}

where ¢ is a formula in L with with n free variables.

Remark 1. For any subset A C M of a model, one
can extend the language L by adding a constant sym-
bol for each element a € A. One usually denotes the
new language obtained by L 4. If in Definition 3 one
replaces L by L4 for some A C M, then one obtains
the definition of an A-definable set or more precisely
a definable set with parameters from the set A.

For a fixed theory T a major goal of model the-
ory is to study all definable sets in some/any model
of T. This of course would be hopeless unless one
could identify classes of structures where there are
some control over the definable sets. In model the-
ory, this leads the distinction between “tame” and



“wild” structures or theories. In this article we dis-
cuss two notion of tameness, namely quantifier elimi-
nation and w-stability. There are many more natural
“tame” versus “wild” distinctions and some are illus-
trated in Figure 2.

A theory T is said to have quantifier elimination
if for every formula ¢(X) there is a quantifier-free
formula 9 (X) such that the two define the same de-
finable set. It hence follows that for theories with
quantifier elimination the definable sets are defined
using “simple” formulas.
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Figure 2: The model theory universe as described
at forkinganddividing.com. In the sea of theories,
an w-stable theory is ideally placed in the center
left of the natural ‘tame/wild’ divide.

A theory T is w-stable if every definable set X
can be given an intrinsic ordinal valued dimension
called the Morley Rank, denoted by RM(X). In
rough terms, the inductive definition is as follows:
RM(X) = 0 if X is finite, and RM(X) > a4+ 1 if
there are pairwise disjoint definable subsets X; of X
for ¢ = 1,2,... such that each RM(X) > « for all
i < w (one extends the definition naturally to limit
ordinals). We set RM(X) = « if RM(X) > « but
not > a + 1. Using this rank, one can define in T
a good notion of independence and dimension analo-

gous to the notion of linear independence and basis
in the study of vector space.

The theory of algebraically closed field of charac-
teristic zero AC'Fy with the obvious axioms given in
the language of rings L = (+,—,-,0,1) has both
quantifier elimination and is w-stable. In this setting
quantifier elimination is equivalent to the Chevalley-
Tarski theorem that over an algebraically closed field
the projection of a constructible set is constructible.
The Morley rank of a definable set (so a constructible
set) corresponds to the transcendence degree of a
generic point, while the independence notion is equiv-
alent to algebraic independence.

The Theory DCFy

Let us bring together the ideas of the first two sec-
tions. We refer the reader to [Mar96] for additional
details. In the context of differentially closed fields,
the relevant language is Ls = (+, —, -, 9,0, 1), the lan-
guage of differential rings and we denote by DFj the
theory of differential fields of characteristic zero. The
axioms of DFjy consist of the axioms for fields and the
axioms for the derivation 4.

Now, for each n, d; and dy € N, one can write down
an axiom (in Ls) that asserts that if f is a differential
polynomial of order n and degree at most d; and g
is a nonzero differential polynomial of order less than
n and degree at most dy, then there is a solution
to f(X) =0 and g(X) # 0. The theory obtained by
adding to DF} all these axioms is called the theory of
differentially closed fields of characteristic 0, DCFy.
This theory sits on the tame side of many of the most
important dividing lines in model theory as shown by
Blum [Blu69]:

Theorem 1. The theory DCF, eliminates quanti-
fiers and is w-stable.

For the remainder of the article ¢/ will de-
note a saturated! model of DCFj.

Quantifier elimination means that a definable set
Y C U™, definable over a differential subfield K of U,

ISaturation is a notion of ‘largeness’ which mimics the idea
that an algebraically closed field of uncountable transcendence
degree over the prime field is large/rich.



is nothing more than a Kolchin constructible set over
K. On the other hand, as discussed above, w-stability
means (among other things) that any definable set
has a well-defined ordinal-valued Morley rank. The
independence notion in U is as follows: a is indepen-
dent from b over K if K (a) is algebraically disjoint
from K (b) over K. Here K (a) = K(a,a’,a?,..))
denotes the differential field generated by a over K.

Along with the Morley rank, we also have an-
other invariant for definable sets called the order.
For a € U™ and K < U, we define ord(a/K) to
be the transcendence degree of the field K (a) over
K. If Y C U™ is definable over K, we define the
ord(Y) = sup{ord(a/K) : a € Y}. One can show
that RM(Y") is always less than or equal to ord(Y).
Furthermore, RM(Y) < w if and only if ord(Y) < w.
We will later see examples of Kolchin closed sets for
which the Morley rank is strictly less than the order.

Definition 4. Let Y C U™ be a definable set.

1. Y is said to be finite dimensional (or rank) if it
has finite order, i.e., ord(Y) < w.

2. Y is said to be strongly minimal if it is infinite
and for every definable subset Z C Y, either Z
or Y\ Z is finite.

If Y is strongly minimal then it has Morley rank
one. Strongly minimal sets determine, in a precise
manner (not to be discussed in this article), the struc-
ture of all finite dimensional definable sets. This fact,
which follows from very general model theoretic con-
siderations, holds in any w-stable theory and is ob-
tained in part using the robust notion of indepen-
dence.

Notice that if Y is a definable set with ord(Y") = n,
then Y is strongly minimal if and only if Y can not be
written as the disjoint union of definable sets of order
n, and for any differential field K over which Y is
defined, and element y € Y, then tr.deg(K (y) /K) =
0 or n.

Example 4. The field of constants Cj, is strongly
minimal.

Example 5. If f is an absolutely irreducible poly-
nomial over U in 2 variables then the subset Y of U

defined by f(y,y’) = 0 is strongly minimal, of order
1.

It is a quite a difficult task to show that the set
defined by a given differential equation is strongly
minimal. Indeed, except for limited or special cases,
no general tools are available. For example, we refer
the reader to Section 5.17 of [Mar96], for the (tedious)
calculations involved in showing that the subset of U
defined by {yy” = ¢/, y’ # 0} is strongly minimal, of
order 2.

Nevertheless, the goal of understanding all defin-
able sets in DCF{, goes through a complete under-
standing of the strongly minimal sets. A considerable
amount of work, beginning in the 1990’s, has been de-
voted to just that. The deepest result in that direc-
tion, due to E. Hrushovski and Z. Sokolovic [HS94],
concerns the classification of strongly minimal sets
that have “non-trivial” structures.

Definition 5. Let Y be strongly minimal set de-
fined over a differential field K. Then Y is said to
be geometrically trivial if for any y,y1,...,y, € Y if
y € K (y1,...,yn)™, then there is 1 < i < n such
that y € K (y;)™.

c

Figure 3: Presence of a definable group: in a non-
geometrically trivial strongly minimal set one can
find a group configuration. Each point has (Mor-
ley) rank 1, each line rank 2 and any three non-
collinear points are independent.



In essence, a geometrically trivial set can have at
most a ‘binary’ structure. The field of constants Cy
is not geometrically trivial. The same is true of de-
finable groups (i.e., definable sets equipped with de-
finable group structures).

The work of Hrushovski and Sokolovic did not at-
tempt to classify geometrically trivial strongly min-
imal sets. On the other hand, a key step in their
work and which builds on those of A. Buium [Bui92],
was the identification of some ‘exotic’ differential al-
gebraic groups (i.e., definable groups where the un-
derlying definable set is Kolchin closed not Zariski
closed).

Theorem 2. Let A be an abelian variety overU. We
identify A with its set A(U) of U-points. Let A* be the
Kolchin closure of the torsion subgroup of A. Then

1. A% is a differential algebraic group and is Zariski
dense in A.

2. If A is a simple abelian variety that does not
descend to Cy, then A is strongly minimal.

The group Af is called the Manin kernel of A.
One remarkable property of A% is that is that ev-
ery definable subset of it is a finite Boolean combina-
tion of cosets of definable subgroups. The result of
Hrushovski and Sokolovic is that up to equivalence,
the field of constants Cy; and the groups A* cover all
the non geometrically trivial examples!

Theorem 3 (The trichotomy theorem). IfY €
U™ is strongly minimal, then exactly one of the fol-
lowing hold

1. 'Y is geometrically trivial, or

2. (Group-like) Y is non-orthogonal to the Manin
kernel A' of some simple abelian variety A that
does not descend to Cy, or

3. (Field-like) Y is non-orthogonal to the field of
constants Cyy.

We say that Y and Z (both strongly minimal) are
nonorthogonal if there is some infinite definable re-
lation R C Y x Z such that 7y, and 7z, are
finite-to-one functions. Here 7y : Y X Z — Y and

wyz Y X Z — Z denote the projections to Y and Z
respectively. It is not hard to see that nonorthogonal-
ity is indeed an equivalence relation on strongly mini-
mal sets. Furthermore, if Y and Z are nonorthogonal
strongly minimal sets, then ord(Y) = ord(Z).

The work of Hrushovski and Sokolovic was never
published. Moreover, an alternate proof of the char-
acterization of the field-like strongly minimal sets - a
key step - has appeared in the work of A. Pillay and
M. Zeigler [PZ03]. A good summary of the proof of
Theorem 3 can be found in [NP17, Section 2.1].

There are other interesting and important conse-
quences of the trichotomy theorem that are not ap-
parent but worth mentioning. Firstly, if A¥ is the
Manin Kernel of a simple abelian variety A that
does not descend to Cyy, then ord(A*) > 2. Hence,
strongly minimal sets of order 1 are either geomet-
rically trivial or non-orthogonal to Cy. Secondly,
strongly minimal sets that are defined over Cy; and
of order > 2 are geometrically trivial! This surpris-
ing fact was somewhat forgotten for a while but now
plays a crucial role in some of the applications of the
theory to functional transcendence as we shall see in
the next section.

Finally, it is worth mentioning that strong mini-
mality is closely related to Painlevé’s notion of irre-
ducibility of differential equations. Roughly speaking,
a differential equation is irreducible if none of it so-
lutions are “known” special functions. Establishing
irreducibility, which goes through establishing strong
minimality, has been part of long-standing open con-
jectures in the theory of non-linear special function.

Trivial Pursuits and Applica-
tions

As we have seen the trichotomy theorem, which gives
a very general classification theorem for strongly min-
imal sets, has nothing to say about geometrically
trivial strongly minimal sets. Understanding these
strongly minimal sets, or trivial pursuits (as coined
by J. Baldwin and L. Harrington), is one of the most
important open problems in the study of DCF,. But
to this date very little progress has been made.



For a while it was conjectured that all geometri-
cally trivial strongly minimal sets would have no (or
very little) structure: for any element y of a trivial
strongly minimal set Y only finitely many other ele-
ments of Y are interalgebraic with y. More precisely

Definition 6. Let Y be strongly minimal set de-
fined over a differential field K. Then Y is said to
be w-categorical if for any tuple b from U, the set
K (b)Y is finite.

If a strongly minimal set is w-categorical, then
it is geometrically trivial. A beautiful result of E.
Hrushovski [Hru95] is that the converse holds for or-
der 1 strongly minimal sets (cf. [Pil02, Cor 1.82]]
and [FM17] for a generalization):

Theorem 4. Let Y C U™ be an order 1 geometrically
trivial strongly minimal set. Then'Y s w-categorical.

This result of Hrushovski gave rise to a conjec-
ture about geometrically trivial strongly minimal sets
of arbitrary order: In differentially closed fields, ev-
ery geometrically trivial strongly minimal set is w-
categorical. This was proven to be false at this level
of generality in [FS18] using the order 3 differential
equation satisfied by the modular j-function (see be-
low). The following interesting question remains.

Question 1. Are all order 2 geometrically trivial
strongly minimal sets w-categorical?

At this point, let us mention that if a strongly
minimal set Y has ord(Y) = n and is defined over
K, then w-categoricity can be translated to the fol-
lowing strong transcendence statement: there is a
m € N such that if y1,...,yx € Y are distinct and
satisfy tr.deg(K (y1,...,yr) /k) = nk, then for any
other y € Y, except for at most mk, we have that
tr.deg(K (y1,- -, Yk, ) /k) = n(k+1). It follows that
establishing strong minimality, geometric triviality
and w-categoricity can be seen as part of a strategy
to tackle number theoretic/functional transcendence
type result for the solutions of the differential equa-
tions. As such a positive answer to the above ques-
tion is of great interest. We will now illustrate this
by looking at several recent applications of the model
theoretic approach, in particular the trivial pursuits,
to some classical differential equations.

The generic Painlevé Transcendents

The Painlevé equations are second order ordinary dif-
ferential equations and come in six families P — Py,
where P; consists of the single equation
2
% = 6y> + t,

and P;; — Py; come with some complex parame-
ters. They were isolated in the early part of the
20" century, by P. Painlevé, with refinements by B.
Gambier and R. Fuchs, as those ODE’s of the form
y' = f(y,y',t) (where f is rational over C) which
have the Painlevé property: any local analytic solu-
tion extends to a meromorphic solution on the uni-
versal cover of P}(C)\ S, where S is the finite set
of singularities of the equation. The equations have
arisen in a variety of important physical applications
including, for example, statistical mechanics, general
relativity and fibre optics.

Example 6. The second Painlevé equation Prr(a)
is given by

dzy 3

e 2° +ty + o

where o € C. The equation appears quite prevalently

in random matrix theory (cf. [FW15])

Painlevé believed that, at least for general values
of the parameters, the set defined by the equations
would be strongly minimal. This was proven to be
true in a series of papers by K. Okamoto, K. Nish-
ioka, M. Noumi, H. Umemura and H. Watanabe (cf.
[Oka99] for a survey). In particular, the first Painlevé
equations is strongly minimal and in the case of the
second Painlevé equation, they proved that Prr(a)
is strongly minimal if and only if a & % + Z. By
a generic Painlevé equation we mean one equation
among the family P; — Py, such that all the cor-
responding complex parameters are transcendental
and algebraically independent over Q. So Pry(r) is a
generic equation. The works of Watanabe and others
hence give that all the generic Painlevé equations are
strongly minimal. They left wide open the question
of the fine structure of the definable sets. We now
have a full answer.



Theorem 5. Suppose yi,...,yn are distinct solu-
tions of one of the generic Painlevé equations. Then
Y1, Yls -y YUn, Y are algebraically independent over
C(t), i.e.,

+Yn> Yn)/C(t)) = 2n.

In particular the generic Painlevé equations are all
w-categorical. K. Nishioka [Nis04] proved the result
for P; using differential algebra. However his calcu-
lations and techniques does not seem to generalize to
the other equations. The author, in [Nag20] and be-
fore that in joint work with Pillay in [NP14], proved
the result for all the other equations using model the-
ory. The proofs rely heavily on earlier work [NP17] in
which the trichotomy is used to show that the generic
Painlevé equations are all geometrically trivial.

The model theoretic approach has also allowed us
to show that the generic equations from most distinct
Painlevé families are orthogonal. Work is currently
underway towards obtaining a full classification of al-
gebraic relations between solutions of the Painlevé
equations. As of now, except for the second Painlevé
equations (where for example the author showed geo-
metrically triviality holds if and only if o & %—i—Z) the
study of the non-generic Painlevé equations is wide
open. The following is an example of the most basic
question one would like to answer.

tr.deg(C(t)(y1, 91, - - -

Question 2. For which values of the parameters of
a fixed Painlevé equation is it true that if yq,...,y,
are distinct solutions (not in C(¢)%9), then

tr.deg(C(t)(y1, Y1, - > Yn» Yn)/C(t)) = 207

Fuchshian Automorphic Functions

We now consider the most natural generalizations of
the trigonometric and elliptic functions (i.e., the pe-
riodic functions).

Let ' € PSLs(R) be a Fuchsian group, that is,
assume that I" is a discrete subgroup of PSLy(R). A
point 7 € HUP!(R) is said to be a cusp if its stabilizer
groupI'; = {g € T : g-7 = 7} has infinite order. We
also assume throughout that T is of first kind (é.e., its
limit set is P1(R)) and of genus zero (i.e., I'\H can be
compactified to a compact Riemann surface of genus

0). An automorphic function f for I" is a function on
the complex upper half plane H, such that?

flg-7)=f(7)

and such that f is meromorphic at every cusp of T'.
The collection Ay(T') of all automorphic functions
for T is a field and is generated (over C) by some
automorphic function called an hauptmodul or uni-
formizer for T'. We will denote by jr(¢) one such
fixed hauptmodul.

It is a classical fact that jr(t) satisfy a third order
ordinary differential equation of Schwarzian type

forall g eI and 7 € H,

Su(y) + () Ry (y) = 0. (*)
" 1" 2
Here Si(y) = (%)l - %(2’7) denotes the

Schwarzian derivative (' = di) and

1 1—of Bi
R; ==
N e e B
with aq,...,a, and Bi,..., B, real numbers depend-
ing on I' and jr. Every solution in U of the
Schwarzian equation (%) can be taken to be of the

form jr(g-t) for some g € GLy(C).

T T

45 10 -05 0 05 10 15
Figure 4: The fundamental domain for the ac-
tion of a Fuchsian group of the first kind - here
PSLy(Z) - has a finite number of generators and
is of finite volume.

Example 7. If ' =
modular j-function

J(r) =

PSLy(Z), then the classical

1
g T 196884g + 21493760¢% + . ..,

2Throughout g - 7 will denote the action of an element of
GL3(C) by linear fractional transformation.



where ¢ = 2™, is an hauptmodul. In this case the

differential equation is given with

_y® — 1968y + 2654208

R;(y) 2y — 1728)?

P. Painlevé in 1895, again claimed that the set de-
fined by equation (%) would be strongly minimal. K.
Nishioka proved that the Hauptmodul jr does not
satisfy any algebraic differential equation of order two
or less over C(t,eM), for any A € C. He also obtained
a very weak form of Painlevé assertion in the case of
triangle groups. The first real progress was made by
J. Freitag and T. Scanlon [FS18] in their work on the
modular j-function (they did not know of Painlevé’s
claim then).

Theorem 6. LetI' = PSLy(Z). Then the set defined
by the Schwarzian equation (x) is strongly minimal,
geometrically trivial but not w-categorical.

Their proof relies on a deep functional transcen-
dence result of J. Pila [Pil13] called the modular Ax-
Lindemann-Weierstrass theorem with derivatives (see
below).

Remark 2. Granted that strong minimality holds,
it is rather unsurprising that the definable set in the
case of the j-function is not w-categorical. Indeed,
for each n € N we have the classical modular poly-
nomials ®,(X,Y) € Z[X,Y] that relates solution of
the equation for j: if g1 and g are in the same coset
of GLy(Q), then @, (j(g1 -t),5(g1 -t)) = 0 for some
n.

For a while the result of Freitag and Scanlon
seemed to have shut the door on a possible classifi-
cation of geometrically trivial strongly minimal sets.
However, it turned out that studying the Schwarzian
equation (%) in its full generality has allowed us to
place the case I' = PSLy(Z) in context. A natu-
ral and key question is the following: is there a way
to explain the existence of the modular polynomials?
The answer is again very classical and is brought to
light through the notion of commensurability.

Recall that two subgroups G and H of PSLy(R)
are commensurable, denoted by G ~ H, if their in-
tersection G N H has finite index in both G and H.

For a Fuchsian group I, let Comm(I") be the com-
mensurator of I'; namely

Comm(T) = {g € PSLy(R) : gl'g~! ~T}.

If g € Comm(I') \ I, then one has that the inter-
section I'y = gI'g~* N T is a Fuchsian group of first
kind and with the same set of cusps as I'. But
the functions jr(t) and jr(g~'t) are respective uni-
formizers for I and gI'g~'. It follows that they also
are automorphic functions for I'y. The work of H.
Poincaré gives that any two automorphic functions
for a Fuchsian group are algebraically dependent over
C. So there is a polynomial ®, € C[X,Y], such that
@, (jr(t), jr(g-t)) = 0. Such polynomial is called a
I"-special polynomial.

So if ' has infinite index in Comm(I"), then there
are infinitely many I'-special polynomials. In partic-
ular, if one can prove strong minimality, then non-w-
categoricity would follow. It turns out that groups I'
having this ‘infinite index’ property are well known
in group theory.

Let F be a totally real number field and let A be a
quaternion algebra over F' that is ramified at exactly
one infinite place. Let p be the unique embedding
of A into M>(R) and let O be an order in A. The
image p(O%) of the norm-one group of O under p is a
discrete subgroup of SLs(R). We denote by T'(A4, O)
the Fuchsian group obtained under the projection in
PSLy(R) of the group p(O').

Definition 7. A Fuchsian group I' is said to be arith-
metic if it is commensurable with a group of the form
T'(A4,0).

The modular group PSLs(Z) and its finite index
subgroups are the most well-known examples of arith-
metic groups. We have the following deep result of
G. Margulis.

Theorem 7. The group T" is arithmetic if and only
if it has infinite index in Comm(T") and so there are
infinitely many I'-special polynomials.

The work of the author with G. Casale and J. Fri-
etag [CFN18], completely proves Painlevé’s claim and
provides a striking connection between categoricity
and arithmeticity.



Theorem 8. Let I' be a Fuchsian group of first kind
and genus zero and let Xy be the set defined by the
Schwarzian equation (x). Then

1. Xr is strongly minimal and (so) geometrically
trivial.

2. Xr is w-categorical if and only if T' is non-
arithmetic

The techniques in the proof of Theorem 8 relies on
differential Galois theory, monodromy of linear dif-
ferential equations, the study of algebraic and Liou-
villian solutions, differential algebraic work of Nish-
ioka towards the Painlevé irreducibility of certain
Schwarzian equations, and considerable machinery
from the model theory of differentially closed fields.
The following question can be seen as the next major
challenge in the classification of geometrically trivial
strongly minimal sets in differentially closed fields.

Question 3. In DCFj, does every non-w-categorical
strongly minimal set arise from an arithmetic Fuch-
sian group in this way?

Finally, let us mention that the above work on fully
classifying the structure of the definable sets associ-
ated with the Schwarzian equation () has been used
in [CFN18] to give a proof of the Ax-Lindemann-
Weierstrass Theorem with derivatives for I': Let
V' C A™ be an irreducible algebraic variety defined
over C such that V(C) N H" # @ and V projects
dominantly to each of its coordinates (each coor-
dinate function is nonconstant). Let t¢q,...,t, be
the functions on V induced by the canonical coor-
dinate functions on A™. We say that ¢1,...,t, are
T'-geodesically independent if there are no relations of
the form t; = g - t; where ¢ # j and g € Comm(T").

Theorem 9. With the notation (and assumption
V(C)NH" # 0) as above, suppose that ty,..., t, are
I'-geodesically independent. Then the 3n functions

gr(ty), gr(t), e (t) - -5 gr(tn), e (tn), 31 (tn)

(defined locally) on V(C) are algebraically indepen-
dent over C(V).
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As mentioned earlier, J. Pila [Pil13] had already
proved the result for PSLy(Z). J. Freitag and
T. Scanlon [FS18] established the same for arith-
metic subgroups of PSLy(Z). The Ax-Lindemann-
Weierstrass (mostly without derivatives) has also
been proved by various authors in the more general
context of Shimura varieties. The work in [CFN1§]
differs from all the above in that it does not use a tool
called o-minimality (originating in model theory) and
also tackles the non-arithmetic groups as well as the
derivatives of the functions all at once.

Beyond DCF,

We end by saying a few words about the partial dif-
ferential and the difference equations settings. We
denote by DCFy ,, the theory of differentially closed
field of charateristic 0 with m commuting derivations
(partial context) and by ACF A the theory of alge-
braically closed field with a generic automorphism
(difference context). The theory DCFy ,, is also
w-stable and has quantifier elimination. However,
strongly minimal sets do not fully capture the com-
plexity of all definable sets. There are so called infi-
nite rank regular types® that do so. The trichotomy
theorem is yet to be fully established in that set-
ting. On the other hand, ACF A is not w-stable but
is rather a so-called simple theory (characterized by
existence of a good notion of independence). Fur-
thermore, although definable sets are still given by
simple enough formulas, ACFA does not have full
quantifier elimination. A version of the trichotomy
theorem does hold in that setting and the study of
AC'F A has been very successfully used to obtain new
results in number theory and algebraic dynamics.
However in both cases, except for few examples,
applications to the study of classical equations is yet
to be undertaken. There are obvious candidates that
would mirror the situation of DCFy. In DCEFj ,,
tackling the generalized Schwarzian equations for uni-
formizers for Shimura varieties is of great interest.
In ACF A, proving that the ¢-Painlevé equations are

30ne such infinite rank regular type also exists for DC Fp.
However the finite rank part of the theory is where most of the
complexity lies.



rank 1 is a challenge. These difference equations are
discrete analogues of the classical Painlevé equations.
In fact, in many real world problems, the Painlevé
equations arise from a limiting process, starting with
the g-Painlevé equations. We expect that as with
DCFy, important model theoretic questions about
the structure of definable sets can be formed and an-
swered by studying these concrete differential and dif-
ference equations.
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