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1Department of Mechanics and Engineering Science, BIC-ESAT,
College of Engineering, Peking University, Beijing 100871, People’s Republic of China

2Department of Mechanical and Aerospace Engineering,
Princeton University, Princeton, New Jersey 08544, USA

3Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
4Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania, 19085, USA

5Princeton Institute for the Science and Technology of Materials (PRISM),
Princeton University, Princeton, New Jersey 08544, USA

(Dated: June 12, 2020)

Phase separation of multicomponent liquid mixtures plays an integral part in many processes
ranging from industry to cellular biology. In many cases the morphology of coexisting phases is cru-
cially linked to the function of the separated mixture, yet it is unclear what determines morphology
when multiple phases are present. We developed a graph theory approach to predict the topology of
coexisting phases from a given set of surface energies (forward problem), enumerate all topologically
distinct morphologies, and reverse engineer conditions for surface energies that produce the target
morphology (inverse problem).

Phase separation and multi-phase coexistence are ubiq-
uitous ranging from the simple demixing of water and
oil to more sophisticated industrial processes related to
medicine, food, cosmetics, energy, environment, etc. [1]
Phase separation and multi-phase coexistence also occur
in nature, where they give rise to structural colors in
birds [2–4] and produce a plethora of intracelullar con-
densates [5–8].

Coexisting liquid phases can adopt a variety of differ-
ent morphologies [9–15], which are often directly linked to
some function, e.g. the nested morphology of separated
phases can assist with drug delivery [16] and with the
biogenesis of ribosomes inside cell nuclei [17], while the
tunable morphologies of multi-phase droplets can serve
as micro-lenses with tunable focal length [14]. The con-
trol of morphology of separated liquid phases could open
the avenue for new applications, but we currently lack
tools for designing the morphology of more than three
coexisting phases. In this Letter we make an important
step in this direction.

The phase separation process is rooted in thermody-
namics and the main principles have been known since
Gibbs [18]. More recently these arguments have been
extended to multicomponent systems and several tools
have been developed that enable predicting the number
of coexisting phases, their compositions and volume frac-
tions, and surface energies between them [19–25]. While
the minimization of the bulk free energy determines the
number of coexisting phases, their compositions and vol-
ume fractions, the minimization of surface energies de-
termines how these phases arrange in space. (Here, we
neglect buoyancy effects, hydrodynamics, and chemical
reactions, which can also affect morphology [1, 7, 26].)

The focus of this Letter is to explain how surface en-
ergies determine the topology of separated liquid phases,
but we also briefly comment how volume fractions af-

fect the geometry of separated phases. The topology of
separated phases can be represented with a connectivity
graph. We show how to use graph theory to predict the
topology of separated phases from a given set of surface
energies (forward problem), enumerate all topologically
distinct morphologies, and reverse engineer conditions for
surface energies that produce the target morphology (in-
verse problem).
The graph theory approach presented below is general

and can be applied to any model system. Here, we use
the Flory-Huggins [27, 28] model of regular solutions to-
gether with a Cahn-Hilliard approach for kinetics and
interfacial energies [29] to validate predictions from the
graph theory approach for Np = 3, 4, and 5 coexisting
phases in 3D. The free energy density f of the mixture
with Nc different components is written as [7, 25, 30]

f

cRT
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φi lnφi+
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N∑
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χijφiφj−
λ2
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i,j=1

χij∇φi∇φj ,

(1)
where c is the total concentration of the mixture, R the
gas constant, T the temperature, φi the volume fraction
of the component i with

∑
i φi = 1, χij the interaction

parameter between components i and j with χii = 0, and
λ is the characteristic width of the interface. In the above
Eq. (1) the three terms describe the entropy of mixing,
the interaction energy, and the interfacial energy [31].
The volume fractions evolve as

∂φi

∂t
= D∇ ·

[
φi

∑

j

(δij − φj)∇µ̃j

]
, (2)

where D is the diffusion coefficient [32], δij the Kronecker
delta, and µ̃j = 1 + lnφj +

∑
k χjk(1 + λ2∇2)φk are the

dimensionless chemical potentials. Here, we also assume
that the interaction parameters χij are sufficiently large,
such that the mixture separates into Np = Nc distinct
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FIG. 1. Morphologies of three coexisting phases R (red), G
(green), and B (blue) are determined by the magnitudes of
surface tensions (γRB ≥ γRG ≥ γBG > 0) and volume frac-
tions. First row: schematics of local arrangements of phases
and corresponding graph representations for (a) partial wet-
ting (γRB < γRG + γGB) with stable triple junctions due to
the force balance of surface tensions, and (b) complete wetting
(γRB > γRG + γGB) with unstable triple junctions due to the
force imbalance of surface tensions. Second row: representa-
tive simulation snapshots at 106 timesteps (see Video S1 for
the time evolution [33]). The blue phase is semi-transparent
for the snapshots with unequal volume fractions. The simu-
lation parameters are given in Table S1 [34].

phases via spinodal decomposition, where each of the
phases I is enriched with the component i [25], and the
volume fractions of separated phases are approximately
equal to the average volume fractions {φi} of compo-
nents. In this limit, the surface energies can be esti-
mated as γIJ ≈ (πcλRT/4)χij . The details of the sim-
ulations are provided in the Supplemental Material and
in Ref. [25].

To introduce relevant concepts, we first discuss the
morphology of three coexisting phases R (red), G (green),
and B (blue), with surface energies γRB ≥ γRG ≥ γGB >
0. When surface energies satisfy the triangle inequality
(γRB < γRG+γGB), the phases partially wet each other.
Triple junctions, where three phases meet, are stable
(see Fig. 1a) and they persist during the coarsening (see
Video S1 [33]). The equilibrium angles between different
phases can be obtained from the force-balance of sur-
face tensions, which is known as the Neumann construc-
tion [35]. In contrast, when surface energies do not satisfy
the triangle inequality (γRB > γRG + γGB), the phase G
completely wets the phases R and B to eliminate the
high surface energy γRB (see Fig. 1b and Video S1 [33]).
Here, triple junctions are unstable, because surface ten-
sions γRG and γGB cannot balance the high surface ten-
sion γRB (Fig. 1b).

The topology of separated phases can be represented
with a connectivity graph, where vertices correspond to
phases and edges connect phases that share a 2D in-

terface. Note that phases that meet only at points or
1D lines are disconnected in the graph representation.
The fully connected graph describes the case with par-
tial wetting, where all phases are in contact with each
other (Fig. 1a), while the graph with a missing edge cor-
responds to the case with complete wetting (Fig. 1b).
Note that the topology of separated phases is fully de-
termined by surface tensions, while the geometry of sep-
arated phases also depends on the volume fractions of
phases (Fig. 1). Phases percolate through the whole
space, when their volume fractions exceed the percola-
tion threshold (≈ 0.34 in 3D [36]), but otherwise they
break into droplets to minimize the surface energy, which
is known as the Plateau-Rayleigh instability [35, 37].
The information presented above for mixtures with

three coexisting phases can be used to infer the behav-
ior of mixtures with Np > 3 coexisting phases. For
any model system with Nc components, the first step
is to predict the number Np of coexisting phases, their
compositions and volume fractions, and surface ener-
gies {γIJ} between them by using the tools described in
Refs. [19–25]. For each of the

(
Np

3

)
subsets of three phases

{I, J,K}, the local arrangement of phases depends on the
surface energies {γIJ , γIK , γJK} and can be represented
with triplet connectivity graphs (Fig. 1). The fully con-
nected graph corresponds to the partial wetting case with
stable triple junctions I − J − K, where surface ener-
gies satisfy the triangle inequality (γIJ < γIK + γJK ,
γIK < γIJ + γJK , γJK < γIJ + γIK). The graph with a
missing edge I −J describes the case where the phase K
completely wets the phases I and J and surface energies
satisfy the inequality γIJ > γIK + γJK . Analogously we
can interpret the two other graphs with either a missing
edge I −K or a missing edge J −K.
The information from the triplet connectivity graphs

for each of the
(
Np

3

)
subsets of three phases can be used

to construct the connectivity graph for the whole sys-
tem with Np phases. Starting with a fully connected

graph with Np vertices, we iterate over each of the
(
Np

3

)

graphs and for each edge missing in the triplet graph, we
remove the corresponding edge in the Np connectivity
graph. This yields a connectivity graph that describes
the topology of the mixture.
Fig. 2 shows a few representative cases for mixtures

with Np = 4 coexisting phases (red, green, blue, white),
where

(
4
3

)
= 4 graphs of triplets of phases are used to

construct the connectivity graph with 4 vertices that de-
scribes the topology of separated phases. When all 4
graphs of triplets of phases are fully connected, then the
connectivity graph with 4 vertices is also fully connected
(see Fig. 2a). Distinct sets of triplet graphs can construct
the same 4-component connectivity graph (Fig. 2b,c).
One such example can be seen in Fig. 2b,c, where the
graph is missing an edge between the white and blue
and between the white and green phases because the
red phase completely wets the white and blue and white
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FIG. 2. Prediction of the topology of separated phases. From
the set of interaction parameters {χij} and average volume
fractions {φi} of components, we can predict the surface ener-
gies {γIJ} of separated phases. These values are then used to
produce the set of graphs of triplets of phases, from which we
construct the connectivity graph describing the topology of
separated phases (see text). These graphs are then compared
to the topology of separated phases in simulation snapshots
at 106 timesteps on the left. (b,c) Different sets of graphs
(yellow boxes indicate the difference) can produce the same
topology of separated phases. The simulation parameters are
given in Table S1 [34].

and green phases. The different wetting condition (high-
lighted in Fig. 2b,c) between the white, green, and blue
phases in these distinct cases do not affect the final con-
nectivity graph (or topology), but they affect the tran-
sient dynamics. For the case in Fig. 2b, the white, green,
and blue phases form stable triple junctions, which get
broken once the red phase comes along and separates the
white phase from the green and blue phases. In contrast,
for the case in Fig. 2c, the green phase completely wets
the white and blue phases, but the presence of the red
phase separates the green and white phases.

We also checked that the connectivity graphs accu-
rately predict the topology of separated phases in sim-
ulations with Nc = 4 components (see Fig. 2), where
the interaction parameters χij ∝ γIJ were chosen to be
consistent with the set of inequalities for surface energies
described by the 4 graphs of triplets of phases.

The representation of the topology of separated phases
in terms of the connectivity graphs enables us to enumer-
ate all topologically distinct morphologies, which corre-
spond to all connected unlabelled graphs [38]. For Np = 3
phases there are two distinct graphs, which are shown in
Fig. 1. For Np = 4 phases there are 6 distinct graphs (see
Fig. 3), which can all be realized by appropriately ad-
justing surface energies (as described below). Since some
of the topologies can be obtained from multiple sets of
graphs for triplets of phases (see Fig. 2b,c), we system-
atically investigated all possibilities for the mixture with

(a) (b) (c) (d) (e) (f)

FIG. 3. Graph representations and simulation snapshots at
106 timesteps for all distinct topologies of 4 coexisting phases
with equal volume fractions (top) and non-equal volume frac-
tions with transparent white phase (bottom). See Video S2
for time evolution [33]. The simulation parameters are given
in Table S1 [34].

Np = 4 phases.

First we generated all 4(
Np
3 ) = 44 = 256 sets of(

Np

3

)
= 4 graphs of triplets of phases, where each graph

can either be fully connected or is missing one of the
3 edges. Then we removed all duplicate sets of graphs
that can be obtained by permutations of labels, resulting
in 19 distinct sets of graphs (see Figs. S1 and S2 [34]).
Each set of graphs of triplet phases corresponds to a
set of inequalities for surface energies {γIJ} as described
above, which can have either infinite solutions or no so-
lutions. We found that 6 of the 19 sets have no solutions
(see Figs. S2 [34]). To obtain representative values of
interaction parameters {χij} for the other 13 sets (see
Figs. S1 [34]), we solved a linear programming problem
by minimizing the sum

∑
ij χij subject to the inequal-

ities provided by the set of graphs, where we took into
account that χij ∝ γIJ . To ensure that the inequalities
were strictly enforced we added a small value of ε = 0.2-
0.5 to each inequality, e.g. χij ≥ ε+ χik + χjk. Further-
more, we imposed additional constraints χij ≥ χmin = 2–
3, where the value of χmin has to be sufficiently large to
ensure that the mixture actually separates into 4 phases
via spinodal decomposition [25].

This way we were able to obtain representative simu-
lations for all 13 distinct sets of graphs (see Fig. S1 [34])
and the topologies of separated phases were consistent
with predictions from the graph theory approach de-
scribed above. These 13 cases can be grouped in 6 dis-
tinct topologies, which are shown in Fig. 3 (see Video S2
for time evolution [33]), where we also show how changes
in volume fraction of phases change the geometry, but not
the topology of separated phases. (Note that the mor-
phologies in 2D and 3D are equivalent (Fig. S3 [34])).
Note that in Fig. 3e we observed stable quadruple junc-
tions, where all 4 phases meet [39]. While quadruple
junctions are typically energetically unstable, we show
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FIG. 4. Reverse engineering of target structures. To reverse engineer the model parameters for target structures, we first
construct a connectivity graph, which is then divided into subgraphs of triplets of phases that are associated with inequalities
of surface energies. The subgraphs highlighted with yellow boxes do not provide any constraints on surface energies. The
linear programming is used to find a set of surface energies that satisfy these inequalities (see text), which are then converted
to interaction parameters χij . The average volume fractions {φi} of components are chosen such that the volume fractions of
separated phases are consistent with the target structure. The resulting simulation snapshots at 5 × 105 timesteps are shown
on the right (see Video S3 for time evolution [33]). The simulation parameters are given in Table S1 [34].

that for this case the conditions for surface tensions are
such that they stabilize the quadruple junctions (see
Fig. S4 [34]).
The number of distinct topologies (i.e. the number of

connected unlabelled graphs) rapidly increases with the

numberNp of coexisting phases and scales as eαN
2
p , where

α ∼ 0.3 [38]. It remains unclear whether all of them can
actually be realized by appropriately tuning the values of(
Np

2

)
surface energies.

Finally, we also comment on how to reverse engineer
model parameters to obtain target structures. Fig. 4
sketches the procedure for two target morphologies with
Np = 5 coexisting phases. Starting from a target struc-
ture, we construct the connectivity graph, where vertices
correspond to phases and edges connect phases that share
a 2D interface. The connectivity graph can then be bro-
ken down into

(
Np

3

)
= 10 subgraphs for triplets of phases.

Each subgraph with three edges (partial wetting) or two
edges (complete wetting) can be directly translated to the
inequalities for surface energies as described above. How-
ever, there could also be subgraphs with only one edge or
no edges (highlighted with yellow boxes in Fig. 4), which
do not provide any restrictions on surface energies. For
the case in Fig. 4a the 9 subgraphs provide enough con-
ditions on surface tensions to generate the target connec-
tivity graph with 5 vertices and no additional constraints
are needed for the red-green-blue subgraph. However, for
the case in Fig. 4b the 6 subgraphs are not sufficient and
we need to impose another restriction to ensure that the
edge between the green and dark gray phases is removed,
e.g. by requiring that the red (R) phase wets the green
(G) and dark gray (D) phases (γGD > γRG + γRD). The
set of surface energies can then be obtained by solving
the linear programming problem subject to the inequali-
ties imposed by the subgraphs and any other constraints
that may be provided by the model or experimental sys-

tem. The next step is to convert the values of surface
energies to interaction parameters between components.
This is in general a highly nontrivial inverse problem,
but here we again use the Flory-Huggins model in the
regime, where χij ∝ γIJ . The final step is to adjust the
volume fractions {φi} for components, such that the vol-
ume fractions of separated phases are consistent with the
target structure. This way were able to successfully con-
struct the model parameters to produce target structures
in simulations (see Fig. 4 and Video S3 [33]).

The graph theory approach presented in this paper is
general. It can be applied to any model or experimen-
tal liquid mixture, and can also be generalized to other
systems, such as block copolymers or liquid crystals. In
experiments it may be challenging to find immiscible flu-
ids with sufficiently distinct surface energies to realize
some complex target structures, but the promising new
avenue is the phase separation of the solution of DNA
strands [40, 41], where the interactions between DNA
strands can be programmed via their sequences. Note
that in a liquid environment separated phases continue
to coarsen over time, but in some applications it may be
beneficial to produce monodisperse structured droplets.
Monodisperse structured droplets can be produced very
efficiently with microfluidic devices [9, 11, 12]. This can
also be achieved by infusing a liquid mixture in a non-
wetting elastomer, where the elastic deformation of the
elastomer matrix can arrest the coarsening to produce
monodisperse droplets [42–45]. We hope that our study
will stimulate further theoretical and experimental in-
vestigation of phase separation of multicomponent liq-
uid mixtures in a wide range of fields, including biol-
ogy (intracellular phase separation), chemical engineer-
ing (drugs and chemical microreactors), and environment
(CO2 sequestration and oil recovery).
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1Department of Mechanics and Engineering Science, BIC-ESAT,
College of Engineering, Peking University, Beijing 100871, People’s Republic of China

2Department of Mechanical and Aerospace Engineering,
Princeton University, Princeton, New Jersey 08544, USA

3Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
4Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania, 19085, USA

5Princeton Institute for the Science and Technology of Materials (PRISM),
Princeton University, Princeton, New Jersey 08544, USA

SIMULATION METHODS

Here, we briefly summarize numerical simulations, which are based on the code that was developed for our previous
work [1]. The volume fraction fields {φi(x)} evolve via a so-called model B or Cahn–Hilliard dynamics [2, 3]:

∂φi
∂t

= ∇ ·


∑

j

M̃ij∇µ̃j


 , (1)

where we introduced the dimensionless chemical potentials µ̃j = 1 + lnφj +
∑N

k=1 χjk(1 + λ2∇2)φk. We adopted the

Kramer’s model [4] for the normalized Onsager mobility coefficients M̃ij = Dij (φiδij − φiφj) to enforce the constraint∑
i φi = 1. When all components have identical diffusion coefficient Dij ≡ D, then the Eq. (1) can be re-written as

∂φi
∂t

= D∇ ·


φi

∑

j

(δij − φj)∇µ̃j


 . (2)

Note that there are only N − 1 independent volume fractions and N − 1 independent chemical potentials. Note also
that the interaction parameters {χij} need to satisfy the condition

∑N
i,j=1 aiχijaj < 0 for any {ai} with

∑N
i=1 ai = 0

to ensure the stability of interfaces [1].
The nonlinear partial differential equations in Eqn. (2) were solved numerically in a 3D cubic box with linear

dimension L discretized with 128× 128× 128 uniform grid points and periodic boundary conditions. A semi-implicit
time-integration scheme [5] was used, which enabled us to use relatively large time steps. To do so, we first discretized
Eqn. (2) in time and separated the implicit linear and the explicit non-linear terms following the usual IMEX (implicit-
explicit) scheme[6] as

φn+1
i − φni

∆t
= Ni(φ

n
i ) + Li(φ

n+1
i ), (3)

where φni (x) is the volume fraction field of component i at time step n. Ni and Li denote the nonlinear and linear
parts of the right hand side of Eqn. (2), respectively. Following the procedure in Ref. [5], we introduced an artificial
linear ∇4 term to stabilize the nonlinear term as

Ni({φi}) = D∇ ·


φi

∑

j

(δij − φj)∇µ̃j


 +ADλ2∇4φi, (4)

Li({φi}) = −ADλ2∇4φi, (5)

where the numerical prefactor A = 0.5 max{χij} is chosen empirically to ensure numerical stability. When evaluating
nonlinear terms Ni({φi}), the products of composition fields φni (x) are carried out in real space, while the spatial

derivatives are evaluated in Fourier representation φ̂ni (k) =
∫
V
dx e−ik·xφni (x)/V . The Fast Fourier Transform (FFT)

algorithm was used to convert back and forth between real space and Fourier space representations [7]. In Fourier
space, the implicit Eq. (3) can be solved to obtain

φ̂n+1
i =

φ̂ni + N̂i(φ
n
i )∆t

1 +Aλ2k4D∆t
, (6)
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where ·̂ denotes a Fourier transform and k = |k| is the magnitude of the wave vector k.
To make equations dimensionless, the lengths are measured in units of the cubic box size L and time is measured in

the units of τ = λ2/D, which describes the characteristic time of diffusion across the interface between two phases. We
chose λ/L = 0.45× 10−2 and a time step ∆t = τ/2. For the initial conditions we set φi(x) = φ̄i + ηi(x), where ηi(x)
is a uniform random noise with small magnitude and 0 mean), and then the simulation runs for a total duration of
105− 106τ . The interaction parameters {χij} and the average volume fractions {φ̄i} used in simulations are reported
in Table S1.

ParaView [8] was used for visualization, where we used isovolumes to indicate phases that are enriched in one of
the components: red (φ1 > φcutoff), green (φ2 > φcutoff), blue (φ3 > φcutoff), white (φ4 > φcutoff), and dark gray
(φ5 > φcutoff). The threshold volume fraction for isovolumes was set to φcutoff = 0.5− 0.6.

TABLE S1. Simulation parameters

Figure interaction parameters volume fractions

Fig. 1a χ12 = χ13 = χ23 = 3.25 {φi} = {0.333, 0.333, 0.334}
Fig. 1a χ12 = χ13 = χ23 = 3.25 {φi} = {0.15, 0.15, 0.70}
Fig. 1b χ12 = χ23 = 2.5, χ13 = 5.5 {φi} = {0.333, 0.333, 0.334}
Fig. 1b χ12 = χ23 = 2.5, χ13 = 5.5 {φi} = {0.10, 0.20, 0.70}
Fig. 2a χ12 = χ13 = χ23 = χ14 = χ24 = χ34 = 5.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 2b χ12 = χ13 = χ23 = χ14 = 4.0, χ24 = χ34 = 8.2 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 2c χ12 = χ13 = χ23 = χ14 = 4.0, χ24 = 8.5, χ34 = 13.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3a χ12 = χ13 = χ23 = χ14 = χ24 = χ34 = 5.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3a χ12 = χ13 = χ23 = χ14 = χ24 = χ34 = 5.0 {φi} = {0.10, 0.10, 0.10, 0.70}
Fig. 3b χ12 = χ13 = χ23 = χ14 = χ34 = 4.5, χ24 = 10.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3b χ12 = χ13 = χ23 = χ14 = χ34 = 4.5, χ24 = 10.0 {φi} = {0.12, 0.06, 0.12, 0.70}
Fig. 3c χ12 = χ13 = χ23 = χ14 = 4.0, χ24 = χ34 = 8.2 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3c χ12 = χ13 = χ23 = χ14 = 4.0, χ24 = χ34 = 8.2 {φi} = {0.20, 0.05, 0.05, 0.70}
Fig. 3d χ12 = χ13 = χ23 = 7.5, χ14 = χ24 = χ34 = 3.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3d χ12 = χ13 = χ23 = 10.5, χ14 = χ24 = χ34 = 5.0 {φi} = {0.10, 0.10, 0.10, 0.70}
Fig. 3e χ12 = χ23 = χ14 = χ34 = 3.0, χ13 = χ24 = 6.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3e χ12 = χ23 = χ14 = χ34 = 3.0, χ13 = χ24 = 6.5 {φi} = {0.10, 0.10, 0.10, 0.70}
Fig. 3f χ12 = χ23 = χ34 = 2.5, χ13 = 5.5, χ14 = 8.5, χ24 = 6.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. 3f χ12 = χ23 = χ34 = 3.3, χ13 = 6.9, χ14 = 10.5, χ24 = 7.5 {φi} = {0.03, 0.07, 0.20, 0.70}

Fig. 4a
χ12 = χ23 = χ45 = 8.2, χ13 = χ14 = 4.0, {φi} = {0.11, 0.11, 0.11, 0.62, 0.05}
χ24 = χ34 = χ15 = χ25 = χ35 = 4.0

Fig. 4b
χ12 = χ13 = χ14 = χ24 = χ34 = χ35 = 4.0, {φi} = {0.11, 0.11, 0.08, 0.65, 0.05}

χ23 = χ15 = χ45 = 8.2, χ25 = 12.4

Fig. S1a χ12 = χ13 = χ23 = χ14 = χ24 = χ34 = 5.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1b.1 χ12 = χ13 = χ23 = χ34 = 4.0, χ14 = 6.0, χ24 = 9.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1b.2 χ12 = χ13 = χ23 = χ14 = χ34 = 4.5, χ24 = 10.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1c.1 χ12 = χ13 = χ23 = χ14 = 4.0, χ24 = χ34 = 8.2 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1c.2 χ12 = χ13 = χ23 = χ14 = 4.0, χ24 = 8.5, χ34 = 13.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1d.1 χ12 = χ13 = χ23 = 7.5, χ14 = χ24 = χ34 = 3.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1d.2 χ12 = χ13 = 5.2, χ23 = 10.6, χ14 = χ24 = χ34 = 2.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1e.1 χ12 = χ23 = χ34 = 3.0 χ13 = χ24 = 6.5, χ14 = 4.0 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1e.2 χ12 = χ14 = 3.2, χ13 = 6.4, χ23 = χ34 = 3.0, χ24 = 6.2 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1e.3 χ12 = χ23 = χ14 = χ34 = 3.0, χ13 = χ24 = 6.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1f.1 χ12 = χ23 = χ34 = 2.5, χ13 = 5.5, χ14 = 8.5, χ24 = 6.5 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1f.2 χ12 = χ23 = χ34 = 2.5, χ13 = χ24 = 5.1, χ14 = 7.7 {φi} = {0.25, 0.25, 0.25, 0.25}
Fig. S1f.3 χ12 = χ23 = χ34 = 2.2, χ13 = 4.6, χ14 = 7.0, χ24 = 9.4 {φi} = {0.25, 0.25, 0.25, 0.25}
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FIG. S1. All distinct sets of the wetting conditions (4 graphs of triplets) that can be realized for a mixture with Np = 4
phases. These sets are grouped according to the connectivity graphs with 4 vertices describing the topology of separated phases.
For each group the yellow boxes indicate the wetting conditions that differ between sets. For each set we show a simulation
snapshot at 106 timesteps. The simulation parameters are given in Table S1.
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FIG. S2. All distinct sets of the wetting conditions (4 graphs of triplets) that cannot be realized for a mixture with Np = 4
phases.
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FIG. S3. Comparison of simulation snapshots in 2D and 3D for all distinct sets of the wetting conditions presented in Fig. S1.
The simulation parameters are identical for 2D and 3D simulations and they are the same as in Fig. S1.
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