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SynCity: Using open data to create a synthetic city of hourly building 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A-UBEM generates synthetic smart 
meter data for all buildings in a city. 

• We integrate data-driven and physics- 
based simulation methods to create A- 
UBEM. 

• A-UBEM is built using solely open-data 
sources, with New York City as a case 
study. 

• We validate our model using Monte 
Carlo simulations and city-wide hourly 
load. 

• We highlight applications where A- 
UBEM can be used to plan sustainable 
cities.  
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A B S T R A C T   

Cities officials are increasingly interested in understanding spatial and temporal energy patterns of the built 
environment to facilitate their city’s transition to a low-carbon future. In this paper, a new Augmented-Urban 
Building Energy Model (A-UBEM) is proposed that combines data-driven and physics-based simulation 
methods to produce synthetic hourly load curve estimates for every building within a city—similar to data an 
hourly smart meter would measure. By using only publicly available data, a generalizable two-step process is 
implemented—that other cities with similar available data can replicate—using New York City as a case study. 
Step (1) estimates the annual energy use for every building in the city using supervised machine learning al
gorithms. Step (2) extends these results and leverages physics-based simulation models through a convex opti
mization formulation that minimizes the squared difference between the aggregated building demand and the 
observed city-wide hourly electricity demand. Results from step (1) show that the Random Forest algorithm 
performs best with a mean log squared error of 0.293, while the convex optimization in step (2) results in a mean 
training error of 6.11% mean absolute percentage error (MAPE). To validate the stability of the produced load 
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curves, Monte Carlo simulations are conducted, using random subsets of buildings from the city, which produce 
an out-of-sample error averaging 6.41% MAPE across each simulation. Particle swarm optimization is also 
explored—using the results from the Monte Carlo simulation—to assess if the model could be improved by 
relaxing certain constraints, but marginal error reductions are found, further proving the stability of the proposed 
model. Overall, A-UBEM is a first step towards creating highly granular urban-scale synthetic hourly load curves 
solely using open data. Such load curves are integral for planning sustainable cities and accelerating the adoption 
of low-carbon distributed energy resources (DERs) and district energy systems.   

1. Introduction 

Driven by rapid growth in urban populations, cities are increasingly 
becoming the nexus of economic activity and civic engagement and, 
therefore, a driving force for environmental stewardship. Cities are also 
facing increased threats from fossil fuel induced climate change 
including deadly heatwaves—exacerbated by the urban heat island 
effect—and rising sea levels that threaten two-thirds of the world’s 
major cities that are on the coast [1,2]. Furthermore, according to the 
World Bank, the burning of fossil fuels caused 5.5 million deaths in 2013 
from air pollution, which accounts for 1 in 10 deaths globally, and is the 
third most import health risk leading to early death in low- and lower- 
middle-income countries [3]. Despite these costs, the International 
Monetary Fund estimates fossil fuel subsidies totaled $4.7 trillion in 
2015 with $649 billion coming from the U.S. alone [4]. In response to 
these threats, coupled with rising energy prices, many cities are taking 
the lead and implementing new sustainability initiatives. 

City officials are adopting long-term plans centered around 

electrification and new power generation from wind and solar to reduce 
emissions from combustion-based generation. Though renewables are 
curbing cities’ dependence on fossil fuels, these non-dispatchable re
sources are also increasing fluctuations in electricity demand and adding 
uncertainty to energy markets [5]. In places with large numbers of solar 
panels, like California, the timing imbalance between solar production 
and peak demand has created volatile electricity prices and decreased 
grid reliability [6]. Furthermore, traditional power generation—like 
coal plants or utility-scale solar stations—are beginning to be supplanted 
by distributed energy resources (DERs) that decentralize power gener
ation and storage through rooftop solar and behind-the-meter batteries. 
DERs therefore, paradoxically, pose potential solutions and issues for the 
grid. Depending on where DERs are installed, their generation and/or 
storage capabilities could either mitigate strain on the grid induced by 
periods of high demand or add instability by generating excess power 
when none is needed. Consequently, the future grid must cope with this 
changing energy landscape by finding solutions to enhance grid resil
ience, reduce electricity prices, and decrease or shift energy demand as 
required. 

Nomenclature: 

The following list of symbols, with their corresponding dimensions, are 
used in this paper: 
α Lasso: estimated coefficients from Lasso [[N × 1]] 
β Design variables, mapped weights for DOE [[6I × 1]] 
ε SVM: insensitivity parameter 
η Gradient Boosting: Learning rate 
λ Lasso: penalization hyperparameter 
φ(x) SVM: kernel function 
A Annual time step{A = 1}

a PSO: particle number 
b SVM: bias term 
C Cooling degree hour for NYC 
Creg SVM: regularization parameter 
c1 PSO: the cognitive learning factor [[H × 1]] 
c2 PSO: the social learning factor 
D DOE three reference buildings mapped to PLUTO building 

class i [[H × 1]] 
E Total city-wide hourly load (NYISO)[H × 1]

Ê(β) Predicted city-wide hourly load (aggregated building 
load)[H × 1]

Gbest
l PSO: best value obtained by any particle in iterationl 

i PLUTO building class{1, ⋯, i, ⋯, I = 25}

j Building in randomly sampled NYC dataset{1,⋯, j,⋯,J =

1000}

k Used to denote the three β parameters associated withD 
l PSO: iteration number{1, ⋯, l, ⋯,L}

m Number of observations (buildings) 
mPLUTO The total number of buildings in the PLUTO dataset{1, ⋯,

m, ⋯,MPLUTO = 1,000,000}

mll84 Total number of buildings in LL84 dataset{1, ⋯,m, ⋯,

MLL84 = 15,000}

n Building characteristics (e.g., area, type){1, ⋯,n, ⋯,N =

38}

P Annual energy use for J buildings from step (Section 4.1) 
[[J × 1]] 

P Normalized annual energy use for J buildings from step 
[[J × 1]] 

Pbest
l PSO: best solution acquired by each particle in all the 

previous l iterations 
r1, r2 PSO: two independent random uniform numbers 
S The total number of Monte Carlo simulations{1,⋯,s,⋯,S =

500}

T Temperature vector for NYC [[H × 1]] 
t Hourly time step{1, ⋯, t, ⋯,T = 8784}

va
l+1 PSO: velocity of particle a at iterationl 

W Weekend, business day and holiday vector [[H × 1]] 
w SVM: weight, or unit vector [[H × 1]] 
winertia PSO: the inertia used to control the effect of the particles’ 

velocity 
X The building characteristics from PLUTO for those 

buildings appearing in the LL84 data [[Mll84 × N]] 
xmLL84 One observation from matrix X [[N × 1]] 
xa

l+1 PSO: position of particle a at iterationl 
Yt

ij(β) Hourly energy demand for building j of PLUTO building 
class i [[I × J]] 

y The log transformation of annual building energy use 
(kBtu) [[Mll84 × 1]] 

ŷ The estimated log transformation of annual building 
energy use (kBtu [[Mll84 × 1]]) 

*SVM support vector machines 
*PSO particle swarm optimization 
*DOE Department of Energy  
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Beyond the need to better model the electricity grid, the increased 
adoption of DERs is also creating a strong need to understand spatial and 
temporal patterns of building energy use [7]. Buildings consume be
tween 30 and 70% of total primary energy use in cities, but their energy 
consumption fluctuates over time and varies greatly between buildings 
[8]. As a result, many municipalities are focused on better understand
ing their energy usage patterns and finding ways to reduce or shift their 
demand through energy efficiency retrofits, new energy storage tech
nologies, or access to district energy systems, among other solutions. A 
first step to many of these solutions is the city-wide installation of smart 
meter devices that can measure energy consumption at the sub-hourly 
level. These data are invaluable for the analysis of temporal energy 
use patterns; however, accessing this data from the utility is often 
restricted and has been a substantial barrier for their use in policy
making. One major reason why is that smart meter data are often the 
subject of concern for many building owners and tenants due to po
tential privacy abuses. But without this data, widespread adoption of 
DERs, targeted policymaking, and solutions to reduce or shift building 
energy demand will prove difficult. 

One strategy that has proven effective to reduce building energy use 
is through energy benchmarking [9]. The goal of this practice is to 
identify inefficient buildings—with large opportunities for energy 
savings—by measuring and comparing the energy use of various types of 
buildings [10]. Cities have recently begun to understand the value of 
energy benchmarking; over 30 cities throughout the United States have 
passed ordinances requiring benchmarking and energy disclosure for a 
subset of their city’s building stock [11]. In addition to achieving 
measurable energy reductions, these ordinances often require the 
annual release of a publicly available open dataset of energy usage data 
and characteristics of benchmarked buildings. These open datasets 
enable the public to track annual building energy performance over time 
[12], but perhaps more importantly, they allow this highly sought after 
data to be used more widely. This open data initiative empowers re
searchers and policy-makers—who are often in need of data—by 
allowing them to find new insights, create more collaborations between 
institutions and governments, and more easily build off other work that 
uses the same datasets [13–15]. 

Provided with these new open data sources, this paper aims to pro
vide detailed spatial and temporal patterns of building energy use in 
cities to empower policymakers with the information they need to 
accelerate the energy transition. To achieve this goal, the research ob
jectives for this paper are as follows:  

• Produce hourly energy use estimates for each individual building 
within a city  

• Combine physics-based simulations and data-driven techniques to 
leverage advantages offered by both types of methodologies  

• Design a flexible and extensible model such that it can be applied to 
any city with open data available  

• Validate the model using Monte Carlo simulations and city-wide 
hourly data 

1.1. Novelty of approach 

In this paper, we create a generalizable two-step Augmented-Urban 
Building Energy Model (A-UBEM) that produces hourly electricity, 
heating, and cooling profiles for all buildings within a city using only 
publicly available data. These synthetic hourly energy predictions at the 
building level are similar to the data that would be generated by smart 
meters. Using New York City (NYC) as a case study, we show the ad
vantages of our model—combining data-driven techniques with physics- 
based simulations models—that other cities with similar public data can 
replicate. Although several previous studies have combined physics- 
based and data-driven techniques, this study is one of the first to do it 
at the urban-scale, using solely open data, and provide hourly energy 

estimates for each individual building in a city. In step (1) we construct a 
supervised machine learning model to predict the annual energy use 
values for every building in NYC using observed energy use values from 
a small subset of buildings. In step (2) we match each building in the city 
to three building archetypes from the Department of Energy’s (DOE) 
reference building dataset. We then construct hourly loads for each 
building by fitting a weighted average of these three building types’ load 
curves, adjusting for weather and weekday effects, and fit the model 
using city-wide electricity hourly demand from the New York Inde
pendent System Operator (NYISO). We run 500 Monte Carlo Simulations 
to validate the model by examining its stability by creating a distribution 
of building load profiles for each building type. By modeling hourly 
values of energy consumption, city officials and planners can more 
adequately evaluate energy system alternatives, such as district energy 
and distributed energy systems. 

2. Literature review 

Several studies have attempted to model urban energy consumption 
using top-down approaches—techniques that use external metrics, such 
as economic activity, to estimate energy consumption at the city-level. 
Dhakal examined urban energy consumption for several Chinese cities 
using energy values derived from economic activity. The study found 
that the 35 largest cities in China account for nearly 40% of national 
energy consumption [16]. Bentzen and Engsted also used economic in
dicators to examine the annual energy consumption for Denmark, 
finding that long-term energy consumption was strongly affected by 
income and previous years’ consumption [17]. Brownsword et al., 
examined the savings effects of energy-management measures and 
associated reductions in C02 using a linear programming module based 
on energy supply data and zip code information [18]. These top-down 
models are useful for providing high-level estimates but rely on 
derived values from economic activity, instead of actual energy mea
surements, or overlook smaller scale variation from urban land use and 
the diversity of building typologies. 

Urban building energy modeling (UBEM) is an emerging field with 
the goal of creating more detailed models of city energy consumption. 
UBEM primarily relies on new physics-based simulation techniques, 
which have typically focused on modeling individual buildings using 
geometric, construction, weather, and usage schedule data. One review 
study looked at the handful of bottom-up UBEM tools that have been 
created in the last ten years—from CitySim in 2009 to TEASER in 
2018—and identified a number of limitations that continue to persist. 
For example, the study named several key components for further 
research: data availability, people movements within cities, district 
energy modeling, microclimate effects, heat exchange between build
ings, validation, and life cycle assessment. Since constructing a physics- 
based model for one building can be quite time intensive, extending it to 
the urban scale is computationally challenging [19]. To circumvent 
these computational challenges, one study simulated a subset of 47 
buildings within a city and used them as archetypal buildings for map
ping the remainder of the city [20]. Some UBEMs require GIS shapefiles 
to extract the footprint of every building within a city, which are ideally 
combined with building heights or LiDAR, to produce a more holistic 
model of each building [21]. This modeling approach depends on un
common city data, plus it can fail to account for the urban context, 
neglecting aspects like shading, local wind patterns, traffic flows, etc. To 
account for the urban heat island effect, specifically, Mavrogianni et al. 
integrated localized weather files instead of using the meteorological 
year profiles often used [22]. Going a step further, Xu et al. incorporated 
other aspects of urban morphology—such as building density, canyon 
aspect ratio, building height, and sky view factor—to assess changes in 
building energy demand from changing pavement albedo [23]. 

Despite these studies accounting for other building types and local 
contexts, simulation modeling still requires several assumptions to 
extend the results to the urban-scale. Furthermore, these types of 
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simulation-based energy models lack energy data for validation, leading 
to uncertainty in the produced results. 

Instead of using physics-based simulation techniques, researchers 
have focused on alternative methods to model annual energy use at the 
building-level using data-driven techniques [24,25]. Previous studies 
have shown that machine learning models outperform simpler linear 
models for predicting total energy consumption [26]. Popular and 
effective models in this field have included support vector regression, 
random forests, gradient boosting regression, and artificial neural net
works [27–31]. These models are able to capture non-linear effects of 
energy consumption in buildings. One recent Kaggle competition on 
building energy prediction even found that most winning models used 
gradient boosting [32]. The effectiveness of these methods, however, 
can vary depending on the level of aggregation present—performance 
increases with building aggregation, indicating that predicting many 
buildings is easier than one [28]. As such, researchers have begun to 
examine how these machine learning algorithms can be extended from 
individual buildings to the urban context [33]. In one study, 
geographically weighted regression was used to analyze determinants of 
water consumptions in New York City [34], while another study com
bined spatial analysis with neural networks to find connections between 
urban form and energy use [35]. Furthermore, researchers are also 
looking at long-term forecasting—rather than just hourly, monthly, or 
yearly—to predict district heating loads in cities which can be helpful 
for general energy planning purposes [36]. 

Using supervised machine learning models, like the ones previously 
discussed, are not a silver bullet for energy prediction, despite the recent 
rapid advancements in these tools. These models are often difficult to 
interpret and provide little physical explanatory power. Often times it is 
critical to understand what the driving mechanisms are for building 
energy use so that decision-makers—like facility managers, building 
owners, or policymakers—can make more informed decisions [37–39]. 
Unsupervised machine learning algorithms can also provide different 
types of insights into building energy performance by extracting pat
terns from datasets without the need for a target variable [40]. Clus
tering algorithms can be used to divide large groups of buildings into 
similar groups, while network analysis can be used to identify reference 
buildings from specific groupings [41,42]. The growing availability of 
data has also resulted in researchers exploring dimensionality reduction 
methods to reduce the size of data while maintaining as much infor
mation as possible in order to speed up computation [43]. 

Despite the growing availability of public open data sources, rela
tively few studies have focused on using these datasets in conjunction 
with data-driven methodologies, like statistical methods and machine 
learning algorithms, to predict urban building energy consumption [44]. 
But these datasets and data-driven techniques offer new opportunities 
for urban energy use modeling [45]. There are three key studies, which 
lay the groundwork for this research by examining building energy use 
for an entire city (New York City) using a data-driven approach, rather 
than a traditional physics-based UBEM. First, Howard et al. [24] pre
sented a methodology to model building-level annual energy use in
tensities by downscaling zip code level energy data. Assuming that 
primary end use is solely dependent on building function and size, the 
study fits a linear model to the zip code level energy data to find building 
level energy intensities. The main limitation of this study is the lack of 
validation for individual building loads. Second, Robinson et al. [25], 
predicts building energy use for buildings in New York City by building a 
machine learning model based on a subset of building-specific energy 
usage data obtained from Local Law 84 (LL84). Gradient boosting 
regression is found to have the best results when validated at the 
building-level, though no validation was attempted at larger aggrega
tion levels. Third, Kontokosta and Tull [46] also built a machine 
learning model using the LL84 dataset but validated it at both the 
building and zip-code level; results showed that the linear regression 
OLS model performed best at the zip-code level, while the support vector 
machine performed best at the building-level. Inspired by these recent 

efforts, this study aims to not only predict annual building loads but 
translate them into hourly profiles necessary for informing decision- 
making using supervised machine-learning and convex optimization. 
By using both data-driven and physics-based simulation methods, our 
proposed integrated model leverages the advantages from both types of 
modeling techniques to obtain higher resolution of energy consumption 
patterns [47]. Further, we purposefully construct our model using only 
open data sources to allow other cities with similar data to replicate our 
model and to enable researchers to more easily build off our work. 

3. Data collection and pre-processing 

The overarching objective of this study is to construct a generalizable 
Augmented-Urban Building Energy Model (A-UBEM) that produces 
synthetic hourly energy demand profiles for every building in New York 
City (NYC) using only publicly available open data; this allows other 
researchers and city-officials to replicate the methodology and apply it 
to other urban areas. The analysis consists of two primary steps as shown 
in Fig. 1: (1) constructing annual building-level energy estimates for all 
buildings in NYC; (2) converting annual energy loads into building-level 
hourly demand profiles. The first step uses supervised machine learning 
and historical annual energy consumption data from about 15,000 
buildings, building off previous work [48]. The detailed methodology 
for this step is discussed in Section 4.1. The second step uses archetypal 
simulation-based models and a novel optimization algorithm to match 
the aggregated building load to the NYC electricity profile. The detailed 
methodology for this step is discussed in Section 4.2. This section 
summarizes the datasets used for both steps of A-UBEM using New York 
City as a case study. 

We demonstrate this two-step framework for New York City due to 
its high energy load, number of buildings, and availability of public 
data, which has been recognized by other researchers in this domain 
[25,49]. One significant contribution of this study is to build a A-UBEM 
capable of estimating building specific hourly energy usage profiles 
using only publicly available data. We use a total of five different public 
datasets, summarized in Table 1, to first predict annual energy demand 
for all buildings in NYC, across all five boroughs, and second convert 
those predictions into hourly energy demand profiles by leveraging 
physics-based simulation models from the U.S. Department of Energy’s 
OpenEI database. All the data for this project can be found on our 
GitHub page or the URLs provided in Table 1. 

3.1. Step (1) Data: LL84 and PLUTO datasets 

For step (1) of the framework, we combine annual energy con
sumption data with building characteristics to predict annual energy use 
for all buildings in NYC. This step requires two publicly available open 
datasets: (1) annual building-level energy use data for 15,000 buildings 
(LL84, dataset (a)); (2) building characteristics for all 1 million buildings 
in the city (PLUTO, dataset (b)). 

In 2009, NYC passed Local Law 84 (LL84) which required all 
buildings over 50,000 square feet to benchmark the energy performance 
of their buildings and disclose their annual energy consumption. Every 
year a public version of this dataset is released on the NYC Open Data 
portal. This law was recently updated to cover buildings over 25,000 
square feet though this data is not yet available. Other works have also 
used versions of this dataset for building energy analysis, as discussed in 
Section 2 [46]. For step (1) of the framework, we use the disclosed en
ergy data for the 2016 calendar year which contains about 15,000 
buildings (LL84, dataset (a)). We opted to use total building energy data 
since the disclosed electricity data contained more missing data and 
erroneous values. To prepare the data, total site energy use was 
computed for each building in the LL84 dataset by multiplying the site 
energy use intensity (EUI) by the building area. Outliers were identified 
by finding all points that were outside four times the interquartile range 
for site EUI and then removed. We performed this calculation of outliers 
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since our goal was to maintain as much data as possible to ensure that 
the following supervised machine learning model would generalize well 
to the entire city. Finally, we also removed any site EUI below an ab
solute value of one. 

NYC’s Primary Land Use Tax Lot Output (PLUTO, dataset (b)) dataset 
provides building information for the entire city, auxiliary information 
used in step (1) to predict annual building energy use. The PLUTO 
dataset contains information for every tax lot in NYC including basic 
physical characteristics for all 1 million buildings in the city across all 
five boroughs. We merge the PLUTO dataset with the LL84 dataset to 
provide a standardized feature space to train a model to predict annual 
building energy use for the buildings where public energy data is not 
available. 

The combined LL84 and PLUTO datasets contain the whole feature 
space for the 15,000 buildings that are used to build our models in step 
(1), outlined in Section 3.2 (energy data from LL84, building 

characteristics from PLUTO). We therefore engineered several addi
tional features to help our models obtain the best predictions possible. 
These additional engineered features were constructed to extract non- 
linear patterns that might go uncaptured if they were not created. We 
applied the logarithmic transformation to ten separate features, calcu
lated fractions of floor space by use type, and appended them to the 
dataset. A summary of the N = 38 total features used for step (1) can be 
found in Appendix B in the supplementary document. We also imputed 
all missing values in the PLUTO dataset (note, that less than 1% of data 
was missing from features that are used for modeling). The MICE 
package in R was used, which generates multiple imputations for the 
incomplete data through Gibbs sampling [48]. We employed classifi
cation and regression tree methods due to their flexibility in handling 
missing data and ability to find non-linear relationships [50]. 

Fig. 1. Overview of proposed Augmented-Urban Building Energy Model (A-UBEM). Starting with annual energy load from a subset of the city building stock, step (1) 
trains a supervised machine learning model on these data and predicts the annual load for all 1 million buildings. Using this output, step (2) leverages simulation- 
based models and city-level utility energy consumption to estimate the hourly load for all buildings in the city. 

Table 1 
All five public datasets that are used to construct the Augmented-Urban Building Energy Model (A-UBEM) for New York City. Each of these datasets are available to 
download online.  

Set Public Dataset Name Description Step Temporal 
Scale 

Spatial Scale URL 

(a) Local Law 84 (LL84) Energy consumption for 15,000 
buildings in NYC in 2016 

Step (1): 
Machine 
Learning 

Annual (A 
= 1) 

Building-level 
(m = 15,000) 

https://www1.nyc.gov/html/gbee 
/html/plan/ll84_scores.shtml 

(b) Primary Land Use Tax Lot 
Output (PLUTO) 

Physical building characteristics for all 
1 million buildings in NYC in 2016 

Step (1): 
Machine 
Learning 

Annual (A 
= 1) 

Building-level 
(m =
1,000,000) 

https://www1.nyc.gov/site/planning/da 
ta-maps/open-data/dwn-pluto-mappluto 
.page 

(c) Department of Energy (DOE) 
commercial and residential 
reference buildings 

Hourly energy demands for 19 building 
archetypes produced by physics-based 
simulations using EnergyStar software 

Step (2): 
Optimization 

Hourly (T =
8784) 

Building-level 
(m = 19) 

https://openei.org/doe-opendata/data 
set/commercial-and-residential-hourl 
y-load-profiles-for-all-tmy3-locations-in-t 
he-united-states 

(d) OpenWeather Hourly weather data experienced by 
NYC in 2016 

Step (2): 
Optimization 

Hourly (T =
8784) 

City-level https://openweathermap.org/history 

(e) New York Independent 
System Operator (NYISO) 

Hourly electricity demand experienced 
by NYC in 2016 

Step (2): 
Optimization 

Hourly (T =
8784) 

City-level http://www.energyonline.com/Data/Ge 
nericData.aspx?DataId = 13  
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3.2. Step (2) Data: DOE reference buildings, NYISO electricity data, and 
OpenWeather 

To extend the model to produce hourly loads for each building in 
NYC, we compiled three other publicly available open datasets: (1) 
archetypal hourly building loads produced from physics-based simula
tion models (DOE Reference Buildings, dataset (c)); (2) historical NYC 
hourly weather data (OpenWeather, dataset (d)); (3) historical hourly 
NYC electricity demand (NYISO Electricity Data, dataset (e)). 

The archetypal hourly building loads from the Department of Energy 
(DOE) commercial and reference building dataset (DOE Reference 
Buildings, dataset (c)) shows hourly load profile data for 16 commercial 
and 2 residential building types (high and medium energy consumption 
households) for all TMY3 (typical meteorological year, version 3) lo
cations in the United States. The 18 profiles collected were for Central 
Park TMY3. These profiles breakdown the hourly loads by total facility 
electricity use, electricity for heating, electricity for cooling, electricity 
for interior lighting, electricity for interior equipment, total facility gas 
use, gas for heating, gas for interior equipment, and gas for water 
heating. The DOE produces loads for these 18 buildings using physics- 
based simulation models—design and inputs to produce each building 
type can be found on the DOE website. Given the rapid construction of 
data centers around the country and a total forecasted U.S. load of 73 
billion kWh in 2020 [51] we found it important to include this type of 
building, which is also known to have a very different energy use profile. 
We therefore added one more hand constructed profile to the reference, 
named “Datacenter”, bringing the total number of reference buildings to 
19. For simplicity, we model this profile as a flat energy curve because 
datacenters have consistent energy loads [51]. Finally, given that 2016 
was a leap year, 24 h of data were appended to the DOE reference 
buildings dataset for February 29th. The added data took on the same 
values as the previous day’s load. 

Although the 19 reference buildings are modeled by the DOE using 
TMY3 data from Central Park, we use historical weather data from NYC 
(OpenWeather, dataset (d)) in 2016—to use for our step (2) modeling 
process—to obtain more accurate load curves; because weather is 
known to have a large impact on building energy consumption, more 
precise data will help our model achieve more accurate results. To ac
quire 2016 weather data from NYC, we used the API provided from 
OpenWeather to gather hourly temperature, humidity, and wind speed 
data for the entire year. This data is used to adjust the loads of the 19 
reference buildings for observed weather patterns in our constructed 
model. For other cities with high weather discrepancies between loca
tions, like San Francisco, weather data from multiple locations in the 
city could be used to enhance data quality. 

Finally, in order to build and validate the output of our final model, 
we collected hourly electricity demand data for NYC from the New York 
Independent System Operator (NYISO Electricity Data, dataset (e)). This 
dataset provides historical electricity consumption data for zone J, 
which encompasses all of New York City. This data is used to construct 
and calibrate the Augmented-Urban Building Energy Model (A-UBEM). 
Several data points were missing for the NYISO hourly electricity load 
and were linearly interpolated based upon the nearest two hours of load. 

4. Methodology 

4.1. Step (1): Predicting annual building loads 

With the goal to model building-level energy demand for each of the 
1 million buildings in NYC, we restrict the feature space to those pro
vided by the PLUTO dataset; we cannot use any other features besides 
energy consumption from the LL84 dataset since we only have this in
formation for 15,000 buildings. Based upon data from the PLUTO 
dataset, this step captures certain aspects of the urban context known to 
affect building energy demand, such as building height (i.e., number of 
floors) and borough, but overlooks other aspects like canyon aspect ratio 

and sky view factor. Following a similar approach presented by Rob
inson, et al., we test several different supervised machine learning al
gorithms and analyze their error using 5-fold cross validation to prevent 
overfitting and ensure our models are generalizable [25]. Specifically, 
we examine linear regression with lasso regularization, support vector 
machines (regression), random forest, and gradient boosting trees. 
These four models are some of the most popular in supervised machine 
learning literature due to their high performance and flexibility from 
their hyperparameters [52]. Furthermore, each model has shown to be 
effective for different use-cases for building energy prediction and each 
can also be tuned precisely, through the use of hyperparameters, to 
achieve higher performance. Lasso has been used to successfully predict 
energy savings in school buildings in California [53]; random forests 
outperformed several other algorithms at predicting building energy use 
at the urban-scale in NYC [46]; support vector machines have been used 
to predict multi-family residential building load in NYC at different 
temporal and spatial scales [28]; and gradient boosting has been found 
to be effective at predicting university buildings around the globe [32]. 
Each algorithm has its unique strengths and weaknesses, which is dis
cussed in the subsequent subsections, and allows us to examine which 
model aspects generalize well to modeling annual NYC building energy 
demand. Fig. 2 shows the modeling process for step (1). 

Comparing these four models allow us to test variable importance, 
regularization, ensemble learning, bagging, boosting, and the differ
ences between linear and non-linear models. For each of the four 
models, we perform hyperparameter tuning through a grid search to 
decrease our prediction errors and identify more thoroughly which 
model achieves superior performance. We validate the performance of 
each model using 5-fold cross-validation. The model with the best per
formance (lowest MSE error) is then selected to predict annual energy 
use for every building in NYC. Given the high degree of uncertainty 
introduced in step (2) of the proposed A-UBEM model (described in 
Section 4.2), we limit our grid search and hyperparameter tuning to a 
total of twelve combinations for every model excluding lasso regression; 
due to the fast computation time of this model, we are able to examine a 
total of 100 models instead of twelve. The errors are evaluated using 
building-level energy data from the LL84 dataset using Mean Square 

Error (MSE) as the error metric, where MSE = 1
M

∑MLL84
m−1 (ym − ŷm)

2
. Here, 

y is the log transformation of annual building energy use (in kBtu), ŷ is 
the predicted output from the model, MLL84 is the total number of 
buildings in the PLUTO dataset {1, ⋯, m, ⋯, MLL84 = 15, 000}, and m 
refers to a specific building. We use the log transformation as this is 
common in the literature when modeling annual building consumption 
due to the wide energy consumption range and the heteroskedastic 
nature of building data [12,46]. 

4.1.1. Linear regression with lasso regularization 
Linear regression is one of the most widely used algorithms in ma

chine learning due to its simplicity and computational speed. Lasso is a 
regularization method that can be used with linear regression by adding 
a penalization term to the cost function to simultaneously perform 
variable selection and regularization by setting coefficients to zero [54]. 
The lasso penalization adds an L1-norm penalty to the sum of squares 
cost function in normal linear regression and is controlled by the 
hyperparameterλ. The linear regression with lasso penalization is as 
follows: 

α̂lasso
= argmin

α∊Rn
‖y − Xα‖

2
2 + λ‖α‖1 (1)  

where α̂lassois the vector of coefficients that are being estimated, y is the 
vector of log transformed annual building energy demand (from the 
LL84 dataset), and X is a matrix with m buildings and n building features 
(from the PLUTO dataset).λ can be adjusted to modify the amount of 
penalty added, thereby changing the cost associated with adding more 
variables and having increased values for fitted coefficients. For 
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example, when λ is set to zero, no penalty occurs and a normal linear 
regression model is fit with all included variables. As λ increases, certain 
coefficients are forced to zero, effectively choosing a simpler model and 
excluding those features. In our study, we used the R-package “glmnet” 
to construct our lasso model and determined the optimal λ through a 
linear search. Here, the λ parameter is first set to such a high value that 
all parameters are forced to zero. The parameter, then, is iteratively 
relaxed letting more parameters obtain a non-zero value, until all fea
tures are included in the model. We then observe which value of λ results 
in the lowest 5-fold cross-validation error. 

4.1.2. Support Vector Machines (SVM) 
Support vector machines (SVM) is a supervised learning algorithm 

that can be used for both regression and classification by mapping the 
input feature space into a higher dimensional plane [28]. 

f (x) = g
(
wT φ(x) + b

)
(2)  

min
1
2
‖w‖

2
+ Creg

∑MLL84

m
max(0, 1 − ymf (xm) ) (3)  

s.t.
{

ym − 〈w, xm〉 − b ≤ ε
〈w, xm〉 + b − ym ≤ ε (4) 

The model uses a kernel function φ(x) to do this mapping which 
allows it to estimate non-linear relationships, according to the regres
sion function f(x),depending on the type of kernel selected. As shown in 
Eq. (2), w is the weight and b is the bias, which are estimated based on 
the cost function shown in Eq. (3), where xm is the training sample and 
ym is the annual building energy demand. The support vectors are 
determined through a discriminating loss function that does not penalize 
residuals less than a given tolerance, or insensitivity parameter,ε. This 
means that SVM depends only on a subset of the training data because 
the cost function ignores training data close to the model prediction, as 
set byε. By using a kernel, SVM becomes more computationally efficient 
by mapping the non-separable feature space to a separable, higher- 
dimensional space. Much like lasso regression, SVM includes a regula
rization term Creg to help control overfitting. By choosing a large value 
for Creg, the optimization will choose a smaller-margin hyperplane, 
which is constructed based off the support vectors. 

4.1.3. Random forest 
Random forests is an ensemble supervised learning algorithm that 

can be used for regression and classification [55]. For regression, the 
model constructs many regression trees and averages the results from 
each tree to produce a final prediction. This model addresses the bias- 
variance tradeoff that many models face by producing many 

trees—which are weak learners and suffer from high bias—and aver
aging their results, rather than producing a single model which typically 
suffers from high variance. To train the regression trees, random forests 
uses bootstrap aggregating, or bagging, which both randomly selects 
training data and features with replacement for each tree independently. 
The bootstrapping decorrelates the individual trees and reduces the 
variance by averaging the results. Each tree is built using about 1 −

e−1 ≈ 2/3 of the training data, where the error of the model can be 
calculated using the remaining unseen 1/3 of the data, which is known as 
the Out-Of-Bag (OOB) estimate. This OOB estimate acts as a type of 
cross-validation—which can occur in parallel with the training 
step—and helps ensure that the model is not being overfit [56]. The 
number of features to include for each tree is set as a hyperparameter, 
where we will examine which number results in the lowest OOB esti
mate. In our study, we use the R-package “randomForests”, which im
plements Breiman’s random forest algorithm for regression [57]. We 
used 200 trees to build our models, because random forests has been 
shown to have a negligible increase in performance above this value 
[56]. The OOB estimate is calculated using MSE in order to make it 
comparable to the cross-validation MSE metrics in the other three 
models. 

4.1.4. Gradient boosting regression 
Similar to random forests, gradient boosting regression is a tree- 

based method that combines an ensemble of weak learners to improve 
prediction accuracy. Unlike random forests, gradient boosting builds the 
model in a stage-wise fashion, by first building one regression tree and 
then iteratively constructing new regression trees on the current resid
ual, one after another. The algorithm continues to build new trees until a 
maximum number of iterations, provided by the user, is reached. 
Gradient boosting regression is a numerical optimization algorithm that 
builds an additive model that minimizes the loss function by iteratively 
adding a new regression tree at each step that best reduces the loss 
function. For each subsequent tree, the provided learning rate η is used 
to shrink the contribution of the tree, thereby providing a higher number 
of small trees, which can provide a higher accuracy than a lower number 
of large trees [27]. The η parameter takes on a value between 0 and 1, 
with smaller numbers resulting in a higher number of trees. In our study, 
we use the R-package “xgboost” which uses an efficient implementation 
of the gradient boosting framework from Chen and Guestrin to create a 
scalable tree boosting system [58]. We used the default parameters for 
tree depth and the fraction of data to be used at each iterative step 
(100%). 

Fig. 2. Flowchart for step (1) in the Augmented-Urban Building Energy Model (A-UBEM), where supervised machine learning is used to predict the annual energy 
consumption of buildings in NYC. 
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4.2. Step (2): Constructing building hourly profiles 

We extend the annual building energy demand from step (1) to 
predict hourly building energy curves in step (2). To create building 
hourly profiles for each building in NYC, we leverage the building 
hourly load profiles from the simulated 19 DOE reference buildings. We 
assign three of the 19 profiles to each building class (and each building 
as a result) originally defined by the PLUTO dataset. Other recent work 
has used a similar strategy of mapping DOE reference buildings to 
PLUTO classes [59]. We assign three DOE profiles because of the 
imperfect alignment between the PLUTO dataset’s 25 building classes 
and the 19 DOE reference buildings. This one-to-three mapping was 
selected to reduce bias introduced by the authors, and can be seen in 
Appendix A in the supplementary document. 

After each building class is assigned three reference buildings, we 
assign weights for each of the three reference profiles. Here, the explicit 
assumption is that each building’s final profile can be approximated 
based upon a weighted average of the three reference buildings that it is 
assigned. To find this weighting, we define a convex loss function that 
produces six parameters for each PLUTO class: three weights for the DOE 
reference buildings, two parameters for weather adjustments (based on 
observed hourly temperature and cooling degree hour), and one 
parameter for business day adjustments. With 25 PLUTO classes, this 
results in a total of 150 parameters. To examine the stability of the 
model, we use a Monte Carlo simulation—using different random sub
sets of buildings—to solve the convex optimization formulation multiple 
times. Finally, we utilize particle swarm optimization to assign each 
building one of the solutions from each Monte Carlo simulation and 
asses the change in model results and error. Fig. 3 shows the modeling 
process for step (2). 

4.2.1. Convex optimization 
The objective of this function is to minimize the square difference 

between the predicted hourly aggregated building load and the NYISO city- 
wide hourly load, as seen in Eq. (5a). Let E ∈ RT be the normalized 
vector of the NYISO city-wide hourly load, where 

∑T
t=1E(t) = 1 and T =

8784, the total number of hours in the 2016 leap year. Let Ê ∈ RT be the 
similarly normalized predicted hourly aggregated building load, as seen in 
Eq. (5b), which is defined as the sum of the individual building profi
les—denoted by Y (t, β) ∈ RT×J—multiplied by their scaled annual en
ergy useP ∈ RJ, as shown in Eq. (5e) (i.e., dot product). The 
optimization problem is as follows: 

min
β

imize : ‖Ê(β)−E‖
2
2 (5a)  

subject to : Ê (β) = Y(t, β)∙P (5b)  

Yij(t, β) = β1
i D1

i (t) + β2
i D2

i (t) + β3
i D3

i (t) + β4
i T(t) + β5

i C(t) + β6
i W(t) (5c)  

∑T

t=1
Yij(t) = 1 (5d)  

P =
P

∑J
j=1Pj

(5e)  

β1
i + β2

i + β3
i = 1 (5f)  

0 ≤ βk
i ≤ 1, for k = 1, 2, 3 (5g)  

where Yij ∈ RT denotes the hourly energy demand for building j of 
PLUTO building class i, wherei = {1, 2, ⋯, I = 25}, and Yij is scaled as 
shown in Eq. (5d)—this ensures that 

∑T
t=1E(t) =

∑T
t=1 Ê (t) = 1. All of 

the design variables—totaling 150 with six variables for each of the 25 
PLUTO classes—are expressed in Eq. (5c), as {β1

i , ⋯, β6
i }: three for the 

weights of the DOE reference buildings, two for weather adjustments, 
and one for business day adjustments. Let D1

i , D2
i and D3

i denote the three 
DOE reference buildings mapped to PLUTO building category i, where 
i = {1,2,⋯, I = 25}. See Appendix A (in the supplementary document) 
for the mapping of each PLUTO class to the three DOE reference 
buildings. Let T be the NYC hourly temperature vector and C be the NYC 
cooling degree hour which is defined as C(t) = max(0, T(t) − 65) where 
t = {1, 2, ⋯, T = 8784}for every hour in the 2016 leap year. Let W be a 
vector indicating business days, which are given a value of 1, while all 
weekends and holidays are given a value of 0. Finally, to ensure that we 
obtain a weighted average of the three DOE reference buildings assigned 
to each PLUTO class, we add two more constraints, as shown in Eq. (5f) 
and Eq. (5g). 

Let P ∈ RJ indicate the annual energy use for all buildings J, where 
vector P is the result of step (1) described in Section 4.1. For each 
building j, the mapped DOE reference building for each building is 
randomly shifted a few hours based on a normal distribution N (0, 1.5)

to simulate variations in building schedules. Because we cannot include 
all 1 million buildings in the optimization function due to computational 
limitations, we select a random sample of 1000 buildings, meaning J =

Fig. 3. Flowchart for step (2) in the Augmented-Urban Building Energy Model (A-UBEM), where a Monte Carlo Simulation is used to solve multiple convex opti
mization formulations producing a set of parameters β, for each simulation, and stored in βmatrix. The results for all the simulations, orβmatrix, are then run through a 
particle swarm optimizer to assign each individual building a set of parameters. 
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1000 instead of 1 million. The 1000 random buildings are selected 
through stratified sampling—based on the PLUTO building class since 
the population of each class varies—to obtain a representative sample of 
buildings [60]. Creating a subpopulation of the NYC building stock then 
requires that the NYISO city-wide hourly load vector be on the same 
scale as the aggregated hourly building load. The annual building loads are 
also normalized (Eq. (5e)), thus ensuring that 

∑T
t=1E(t) =

∑T
t=1 Ê(t) =

∑J
j=1P(j) = 1. 
The objective function is a quadratic function, composition of the 

square of the Euclidean norm and an affine function, thus convex in the 
design variables β. In addition, the feasible domain is convex since all 
equality constraints are affine functions [61]. See Appendix D (in the 
supplementary document) for more detailed proof of the convexity of 
the problem. Since the optimization problem is convex, the CVXPY 
python-embedded modeling system for solving disciplined convex pro
grams is used as the optimization solver [62]. 

4.2.2. Validation and model stability 
Using Monte Carlo Simulations, we can examine the stability of step 

(2) of the model by examining the distribution of fit parameters and 
errors, adding a component of validation to the results of the 
Augmented-Urban Building Energy Model (A-UBEM). Although the 
defined convex function ensures a global optimum, several limitations 
arise. First, it assumes that all buildings within a PLUTO building class 
have the same profile shape; buildings of the same type, like apartment 
buildings for example, should have similar load shapes but not exactly 
the same. Second, the large size of the dataset, with 1 million buildings 
and 8784 h in the year, makes this problem computationally infeasible 
and thus only a subset of buildings was used for the optimization (1000). 
Third, the optimization function is trying to minimize the distance be
tween two large vectors with several constraints—some of which might 
be unrealistic (e.g., all buildings of the same building type have the same 
load profile)—meaning that some error between the two vectors is likely 
to remain. To address these limitations, we run 500 Monte Carlo Sim
ulations using 1000 randomly selected buildings—through the stratified 
sampling technique described previously—on the first 1000 h of the 
year. We determined that 500 simulations would balance computation 
time with ample variation in sampled buildings to provide adequate 
understanding of model stability. 

Using theβ results from all 500 simulations, we then use particle 
swarm optimization (PSO) to assign one of the 500 vectors from the 
simulation to each individual building. This approach a relaxes the 
constraint that all buildings of the same PLUTO building class must have 
the same profile but is still grounded in the original convex formulation. 
Furthermore, having a more diverse set of building profiles allows the 
aggregated load profile to more closely match that of NYISO, hence 
better approximating the true load. With a total of J = 1000 buildings, 
this results in a total of 500J different combinations of buildings and 
parameters, hence the reason to use the PSO. 

PSO is a non-gradient population-based optimization technique 
whereby candidate solutions, called particles, iteratively move around 
the search-space—in this case, the search space is the 500K different 
combinations of buildings and parameters [63]. Initially, the particles 
are randomly placed in the search-space. Then at each iteration (or 
generation l), the particles move to a new location based on the best 
solution acquired by each particle in all the previous iterations (Pbest

l )

and the best value obtained by any particle (Gbest
l ) [64]. The position of 

the particle xa
l , shown in Eq. (6), is updated based on the velocity va

l+1, 
shown in Eq. (7). 

xa
l+1 = xa

l + va
l+1 (6)  

va
l+1 = winertiava

l + c1r1
(
Pbest

l − xa
l

)
+ c2r2

(
Gbest

l − xa
l

)
(7) 

Here, the user-define parameters are: winteria which is the inertia used 

to control the effect of the particles’ previous velocity on the current 
velocity; c1 which is the cognitive learning factor used to control the 
velocity toward the particle’s previous best value; and c2 which is the 
social learning factor used to control the velocity toward the globally 
best particle. The variables r1 and r2 ∈ [0, 1] are two independent 
random numbers used to keep the particles from falling into a local- 
minima and permit a small percentage of particles to explore the 
larger search-space. 

Because the Monte Carlo simulation relies on random sampling, we 
obtain 500 unique solutions to the convex optimization formulation 
described above. With these 500 vectors, each containing coefficients 
for the 150 decision variables, we can then define another optimization 
function that assigns each building one of these 500 vectors. For the 
PSO, we use the mean absolute percentage error (MAPE), as shown in 
Eq. (8), as the objective function. Both optimization formulations with 
first and second norm lead to a convex problem, with the same global 
optimum. However, for practical implementations and convergence is
sues, the Euclidean norm was chosen for the CVX implementation. Eqs. 
(5d)–(5g) are still applicable, but Eq. (5a) is substituted for Eq. (8), 
where the number of buildings represented in this sample is j = {1, 2, ⋯ 
, J} where J = 1000. The PySwarms python library is used to model and 
solve the PSO [65]. For each building j, the β parameters are determined 
by selecting from one of the 500 simulations. 

min
β

imize
1
T

∑T

t=1

⃒
⃒
⃒E − Ê(β)

⃒
⃒
⃒

Ê(β)
(8)  

subject to Yij(t, β) = β1
i D1

i (t) + β2
i D2

i (t) + β3
i D3

i (t) + β4
i T(t) + β5

i C(t)

+ β6
i W(t) (9)  

5. Results 

We present our results for the A-UBEM model below and split up the 
results into two sections, following the model construction outline as 
shown in Fig. 1. First, the results for the building annual loads (step (1)) 
are presented and we discuss the prediction errors for each supervised 
machine learning model. Second, we discuss the hourly building profile 
results from the convex optimization algorithm (step (2)) and inspect the 
distribution of the fit parameters from the Monte Carlo simulations to 
show that our results are robust. Third, we examine the added benefit in 
running the particle swarm optimization. Finally, we validate our model 
at the city scale by using the fit parameters from the optimization al
gorithm and compare our constructed model to the ground-truth NYC 
electricity demand. 

5.1. Predicting annual building loads 

Before modeling, each feature from the original collected dataset 
that showed a high skewness—a total of ten—underwent a log trans
formation and was added to the original list of features used in the 
modeling process. Of these ten features, nine were related to measure
ments of area in buildings and one was the assessed total value of the 
building. A complete list of the features used in the modeling process can 
be seen in Appendix B in the supplementary document, along with 
summary statistics which highlight the skewness of the untransformed 
features. By including both transformed and untransformed features, 
each model could then determine the appropriate combination of fea
tures needed to represent the non-linear effects that they have on energy 
consumption. A summary of the four examined models and the MSE 
from the best set of hyperparameters for each model is shown in Table 2. 

All of the models have fairly similar performance, but the random 
forests model proved to be the best with the lowest MSE of 0.293. 
Having a non-linear model perform best is consistent with findings from 
Kontokosta and Tull [46] and Robinson et al. [25]. Because we perform 
a log transformation of the kBtu values, the MSE shown in Table 2 
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should be interpreted as eMSE multiples away of the predicted value from 
the true energy value for a building on average. For each of the models, 
we report the MSE of the 5-fold cross validation, except for random 
forest which uses the OOB estimate as described in Section 3. Random 
forests also showed to have the most similar performance using different 
hyperparameters, while the support vector machine models showed to 
have the highest variability between different hyperparameters. This 
indicates that not only is the random forest model the best performing 
overall but that it is also the most consistent, producing stable results. 
The gradient boosting model was the worst performing model. We 
postulate that the gradient boosting model may be able to perform better 
with further hyperparameter tuning, given the high number of hyper
parameters in the model. However, we note that even though gradient 
boosting is often praised for having high performance, this typically 
comes at the expense of more computation time as it can be difficult to 
find the optimal hyperparameters [66]. The random forests model re
quires less hyperparameter tuning than gradient boosting, while still 
producing an accurate model as our results show. 

Fig. 4 below shows the top ten most important features for the best 
random forests model. The model calculates the feature importance by 
substituting a vector of noise for each feature and measuring the amount 

the error increases. The resulting increase in error can be interpreted as 
the amount of decreased error that particular feature produces. 

Year built, building area, assessed price per square foot, and number 
of floors are the most important variables for building the random for
ests model. Fortunately, this data is fairly common in cities across the 
US, though annual building energy data is only available in cities with 
energy disclosure policies. Since many cities collect this type of data 
already, the results from Fig. 4 indicate that these cities do not need to 
go through the effort of collecting the other types of data that NYC 
possess because they do not add much power to the fit of these models. 
In short, this shows that other cities can easily replicate the first step of 
this A-UBEM methodology to create annual energy building load esti
mates for their entire city. Similar important features were found for a 
data-driven predictive model for energy use in NYC by Kontokosta et al., 
however, the authors also found that zipcode level energy consumption 
was driven by a different set of variables [46]. 

In Fig. 5, we compare the predicted annual energy use made by the 
best random forests model to the ground truth data. The figure shows 
that the random forests model is neither under- nor over-estimating the 
ground truth energy consumption. The residuals follow a log-normal 
distribution indicating that the model is not biased. 

With the constructed model parameters, we then apply the model to 
all one million buildings in NYC to predict annual energy use at each 
building. Fig. 6a shows a map of our predicted annual energy use for just 
Manhattan aggregated at the block-level by summing the annual energy 
use for all buildings within a block. Just below Central Park, midtown 
Manhattan is seen to have some of the highest energy consuming 
buildings, as shown in the map of building-level annual energy con
sumption in Fig. 6b. Here, we highlight the Chrysler building as a 
reference for our results for step (2) where we produce hourly loads of 
every building. 

5.2. Constructing hourly building loads 

After predicting individual building hourly load profiles for all of 
NYC, we aggregate these profiles into a single city-level profile to 
compare to the actual load from the NYISO dataset. The aggregated 
building hourly load profile for one of the Monte Carlo Simulations of 
step (2) is shown in Fig. 7. This figure shows the NYISO actual load (in 
blue) for 11 days in January and the optimized aggregated building load 
(in orange) over the same period. Because each simulation is using a 
subset of the entire NYC building stock, the y-axis in the plot is 
normalized over the entire year to have a mean of 1. The aggregated 
load resulting from the optimization accurately captures the overall 
trend—including intraday fluctuations, weekday/weekend differences, 
and trends over time—with some minor differences compared to the 
NYISO observed load. These minor differences stem from several as
sumptions in the optimization: (1) the manually constructed one-to- 
three mapping from each PLUTO building class to the DOE reference 
buildings; (2) that all buildings within a PLUTO class are assigned the 
same load profile; (3) the scaling of building profiles using their total 
energy demand rather than electricity demand due to data constraints. 

5.2.1. Framework stability and robustness 
One of the main reasons to perform a Monte Carlo Simulation is to 

observe the stability of the fit parameters using different random sam
ples of buildings for the convex optimization formulation. Fig. 8 shows 
the distribution for the three β parameters associated with the three DOE 
reference profiles respectively assigned to four PLUTO classes. These 
four classes are highlighted as they are representative of the four types of 
distributions observed in each of the 25 PLUTO classes. See Appendix C 
(in the supplementary document) for the distributions of all 25 classes. 

The β parameter distribution for Condominiums (PLUTO class R) as 
shown in Fig. 8a, is similar to that of nearly half (12/25) of the other 
PLUTO classes; this distribution type 1 is represented by the background 
slate gray color and can also be observed in Appendix C. The distribution 

Table 2 
Summary of the parameters examined for each of the models and the final pa
rameters of the best model as tested using 5-fold cross-validation. The shown 
error rates are for the models with the lowest cross-validation MSE after per
forming the grid search and selecting the optimal hyperparameters.  

Models Hyperparameters Final Parameters Final 
MSE 

Lasso 
Regression 

Penalization: λ = [0, 1] Penalization:λ =

0.0104   
0.312 

Random Forest Max Features: 3, 5, 7, 9, 11, 
13, 15, 17, 19, 21, 23, 25 

Max Features: 5  0.293 

Gradient 
Boosting 

# Boosting Iterations: 1000, 
2000, 3000, 4000 
Learning rate:η = 0.01, 0.001,

0.0001  

# Boosting 
Iterations: 
1000 
Learning rate:η =

0.001   

0.343 

Support Vector 
Machines 

Kernel: Linear 
Penalty Factor: Creg = 1,3,100 
Insensitivity parameter: 
∊ = 0.1, 0.4,0.7, 1.0  

Kernel: Linear 
Penalty Factor: 
Creg = 1 
Insensitivity 
parameter: 
∊ = 0.4   

0.316  

Fig. 4. Summary of the top ten most important features in the best random 
forests model. 
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for this set of PLUTO classes shows that across all 500 simulations, two 
of the three β parameters are nearly always zero and the other β 
parameter is nearly always one. The interpretation of this distribution
—for condominiums specifically—is that its load profile most closely 
matches that of the small hotel building from the DOE reference building 
set, as opposed to a midrise apartment or large residential home, since β3

i 
is receives a value of nearly 1 for nearly all 500 simulations. Appendix A 
(in the supplementary document) includes the one to three mapping for 
all other PLUTO classes. Another common distribution for 4 of the 25 

PLUTO classes is a near equal weighting for all three parameters, as 
shown in the β parameters for Theatre (PLUTO class J) in Fig. 8b; dis
tribution type 2 is represented by the background light yellow color and 
can also be observed in Appendix C. These 16 distribution
s—exemplified in Fig. 8a and b—account for over 95% of the buildings 
in NYC. The consistency of these β parameters across all the Monte Carlo 
Simulations demonstrates the stability of the model for these PLUTO 
classes. 

The plot in Fig. 8d shows a distribution where two β parameters 

Fig. 5. Error plots comparing the difference between the best random forests model prediction and the ground truth data (a) predicted vs ground truth energy load 
and (b) residual distribution. 

Fig. 6. The map of the entirety of Manhattan (a) is aggregated at the block-level in order to better visualize spatial trends in energy use. The zoomed in map (b) is 
shown at the building-level to highlight the output of step (1). Both maps use a gradient with breakpoints set at the 5 quantiles of the log energy consumption of the 
shown blocks and buildings, respectfully. 
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receive a value of 1 (β1
i and β2

i ) for a substantial portion of the simu
lations, one β parameter is nearly always set to zero (β3

i ), and the 
remaining values for all three β parameters are uniformly distributed 
between 0 and 1. This spread indicates that two of the three mapped 
DOE reference buildings adequately approximate the profile of the 
respective PLUTO class. There is a total of 6 distributions that follow this 
pattern. Finally, the distribution shown in the Fig. 8c is the most varied 
of all the distributions. There are 5 distributions that do not fit into the 
previously defined three clusters, but buildings in these classes make up 
less than 1% of the buildings in NYC. Because we used stratified sam
pling and a total of 1000 buildings for each simulation, the small number 
of buildings in each class may be one reason why these distributions are 
much more varied than the others. 

The Mean Absolute Percentage Error (MAPE) across all 500 Monte 
Carlo simulations also exemplifies the consistent performance of step 
(2), as shown in Fig. 9. The mean MAPE across all the simulations is 
6.11% and the distribution has a narrow range between a minimum of 
4.57% and a max of 9.30%. 

Results shown in Figs. 8 and 9 show that the convex optimization in 
the step (2) framework produces robust results across various input 
buildings for the city. In addition, the model only requires a relatively 
few number of building annual loads (1000) to accurately predict the 
building hourly load profile of an entire city (1 M buildings), as long as 
the building samples are representative of the building stock. This is 
critical since other public datasets, in other geographical locations, may 
only contain a relatively small data sample of building annual loads. 

5.2.2. Validation of the convex optimization 
With all the fit parameters from the Monte Carlo Simulation, we then 

validate their fit using a left-out set (i.e., test set) of 1000 h that the 
convex function did not use to train the model. Using this same set of 
1000 h, we also run the particle swarm optimizer (PSO) to assign each 
individual building the β results from one of the 500 simulations, again 
to relax the assumption that all buildings of the same PLUTO class must 
have the same profile. Using the test set of 1000 h, Fig. 10 shows the 
distribution of MAPE for both the Monte Carlo Simulation and the PSO. 
Compared to the in-sample training error, shown in Fig. 9, both the 
Monte Carlo and PSO showed marginally worse out-of-sample errors; 
given that the parameters were trained using a different set of 1000 h, 
this is unsurprising. 

The PSO results show an improvement over the Monte Carlo results 
but only by a small amount, with an average reduction of error of 0.09. 
These results show that the PSO does reduce the error of the model but 

not significantly. This shows that the assumption that all buildings from 
a PLUTO class have the same energy profile is actually quite negligible 
and does not greatly affect the final energy load curve prediction. The 
distribution of the error also shows that a small set of random buildings 
is sufficient to get a good prediction for the entire city. The PSO, 
therefore, is not needed as the original optimization produced nearly as 
low errors. 

5.2.3. Example hourly energy curves for the Chrysler building 
Given that the model produces parameters that are weighted aver

ages of DOE reference buildings—where β is the weight—we can extract 
hourly energy curves for electricity, gas, heating, and cooling for every 
building in the city. As an example, Fig. 11 shows the produced hourly 
energy curves for one building in NYC—the Chrysler building—for two 
sample weeks, one in January and one in June. The figure shows a 
distribution of estimated energy curves across all 500 simulations. 
Despite each simulation using a random sample of buildings, each figure 
shows a consistent trend in estimated loads across all 6 categories: total 
energy, electricity, gas, heating, cooling, and water heating. 

We estimate the expected energy loads for winter (gas and heating) 
and summer (cooling), along with their daily fluctuations. In January, 
heating loads are higher in the morning, when it is colder, while in June, 
cooling loads increase throughout the day. In addition, the total energy 
loads are lower on the weekends in comparison to weekdays, as the 
building is primarily comprised of office spaces. For 2016, the Chrysler 
building used a total of 57.563 million kBtu in energy, with 48.882 
million kBtu coming from electricity. The Chryster building has a floor 
area of 1.04 million square feet, which results in an energy use intensity 
of 55.6 kBtu/ft2. 

6. Applications & discussion 

By better understanding how buildings use energy, both spatially 
and temporally, policymakers, engineers, and planners can make more 
informed decisions regarding energy use and urban design. New York 
City (NYC), like other major cities, imports more electricity than it 
consumes—using nearly 60% New York state’s electricity demand but 
only creating about 40% of it—thereby requiring city officials to grapple 
with unique procurement and planning challenges [67]. For example, in 
different geographical zones in NYC, the amount of energy to procure, as 
well as its price, changes based on time-of-day. Decision-makers must, 
therefore, compare energy supply alternatives, evaluate savings from 
potential retrofits, and investigate impacts from targeted programs with 

Fig. 7. This is the output for one Monte Carlo Simulation showing the hourly load profile of the actual NYISO electricity demand for NYC (in blue) and the 
aggregated building load profile (in orange) for 11 days in January. 
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the goal of providing cheap energy prices and a reliable grid [68]. Cities 
like New York must also grapple with grid congestion issues, decar
bonization efforts, and electrification initiatives which makes this goal 
even more difficult. But new energy systems are emerging that can be 
installed in targeted locations within cities which promise to create 
cheap and clean electricity. 

Distributed energy resources (DERs) and district energy systems are 
two such solutions that can be used to reduce and shift demand, but 
hourly energy demand information at the block- and building-level are 
needed to ensure competitive prices. Without this high level-of-detail, 
these technologies will be implemented piecemeal within cities—as 
decision-makers will struggle to target locations and buildings that 
could most benefit—thereby slowing their adoption rates and 
decreasing their savings potential. The city-wide installation of smart 
meters with sub-hourly measurement capability would be an obvious 

solution to this challenge. However, the installation expense and lack of 
strong return-on-investment of such technology can be a barrier to 
implementation. This paper outlines a process of creating an 
Augmented-Urban Building Energy Model (A-UBEM) that provides 
synthetic hourly loads for all the buildings within a city that can help 
decision-makers systematically deploy clean, cost saving energy effi
ciency and resource solutions. 

6.1. Distributed energy resources 

New demands for decentralized energy, volatile fossil fuel prices, and 
technological advancements are leading to increased interest in 
distributed energy resources (DERs) across the world [69]. 
DERs—include technologies like solar, storage, and wind—have already 
experienced precipitous growth in adoption as their costs have fallen to 

Fig. 8. The distributions for four representative PLUTO classes and their fit parameters across all 500 Monte Carlo simulations: (a) Distribution Type 1 (ash gray); (b) 
Distribution Type 2 (yellow); (c) Distribution Type 3 (rose); (d) Distribution Type 4 (silver). Of the 25 classes, 16 exhibit similar distributions to the top two plots 
where nearly all the parameters receive the same value across all the simulations. These 16 classes account for upwards of 95% of the buildings in NYC. The bottom 
two plots show more variation in the distribution of the fit parameters. See Appendix C (in the supplementary document) for histograms for all 25 PLUTO classes 
using these four background colors to indicate distribution type. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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compete with traditional fossil fuel prices [7]. These technologies are 
helping cities curb greenhouse gas emissions associated with burning 
fossil fuels but come with new challenges and opportunities that cities 
must grapple with. Unlike power generated from fossil fuels, solar and 
wind rely on weather patterns to produce energy which cannot be 
controlled, leading to intermittency in production and energy fore
casting challenges. Indeed, there is a mismatch between timing of 
renewable energy production, especially wind and solar, and energy 
consumption. Ultimately, these decarbonization efforts, if unplanned, 
can destabilize the grid by creating large spikes in energy production 
which could lead to costly blackouts. 

By having a more detailed urban building energy model, city officials 
can use this resource to identify locations within their city that could 
benefit from DER installations, ensuring that intermittent energy pro
duction is strategically located. Coupling this model with information 
about transmission and distribution line capacities, cities could install 
DERs in targeted locations that could prevent the need for costly grid 
upgrades. Over the next 30 years, NYISO estimates that about 4700 
miles of high-voltage transmission lines need to be replaced at a cost of 
about $25 billion [67]. Furthermore, buildings with large loads, and 

therefore high utility bill demand charges, can be identified and benefit 
from the installation of battery storage to shift their load, or solar PV 
systems to reduce their load. Increased adoption rates and strategic 
deployment of DERs can replace the need for expensive generation 
plants, decrease peak electricity prices, improve energy security, raise 
air quality levels, add local jobs to the market, and enhance operating 
efficiency and flexibility [70]. 

6.2. District energy 

Thermal microgrids, also referred to as 4th generation district en
ergy, are a new and rarely discussed form of energy generation, which is 
promising to substantially aid in the reduction of fossil fuel use [71]. 
China, for example, requires by law that all northern cities have district 
heating systems [72]. Traditional district energy systems rely on some 
type of fossil fuel (e.g., natural gas) that is burned to generate electricity, 
while the waste heat is used to warm a fluid (e.g., water) that can then be 
distributed to buildings through insulated pipes. By heating water at a 
centralized location, aided by the waste heat from generating electricity, 
district heating plants can provide higher efficiencies than numerous 
localized boilers. A new take on district energy has eliminated the need 
for fossil fuels and instead relies on the use of renewables, large heat 
recovery chillers, and thermal storage. These new systems simulta
neously generate chilled and hot water by transferring heat from one 
liquid to the other and then storing the hot and cold water in large 
thermal storage tanks for later distribution. Already, there are a few such 
systems in place, like the central energy facility on Stanford University’s 
campus [73]. 

Increases in thermal efficiency for the building sector can have far- 
reaching effects since heating and cooling make up over 60% of resi
dential and 50% of commercial energy demand [74]. Because buildings 
typically demand both hot and cold water, these centralized systems can 
provide higher efficiencies while also shifting electricity demand to off- 
peak hours. 

Assessing whether a location is suitable for this type of thermal 
microgrid requires data on hourly building loads in order to model the 
magnitude of savings achieved through district scale electrification and 
load shifting. Current data limitations have restricted the implementa
tion of such systems to places like universities and campuses which have 
access to load profiles for large numbers of buildings. A new tool that can 
model building loads at the city-scale can help engineers better assess 
the feasibility of thermal microgrids at numerous locations. Our pro
posed model (A-UBEM) addresses the data limitation challenge associ
ated with district energy assessment which could lead to more of these 
efficient systems being installed in the future. 

7. Limitations and future work 

The Augmented-Urban Building Energy Model (A-UBEM) presented 
in this work makes several key assumptions. First, it assumes that the 
aggregated building profiles from a small subset of buildings approxi
mates the city-wide profile for NYC; building profiles are scaled using 
their total energy demand rather than electricity demand due to data 
constraints. Second, it assumes that each building profile is a linear 
combination of three mapped DOE reference buildings, as seen in Ap
pendix A in the supplementary document. Third, the model assumes that 
all buildings within the same PLUTO class have the same energy load 
curve. Fourth, the model does not distinguish between neighborhood 
effects for different parts of the city, such as morphology and density, 
but rather determines the average effect of the city-wide urban context. 
And finally, though each building profile is adjusted for weather and 
business day operations, the model is not validated at the building- 
hourly level since this data could not be obtained; acquiring interval- 
level data for a small subset of buildings would help validate the 
model. Despite these limitations, this research presents a novel meth
odology for combining data-driven and physics-based techniques to 

Fig. 9. The distribution of the in-sample Mean Absolute Percentage Error 
(MAPE) for each simulation in the Monte Carlo. 

Fig. 10. The distribution of the out-of-sample (i.e., test set) Mean Absolute 
Percentage Error (MAPE) for the Monte Carlo Simulation and the Particle 
Swarm Optimizer (PSO). The errors using the test set are only marginally worse 
than the training set, as shown in Fig. 9. The PSO shows a small improvement in 
error reduction compared with only using the Monte Carlo without the PSO. 
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provide hourly estimates for every building in a city using solely open 
data. Many of the limitations above could be eliminated by collecting 
more data on neighborhood context, building geometry, smart meter 
data from individual buildings, and more; but this data can be very 
difficult or costly to obtain. Therefore, a major objective of this paper 
was to build a model using solely open data to provide policymakers 
with more information on building energy use than they currently have. 
By incorporating other non-open datasets, the use-cases—as described 
extensively in Section 6—would no longer hold and the overall useful
ness of the model would be diminished. Ideally, more open data would 
become available so that these other useful types of parameters can be 
incorporated into our model. 

Because we could not validate the model at the single building-level 
due to data limitations, we took several other measures to address the 
above limitations. First, by running a Monte Carlo simulation, we 
examine the variability in results of the model when using different 
random subsets of buildings. Results from this showed that the results 
between simulations was fairly consistent and that a small subset of 
buildings could be used to approximate city-wide consumption; both the 
train and test errors were low and fit within a narrow range, as shown in 
Figs. 9 and 10. Second, the distribution of βparameters, as shown in 
Fig. 11, shows that over 95% of buildings in NYC receive the same β 
values across each simulation, suggesting a negligible effect from the 
manually constructed one-to-three mapping. And third, by using a PSO 
to assign individual buildings one of the solutions from the Monte Carlo 
simulation, we showed there is minimal effect arising from the 
assumption that all buildings within the same PLUTO class have the 
same energy load curve given that the reduction in error when using the 
PSO was minimal. 

Despite these limitations, this is one of the first attempts at producing 
synthetic building-level hourly loads for electricity and total energy 
demand for an entire city, leveraging advantages from both physics- 
based simulation and data-driven techniques. Future work aims to 

improve upon the constructed model by expanding the model to other 
cities across the world where open data is available (e.g., San Francisco, 
Washington, DC, Singapore, London) and acquiring interval data for 
several buildings within one of these municipalities to improve valida
tion. This will also allow for us to explore deeper sensitivity analyses 
between geographic locations and temporal variations in energy loads. 
Capturing urban context in the proposed model can also be improved 
upon by acquiring more data on sky view factor, canyon aspect ratio, 
and building density. 

Another avenue for future work is integrating neighborhood 
morphology and mobility data, such as those from mobile phones to 
better approximate occupancy levels in buildings—a major source for 
discrepancies between UBEMs and real-world observations [75]. 
Extending this further, introducing other mobility information—such as 
data from electrified fleets of vehicles, trucks, and public transit—can 
allow for the co-optimization of their energy use, creating a more ho
listic model that would allow for better planning of sustainable cities 
and resilient grids. 

8. Conclusion 

Researchers have acknowledged that one of the largest uncertainties 
for traditional urban building energy models (UBEM) is the definition 
and detailed description of archetypes that reliably represent a building 
stock [76]. Our proposed Augmented-UBEM (A-UBEM) addresses this 
gap through the design of a two-step framework, where step (1) takes 
annual energy data from a subset of buildings in a city and estimates 
annual energy use for every building within the city. In step (2), these 
energy estimates are converted into hourly load curves through an 
optimization strategy that constructs profiles for building classes in NYC 
by fitting a weighted average of possible profiles obtained from the DOE 
reference building dataset. This allows for greater model flexibility than 
previous instances using building archetypes, as the optimization 

Fig. 11. The calculated hourly energy loads for the Chrysler building in NYC for all 500 simulations. The plots in the left column are for 1-week in January while the 
plots on the right are for 1-week in June. The plots on the top row show the total energy demand, which is the summation of the electricity and gas demand. The plots 
on the bottom row show the heating and cooling demand. The gas demand, shown in the top plots, includes energy that comes from NYC’s steam-based district 
energy system. 
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parameters can take a range of weights to appropriately model all 
buildings within a city. Moreover, we found that the distribution of 
fitted parameters and, therefore, hourly load curves from a Monte Carlo 
simulation demonstrates the stability of these results, even when using 
different subsets of buildings. By only using publicly available data and 
through the design of our optimization algorithm, our model is gener
alizable to other cities with energy disclosure policies and open tax 
assessor databases. Leveraging open data sources provides added value 
to the public as other researchers can more easily build off our work and 
easily share the results more widely [77]. As such, the code and data 
used in this paper is shared on our GitHub page. In short, the A-UBEM 
model transforms annual energy data from a subset of buildings to 
hourly energy estimates for every building in a city. 

Overall, this work aims to demonstrate the merit of leveraging 
physics-based simulation modeling, machine learning, and optimization 
to produce accurate building specific synthetic hourly energy profiles of 
every building in New York City (1 + million) using only publicly 
available data. Most importantly, insights from temporally and spatially 
detailed data can help policymakers, engineers, and planners compare 
alternative energy systems and programs (e.g., district energy systems, 
DERs) leading to potential energy efficiency opportunities, lowering of 
system costs, and reduction in environmental emissions. Urban build
ings form the backbone of our major economic centers and represent a 
significant portion of our energy usage and emissions. Ensuring a 
pathway to a more sustainable energy future will require deep insights 
into spatial and temporal distribution of building energy use inside our 
cities. 
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