Downloaded by Mary Ann Liebert, Inc., publishers from www.liebertpub.com at 01/22/21. For personal use only.

JOURNAL OF COMPUTATIONAL BIOLOGY ICCABS 2019

Volume 27, Number 00, 2020
© Mary Ann Liebert, Inc.
Pp. 1-10

DOI: 10.1089/cmb.2020.0249

Complex Variant Discovery Using Discordant
Cluster Normalization

MATTHEW HAYES! DERRICK MULLINS! and ANGELA NGUYEN?

ABSTRACT

Complex genomic structural variants (CGSVs) are abnormalities that present with three or
more breakpoints, making their discovery a challenge. The majority of existing algorithms
for structural variant detection are only designed to find simple structural variants (SSVs)
such as deletions and inversions; they fail to find more complex events such as deletion—
inversions or deletion—duplications, for example. In this study, we present an algorithm
named CleanBreak that employs a clique partitioning graph-based strategy to identify
collections of SSV clusters and then subsequently identifies overlapping SSV clusters to
examine the search space of possible CGSVs, choosing the one that is most concordant with
local read depth. We evaluated CleanBreak’s performance on whole genome simulated data
and a real data set from the 1000 Genomes Project. We also compared CleanBreak with
another algorithm for CGSYV discovery. The results demonstrate CleanBreak’s utility as an
effective method to discover CGSVs.

Keywords: clique partition; complex genomic structural variation; genome rearrangement;
structural variation.

1. INTRODUCTION

OMPLEX GENOMIC STRUCTURAL VARIANTS (CGSVs) are caused by single mutations that result in
multiple genomic rearrangement breakpoints. These breakpoints are not adequately explained by events
that cause simpler mutations such as basic deletions and insertions (Quinlan and Hall, 2012). CGSVs
correspondingly present with three or more breakpoints. Algorithmic discovery of structural variants has
important applications in population genetics and medical diagnoses as they are hallmarks of phenotypic
variation and cancer progression, for example. Examples of CGSVs include deletion—inversions, duplica-
tion—deletions, and inverted duplications, though many more examples exist (Zhao et al., 2016). They are a
hallmark of several diseases and disorders such as cancer and autism spectrum disorder (Rausch et al., 2012a;
Brand et al., 2015). Other studies note the contribution of CGSVs to Mendelian disorders such as Potocki—
Lupski syndrome (Qvarfordt et al., 1998) and MEC2 duplication syndrome (Beck et al., 2015).
Figure 1 depicts examples of complex structural variants compared with a reference genome. The
majority of existing algorithms for structural variant discovery are capable of detecting simple structural
variants (SSVs) such as deletions, tandem repeats, and inversions. However, they are unable to accurately

Departments of 'Physics and Computer Science and “Biology, Xavier University of Louisiana, New Orleans,
Louisiana, USA.

Downloaded by Mary Ann Liebert, Inc., publishers from www.liebertpub.com at 01/22/21. For personal use only.

2 HAYES ET AL.

Reference “ C D
FIG. 1. Examples of complex genomic structural

variants compared with a reference genome. Since Del_dup F C

the constituent structural variants are consecutive,
algorithms to find simple structural variants will m

likely fail to accurately classify them. This figure is Del-inv
inspired by figure 1 from Zhao et al. (2016).

C
J D
Del—dup—invm E 3

detect and classify the complex events depicted in Figure 1. For example, the deletion—inversion case
would likely be predicted by these methods as two overlapping inversions. Also, the deletion—duplication
case would likely cause the deletion of segment B to be missed by an algorithm that performs SSV
discovery using only abnormally mapped read pairs. Accurately discovering and classifying CGSVs require
the application of algorithms that are specifically designed to detect these features.

In this study, we present an algorithm named CleanBreak that discovers CGSVs using mapped Illumina
paired reads. The method first employs a graph-based algorithm to cluster all homogeneous read pairs,
where each cluster is a possible SSV. The method then collects groups of overlapping SSV coordinates
(indicative of a CGSV) and classifies each overlapping group as a CGSV, recursively ‘‘normalizing”
discordant read pairs until a final set of variants is determined. The predicted CGSV is the one that is the
most concordant with local read depth.

Regarding other methods, the CouGaR algorithm is designed to find complex genomic variants in cancer
genomes, specifically those variants that cause highly amplified genomic segments connected by SSV
breakpoints (e.g., signatures of double minute chromosomes) (Dzamba et al., 2017). With the CouGaR
algorithm, the identification of complex genomic arrangements, the prediction of cellular structural level,
and the determination of the amount of copies in a tumor genome using whole genome sequencing are
possible by employing a five-step algorithm: (1) generating a list of tumor adjacencies, (2) identifying
amplified regions, (3) constructing a tumor adjacency graph, (4) counting the number of copies, and (5)
predicting circular and linear contigs. SVelter (Zhao et al., 2016) is another algorithm for CGSV discovery.
This algorithm first collects groups of discordantly mapped read pairs, that is, those that indicate a likely
variant. It then employs a randomized and probabilistic approach by assuming that an initial configuration
of overlapping read pairs is explained by a randomly chosen underlying set of SSVs. The method then
iteratively improves this prediction by rearranging consecutive blocks of genomic intervals separated by
breakpoints. It performs this rearrangement until it converges to an underlying structure that is most
consistent with local read depth, read orientation, and read pair insert size.

D

2. METHODS
2.1. Clustering of discordant read pairs

CleanBreak takes as input a set of aligned paired reads in binary sequence alignment/map (SAM) format
(Li et al., 2009). In the first step, it collects clusters of overlapping, homogeneous read pairs that could
indicate a likely structural variant breakpoint. These read pairs, also known as discordant read pairs, are
aligned to the reference genome with characteristics that deviate from the expected library insert size and/or
read orientation. These aberrant read alignments could indicate a possible variant. The following are typical
discordant read pair alignments and the SSVs they usually imply (assuming Illumina sequencing):

1. Both reads map with forward—forward or reverse—reverse orientation (inversion type).

2. The leftmost read maps with reverse orientation, but the rightmost read maps with forward orientation
(tandem duplication type).

3. The relative orientation of the mapped reads is correct, but the distance between the reads is sig-
nificantly larger than the library insert size (deletion type).

4. The relative orientation of the reads is correct, but the distance between the reads is smaller than the
library insert size (insertion type).

5. The reads in a single pair map to different chromosomes (interchromosomal rearrangement type).

Downloaded by Mary Ann Liebert, Inc., publishers from www.liebertpub.com at 01/22/21. For personal use only.

COMPLEX VARIANT DISCOVERY USING DISCORDANT CLUSTER NORMALIZATION 3

—-< —> FIG. 2. Overlapping discordant read pairs mapped to a reference
), (‘ genome and the corresponding graph they induce.

In parentheses are the SSVs that are typically supported by these discordant alignments. The problem is
much more complex for CGSVs, however. Thus, the mentioned discordant alignments will not necessarily
indicate the given simple variant type for the problem of CGSV detection. CleanBreak recognizes types
1-3 since insertions are difficult to detect with the paired end strategy.*

To collect these clusters of discordant read pairs, the method creates an undirected graph where nodes are
discordant read pairs and edges connect vertices if the read pairs have overlapping mapping coordinates.
Figure 2 illustrates the conversion of a discordant read pair cluster into an undirected graph. Furthermore,
the absolute difference of mapping coordinates between two discordant read pairs is assigned as the weight
for each edge.

Owing to sequence homology on the reference genome, overlapping variants on separate haplotypes, and
complex structural variants, it is possible for multiple clusters to have overlapping coordinates. Individual
clusters are resolved by partitioning each connected component in the graph into a set of minimal weight
cliques. Since partitioning an undirected graph into minimum weight cliques is computationally difficult (NP-
hard), we apply a greedy heuristic that performs this task quickly. This process helps to ensure that read pairs
with proximal start and end positions (indicative of the same variant) are grouped together in the same cluster.
In Figure 2, the blue discordant read pairs form a cluster, whereas the green pairs form an overlapping, but
separate cluster. Despite the fact that the blue and green pairs overlap, they do not support the same variant
and should thus be grouped separately. CleanBreak’s clique partitioning heuristic addresses this task. Clique
finding during the clustering phase is common to algorithms such as Delly (Rausch et al., 2012b) and
CLEVER (Marschall et al., 2012), although these methods are designed to discover SSVs.

2.2. CleanBreak algorithm

The algorithm collects cluster coordinates identified in the previous cluster-resolution step. Afterward, it
extracts clusters with overlapping coordinates, which is indicative of a possible CGSV. The method
predicts complex variants by attempting to ‘‘normalize’ the predicted cluster coordinates—it attempts to
reverse the orientation and distance of predicted clusters if it deviates from the default library settings.
Starting with consecutive overlapping clusters, the method performs this normalization until it predicts the
CGSYV that is the most concordant with local read depth. The reason for this process is that SSV prediction
relies on identifying the canonical discordant read pair signals that support deletions, inversions, and
tandem repeats. However, since CGSVs essentially comprise several adjoining SSV breakpoints, the ap-
pearance of these signals near CGSV breakpoints does not necessarily indicate their respective simple
variant. For example, the deletion—inversion case in Figure 10 does not show a forward-reverse cluster with
larger-than-normal mapping distance (indicative of a simple deletion). This is because the deletion is
adjacent to an inverted segment that obfuscates the expected signal. In other words, for complex variants,
the apparent discordant pair signal does not necessarily imply the presence of its corresponding SSV.
CleanBreak addresses this issue by exhaustively applying the following rules, each of which are specific to
each variant type.

2.2.1. Deletion normalization: rule DI. The first rule for deletion normalization is illustrated in
Figure 3. The green and orange intervals are the predicted cluster intervals and the orientation of their left
and right boundaries.” This normalization rule requires that the leftmost boundary of the first cluster be
moved to the coordinate of the leftmost boundary of the second cluster because it assumes that the interval
between these leftmost boundaries is a potential deletion. However, it is not predicted as such unless it is
highly concordant with local read depth (the algorithm is explained in Section 2.2.9).

*We will address interchromosomal rearrangements in future study.

"The orientation is determined by a consensus of the discordant read pairs collected in the clustering phase of the
algorithm. Also, there can be more than two overlapping clusters, but the algorithm considers overlapping consecutive
cluster intervals when applying the rules.

Downloaded by Mary Ann Liebert, Inc., publishers from www.liebertpub.com at 01/22/21. For personal use only.

4 HAYES ET AL.

> < > <
— ™ » <

FIG. 3. Normalization rule D1. The green and orange clusters have overlapping coordinates. This normalization step
assumes that the distance between the leftmost cluster boundaries is a deletion. The first cluster’s coordinates are
updated accordingly.

P A oy >
FIG. 4. Normalization rule D2. > . < >— <

> > | — > <«
FIG. 5. Normalization rule D3. B > | > <

2.2.2. Deletion normalization: rule D2. The second rule for deletion normalization is illustrated in
Figure 4. This rule assumes that the deletion is between leftmost coordinate of the orange cluster and the
rightmost coordinate of the green cluster. Furthermore, the position of the rightmost green boundary is
moved to the same position as the leftmost orange boundary.

2.2.3. Deletion normalization: rule D3. The third rule for deletion normalization is illustrated in
Figure 5. This rule assumes that a deletion spans the interval of the first cluster in an overlapping pair (the
green cluster in Fig. 5). For this rule, the cluster is normalized by adjusting the start position of the leftmost
coordinate of the first cluster; it is adjusted to a position that is near the rightmost coordinate of the cluster,
approximately within m+ko, where m is the median mapped distance of read pairs, ¢ is the median
absolute deviation of mapped distances, and k is a user-defined constant (typically between 4 and 6).

2.2.4. Deletion normalization: rule D4. The fourth rule for deletion normalization is illustrated in
Figure 6. This rule is similar to rule D3—it assumes that a deletion spans the interval of the first cluster in
an overlapping pair. However, this rule normalizes the cluster by adjusting the rightmost boundary in the
first cluster—it moves it upstream near the left boundary, within m + ko base pairs as described for rule D3.

2.2.5. Inversion normalization: rule I1. There are two rules for inversion normalization. The first
rule, I1, assumes that the interval between the left boundaries of two overlapping clusters is an inversion.
This is illustrated in Figure 7. The left boundaries of both clusters are adjusted as shown in this figure.
Furthermore, the orientations of the left boundaries are inverted to account for the possible inversion within
the interval.

2.2.6. Inversion normalization: rule I2. The second rule, 12, assumes that the interval between the
right boundary of the first cluster and the left boundary of the second cluster is an inversion. This is
illustrated in Figure 8. The right boundary of the first cluster is adjusted to the original position of the left

> T« > <

FIG. 6. Normalization rule D4. B <] — B = <
—_—
> > | - < <

FIG. 7. Normalization rule 11. —p <] < <]

e
.

Downloaded by Mary Ann Liebert, Inc., publishers from www.liebertpub.com at 01/22/21. For personal use only.

COMPLEX VARIANT DISCOVERY USING DISCORDANT CLUSTER NORMALIZATION 5

e | - > P
< <t—< FIG. 8. Normalization rule I2.

boundary of the second cluster. Also, the left boundary of the second cluster is adjusted to the original
position of the first cluster’s right boundary. The orientations of these cluster boundaries are also inverted to
account for the possible inversion event.

2.2.7. Tandem repeat normalization: rule TI. A complex variant interval could be subject to a
tandem repeat. This possibility is accounted for by rule T1. For consecutive overlapping clusters, this rule
moves the right boundary of the first cluster to a region upstream of its left boundary. This region is within
m+ko base pairs. Thus, this rule assumes that the entire region spanned by the first cluster interval is
generated by a segmental duplication. The normalization rule is depicted in Figure 9.

2.2.8. Concordance score algorithms. CleanBreak recursively applies all of the aforementioned
rules to the cluster intervals until no more normalization moves are possible. It chooses the normalization
path that is the most consistent with local read depth. For each of the normalized intervals depicted by the
red arrows, the method computes concordance scores whose values depend on local read depth—the
precise value of the concordance score depends on the variant under consideration. For example, a region
that supports a tandem repeat should have a high concordance score if local read depth is higher than the
genome-wide read depth. A region that supports a deletion should have a high score if local read depth is
less than genome-wide read depth. Lastly, a region that supports an inversion should have a high score if
local read depth is roughly equal to genome-wide read depth. The algorithms for computing the concor-
dance scores for each type are given in the following algorithms.

Algorithm 1 Algorithm to compute deletion concordance score of interval [A,B]

Input: A genomic interval defined by coordinates A and B.
QOutput: A real number representing the deletion concordance score of the genomic interval [A,B]
: procedure CONCORDANCEDEL (A, B)
if readDepth([A, B]) > readDepth(genome) then
s1
else

1

2

3

4

5: 54 [log(1 — (el Ph)2y
6 end if

7

8

return 1—s
: end procedure

Algorithm 2 Algorithm to compute tandem duplication concordance score of interval [A,B]

Input: A genomic interval defined by coordinates A and B.
Output: A real number representing the tandem duplication concordance score of the genomic interval [A,B]

1: procedure CONCORDANCETAND (A, B)

2 if readDepth([A, B]) < readDepth(genome) then
3 s—1

4 else

5: 5 |log(1 — (Feabertiseons))2)|

6 end if

7 return 1 —s

8: end procedure

« > ><] -y [~ < FIG. 9. Normalization rule T1.

Downloaded by Mary Ann Liebert, Inc., publishers from www.liebertpub.com at 01/22/21. For personal use only.

6 HAYES ET AL.

Algorithm 3 Algorithm to compute the inversion concordance score of interval [A,B]

Input: A genomic interval defined by coordinates A and B.
Output: A real number representing the inversion concordance score of the genomic interval [A,B]

1: procedure CONCORDANCEINV (A, B)

2 if readDepth([A, B]) =readDepth(genome) then
3 s<0

4 else

5: s —log e eDenitsenome) seadepix- o1

6 end if

7 return 1 —s

8: end procedure

For the concordanceDel algorithm, the score it computes is inversely proportional to the ratio of average
genome read depth to the read depth of the genomic interval [A, B], which is expected if the interval truly
represents a genomic deletion. The concordanceTand algorithm is the opposite—the score it returns is directly
proportional to the ratio of the interval’s read depth to the average read depth of the genome. This is expected
since it implies that the read depth in the interval is greater than the entire genome’s read depth. The
concordancelnv algorithm computes the concordance score for the interval [A, B] assuming that the interval
represents an inversion. Since inversions are copy-neutral events, the score returned by this algorithm is
highest when the ratio of the average genomic read depth to the interval read depth is closest to 1.

2.2.9. Main algorithm. Having defined the concordance score algorithms, we can define the CleanBreak
algorithm as follows:

Algorithm 4 Algorithm to predict complex structural variant coordinates

procedure CLEANBREAK(C)
if i=n then
return concordance(C;) I> Concordance function depends on how the interval is classified
else
5: RecordRuleD1(C;, Ciy1)
my = concordanceDel(left(C;), left(C;;1))+CleanBreak(C;, 1)
RecordRuleD2(C;, Ci 1)
my = concordanceDel(right(C;), left(C;+1))+CleanBreak(C; . 1)
RecordRuleD3(C;)
10: m3 = concordanceDel(left(C;),right(C;)—medInsertSize)+CleanBreak(C;. 1)
RecordRuleD4(C;)
my = concordanceDel(left(C;), left(C;)+mediInsertSize)+CleanBreak(C; 1)
RecordRulel1(C;, Cit 1)
ms = concordancelnv(left(C;), left(C;41))+CleanBreak(Ci 4 1)
15: RecordRulel2(C;, Ciy1)
mg = concordancelnv(left(C;..1), right(C;))+CleanBreak(C;, 1)
RecordRuleT1(C;)
my = concordanceTand(left(C;) — medInsertSize, right(C;))+CleanBreak(Ci 1)
return max(m;, my, ms, My, Ms, Mg, N7)
20: > Predicted variant is the one on the interval that maximizes total score
end if
end procedure

The input C is a set of predicted clusters that form a single connected component in the cluster graph
(Fig. 2). Such an input is a candidate complex structural variant. The left and right functions return the left
and right genomic coordinates of their input component C, respectively. The RecordRule functions keep
track of the candidate variant that spans the given interval.* The algorithm applies each rule previously
defined and recursively repeats this process for the remaining cluster components after the concordance

The intervals are specific to each rule defined previously.

Downloaded by Mary Ann Liebert, Inc., publishers from www.liebertpub.com at 01/22/21. For personal use only.

COMPLEX VARIANT DISCOVERY USING DISCORDANT CLUSTER NORMALIZATION 7

T—
)

-

Referencem ‘ ‘ 2 LD ‘
< >
Deletion-inversion MLL D

FIG. 10. Deletion—inversion, the likely clus-
ters that would result after read mapping, and the
» = likely steps that would be taken by CleanBreak

1. Overlapping clusters - to predict the complex deletion and complex
inversion.

2. Deletion » N

at segment B
-
3. Inversion at segment C —
—

scores have been tallied. Once the algorithm reaches the last cluster interval (i.e., the interval that does not
precede a consecutive overlapping interval), it predicts the variant based only on the length of the interval
and the orientation of its interval boundaries.®

Beginning with the cluster with the leftmost coordinate position, for each cluster interval in an overlapping
component, CleanBreak recursively searches the space of possible variants that can explain the observed
clusters. Figure 10 illustrates this process for a possible deletion—inversion complex variant. In this example,
the method adjusts the leftmost coordinate of the blue cluster to account for a possible deletion since this will
ostensibly be the best choice according to local read depth. After making this choice, the method adjusts the
rightmost coordinate of the blue cluster and the leftmost coordinate of the black cluster. This move will also
change the orientation of these coordinates that corresponds to an inversion event. Once again, multiple
cluster choices are considered during this process, but the choices in the figure are the optimal choices.
CleanBreak records the optimal choice made at each step (deletion—inversion in this case), and it terminates
when there are no more cluster breakpoints to resolve. The definition of the “optimal” choice is that which
maximizes the total concordance score for the component, as determined by Algorithms 1-3. Since Clean-
Break exhaustively searches all possible intervals between cluster boundaries, we expect that it at least
approximates the globally optimal solution, given the concordance scores defined in Algorithms 1-3.

3. RESULTS
3.1. Complex variant discovery in simulated data

Simulated paired read data sets were created that consisted of 3000 total complex structural variants
(SVs) on chromosome 1 of the human reference genome build hg38. Three separate data sets were created,
containing 1000 deletion—duplications, 1000 deletion—inversions, and 1000 deletion—duplication—
inversions. These variants were inserted into the reference using SVsim (Faust, 2015). Subsequently,
WGSim was used to generate the paired reads (Li, 2011). This data set consisted of 150bp reads with
400 bp fragments (standard deviation of 70) and ~ 80 X mapped read coverage once aligned to the reference
with Burrows-Wheeler Aligner (BWA) (Li and Durbin, 2010). CleanBreak was evaluated on its ability to
accurately detect deletions, inversions, and tandem repeats that are within the breakpoints of the afore-
mentioned complex variants. The sensitivity of predictions is the percentage of true complex SV break-
points predicted by the method. A predicted variant overlaps the known variant if there is at least 70%
reciprocal overlap between their coordinates. The positive predictive value (PPV) is measured as the

¥This is based on classic simple structural variant read-pair signals: deletions—forward/reverse with large insert size,
inversions—forward/forward or reverse/reverse, tandem repeats—reverse/forward.

Downloaded by Mary Ann Liebert, Inc., publishers from www.liebertpub.com at 01/22/21. For personal use only.

8 HAYES ET AL.

TABLE 1. SENSITIVITY/POSITIVE PREDICTIVE VALUE OF PREDICTIONS:
SVELTER VERSUS CLEANBREAK (PERCENTAGES OUT OF 1000 VARIANTS)

Algorithm SV type Del-Dup Del-Inv Del-Dup-Inv

CleanBreak Del 0.81/0.99 0.73/0.96 0.38/0.38
Inv — 0.74/0.90 <0.05/<0.05
Tand. dup. 0.73/0.97 — 0.26/0.96

SVelter Del 0.70/0.99 0.66/0.98 0.48/0.96
Inv — 0.48/0.97 0.33/0.95
Tand. dup. 0.54/0.98 — 0.30/0.82

SVs, structural variants.

percentage of type-specific predictions that overlap the true coordinate locations. Interval overlaps were
computed using the Intersect program of the BEDTools suite (Quinlan and Hall, 2010). For comparison, we
executed SVelter’s on these data sets as well and measured sensitivity and PPV using the mentioned
definitions. For SVelter, default parameters were used.

The results of the sensitivity/PPV analysis are provided in Table 1. A comparison of execution times on
these data sets is provided in Table 2.

The data sets were executed on an 8-node cluster with 40 cores/node, 2.1 GHz processors, and 64 GB of
RAM.

3.2. Deletion prediction in NA12878

We also evaluated the CleanBreak algorithm to the 30X coverage downsampled BAM file of a well-
characterized genome NA12878, acquired from NIST’s Genome in a Bottle Consortium (GIAB) (Genome in a
Bottle Consortium, 2012). Using the Picard suite (Broad Institute, 2019), the median insert size and median
absolute deviations were estimated to be 552 and 99, respectively. An accompanying list of large benchmarked
deletion calls from this set was acquired; these deletions were identified by GIAB using their svclassify
framework (Parikh et al., 2016). Using this list of deletions as ground truth, we measured sensitivity and PPV of
predicted calls as defined previously for the simulated data, except that we compared results on (1) the original
list of benchmarked deletions, (2) only deletions that were 21000bp in the benchmarked data and in the
predictions for CleanBreak and SVelter, (3) only deletions that were >2000 bp in the benchmarked data and in
the CleanBreak and SVelter predictions, and only deletions 25000 bp. Evaluating the methods against larger
variants was performed to assess the ability of each method to call variants of varying sizes, especially since
CleanBreak is designed to find large complex variant intervals.

The results of the comparison are provided in Table 3.

TABLE 2. SIMULATED DATA RUNNING TIME COMPARISON: SVELTER VERSUS CLEANBREAK

Algorithm Data set Time

CleanBreak Del-Dup 1h 23 min
Del-Inv 1h 15 min
Del-Dup-Inv 1h 47 min

SVelter Del-Dup 1h 45 min
Del-Inv 1h 29 min
Del-Dup-Inv 2h 22 min

TABLE 3. SENSITIVITY AND POSITIVE PREDICTIVE VALUE COMPARISON ON NA12878

Algorithm SE/PPV (all) SE/PPV (21000 nt) SE/PPV (22000 nt) SE/PPV (25000 nt)
CleanBreak 0.30/0.04 0.89/0.53 0.90/0.60 0.87/0.52
SVelter 0.69/0/55 0.77/0.75 0.75/0.80 0.74/0.75
Total true deletions 2,676 612 408 174

PPV, positive predictive value; SE, sensitivity.

Downloaded by Mary Ann Liebert, Inc., publishers from www.liebertpub.com at 01/22/21. For personal use only.

COMPLEX VARIANT DISCOVERY USING DISCORDANT CLUSTER NORMALIZATION 9

4. DISCUSSION

As suggested by the results on the simulated data, CleanBreak is most accurate in calling deletion—
duplication and deletion—inversion events. These are easier events for CleanBreak to handle since there is a
1-to-1 mapping of structural variants to genomic intervals. For this reason, however, the del-dup-inv data
set was very difficult for the algorithm to resolve. Nearly all inversion events were misclassified in these
data since the vast majority of duplications and inversions shared the same coordinates; in its current state,
CleanBreak only assumes one variant per coordinate interval. Furthermore, it is not yet capable of detecting
dispersed duplications although there were no such events in the simulated data. However, CleanBreak was
faster than SVelter on the simulated data and had higher sensitivity; the PPV was only slightly lower than
SVelter. For the Del-Dup and Del-Inv cases, the loss of sensitivity was largely due to the presence of
variants within low-complexity regions.

The NA12878 genome has many more ground-truth deletions than other structural variants. Moreover,
CleanBreak achieved the greatest sensitivity on predicting larger structural variants. SVelter had a lower
false discovery rate overall on these data for all deletion sizes. However, CleanBreak was faster than
SVelter on these data, requiring ~ 3 days to analyze these data, compared with 4 days and 9 hours for
SVelter.

5. CONCLUSION

We have presented a method to identify complex structural variants using Illumina paired se-
quencing reads. The method showed the ability to accurately identify variants within deletion—
duplication and deletion—inversion events. CleanBreak is currently well suited to discover complex
rearrangements whose breakpoints are affected by just a single variant. Simulated data set results
support this assertion.

The method is currently limited to intrachromosomal structural variants; it must be adjusted to account
for CGSVs involving translocations and other interchromosomal variants. Furthermore, the method may
fail to accurately detect dispersed duplications and multiple variants that span the same interval (such as
inverted duplications). This largely explains the extremely low sensitivity and PPV for the deletion—
duplication—inversion events. These limitations will be the subject of future work. The method will also be
extended to account for interchromosomal rearrangements such as translocations. It will also be optimized
for applicability to cancer data sets that will require having it distinguished between CGSVs and SSVs
shared by many clones/haplotypes. Such an enhancement will require updating the method to have it
account for tumor impurity when making predictions.

The CleanBreak software is available here: http://github.com/mhayes20/CleanBreak

ACKNOWLEDGMENT

We thank Dr. Nawa Raj Pokhrel of the Xavier University of Louisiana Department of Physics and
Computer Science for helpful discussions.

DISCLAIMER

This publication was made possible by the Louisiana Cancer Research Consortium. The contents
are solely the responsibility of the authors and do not necessarily represent the official views of the
NIMHD.

AUTHOR DISCLOSURE STATEMENT

The authors declare they have no conflicting financial interests.

http://github.com/mhayes20/CleanBreak

Downloaded by Mary Ann Liebert, Inc., publishers from www.liebertpub.com at 01/22/21. For personal use only.

10 HAYES ET AL.

FUNDING INFORMATION

This study was partially supported by NSF grant HRD-1901258. This study was also partially supported
by NIH-NIGMS grant R25GM060926. Furthermore, support was provided from funding from the NIMHD-
RCMI Grant No. 5G12MD007595 from the National Institute on Minority Health and Health Disparities
and the NIGMS-BUILD Grant No. SUL1GM118967.

REFERENCES

Beck, C.R., Carvalho, C.M., Banser, L., et al. 2015. Complex genomic rearrangements at the PLP1 locus include
triplication and quadruplication. PLoS Genet. 11, e1005050.

Brand, H., Collins, R.L., Hanscom, C., et al. 2015. Paired-duplication signatures mark cryptic inversions and other
complex structural variation. Am. J. Hum. Genet.97, 170-176.

Broad Institute. 2019. Picard toolkit. Available at: http://broadinstitute.github.io/picard. Accessed June 8, 2020.

Dzamba, M., Ramani, A.K., Buczkowicz, P., et al. 2017. Identification of complex genomic rearrangements in cancers
using CouGaR. Genome Res. 27, 107-117.

Faust, G. 2015. SVsim. Available at: https://github.com/GregoryFaust/SVsim. Accessed June 8, 2020.

Genome in a Bottle Consortium. 2012. Available at: http://jimb.stanford.edu/giab. Accessed June 5, 2020.

Li, H. 2011. WGsim. Available at: https://github.com/lh3/wgsim. Accessed June 8, 2020.

Li, H., and Durbin, R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics
26, 589-595.

Li, H., Handsaker, B., Wysoker, A., et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics
25, 2078-2079.

Marschall, T., Costa, 1.G., Canzar, S., et al. 2012. CLEVER: clique-enumerating variant finder. Bioinformatics 28,
2875-2882.

Parikh, H., Mohiyuddin, M., Lam, H.Y ., et al. 2016. svclassify: a method to establish benchmark structural variant calls.
BMC Genomics 17, 64.

Quinlan, A.R., and Hall, .M. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioin-
formatics 26, 841-842.

Quinlan, A.R., and Hall, .M. 2012. Characterizing complex structural variation in germline and somatic genomes.
Trends Genet. 28, 43-53.

Qvarfordt, 1., Riise, G.C., Larsson, S., et al. 1998. Immunological findings in blood and bronchoalveolar lavage fluid in
chronic bronchitis patients with recurrent infectious exacerbations. Eur. Respir. J. 11, 46-54.

Rausch, T., Jones, D.T., Zapatka, M., et al. 2012a. Genome sequencing of pediatric medulloblastoma links catastrophic
DNA rearrangements with TP53 mutations. Cell 148, 59-71.

Rausch, T., Zichner, T., Schlattl, A., et al. 2012b. DELLY: structural variant discovery by integrated paired-end and
split-read analysis. Bioinformatics 28, 1333-i339.

Zhao, X., Emery, S.B., Myers, B., et al. 2016. Resolving complex structural genomic rearrangements using a ran-
domized approach. Genome Biol. 17, 126.

Address correspondence to:

Dr. Matthew Hayes

Department of Physics and Computer Science
Xavier University of Louisiana

1 Drexel Drive

New Orleans, LA 70125

USA

E-mail: mhayes5@xula.edu

http://broadinstitute.github.io/picard
https://github.com/GregoryFaust/SVsim
http://jimb.stanford.edu/giab
https://github.com/lh3/wgsim

