
Urban Data Integration Using Proximity Relationship
Learning for Design, Management, and Operations of

Sustainable Urban Systems
Karan Gupta1; Zheng Yang, Ph.D., A.M.ASCE2; and Rishee K. Jain, Ph.D., A.M.ASCE3

Abstract: The world is rapidly urbanizing, with 66% of the world’s population expected to reside in cities by 2050. This massive influx of
new urban citizens is putting enormous pressure on city systems and bringing forth challenges at the intersection of urban infrastructure,
governance, and the environment. As a result, researchers and practitioners have turned to new advanced sensing and data analytics de-
veloped under the burgeoning smart city movement to improve the design, management, and operations of urban systems. However, it has
been challenging to integrate, organize, and analyze the data emerging from urban systems due to their natural spatial, temporal and
typological heterogeneity. This paper introduces an urban data integration (UDI) framework that is capable of integrating heterogeneous
urban data. The proposed UDI framework is extensible to multiple types of urban systems, scalable to the growing volume of data streams
(as a result of increasing geographical areas, higher sampling frequencies, and so on), and interpretable enough to help inform municipal
decision-making. The UDI framework uses a series of proximity relationship learning algorithms to reconstruct urban data in a graph
database. The merits, applicability, and efficacy of the proposed framework is demonstrated by validating and testing it on data from
a midsize city in the United States and by benchmarking its interpretability and computational performance for a typical urban analytics
scenario against current practice (i.e., a relational database). Results indicate that the UDI framework provides easier and more computa-
tionally efficient exploration and querying of urban data, and in turn can enable new computational approaches to urban system design,
management, and operations. DOI: 10.1061/(ASCE)CP.1943-5487.0000806. © 2018 American Society of Civil Engineers.

Author keywords: Data integration; Graph database; Proximity learning; Smart city; Urban data.

Introduction

The world is experiencing rapid urban growth. Over 50% of
world’s population now resides in cities, with this number expected
to increase to 66% (i.e., 2.5 billion additional people) by 2050
(United Nations 2014). This rapid urban growth has begun to sig-
nificantly increase the demands on urban systems and is in-turn
creating numerous challenges at the intersection of urban infra-
structure, governance, and environment. In particular, municipal
decision makers are grappling with the need to better design, man-
age, and operate urban systems so that they can meet the demands
of their citizens, provide equitable access to core services, and limit
negative impacts on the environment. The urban environment has
a complex network of interconnected systems that have become
increasingly challenging to manage using existing management
paradigms (IBM 2012). Changes in one system can have substan-
tial (nonlinear) impacts on another system, making it difficult to

discern and predict the effects of urban design, management, and
policy decisions. Moreover, numerous interdependencies exist be-
tween various urban systems, including building–transportation
(Marique et al. 2017), building–human (Langevin et al. 2015),
building–vegetation (Perini and Magliocco 2014), transportation–
land, and environment–human–transportation interdependencies
(Raymond et al. 2013). For example, transportation planning
should not only consider the reduction of congestion but also
the minimization of impacts on local air quality and building
heating/cooling loads. Data-driven approaches could discover
the sources and context of such problems, and decompose the in-
terconnected aspects into tasks that enable proactive analysis and
operational decision-making. As part of the burgeoning smart city
movement, massive amounts of data are now being collected on an
array of urban systems (e.g., land, vegetation, buildings, transpor-
tation, energy, and humans), which in turn provides a tremendous
opportunity to leverage emerging data-driven methods to facilitate
the sustainable planning, management, and operation of urban
systems.

Municipal officials, policy makers, and engineers are eager to
adopt more data analytical approaches to uncover insights into
how their cities operate and drive decision-making. However, they
often run into several challenges related to data integration, organi-
zation, and analysis due to the natural spatial, temporal, and typo-
logical heterogeneity of urban data. Urban data streams can differ
significantly in their spatial resolution (e.g., building, community,
and urban), time scale (e.g., hourly, monthly, and yearly), and
typological representation (e.g., categorical, numerical, and geo-
metric). Additionally, due to the disparate nature of urban systems,
data streams are often used for domain-specific analysis even if
applicable to multiple systems and are limited in their accounting

1Research Assistant, Urban Informatics Laboratory, Dept. of Civil and
Environmental Engineering, Stanford Univ., 473 Via Ortega, Room 269B,
Stanford, CA 94305.

2Staff Researcher, Urban Informatics Laboratory, Dept. of Civil and
Environmental Engineering, Stanford Univ., 473 Via Ortega, Room 269B,
Stanford, CA 94305.

3Assistant Professor, Urban Informatics Laboratory, Dept. of Civil and
Environmental Engineering, Stanford Univ., 473 Via Ortega, Room 269A,
Stanford, CA 94305 (corresponding author). Email: rishee.jain@stanford
.edu

Note. This manuscript was submitted on February 21, 2018; approved
on August 3, 2018; published online on December 13, 2018. Discussion
period open until May 13, 2019; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Computing in Civil
Engineering, © ASCE, ISSN 0887-3801.

© ASCE 04018063-1 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000806
mailto:rishee.jain@stanford.edu
mailto:rishee.jain@stanford.edu

for interdependency and interactions between systems. For exam-
ple, building energy data are useful for diagnosing energy effi-
ciency performance of a city but they could also be used for smart
grid planning and understanding urban heat island dynamics.
Building energy systems also interact or have interdependency with
other systems in a city including natural (e.g., trees), transport, and
human systems. Failing to account for such interdependencies
could result in decision-making that narrowly focuses on the ben-
efits of a single system (e.g., buildings) without understanding
potential impacts on other systems. This paper defines interdepend-
ency as the mutual influences between urban elements (e.g., the
transportation system can impact building heating/cooling loads,
and building occupants can impact traffic congestion). Interaction
is defined as the reciprocal actions among urban elements (e.g., hu-
mans control building systems and building heating/cooling change
human comfort and schedules). An urban system (e.g., building
system) is defined as a collection of urban elements (e.g., build-
ings), and a domain is defined as the design, management, and
operation of a specific urban system (e.g., energy, transportation,
or water). Lastly, this paper defines the term proximity relationship
as the adjacency property of two urban elements (e.g., whether/how
much they are adjacent to each other) in the denoted study area
(e.g., building, road, or tree).

The heterogeneity of urban data and the nascent field of urban
analytics both point toward the need for integrating urban data
early and often. For example, if new data become available on
the air quality along a main traffic corridor, a municipal official
could want to map this new information to existing data sources
on related systems (e.g., traffic and roads), rerun analytical queries
to understand mutual influences, and then take appropriate actions.
Maintaining a high level of interpretability is vital during the
integration process because the goal is to support urban design
and operational decisions by municipal officials, policy makers,
and engineers. As a result, a useful urban data integration frame-
work must be extensible to multiple urban systems (and not
system specific), scalable to the growing amounts of quickly
changing urban data streams, and interpretable so that it can in-
form decision-making.

This paper introduces an urban data integration (UDI) frame-
work that integrates heterogeneous urban data while maintaining
extensibility, scalability and interpretability. The proposed UDI
framework uses a series of proximity relationship learning algo-
rithms to automatically reconstruct urban data in a graph database
that can be efficiently and easily explored and queried by municipal
officials, policy makers, and engineers. This paper is organized as
follows. Section “Related Work” describes related work and dem-
onstrates the gaps in the current literature. Section “UDI Frame-
work” introduces the methodology of the UDI framework and
the underlying algorithms in detail. Section “Case Study: Palo Alto,

California” demonstrates the merits, applicability, and efficacy of
the proposed framework by validating and testing it on a sample
of test data from a midsize city in the United States (Palo Alto,
California); section “Case Study: Palo Alto, California” also bench-
marks UDI’s interpretability and computational performance for a
typical urban analytics scenario against an existing data manage-
ment method (i.e., relational databases). Section “Limitations and
Future Work” discusses the limitations and potential areas of future
work, and section “Conclusions” concludes the paper. Although
numerous interdependencies exist across various urban systems,
the focus of this paper is to integrate heterogeneous urban systems
data based on geographic interdependencies. We use geographic
interdependencies as a basis for our integration because this
provides a natural first step toward unbiased and non-task-specific
data integration while maintaining extensibility, scalability, and
interpretability.

Related Work

Urban data can dramatically differ in spatial resolution, time scale,
and type (Balaji et al. 2016; Khan et al. 2013; Chang et al. 2014;
Yuan et al. 2012; Zielstra et al. 2013); Table 1 gives examples of
urban data heterogeneity. This heterogeneity can be attributed to
the varying kinds of urban systems that make up a city (e.g., build-
ings, land, roads, transport, vegetation, and humans), the diverse
sources from which data are acquired (e.g., municipal records, in
situ sensors, surveys, and ad hoc databases), and the degree to
which data are spatially distributed (e.g., building level, commu-
nity level, and urban level) and temporally updated (e.g., subhourly,
hourly, daily, monthly, and yearly) (Aljumaily et al. 2017;
Calabrese et al. 2015; Wang and Taylor 2015). As a result, an ur-
ban data integration framework must first and foremost be able
to reconcile the spatial, temporal, and typological heterogeneity
that characterizes urban data streams in order to extract insights
across urban systems valuable for holistic municipal planning and
decision-making.

Numerous data integration methods have been proposed in
the literature to address some of the challenges of urban data man-
agement. The following sections review the three main categories
of existing data integration methods (domain-centric, data-centric,
and demand-centric) to discern key limitations and potential
research gaps.

Domain-Centric Integration Methods

Domain-centric integration methods aim to exploit the knowledge
or structure of a specific system by integrating various data streams.
For example, previous work has used network-based methods
to represent urban elements as nodes and interactions between

Table 1. Examples of urban data heterogeneity

Urban system Typological representation Time scale Spatial resolution

Buildings Geometric, location, numeric, categorical attributes,
network structure

Subhourly, hourly, monthly, yearly Building, subbuilding

Land Geometric, location, survey data, numeric, categorical attributes Yearly Community
Roads Geometric, location, numeric, categorical attributes, network structure Monthly, yearly Community, urban
Transportation Geometric, location, numeric, categorical attributes Subhourly, hourly, daily Community, urban
Vegetation Location, numeric, categorical attributes, survey data Yearly Community, urban
Utilities Geometric, location, numeric, categorical attributes,

network structure
Subhourly, hourly, daily, monthly Building, urban

Environment Location, numeric, categorical attributes Subhourly, hourly, daily Urban
Human Location, numeric, social network structure Daily, monthly, yearly Building, community, urban

© ASCE 04018063-2 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

elements as edges (Sun and Han 2012; Jain et al. 2014; Wang and
Taylor 2015). However, network-based methods are largely con-
strained to single system modeling (e.g., transportation network
or social network) because the relationships between nodes and
edges are explicitly specified by domain knowledge and context.
Recent research has begun to integrate data beyond a single system,
such as the integration of building information modeling (BIM)
data and GIS data (Kang and Hong 2013). However, such frame-
works frequently encounter limitations when their use is extended
to the context of other urban systems (e.g., human systems). Other
urban data integration research has focused on ontology-based
methods. These methods typically embed the knowledge and avail-
able data of a specific domain in an ontology and use the ontology
to link various data streams to one another (Yang et al. 2017).
Although a certain level of interpretability could be maintained,
ontology-based approaches are constrained to specific systems
such as buildings (Balaji et al. 2016) or transportation (Seedah
et al. 2015) and have a limited ability to describe the complex re-
lationships and interactions between urban systems that have been
uncovered in previous work (Langevin et al. 2015; Marique et al.
2017). For example, recent work has demonstrated a strong link
between transportation demand and energy consumption in build-
ings (Karan et al. 2016). Moreover, a limitation of ontology-based
data integration methods is that they must be fully expressive when
defining their metadata schema and thus cannot adapt easily to new
urban data streams and types (Sinnott et al. 2012; Zhu and Ferreira
2015). Although domain-centric methods are effective for data in-
tegration within individual system domains, they are limited in their
ability to both account for interactions across systems (extensibil-
ity) and easily adapt to growing and quickly changing volume of
urban data streams (scalability).

Demand-Centric Integration Methods

Demand-centric integration usually uses a one-time data integra-
tion process based on the use case for a specific task (e.g., energy
network modeling). Data visualization is one form of demand-
centric data integration and has been applied to temporally and
interactively integrate data for specific tasks such as analyzing
the spatiotemporal variations of energy-use intensity (Sun et al.
2013). However, major drawbacks of visual data integration are
that it can result in information loss (Lins et al. 2013) and can
be onerous to operate because it often requires a large amount
of trial and error to adequately explore a data set (Gu and
Wang 2013). Additionally, previous works (Bocconi et al. 2015;
Lopez et al. 2012) have used predefined schemas representing
certain task demands to integrate fixed data, sensor data, and live
social media data, whereas other studies have aimed to directly
integrate the knowledge embedded in urban data through machine
learning (Zheng 2015) or computational typological analysis
(Doraiswamy et al. 2014). Although they are useful for specific
tasks, such methods have limited flexibility and reusability be-
cause they introduce task-specific biases. For example, the as-
sumptions made for energy network modeling (e.g., modularity
and flow) are incompatible with human–building interaction analy-
sis. If there is any change in scope, purpose, or data availability,
the task and/or data integration process must be redesigned and
reimplemented, which is both time-consuming and computation-
ally expensive (Sheridan and Tennison 2010). As a result, the
current demand-centric data integration methods are not flexible
and scalable enough to accommodate changes in assumptions, sys-
tems, and data availability that are common in the context of urban
systems analysis.

Data-Centric Integration Methods

Data-centric integration methods use computational methods to
learn the structure, properties, and representation of urban data
and then integrate the data based on such attributes. Organizations
such as the Open Geospatial Consortium (OGC) have published
open standards such as CityGML (OGC 2016) and the Resource
Description Framework (RDF) (Miller 1998) which manage data
based on a standardized data model and exchange format. Rela-
tional databases with flexible schema (Ziegler and Dittrich 2004)
and rasters (Tollefsen et al. 2012) have also been used to integrate
typologically and spatially heterogeneous data but are limited in
their ability to handle temporally inconsistent data that are common
in urban environments (Kitchin 2014; Wiemann and Bernard
2016). Similarly, automated systems have been developed to con-
vert tabular data to graphic representations or object-oriented
models by identifying and analyzing the structure, content, and
semantic attributes of databases (Han et al. 2008; Venetis et al.
2011). However, such methods are again limited in their ability to
integrate temporally heterogeneous data (Servigne et al. 2016).
Perhaps most importantly, data-centric integration methods are
not self-explanatory, and therefore lack interpretability (Castellani
Ribeiro et al. 2015). As a result, data-centric integration methods
make it difficult to properly formulate queries for data retrieval
without extensive expert knowledge (Ferreira et al. 2013) even
when new advanced querying methods are utilized (Aguilera
et al. 2016). As a result, such methods may have limited applicabil-
ity in the city context because municipal officials, policy makers,
and engineers are unlikely to base key urban design and opera-
tional decisions on results and analytical queries that they cannot
understand.

Koperski and Han (1995) proposed a generic algorithm to derive
rules of association by querying on properties of available urban
data and combining properties to increasingly refine results. The
approach prefilters elements based on task-specific nonspatial
properties and the approach does not define how it would be ap-
plied to integrate various types of urban elements with different
shapes (e.g., polygon, line, and point) and their data streams. The
overall objective of the present paper is to introduce an urban data
integration framework for integrating heterogeneous urban data
that extends the generic approach suggested by Koperski and Han
(1995). The UDI framework is designed to be extensible to multi-
ple types of urban systems, scalable to the quickly changing and
growing urban data streams, and interpretable enough to inform
municipal decision-making. The UDI framework proposed in this
paper focuses on the management of urban data, including filtering,
reconstructing, linking, and storing data from different urban sys-
tems. The underlying goal of this work is to provide an unbiased
basis for enabling specific analytical tasks emerging for the smart
city domain such as system prediction and fault detection (Zheng
et al. 2015), spatial-temporal analysis (Van Hove et al. 2015), and
cross-system impact forecasting (Lund et al. 2015).

UDI Framework

The proposed UDI framework uses a series of novel proximity
relationship learning algorithms to automatically integrate urban
data in a graph database. In turn, the graph database can then
be efficiently explored and queried to answer specific questions
regarding urban systems. For example, a decision maker can ask
the question “How does a building’s proximity to trees and roads
impact its energy usage?” The UDI framework is composed of
input, three analytical steps, and output (Fig. 1):

© ASCE 04018063-3 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

Input: Urban data streams (e.g., time-series energy-usage data,
building footprints, road outlines, and tree locations).

Analytical Steps
1. Preprocess urban data streams in order to standardize data

manipulation for different types of urban elements: polygonal
(e.g., buildings and parking lots), linear (e.g., roads and pipelines),
and point (e.g., trees and traffic lights) elements (Algorithm 1).

2. Learn the proximity relationships between elements to link
disparate urban systems without introducing task-specific bias
or assumptions (Algorithms 2a, 2b, 2c, and 2d).

3. Reconstruct the data in a graphic database to enable easy query
formulation and efficient data retrieval.
Output: Integrated graphic database on which analytical queries

can be easily executed

Data Preprocessing (Step 1)

After various urban data streams are collected and cleaned to
remove inconsistencies and errors (e.g., missing geometric infor-
mation or numeric values for categorical attributes), a three-step
preprocessing step is conducted: (1) preparing and reformulating
geometric information; (2) converting geometric coordinates into
Cartesian coordinates; and (3) identifying the sides of elements that
cannot be abstracted as points, such as buildings and roads.

Prepare and Reformulate Geometric Information
The first step is to translate various urban data streams from differ-
ent sources into consistent formats and reformulate the geometric
information of elements for all urban systems. If the information for
a required field is missing, the record is removed. There could be
any number of optional fields for element properties (Table 2). For
example, in addition to geometric information, buildings (polygon
elements) could have properties related to height, number of floors,
use type, and building system. Similarly, roads (line elements)
could have properties of length, width, traffic control, and mainte-
nance schedules; and trees (point elements) could have properties
of age, type, height, and shape.

Convert Geometric Coordinates to Cartesian Coordinates
The second step is to convert the geometric coordinates [latitude
(α) and longitude (β)] of all elements to Cartesian coordinates
(x, y) in the directions X̂ and Ŷ. The equations of conversion be-
tween geometric coordinates and Cartesian coordinates are based
on the Gall Stereographical Process (Snyder 1987). The Python
package PyProj was used to convert the coordinates between the
geometric and Cartesian systems. The package uses the following
equations:

x ¼ β=
ffiffiffi
2

p
ð1Þ

y ¼ R ×
�
1þ 1=

ffiffiffi
2

p �
× tan ðα=2Þ ð2Þ

α ¼ 2tan−1½y=ð1þ 1 =
ffiffiffi
2

p
Þ� ð3Þ

β ¼
ffiffiffi
2

p
x ð4Þ

Identify the Sides of Nonpoint Elements
The third step is to identify the sides of the polygon and linear
elements. This step provides the basis to consistently and precisely
determine the relative positions of nonpoint elements and the
representations of their proximity relationships.
Polygon Elements. Polygon elements have definite shapes and
multiple vertices in the x − y plane from the top view. An algorithm
(Algorithm 1) to identify the sides of polygon elements was imple-
mented. This algorithm uses the well-established computational
geometry method approach suggested by De Berg et al. (2000) and
applies it to the context which does not require triangulation of the
polygonal elements. The pseudocode is as follows:

Input:
Array V containing vertices of the polygon element
Output:
ArrayO containing the names of sides of the non-point element and
arrangement order of the vertices

Table 2. Required and optional fields of three categories of urban elements

Category Required fields Optional fields

Polygon elements Geometric coordinates of vertexes of polygon Element-specific properties
Unique identification number (UID) as primary key

Linear elements Line: geometric coordinates of end points Element-specific properties
Curve: geometric coordinates of end points for approximated small straight-line segments
Unique identification number (UID) as primary key

Point elements Geometric coordinates of point Element-specific properties
Unique identification number (UID) as primary key

Data Pre-processing

Data manipulation standardization

Polygonal Elements (e.g. Buildings)

Linear Elements (e.g., Pipelines)

Point Elements (e.g. Trees)

Relationship Learning Data Reconstruction

Data Collection/Cleaning

Urban Systems Data

Data Querying/Analytics

Integrated Graph Database

Polygonal - Polygonal

Linear - Polygonal

Point - Polygonal

Proximity relationship learning Graph representation

Graph creation and update

Time tree setup

Spatiotemporal data integration

(Algorithm 1) (Algorithm 2a, 2b, 2c, 2d)

Fig. 1. Overview of UDI framework.

© ASCE 04018063-4 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

tx ← x coordinates of V
ty ← y coordinates of V
P← tx. index min tx \\ give the vertex with smallest x coordinate
L ← length of array V
S ← an array of length equal to number of vertices and initialized
with value -1 \\ store the names of sides
Pþ ← ðPþ 1Þ%L \\ give the index of vertex after P in the array
type ← “clockwise”
if y coordinate Pþ ≥ y coordinate of P \\ indicate clockwise array

for c ← 0 to L-1
S½ðcþ pÞ%L�← cþ 1

else \\ indicates anti-clockwise array
type ← “anticlockwise”
for c ← 0 to L-1

S½ðcþ pÞ%L�←L − c
O ← [S,type]

As an illustration, the implementation of Algorithm 1 on a poly-
gon element A with four vertexes V1, V2, V3, and V4 is presented
in Fig. 2.

The array of Cartesian coordinates for A is given in Table 3. It is
assumed that the first element of the array (with index of 0) may be
any of the four vertices of A and the order of vertices of A is clock-
wise (the processing will be same if the vertices of the array are
recorded in anticlockwise order).

First, the vertex with the smallest x-coordinate is searched and
set as the starting vertex for side identification, which is assumed to

be V4 in the preceding example. Accordingly, the first side in
clockwise direction from the starting vertex along the clockwise
direction is named Side 1 and the last side is named Side x, where
x is the number of sides the element has. Once Side 1 and Side x are
identified, other sides can be sequentially determined. In this ex-
ample, the polygon element A has four sides; V4 is the starting
vertex and the vertex after V4 in the array is V1. Because V1y is
greater than V4y, the direction from V4 to V1 is clockwise, and thus
the side between them is named Side 1. The resulting output array
O contains the sides of the polygon element and the order of the
vertices in the array V.

Algorithm 1 is generalizable to polygon elements with different
number of sides. However, some sides may essentially be the
same in terms of representing proximity relationships with other
elements, and identifying all of them separately could result in
unnecessary redundancy, complexity, and confusion in further re-
lationship learning. For example, Fig. 3(a) shows a building with 10
vertexes and 10 identified sides, but some sides, such as Side 1,
Side 3, and Side 9, can be clustered because they represent the same
face of the building for defining the proximity relationships with
other elements. Therefore, the minimum bounding shaping algo-
rithm (O’Rourke 1985) is applied to approximate a complicated
polygon element with simplified side names. The 10-sided building
can be represented by four clustered sides [Fig. 3(b)].

This approximation method is applicable to polygon elements of
different shapes. For example, the approximation results for basic
building shapes, including L, H, U, and T, based on architectural
logic/shape grammar (Mitchell 1990) are shown in Fig. 4. The side
approximation is only applied to identify the sides of the polygon
elements and is not used for further calculating proximity relation-
ship among elements.
Linear Elements. Linear elements are elements that can be repre-
sented (straight-line elements) as or segmented (curve elements)
into straight lines, each of which have two end points. Following
the methods for finding point locations (De Berg et al. 2000), we
implement the following approach for finding the side of the linear
element (or the segmented linear element), on which a point lies.
The coordinates of the end points of the linear element are first used
to formulate the equation of the element in the x − y plane. Assum-
ing the coordinates of end points of the element to be p1 ¼ ða1; b1Þ
and p2 ¼ ða2; b2Þ, the equation of the element is the represented as

axþ byþ c ¼ 0 ð5Þ

where a ¼ ðb2 − b1Þ, b ¼ ða1 − a2Þ, and c ¼ ðb1 × b2 − a1 × a2Þ.
Any point ðx1; y1Þ on the x − y plane then has three possibilities: on

Table 3. Coordinates of four vertexes of polygon element A

Array
element index

Array element
geocoordinates (V)

0 ½V4x;V4y�
1 ½V1x;V1y�
2 ½V2x;V2y�
3 ½V3x;V3y�

Fig. 3. (a) Building with 10 sides; and (b) building with 4 clustered sides.

A
V1 V2

V3V4
Side 1

Side 2

Side 3

Side 4 x

y

Fig. 2. Example of identifying sides of polygon element.

© ASCE 04018063-5 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

Side 1 of the linear element if ax1 þ by1 þ c > 0, on Side 2 of the
linear element if ax1 þ by1 þ c < 0, and exactly on the linear
element if ax1 þ by1 þ c ¼ 0. An example is shown in Fig. 5
to illustrate this process.

Proximity Relationship Learning (Step 2)

After urban data streams are uniformly processed, the next step is to
learn the proximity relationships of elements, which are unbiased
connections for elements, under the following four assumptions:
1. Polygon and linear elements cannot be abstracted to single

points and might have irregular shapes; therefore proximity re-
lationships with other elements should be represented by the
proximities of other elements to certain sides of polygon and
linear elements.

2. A proximity relationship exists between two elements if the
shortest distance between the two elements being considered
is within a threshold predefined by municipal officials, which
can vary for different categories of urban elements. For example,
the threshold for proximity relationships of polygon–polygon
(e.g., building–building) elements might be 20 m, the threshold
for proximity relationships of polygon–point (e.g., building–
tree) elements might be 10 m, and the threshold for proximity
relationships of line–point (e.g., road–tree) elements might be
30 m, depending on the actual urban context.

3. Because all elements do not have addresses and an address is not
informative enough to delineate the proximity relationships with
other elements, this framework does not use any address infor-
mation for learning the proximity relationships in order to main-
tain generalizability.

4. Proximity relationships can exist between elements of the same
urban system (i.e., intraclass proximity relationships such as
buildings and buildings) as well as between elements of differ-
ent urban system (i.e., interclass spatial relationships such as
buildings and roads).
The proposed proximity relationship learning process starts

by iteratively examining and filtering the elements that have a

possibility of being relevant to another element. In order to reduce
the computational complexity, the search space of geometric coor-
dinates is limited to a rectangle formed around the target element
bounded by the following distances: 200 m to the south of the
element’s lowest latitude, 200 m to the north of its highest latitude,
200 m to the east of its lowest longitude; and 200 m to the west of
its highest longitude. The search space could be changed by
municipal officials in order to contextualize the method to their
specific cities.

Next, the framework aims to learn the proximity relationships of
elements within the search space. In order to expressively explain
the proposed algorithms for this task (Algorithms 2a, 2b, 2c, and
2d), an example of an urban parcel is used (Fig. 6). A polygon
element B1 is located at the corner of the intersection of two linear
elements R1 and R2. A polygon element B2 is located along the
linear element R2. A point element T1 is located on Side 1 of poly-
gon element B1 and another point element T2 is located near poly-
gon element B2. The vertexes of polygon elements B1 and B2 were
numbered after preprocessing; S1 and S2 represent point elements
generating time series data and are located inside polygon elements
B1 and B2, respectively; and TS is a point element generating time
series data (i.e., a traffic sensor) but located along linear elements
R1 and R2. Algorithms 2a, 2b, 2c, and 2d aim to learn the proximity
relationships (both interclass relationships and intraclass relation-
ships) for these elements.

Fig. 5. Example of identifying sides of linear element.

Fig. 4. Approximation results for basic building element shapes.

R2

R1

R
oa

d
S

id
e

1

Road Side 1

Road Side 2

R
oa

d
S

id
e

2

TS

B
T
R

Building (Polygonal Element)
Tree (Point Element)
Road (Linear Element)
Traffic Sensor (Point Element)

T

Building Smart Meter (Point Element)S
TS

B1

B2

T1

T2

S

S

V1 V2

V3V4

V5 V6

V7V8

Side 1
Side 2

Side 3

Side 4

Side 1

Side 2

Side 3

Side 4

S2

S1
Road Side 1

Road Side 2

B1

B2

T1

T2

S

S

Side 1
Side 2

Side 3

Side 4

Side 1

Side 2

Side 3

Side 4

S2

S1

I2S1

S2

S3

Fig. 6. Example urban parcel for illustrating learning of proximity re-
lationships (Algorithms 2a, 2b, 2c, and 2d).

© ASCE 04018063-6 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

Polygon Element and Polygon Element
Algorithm 2a is designed to learn proximity relationships
between polygon elements, such as buildings, ponds, fields,
parking lots, and so on. The pseudocode for Algorithm 2a is as
follows:

Input:
Array A containing vertices of polygon 1
Array B containing vertices of polygon 2
Output:
Boolean R - value indicating if A is proximate to B
Int S showing the side ofA towhichB is proximate to; initialized to -1

R ← false
S ← -1
Aappx ← approximated profile of the vertices of A
Bappx ← approximated profile of the vertices of B
SA ← Sides of Aappx and order (anticlockwise/clockwise) of
vertices
½NAB;DAB� ← Nearest Neighbors (A,B) \\ returns a matrix (NAB)
showing vertices of B closest to \\ vertices of A and the
corresponding distance (DAB)
d←minðDABÞ \\ d is the minimum distance between A and B
a←DAB.indexðdÞ. \\ a is the index of the vertex in ArrayA which is
closest to B
b←NAB½a� \\ b is the index of the vertex in Array B which is closest
to A

½NABappx
;DABappx

�←NearestNeighborsðAappx;BappxÞ
dappx ←minðDABappx

Þ
aappx ←DABappx

:indexðdappxÞ
\\ AdjacentVertex: finds indexes of vertices adjacent to vertex with
index a in Array A
½aþ; a−�←AdjacentVertexðA; aÞ
½bþ; b−�←AdjacentVertexðB; bÞ
½aþappx; a−appx�←AdjacentVertexðAappx; aappxÞ
\\ DistanceBetweenLines: finds the shortest distance be line
segments given by the end points given in the arguments
d1 ←Distance Between LinesðA½a-�;A½a�;B½b-�;B½b�Þ
d2 ←Distance Between LinesðA½a�;A½aþ�;B½b-�;B½b�Þ
d3 ←Distance Between LinesðA½a�;A½aþ�;B½b�;B½bþ�Þ
d4 ←Distance Between LinesðA½a-�;A½a�;B½b�;B½bþ�Þ
d←minðd1; d2; d3; d4Þ
if d > THRESHOLD

R← false
return

R← true

\\ FindOverlap: finds projection of polygon B on line segment given
by vertices with indices a− and a
O1 ←FindOve lapðB;Aappx½a-appx�;Aappx½aappx�Þ
O2 ←FindOverlapðB;Aappx½Aappx�;Aappx½aþappx�Þ
\\ ExtractSide: finds the side of the array S A having vertices with
indices a−appx and aappx
if O1 > O2

S←ExtractSide SA;Aappx½a−appx�;Aappx½aappx�
else if O2 > O1

S←ExtractSide ðSA;Aappx½aappx�;Aappx½aþappx�Þ
else

return

Algorithm 2a starts by identifying the vertexes (a, b) of the two
polygon elements which are the closest to each other. Then the
sides adjacent to these two vertexes are used to calculate the dis-
tance between the two polygon elements and identify the side of
one polygon element to which the other polygon element is proxi-
mate. If the distance between the two polygon elements is
less than the threshold, the algorithm proceeds forward and finds
the appropriate sides; otherwise it returns the default values
(false, −1). The side of polygon element A to which polygon
element B is proximate is determined by projecting the polygon
element B on the two adjacent sides of A given by ðAappx½a−appx�;
Aappx½aappx�Þ and ðAappx½aappx�;Aappx½aþappx�Þ and by selecting the
side that has a larger projection of B. This is because the
projection of B on a side of A is a proxy for calculating the por-
tion of B which faces that side of A. If perpendiculars are drawn
from the vertices of end points of the side of A toward B, a higher
projection would mean that a larger portion of building B lies
between the two perpendiculars. The polygon elements A and B
here are interchangeable and thus the same algorithm would
also give the side of B to which A is proximate. Specifically, the
FindOverlap function to calculate projection of polygon element
on one side of another polygon element in the pseudocode works
as follows.

The vector equation of the side using the vertexes is denoted as

r ¼ aþ tðb − aÞ ¼ aþ tv ð6Þ

where v ¼ b − a, where a and b are the vertexes of the side
(given as vectors); and t = scaling parameter. The equation of
a linear element which is perpendicular to Side ab and passes
through a vertex (e.g., p1) of the polygon element can be
expressed as

r1 ¼ p1 þ t1v 0 ð7Þ

where t1 = scaling parameter and v 0 = vector perpendicular
to v. The point of intersection of r and r1 is found, which gives
a unique value of t. If 0 < t < 1, the vertex or intersection lies
on Side ab. Therefore, the projection of vertex p1 on Side ab
is given by i1 ¼ t. Similarly, for other vertexes p2;p3; : : : ;pn
of the polygon element, the projections i2; i3; : : : ; in, could
be calculated. Let maxp ¼ maxði2; i3; : : : ; inÞ and min p ¼
min ði2; i3; : : : ; inÞ; the projection of the polygon element on
Side ab is defined as intersection of [minp;maxp] with [0, 1] and
is given by ordered interval I.

Fig. 6 shows the sides identified for polygon elements B1

and B2 for the urban context. In this example, the pair (a, b)
as per Algorithm 2a is (V4, V5). The two vertexes adjacent to
V4 are V1 and V3 and the two vertices adjacent to V5 are V6

and V8. Therefore, the polygon element B2 can be either on
Side 4 or Side 1 of polygon element B1 and polygon element B1

can be either on Side 1 or Side 2 of polygon element B2. If the
minimum distance between these two pairs of lines segments is
less than the user-defined threshold, the projection of the polygon
element B2 on Side 4 of polygon element B1 is less than 1. Sim-
ilarly, the projection of polygon element B2 on Side 1 of polygon
element B1 is 0. Therefore, it is concluded that the polygon
element B2 is proximate to the Side 4 of polygon element B1

and polygon element B1 is proximate to Side 2 of polygon
element B2.

Linear Element and Polygon Element
Algorithm 2b is designed to learn proximity relationships between
linear elements (such as roads, pipelines, and rivers) and polygon

© ASCE 04018063-7 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

elements. If the linear elements are not straight, the segmented
straight lines are used instead. The pseudocode for Algorithm 2b is

Input:
Array S containing endpoints of segments of the linear element
Array A containing vertices of the polygon element
Output:
Boolean R showing whether a segment of S is proximate to A
Array Ps showing the end points of segment of S to which A is
proximate

Shortest distance d between S and A
Side RA of A on which S is located
Side RS of S on which A is located

R← false
CA ← centroid of the vertices of A
dmin ← 100
si ← 0
\\ Following loop finds the segments of linear element which are
closest to A
for i← 0 to lengthðSÞ − 1

t← distanceðCA; S½i�Þ
if t < dmin

dmin ← t
si ← i

if Si ¼ lengthðSÞ − 1
Sr ← ½S½si − 1�; S½si��

else if Si ¼ 0
Sr ← ½S½si�; S½si þ 1��

else
Sr ← ½S½si − 1�; S½si�; S½si þ 1��

Aappx ←approximate profile of the vertices of A
SA Sides of Aappx and order (anticlockwise/clockwise) of vertices
½NAS;DAS�←NearestNeighborsðA; SÞ\\ return a matrix showing
point in S closest to every vertex of A and the corresponding
distance
d←minðDASÞ
a←DAS:indexðdÞ
s←NAS½a�
½NASappx ;DASappx �←NearestNeighborsðAappx; SÞ
dappx ←minðDASappxÞ
aappx ←DASappx :indexðdappxÞ½aþ; a−�←AdjacentVertexðA; aÞ
½aþappx; a−appx�←AdjacentVertexðAappx; aappxÞ
if lengthðSrÞ ¼ 2

½s−; s�← ½0; 1�
d1 ←Distance Between LinesðA½a−�;A½a�; S½s−�; S½s�Þ
d2 ←Distance Between LinesðA½a�;A½aþ�; S½s−�; S½s�Þ
d←minðd1; d2Þ
if d > THRESHOLD

return
R← true
O1 ←FindOverlapðSr;Aappx½a−appx�;Aappx½aappx�Þ
O2 ←FindOverlapðSr;Aappx½aappx�;Aappx½aþappx�Þ
if O1 > O2

RA ←ExtractSideðSA;Aappx½a−appx�;Aappx½aappx�Þ
else if O2 > O1

RA ←ExtractSideðSA;Aappx½aappx�;Aappx½aþappx�Þ
else

return
else

½sþ; s−�←AdjacentVertexðS; sÞ

d1 ←DistanceBetween LinesðA½a−�;A½a�; S½s−�; S½s�Þ
d2 ←DistanceBetween LinesðA½a�;A½aþ�; S½s−�; S½s�Þ
d3 ←DistanceBetween LinesðA½a�;A½aþ�; S½s�; S½sþ�Þ
d4 ←DistanceBetween LinesðA½a−�;A½a�; S½s�; S½sþ�Þ
d←minðd1; d2; d3; d4Þ
di ← ½d1; d2; d3; d4�:indexðdÞ
if di ¼ 0 or di ¼ 1

Ps ← ½S½s−�; S½s��
else

Ps ← ½S½s�; S½sþ��
if d > THRESHOLD

return
R← true
O1 ← FindOverlapðSr;Aappx½a−appx�;Aappx½aappx�Þ
O2 ← FindOverlapðSr;Aappx½aappx�;Aappx½aþappx�Þ
if O1 > O2

RA ←ExtractSideðSA;Aappx½a−appx�;Aappx½aappx�Þ
else if O2 > O1

RA ←ExtractSideðSA;Aappx½aappx�;Aappx½aþappx�Þ
else

return
G(x,y) ← equation of line representing s− and s (Eq. 5)
if GðCAx

;CAy
Þ > 0

RS ← 1
else if GðCAx

;CAy
Þ< 0

RS ← 2

The coordinates of segmented lines are represented as an array
which contains the end points of the segment in order. Algorithm 2b
starts by identifying the end points in the array which are closest to
the polygon element. This serves as a preliminary test to select two
segments of the linear element which could be closest to the poly-
gon element. After the two segments have been identified, the al-
gorithm finds the vertex of the polygon element which is closest to
the identified segments. The shortest distance between the seg-
ments and the two adjacent sides of the identified vertex is calcu-
lated, and if this distance is more than the threshold, the algorithm
ends. If the distance is less than the threshold, the projection of the
two segments of the linear element on the two adjacent sides of
the polygon (to the vertex identified previously) is calculated. The
side of the polygon which has the larger projection is then defined
to be proximate to the corresponding segment of the linear segment.
Using the center of the polygon, the position of the polygon
element with respect to the segment of the linear element is also
identified. With respect to the example being discussed, the linear
element R1 consists of two segments with three vertices (Table 4).

For the urban context example in Fig. 6, it is clear that the seg-
ment between S1-S2 has the shortest distance to the center of poly-
gon element B1 (vertex V2 being the vertex closest to S1-S2); I2 is
the point of intersection of perpendicular from V2 on R1; and the
projection of S1-S2 on Side 2 is greater than its projection on Side 1.
Therefore, segment S1-S2 of the linear element R1 is proximate to
Side 2 of the polygon element B1, and the distance between I2 and
V2 represents the distance between the polygon element B1 and the
linear element R1 (Fig. 6).

Table 4. Array of coordinates for one linear element segmented into two
straight lines

End point name Array value

S1 ½S1x; S1y�
S2 ½S2x; S2y�
S3 ½S3x; S3y�

© ASCE 04018063-8 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

Point Element and Polygon Element
Algorithm 2c is designed to learn proximity relationships between
point elements (e.g., trees, sensors, and traffic lights) and polygon
elements. The pseudocode for Algorithm 2c is

Input:
Vector P containing coordinates of the point element
Array A containing vertices of the polygon element
Output:
Boolean R showing whether P and A are proximate
Shortest distance d between P and A
Side RA of A on which P is located

d← 0
Aappx ← approximate profile of the vertices of A
SA ← Sides of Aappx and order ðanticlockwise=clockwiseÞ
of vertices

for i← 0 to lengthðAÞ − 1
t← distanceðP;AÞ
if t < dmin

dmin ← t
a← i

½aþ; a−�←AdjacentVertexðA; aÞ
for i← 0 to lengthðAappxÞ − 1

t← distanceðP;AappxÞ
if t < dmin

dmin ← t
aappx ← i

½aþappx; a−appx�←AdjacentVertexðAappx; aappxÞ
½aþappx; a−appx�←AdjacentVertexðAappx; aappxÞ
RA ←ExtractSideðSA;Aappx½a−appx�;Aappx½aappx�Þ
\\ DistancePointLine: gives the shortest distance between a line
segment and a point P
d1 ←DistancePointLineðP;A½a−�;A½a�Þ
d2 ←DistancePointLineðP;A½a�;A½aþ�Þ
d←minðd1; d2Þ
if d > THRESHOLD

return
\\ ProjectPointLine: give an integer showing the location of
projection of a point P on a line segment given by two end points
R← true
p1 ←ProjectPointLineðP;Aappx½a−appx�;Aappx½aappx�Þ
p2 ←ProjectPointLineðP;Aappx½aappx�;Aappx½aþappx�Þ
if 0 < p1 < 1

RA ←ExtractSideðSA;Aappx½a−appx�;Aappx½aappx�Þ
else if 0 < p2 < 1

RA ←ExtractSideðSA;Aappx½aappx�;Aappx½aþappx�Þ
else

R← false
RA ← − 1 \\The value -1 denotes that the point is proximate
to both the sides

Algorithm 2c first identifies the vertex of the polygon element
which is closest to the point element. The adjacent two sides are
then used to calculate the shortest distance between the point
element and the polygon element. The projections of the point
on both sides are calculated and the side for which projection is
between 0 and 1 is selected as the side of A that is proximate
to the point element. If the projection is outside this range for both
sides, then the point element is proximate to both sides (adjacent to
the closest vertex) of the polygon element. In Fig. 6, the point

element T1 is proximate to Side 1 of the polygon element B1

and the point element T2 is proximate to both Side 1 and Side
2 of the polygon element B2.

Linear Element to Linear Element
Algorithm 2d is designed to learn proximity relationships between
linear elements. The pseudocode for the Algorithm 2d is

Input:
Array L1 showing points of segments of a linear element
Array L2 showing points of segments of second linear element

Output:
Array S containing segments of L2 which are closest to segments of
L1(only if the distance is within the user defined threshold)
Array Ls containing side of L1 on which closest segments of L2 are
located

for i← 0 to lengthðL1Þ − 1
d← 0
for j← 0 to lengthðL2Þ − 1

t←Distance BetweenLinesðL1½i�;L2½j�Þ
if t < d
d← t

if d > THRESHOLD
return

else if d ¼ 0
Ls½i� ¼ 0 \\ line segments intersect

else
S½i�←L2½j�

\\ find the side of Ls on which A is located
Gðx; yÞ← equation of line representing segment
L1½i�½0� and L1½i�½1�ðEq: 5Þ
if GðL2½j�½0�x;L2½j�½0�yÞ > 0

Ls1½i�← 1
else if GðL2½j�½0�x;L2½j�½0�yÞ < 0

Ls1½i�← 2

For every segment of linear element L1, the algorithm searches
all the segments of linear element L2 and determines the one that is
closest to that segment of L1. If the distance between them is within
the predefined threshold, the two segments are proximate to
each other.

Point Element to Linear/Point Element
The learning of proximity relationships between point elements and
linear elements is similar to how the DistancePointLine and Proj-
ectPointLine functions in section “Point Element and Polygon
Element” work. For the urban context example in Fig. 6, it can
be calculated that the point element T1 is proximate to Side 1
of linear element R1. The learning of proximity relationships be-
tween point elements is done by simply calculating the Euclidean
distances using the point coordinates.

Data Reconstruction in Graph (Step 3)

A graph-based structure composed of nodes and directed edges is
proposed. Each node represents an element and has attributes to
represent properties (e.g., age, height, and area) and time-series
data (e.g., electricity usage each hour). Each directed edge has
attributes such as numeric distance to represent proximity relation-
ship between elements. Fig. 7 illustrates the graph representation of
eight elements comprising four classes (building, road, tree, and
sensor) for the example in Fig. 6. In Fig. 7, B1 and B2 are two
nodes connected by directed edges. Their proximity relationship

© ASCE 04018063-9 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

can be delineated as polygon element B1 is proximate to Side 4 of
polygon element B2 of the same system and polygon element B2 is
proximate to Side 2 of polygon element B1. Both B1 and B2 are
proximate to linear element R1 and are on the same side of it.
The point element T1 is proximate to B1, whereas T2 is proximate
to two sides of B2. The graph representation of all the elements in
this node-edge combination clearly shows how the elements are
proximate to each other and how the graph integrates them without
bringing in any task specific bias or assumptions. As a result, the
graph representation enables a consistent basis for understanding
and querying data for specific urban analytical applications.

Particularly, some elements (e.g., sensors) might have both
static (e.g., precision and manufacturer) and dynamic (e.g., time-
series sensing data) properties with different time scales (e.g., daily
and monthly). In order to deal with such elements, the proposed
UDI framework includes a hierarchical time structure to store urban
data with different time scales ranging from year to second. For
example, there are two point elements (e.g., sensors) with measure-
ments of different time scales in Table 5.

The time tree for these two point elements is shown in Fig. 8.
All the possible time scales are represented by a hierarchical tree

whose nodes can then be connected to elements with measurements
as the properties of edges. This time tree–based representation
is organized such that various urban data streams with differing
time scales (sampling frequencies) can be linked and analyzed.
More importantly, when new data become available (e.g., installa-
tion of new traffic sensors) or the time scales of existing data sour-
ces change (e.g., upgrading of energy meters to smart meters), it is
easy to connect them to the existing time tree and continue the
process of integrating them with other urban data streams. Further
depending on the specific application requirements, the data of dif-
ferent scales could be either converted to other scales or kept with
the original scales.

Once all urban data are integrated and stored in the graph rep-
resentation, the node-edge data structure makes it convenient and
efficient to design, formulate, and execute queries for data explo-
ration and retrieval. In this paper, Cypher (Vukotic et al. 2014) is
used to complete this process. Cypher is a graph query language
designed to be self-explanatory and declarative. It focuses on
the clarity of expressing what to retrieve from a graph, and its con-
structs are based on English prose and compact iconography that in
turn make queries more self-explanatory (Miller 2013). For exam-
ple, in order to include other buildings that are proximate to target
Building A for urban heat island analysis, municipal officials only
need to list the elements and their relationships using simple
expressions such as (A: buildings)-[proximate to]-(all: buildings),
return all. Cypher traverses the graph, finds all the matched ele-
ments, returns the buildings that are proximate to the target Build-
ing A. In addition to data retrieval, reconstructing urban data based
on proximity relationships and representing them in graphs make it
flexible and expressive to update the existing graph with new data
streams and/or elements. The graph is extensible to multiple urban
systems and scalable to the variations of data availabilities because
the new data can be easily connected with graph structure by prox-
imity relationships. Specifically, to link another element to the
existing data, a node needs to be added to the graph with edges
determined by the proposed learning framework. Similarly, an
element can be removed by deleting the corresponding node on
the graph and the edges starting from or ending at that node without
affecting how the remaining data functions.

Case Study: Palo Alto, California

In order to illustrate the performance and effectiveness of the UDI
framework, a real-world case study was conducted for the city of
Palo Alto, a midsize city in the west of the United States. A 1-km2

study area was selected (Fig. 9) for the implementation of UDI.
In this area, data were available for four urban systems: buildings
(polygon elements), roads (linear elements), vegetation (point ele-
ments), and sensors (point elements with measurements of different
time scales). Specifically, sensors in the case study consisted of two
types: Type I is Array of Things (AoT)-type sensors (AoT 2018)
that monitor the status of the urban environment (including atmos-
pheric pressure, temperature, relative humidity, sound intensity,
and vehicle count); Type II is smart meters which are installed in
buildings to record the energy consumption, including gas and
electricity.

Proximity Relationship Learning

The algorithms for learning the proximity relationships were
applied to the data available for this case study area. Details
of two building elements are presented in Fig. 10(a) to better
illustrate their spatial relationships with other urban elements.
Building27509 (27509 is a unique identifier) is proximate to

B1T2

B2

R1

T1

R2

Side 2

Side 2

S
ide 1

S
id

e
3

Side 4
Side 2

TS

S2

has_
se

nso
r

has_sensor

has_ts

has_ts

Road Side 1

Road Side 1

R
oa

d
S

id
e

1

R
oa

d
S

id
e

1

Side 3

S1

Side 1

B
T
R

Building (Polygonal Element)
Tree (Point Element)
Road (Linear Element)
Traffic Sensor (Point Element)

T

Building Smart Meter (Point Element)S
TS

Fig. 7. Graph representation for urban context example (Fig. 6) and
their proximity relationships.

2

3

2017
14

13

5

11

12

9

10

S1

TS

Month_Of

Month_Of

Day_Of

Day_Of

Day_Of

Hour_Of

Hour_Of

Minute_Of

Minute_Of 74

80

30

22

Fig. 8. Time tree constructed to integrate elements with different time
scales.

Table 5. Data with different time granularities from two types of sensors

Point element Time (yyyy-mm-dd HH-MM) Value

TS (traffic sensor)
Granularity = Minute

2017-02-13 12-09 74°F
2017-02-13 12-10 80°F

S1 (building smart meter)
Granularity = Day

2017-02-13 22 kWh
2017-02-14 30 kWh

© ASCE 04018063-10 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

Side_1 of Road117394 and three tree elements. This building is
also proximate to three other building elements. Similarly,
Building27498 is proximate to Side_2 of Building27509 and has
a spatial relationship with the Side_1 of Road 117394. All the in-
formation concluded from implementing the proposed algorithms is
consistent with the information acquired from a real map visualiza-
tion [Fig. 10(b)] and thus demonstrates the effectiveness and accu-
racy of the proximity relationship learning framework.

In addition, the time-tree structure was constructed to integrate
data with different time scales. When values are converted between
different time scales, there are two types of conversions: (1) conver-
sion of values of measurement from the larger time scale to the
smaller time scale; and (2) conversion of values of measurement
from the smaller time scale to the larger time scale. In the first case,
the values are either divided equally to the smaller time scale from

the larger time scale (e.g., electricity consumption) or the same
value of the larger time scale is applied to the smaller time scale
(e.g., indoor temperature) depending upon the nature of measure-
ment. In the second case, the values from smaller time scale to the
larger time scale are calculated by either adding the values of
smaller time scale to the larger time scale (e.g., electricity consump-
tion) or using an average (e.g., indoor temperature), which again
depends upon the nature of the measurement.

For example, buildings have energy data collected every hour
and temperature data collected every second. If the smallest time
scale (second) is required for analysis, the hourly building energy
data are equally divided by 3,600 to represent the value per second
(Table 6), whereas there is no need to convert the temperature values
because they were recorded at the seconds time scale. If the minute
time scale is the required for analysis, the hourly energy data are
equally divided by 60, whereas the temperature data per second
are averaged for each minute (Table 7). We used this simple method
to reconcile the time-scales and note that evenly distributing total
consumption across smaller time scales removes the time-variance

Roa
d1

17
39

4

Side 4

Si
de

 1

Side 2

Si
de

 3

Building27509

Building27506 Building34692

Building27498Tree31385

Tree31384

Tree31383

Road117394

Side_4

S
ide_2

Si
de

_3

Side_2

Side_4

Side_4

Side_1

Side_2

Side_3

S
id

e_
1

Side_1

Side
_1

Sid
e_

1

Sid
e_

1

Side_4

(a) (b)

Building27509

Building27498

Building34692

Building27506

Background Map: © 2018, OpenStreetMap.org contributors - License

Fig. 10. (a) Details of two building elements and their proximity relationships with other elements; and (b) corresponding locations on actual map
visualization (map data © 2018 OpenStreetMap contributors).

Background Map: © 2018, OpenStreetMap.org contributors - License

Fig. 9. Case study area randomly selected in city of Palo Alto,
California. (Map data © 2018 OpenStreetMap contributors.)

Table 6. Data returned with seconds scale by time tree of UDI framework

Building name
Time

(dd-mm-yyyy HH:MM:SS)
Energy

value (Wh)
Temperature
value (°F)

Building27508 13-02-2017 12:02:01 0.23 73.0
13-02-2017 12:02:02 0.23 73.2
13-02-2017 12:02:03 0.23 72.9
13-02-2017 12:02:04 0.23 73.7
13-02-2017 12:02:05 0.23 72.4
13-02-2017 12:02:06 0.23 73.0
13-02-2017 12:02:07 0.23 73.7

Building27506 14-02-2017 14:45:00 0.28 77.2
14-02-2017 14:45:01 0.28 76.7
14-02-2017 14:45:02 0.28 77.8
14-02-2017 14:45:03 0.28 77.4
14-02-2017 14:45:04 0.28 76.9
14-02-2017 14:45:05 0.28 76.2
14-02-2017 14:45:06 0.28 77.5

© ASCE 04018063-11 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

aspects at the lower time scale. This method is meant to be illus-
trative in nature; users can use domain-specific models if they wish
to preserve time-variance aspects and eliminate the assumption of
uniform consumption at the lower time scale. For example, users
could use a typical energy load curve for the specified building type
to distribute total consumption at smaller time scales.

Data Querying and Retrieval

The UDI framework aims to provide an easily interpretable and
straightforward way for municipal officials with minimal experi-
ence and knowledge of databases to understand and query urban
data for further analysis. The graph representation of urban data
is intended to simplify the data query design and formulation process

and reduce the amount of time investment necessary to conduct
analysis. To illustrate the interpretability and computational effi-
ciency of the UDI framework, this paper explores an example of
an urban analytics application and benchmarks the performance
of the UDI framework against an existing data management method
(i.e., a relational database). In this example, it is assumed that
municipal officials aim to explore the mutual influences between
outside temperature and building energy consumption. They want
to eliminate the effects of vehicles passing by the buildings, which
could cause disturbances to the thermal environment and tempera-
ture. In addition, they want to consistently compare buildings and
minimize the confounding effects of shading from trees on energy
consumption.

In order to perform this analytical query, the following data
should be appropriately retrieved: “energy consumption data of
buildings from Type II smart meters and temperature values from
Type I temperature sensors proximate to these buildings, on the
condition that the buildings have at least four proximate trees of
type oak, when the Type I traffic sensors show no vehicles around
the buildings.” In a traditional data management setting, the data are
stored in a relational database as tables (Table 8), whereas in the
proposed UDI framework the data are stored in a graph.

First, Structured Query Language (SQL) queries were designed
to retrieve the appropriate data for the analytics example using a
traditional relational database. Particularly, this query involves cre-
ating and executing seven complex joins across multiple tables:

SELECT AOT.Time, b_select.building_name INTO time_values
FROM Building_relationships as br2
JOIN (SELECT b.building_name

FROM Buildings AS b
JOIN Building_Relationships AS br

ON b.building_name = br.building_name
AND br.proximate_object_type=“Tree”

JOIN Trees AS t
ON t.tree_name=br.proximate_object_name
AND t.tree_type = “Oak”

GROUP BY building_name
HAVING COUNT(*) >= 5) AS b_select

ON b_select.building_name = br2.building_name
AND br2.proximate_object_type=‘AOT’

JOIN AOT_Vehicle_Sensor as AOT
ON br2.proximate_object_name=AOT.sensor_name
AND AOT.sensor_value=FALSE

SELECT * INTO br_new
FROM time_values AS tv
JOIN Building_Relationships AS br3

ON tv.building_name = br3.building_name

SELECT r2.building_name AS bn, MONTH(r2.sensor_time) AS m, YEAR(r2.sensor_time) AS y, DAY(r2.sensor_time) AS d,
HOUR(r2.sensor_time) AS h, MINUTE(r2.sensor_time) AS min, r2.values as val
INTO Energy_Data
FROM (SELECT r1.building_name, r1.sensor_time, Energy.electricity_use INTO r2

FROM (SELECT * FROM br_new WHERE br_new.proximate_object_type=“Energy_sensor”) AS r1
JOIN Smart_Meter AS Energy

ON r1.proximate_object_name=Energy.sensor_name
AND MONTH(r1.sensor_time)= MONTH(Energy.sensor_time)
AND DAY(r1.sensor_time)= DAY(Energy.sensor_time)
AND YEAR(r1.sensor_time)= YEAR(Energy.sensor_time)
AND HOUR(r1.sensor_time)=HOUR(Energy.sensor_time))

ORDER BY r2.building_name, YEAR(r2.sensor_time), MONTH(r2.sensor_time), DAY(r2.sensor_time), HOUR(r2.sensor_time),
MINUTE(r2.sensor_time)

Table 7. Data returned with minutes scale by time tree of UDI framework

Building name
Time

(dd-mm-yyyy HH:MM)
Energy

value (Wh)
Temperature
value (°F)

Building27509 13-02-2017 12:02 14 73
13-02-2017 12:04 14 74
13-02-2017 12:05 14 75

Building27506 14-02-2017 14:45 17 77
14-02-2017 14:47 17 77
14-02-2017 14:48 17 78
14-02-2017 14:49 17 77

© ASCE 04018063-12 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

SELECT r4.building_name AS bn, MONTH(r4.sensor_time) AS m, YEAR(r4.sensor_time) AS y, DAY(r4.sensor_time) AS d,
HOUR(r4.sensor_time) AS h, MINUTE(r4.sensor_time) as min, AVG(r4.values) as average
INTO Temperature_Data
FROM (SELECT r3.building_name,Temp.sensor_time, Temp.sensor_value INTO r4

FROM (SELECT * FROM br_new where br_new.proximate_object_type=“Temp_sensor”) AS r3
JOIN AOT_Temperature_Sensor AS Temp

ON r1.proximate_object_name=Temp.sensor_name
AND MONTH(r3.sensor_time)= MONTH(Temp.sensor_time)
AND DAY(r3.sensor_time)= DAY(Temp.sensor_time)
AND YEAR(r3.sensor_time)= YEAR(Temp.sensor_time)
AND HOUR(r3.sensor_time)=HOUR(Temp.sensor_time)
AND MINUTE(r3.sensor_time)=MINUTE(Temp.sensor_time))

GROUP BY r4.building_name, YEAR(r4.sensor_time), MONTH(r4.sensor_time), DAY(r4.sensor_time), HOUR(r4.sensor_time),
MINUTE(r4.sensor_time)

As a result,

MATCH (s1: AoT {type: “I”, name: “Traffic”}) – [p1: ProximateTo] -> (b: Building) <- [p2: ProximateTo] – (s2: AoT {type: “I”, name:
“Temperature”})
WHERE p1.value <= threshold AND p2.value <= threshold
WITH s1, s2, p1, p2, b
MATCH (s1) – [v1: Value] -> (m: Minute) – [: Contains] -> (s: Second) <- [v2: Value] – (s2)
WHERE v1= 1
WITH s1, s2, p1, p2, b, m, s, v1, v2
MATCH (s3: Meter {type: “II”, name: “SmartMeter”}) – [:LocatedIn] -> (b) <- [p3: ProximateTo] – (t: Tree {type: “Oak”})
WHERE p3.value <= threshold
WITH s1, s2, s3, p1, p2, p3, b, m, s, v1, v2
MATCH (s3) – [v3: Value] -> (h: Hour) – [: Contains] -> (m)
UNWIND COLLECT(h.name)
WITH s1, s2, s3, p1, p2, p3, b, h, m, s, v1, v2, v3
RETURN h.name, v3.value, avg(v2.value)

It is clear from this comparison that the design and formulation
of SQL queries for relational databases is relatively more compli-
cated and requires expert knowledge and experience to execute.
Municipal officials in general do not have the required expertise
and/or time to design lengthy queries. As a result, they require
more-intuitive means of querying data. Moreover, the SQL queries
are not reproducible, which leads to a large amount of unnecessary
repeated efforts. In contrast, the design and formulation of queries
using Cypher are intuitive because they describe elements and their
relationships. Only slight modifications to the queries are required
when data availability changes or the metadata schema varies.

The second comparison is with respect to the computational per-
formances between the UDI framework and traditional relational
database. The magnitude of time complexity is used as the metric
for this comparative analysis. In a relational database, all the ele-
ments in the joint tables have to be searched for each target element,
which exponentially increases the time complexity. In contrast, in a
graph database the proximate elements to be searched are simply
the ones connected to the target elements in the graph. As a result,
the time complexity of the SQL query is O½nc × nb × nbr × nt ×
ðne þ ntempÞ� (Table 8 defines the variables), which can be approxi-
mated as Oðn5Þ, and the complexity of executing the Cypher
query is OðntÞ þOðncÞ þOðneÞ þOðntempÞ, which can be ap-
proximated as OðnÞ. Appendixes I and II provide details on
how the time complexity of the SQL query and the Cypher query
were computed. The complexity calculation for the SQL query on
relational database management system (RDBMS) would be sen-
sitive to the schema of the SQL database. However, the high time

Table 8. Metadata of tables in relational database

Attribute name Data type

Building relationships (nbr rows)a

building_name String
proximate_object_type String
proximate_object_name String
proximate_object_distance Float

Smart meter (ne rows)b

sensor_name String
Time YYYY-MM-DD HH
electricity_use Float

AOT vehicle sensor (nc rows)c

sensor_name String
Time YYYY-MM-DD HH:MM
sensor_value Binary
AOT temperature sensor (ntemp rows)d

sensor_name String
Time YYYY-MM-DD HH:MM:SS
sensor_value Float

Buildings (nb rows)e

building_name String
Trees (nt rows)

f

tree_name String
tree_type String
aProximity relationships of elements.
bValues of smart meters for building energy consumption.
cValues of vehicle sensors to monitor whether vehicles are present.
dValues of temperature sensors proximate to buildings.
eProperties of buildings.
fProperties of trees.

© ASCE 04018063-13 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

complexity of SQL queries would still hold true because it involves
the execution of joins between tables, which are expensive. The
graph database eliminates the need for expensive joins, and this
difference in time complexities in turn gets magnified when the
number of nested joins increases in corresponding SQL queries.
Therefore, along with the simplified design and formulation of
queries, reconstructing urban data based on proximity relationships
and storing them in a graph database can enable faster executions of
queries and data retrieval compared with data management using a
relational database. This is especially important for urban analytics
applications, because often the queries are explorative in nature and
thus require numerous iterations and combinations to be run.

Limitations and Future Work

Although the proposed UDI framework addresses several gaps in
the urban data management literature, it has several limitations that
could be addressed in future work. First, the graph representation is
designed for individual elements and their relationships because it
is not practical and feasible to visualize and analyze all elements in
the entire urban area simultaneously. Future work could begin to
overcome this limitation by developing clustering methods to clas-
sify urban elements into meaningful classes based on the patterns
and properties of their proximity relationships. Integration of UDI
with some well-established geographic concepts such as geo-atom
(Goodchile et al. 2007) could be explored for better representing
the hierarchical proximity relationships among urban elements and
improving analysis and visualization. This would enable groups
of elements to be represented in the graph database structure and
facilitate analysis across multiple element groups. A second limi-
tation is that the proposed framework is only able to infer two-
dimensional (2D) proximity relationships in urban data, and thus
ignores the vertical dimension of a city. Although this is a simpli-
fication of the proximity inference problem potentially resulting
in false positives, learning the 2D relationship represents a strong
first step in the urban data integration process, and future work
could extend this work to incorporate vertical context in a three-
dimensional (3D) proximity relationship algorithm. As with most
data-driven based research, the UDI framework could benefit from
further validation. This paper used data from a typical midsize city
in the United States (Palo Alto, California) to validate the frame-
work, but future work should extend this validation to larger, more
complex urban environments both in the United States (e.g., San
Francisco and New York) and internationally (e.g., London,
Beijing, Rio de Janeiro, and Mumbai). Additionally, further data
could be collected on the usability and interpretability aspects of
the proposed framework through surveys and interviews of users.
Doing so would enable deeper insights into how users utilize and
interpret queries in the UDI framework and would further corrobo-
rate the query length/syntax analysis undertaken in this work.
Lastly, future work could also address many of the practical chal-
lenges of urban data integration and analytics, such as data owner-
ship, control, and privacy, through an interdisciplinary lens that
brings together scholars from governance, ethics, data science,
urban planning, and engineering. Undoubtedly, these complex is-
sues will need to be resolved to enable adoption of the UDI frame-
work and/or other smart city analytical frameworks.

Conclusions

Data are increasingly becoming available on urban systems.
Municipal officials, policy makers, and engineers are eager to
adopt more data analytical approaches to uncover insights into

sustainable urban planning and operations but face a major chal-
lenge in how to integrate spatially, temporally, and typologically
heterogeneous urban data streams. The objective of this paper was
to propose an urban data integration framework that is capable of
integrating heterogeneous urban data in an extensible, scalable, and
interpretable manner. The merits, applicability, and efficacy of the
UDI framework was demonstrated on data from a midsize city in
the United States (Palo Alto, California) and benchmarked against
current practice (e.g., a relational database) for a typical urban
analytics scenario. Results indicated that using the UDI framework
enabled more-interpretable and computationally efficient data
querying and exploration. In the end, by bridging the gap between
currently disparate urban data streams, the UDI framework aims to
provide a computational foundation in which smart city applica-
tions and data-driven approaches can be developed for cities. With
the world rapidly urbanizing, new computational approaches to
urban system design, management, and operations have the oppor-
tunity to make a tremendous impact on the lives of billions of peo-
ple around the world.

Appendix I. Time Complexity of SQL Query

The approximated time complexity of executing the SQL based
query for example in section “Data Querying and Retrieval” is
calculated as follows:

Step 1. A loop is run on the buildings table. The complexity
is OðnbÞ:

Step 1.1. For each building in buildings table, rows in the
Building_Relationships table with object type = tree are
found. The complexity is OðnbrÞ:

Step 1.1.1. For each row selected in Step 1.1, the
corresponding tree type from trees table is checked.
The complexity is OðntÞ;
Step 1.1.2. If the tree type is oak, the corresponding
row in the Building_Relationships table is returned;
Step 1.1.3. All the rows with tree type of oak are re-
turned. If the number of rows returned is greater than
four, the process is continued. Otherwise, the execu-
tion jumps to the next building;
Step 1.1.4. For the building selected in Step 1.1.2, all
the rows in the building relations table with object
type other than tree are selected;

Step 1.2. The result of this part of the query is a table for
buildings with at least four trees of type oak

Step 2. For the table generated in Step 1.2, the rows with proxi-
mate object type = traffic sensor are selected:

Step 2.1. The corresponding sensor value in the Vehicle_
Sensor Table is checked. The complexity is OðncÞ;
Step 2.2. The time points for which the value is false are
selected and returned;
Step 2.3. The result of this part is a table with building
name and time points which have to be checked;

Step 3. This step retrieves the energy consumption values and
temperature values matching the table generated in Step 2.3:

Step 3.1. The value of energy consumption is returned from
the corresponding sensor type in the Smart_Meter table.
The rows are only selected if the corresponding time points
match the time points determined in Step 2.3. The time
complexity is OðneÞ;
Step 3.2. The value of temperature is returned from temper-
ature sensor table when the time points match the up-
to-the-minute time points determined in Step 2.3. The
complexity is OðntempÞ;

© ASCE 04018063-14 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

Step 1.1 and Step 1.1.1 involve a join between the Building_
Relationships table and the Trees table. The time complexity of this
join operation is given byOðnbr × ntÞ. This result is joined with the
buildings table in Step 1, which gives the resultant complexity of
Oðnb × nbr × ntÞ. After Step 1 calculates the buildings which have
at least five trees of type oak, this result is joined with the AOT_
Temperature_Sensor table to find the time points for which there is
no vehicle detected by the sensor. The resultant time complexity is
given by Oðnc × nb × nbr × ntÞ. Finally, this result is joined with
the Smart_Meter to give the corresponding energy consumption
values and then independently with the AOT_Temperature_Sensor
table to extract the temperature values. The time complexity for
these two joins is given as Oðnc × nb × nbr × nt × neÞ and Oðnc ×
nb × nbr × nt × ntempÞ, respectively. Thus, the final complexity of
executing SQL queries to retrieve data for the given urban analytics
example is O½nc × nb × nbr × nt × ðne þ ntempÞ�, which can be
approximated as Oðn5Þ.

Appendix II. Time Complexity of Cypher Query

In the graph database, all the elements are linked by relationships
and stored in memory. The approximated time complexity of ex-
ecuting the Cypher graph query for example in section “Data
Querying and Retrieval” is calculated as follows:

Step 1. All buildings are traversed. The complexity is Oð1Þ for
reaching each building;
Step 2. For each building, all proximate elements are checked to
find all trees. The complexity is OðntÞ;
Step 3. All trees are traversed to find those with the type oak.
The complexity is Oð1Þ for each tree;

Step 3.1. A count operation is performed to count the number
of oak trees for each building and return the buildings if the
number of oak trees is greater than 4;

Step 4. For the buildings returned in Step 3.1, values of the ve-
hicle sensors are checked. If the value is false, the corresponding
time points are returned. The complexity is OðncÞ:
Step 5. For time points returned in Step 4, the values of building
energy consumption and temperature are also returned:

Step 5.1. For the energy consumption, the graph is traversed
to reach the corresponding smart meter nodes and value re-
lationships to obtain the values. The complexity is OðneÞ;
Step 5.2. For the temperature data, the graph is traversed to
reach the corresponding ambient sensor nodes and value re-
lationships to obtain the values. The complexity is OðntempÞ;

The time complexity of executing Cypher queries to retrieve
data from graph database for the given urban analytics example is:
OðntÞ þOðncÞ þOðneÞ þOðntempÞ, which can be approximated
as OðnÞ.

Acknowledgments

The material presented is based in part upon work supported by
the US National Science Foundation under Grant No. 1642315.
Any questions, findings, and conclusions or recommendations
expressed in the materials are those of the authors and do not ne-
cessarily reflect the views of the National Science Foundation. We
also acknowledge the City of Palo Alto for their support and
participation in this work. In particular, we thank Dr. Jonathan
Reichental (CIO, City of Palo Alto) and Archana Gupta for their
efforts on and support of this research and for providing feedback
on the case study analysis.

References

Aguilera, U., D. López-de-Ipiña, and J. Pérez. 2016. “Collaboration-
centred cities through urban apps based on open and user-generated
data.” Sensors 16 (7): 1022. https://doi.org/10.3390/s16071022.

Aljumaily, H., D. F. Laefer, and D. Cuadra. 2017. “Urban point cloud
mining based on density clustering and MapReduce.” J. Comput. Civ.
Eng. 31 (5): 04017021. https://doi.org/10.1061/(ASCE)CP.1943-5487
.0000674.

AOT (Array of Things). 2018. “Array of Things, a networked urban sensor
project that’s changing our understanding of cities and urban life.”
Accessed March 15, 2018. https://arrayofthings.github.io/.

Balaji, B., A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong,
A. Johansen, J. Koh, J. Ploennigs, and Y. Agarwal. 2016. “Brick:
Towards a unified metadata schema for buildings.” In Proc., ACM
Int. Conf. on Embedded Systems for Energy-Efficient Built Environ-
ments (BuildSys), 41–50. New York: Association for Computing
Machinery.

Bocconi, S., A. Bozzon, A. Psyllidis, C. Titos Bolivar, and G. Houben.
2015. “Social glass: A platform for urban analytics and decision-
making through heterogeneous social data.” In Proc., 24th Int. Conf.
on World Wide Web, 175–178. New York: Association for Computing
Machinery.

Calabrese, F., L. Ferrari, and V. D. Blondel. 2015. “Urban sensing using
mobile phone network data: A survey of research.” ACM Comput.
Surveys 47 (2): 25. https://doi.org/10.1145/2655691.

Castellani Ribeiro, D., H. T. Vo, J. Freire, and C. T. Silva. 2015. “An urban
data profiler.” In Proc., 24th Int. Conf. on World Wide Web, 1389–1394.
New York: Association for Computing Machinery.

Chang, T. H., A. Y. Chen, C. W. Chang, and C. H. Chueh. 2014. “Traffic
speed estimation through data fusion from heterogeneous sources for
first response deployment.” J. Comput. Civ. Eng. 28 (6): 04014018.
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000379.

De Berg, M., M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf. 2000.
“Visibility graphs.” In Computational geometry, 307–317. Berlin:
Springer.

Doraiswamy, H., N. Ferreira, T. Damoulas, J. Freire, and C. T. Silva. 2014.
“Using topological analysis to support event-guided exploration in ur-
ban data.” IEEE Trans. Visual. Comput. Graphics 20 (12): 2634–2643.
https://doi.org/10.1109/TVCG.2014.2346449.

Ferreira, N., J. Poco, H. T. Vo, J. Freire, and C. T. Silva. 2013. “Visual
exploration of big spatio-temporal urban data: A study of New York
City taxi trips.” IEEE Trans. Visual. Comput. Graphics 19 (12):
2149–2158. https://doi.org/10.1109/TVCG.2013.226.

Goodchild, M. F., M. Yuan, and T. J. Cova. 2007. “Towards a general
theory of geographic representation in GIS.” Int. J. Geograph. Inf.
Sci 21 (3): 239–260. https://doi.org/10.1080/13658810600965271.

Gu, Y., and C. Wang. 2013. “iTree: Exploring time-varying data using
indexable tree.” In Proc., Visualization Symp. (PacificVis), 137–144.
Piscataway, NJ: IEEE.

Han, L., T. Finin, C. Parr, J. Sachs, and A. Joshi. 2008. “RDF123: From
spreadsheets to RDF.” In Proc., Int. Semantic Web Conf., 451–466.
New York: Springer.

IBM (International Business Machines). 2012. Smarter, more competitive
cities: Forward-thinking cities are investing in insight today. Somers,
NY: IBM Smarter Cities.

Jain, R. K., J. M. Moura, and C. E. Kontokosta. 2014. “Big data + big cities:
Graph signals of urban air pollution.” IEEE Signal Proc. Mag. 31 (5):
130–136. https://doi.org/10.1109/MSP.2014.2330357.

Kang, T. W., and C. H. Hong. 2013. “The architecture development for the
interoperability between BIM and GIS.” In Proc., 13th Int. Conf. on
Construction Applications of Virtual Reality, 30–31. Middlesbrough,
UK: Teesside Univ.

Karan, E., A. Mohammadpour, and S. Asadi. 2016. “Integrating building
and transportation energy use to design a comprehensive greenhouse
gas mitigation strategy.” Appl. Energy 165: 234–243. https://doi.org/10
.1016/j.apenergy.2015.11.035.

Khan, Z., A. Anjum, and S. L. Kiani. 2013. “Cloud based big data analytics
for smart future cities.” In Proc., 2013 IEEE/ACM 6th Int. Conf. on
Utility and Cloud Computing, 381–386. Piscataway, NJ: IEEE.

© ASCE 04018063-15 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

https://doi.org/10.3390/s16071022
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000674
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000674
https://arrayofthings.github.io/
https://doi.org/10.1145/2655691
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000379
https://doi.org/10.1109/TVCG.2014.2346449
https://doi.org/10.1109/TVCG.2013.226
https://doi.org/10.1080/13658810600965271
https://doi.org/10.1109/MSP.2014.2330357
https://doi.org/10.1016/j.apenergy.2015.11.035
https://doi.org/10.1016/j.apenergy.2015.11.035

Kitchin, R. 2014. “The real-time city? Big data and smart urbanism.”
GeoJournal 79 (1): 1–14. https://doi.org/10.1007/s10708-013-9516-8.

Koperski, K., and J. Han. 1995. “Discovery of spatial association rules
in geographic information databases.” In Proc., Int. Symp. on Spatial
Databases, 47–66. New York: Springer.

Langevin, J., J. Wen, and P. L. Gurian. 2015. “Simulating the human-
building interaction: Development and validation of an agent-based
model of office occupant behaviors.” Build. Environ. 88: 27–45.
https://doi.org/10.1016/j.buildenv.2014.11.037.

Lins, L., J. T. Klosowski, and C. Scheidegger. 2013. “Nanocubes for
real-time exploration of spatiotemporal datasets.” IEEE Trans. Visual.
Comput. Graphics 19 (12): 2456–2465. https://doi.org/10.1109/TVCG
.2013.179.

Lopez, V., S. Kotoulas, M. L. Sbodio, M. Stephenson, A. Gkoulalas-
Divanis, and P. Mac Aonghusa. 2012. “Queriocity: A linked data
platform for urban information management.” In Proc., Int. Semantic
Web Conf., 148–163. New York: Springer.

Lund, P. D., J. Mikkola, and J. Ypya. 2015. “Smart energy system design
for large clean power schemes in urban areas.” J. Cleaner Prod.
103: 437–445. https://doi.org/10.1016/j.jclepro.2014.06.005.

Marique, A. F., S. Cuvellier, A. De Herde, and S. Reiter. 2017. “Assessing
household energy uses: An online interactive tool dedicated to citizens
and local stakeholders.” Energy Build. 151: 418–428. https://doi.org/10
.1016/j.enbuild.2017.06.075.

Miller, E. 1998. “An introduction to the resource description framework.”
J. Lib. Admin. 34 (3–4): 245–255.

Miller, J. J. 2013. “Graph database applications and concepts with Neo4j.”
In Vol. 2324 of Proc., Southern Association for Information Systems
Conf., 36. Atlanta: Southern Association for Information Systems.

Mitchell, W. J. 1990. The logic of architecture: Design, computation, and
cognition. Cambridge, MA: MIT Press.

OGC (Open Geospatial Consortium). 2016. “CityGML.” Accessed
February 15, 2018. https://www.opengeospatial.org/standards/citygml.

O’Rourke, J. 1985. “Finding minimal enclosing boxes.” Int. J. Parallel
Program. 14 (3): 183–199. https://doi.org/10.1007/BF00991005.

Perini, K., and A. Magliocco. 2014. “Effects of vegetation, urban density,
building height, and atmospheric conditions on local temperatures and
thermal comfort.”Urban For. Urban Greening 13 (3): 495–506. https://
doi.org/10.1016/j.ufug.2014.03.003.

Raymond, C. M., G. G. Singh, K. Benessaia, J. R. Bernhardt, J. Levine,
H. Nelson, N. J. Turner, B. Norton, J. Tam, and K. M. Chan. 2013.
“Ecosystem service and beyond: Using multiple metaphors to under-
stand human-environment relationships.” BioScience 63 (7): 536–546.
https://doi.org/10.1525/bio.2013.63.7.7.

Seedah, D. P., C. Choubassi, and F. Leite. 2015. “Ontology for querying
heterogeneous data sources in freight transportation.” J. Comput. Civ.
Eng. 30 (4): 04015069. https://doi.org/10.1061/(ASCE)CP.1943-5487
.0000548.

Servigne, S., Y. Gripay, O. Pinarer, J. Samuel, A. Ozgovde, and J. Jay.
2016. “Heterogeneous sensor data exploration and sustainable declar-
ative monitoring architecture: Application to smart building.” In Vol. 4
of Proc., ISPRS Annals of Photogrammetry, Remote Sensing & Spatial
Information Sciences, 99. Hannover, Germany: International Society
for Photogrammetry and Remote Sensing.

Sheridan, J., and J. Tennison. 2010. “Linking UK government data.”
In Proc., Linked Data on the Web Workshop. Aachen, Germany:
CEUR-WS.

Sinnott, R. O., et al. 2012. “A data-driven urban research environment for
Australia.” In Proc., IEEE 8th Int. Conf. on E-Science (e-Science), 1–8.
Piscataway, NJ: IEEE.

Snyder, J. P. 1987. Map projections: A working manual, Vol. 1395.
Washington, DC: US Government Printing Office.

Sun, G., Y. Wu, R. Liang, and S. Liu. 2013. “A survey of visual analytics
techniques and applications: State-of-the-art research and future chal-
lenges.” J. Comput. Sci. Technol. 28 (5): 852–867. https://doi.org/10
.1007/s11390-013-1383-8.

Sun, Y., and J. Han. 2012. “Mining heterogeneous information networks:
Principles and methodologies.” Synth. Lect. Data Mining Knowl. Dis-
covery 3 (2): 1–159. https://doi.org/10.2200/S00433ED1V01Y20120
7DMK005.

Tollefsen, A. F., H. Strand, and H. Buhaug. 2012. “PRIO-GRID: A unified
spatial data structure.” J. Peace Res. 49 (2): 363–374. https://doi.org/10
.1177/0022343311431287.

United Nations. 2014. “World’s population increasingly urban with more
than half living in urban areas.” Accessed February 15, 2018. http://
www.un.org/en/development/desa/news/population/world-urbanization
-prospects-2014.html.

Van Hove, L. W., C. M. Jacobs, B. G. Heusinkveld, J. A. Elbers, B. L. Van
Driel, and A. A. Holtslag. 2015. “Temporal and spatial variability
of urban heat island and thermal comfort within the Rotterdam agglom-
eration.” Build. Environ. 83: 91–103. https://doi.org/10.1016/j.buildenv
.2014.08.029.

Venetis, P., A. Halevy, J. Madhavan, M. Paşca, W. Shen, F. Wu, G. Miao,
and C. Wu. 2011. “Recovering semantics of tables on the Web.” Proc.
VLDB Endowment 4 (9): 528–538. https://doi.org/10.14778/2002938
.2002939.

Vukotic, A., N. Watt, T. Abedrabbo, D. Fox, and J. Partner. 2014. Neo4j in
Action. Shelter Island, NY: Manning.

Wang, Q., and J. E. Taylor. 2015. “Process map for urban-human mobility
and civil infrastructure data collection using geosocial networking plat-
forms.” J. Comput. Civil Eng. 30 (2): 04015004. https://doi.org/10.1061
/(ASCE)CP.1943-5487.0000469.

Wiemann, S., and L. Bernard. 2016. “Spatial data fusion in spatial data
infrastructures using linked data.” Int. J. Geograph. Inf. Sci. 30 (4):
613–636. https://doi.org/10.1080/13658816.2015.1084420.

Yang, Z., K. Gupta, and R. K. Jain. 2017. “A data integration framework for
urban systems analysis based on geo-relationship learning.” In Proc.,
Int. Workshop on Computing in Civil Engineering, 467–474. Reston,
VA: ASCE.

Yuan, J., Y. Zheng, and X. Xie. 2012. “Discovering regions of different
functions in a city using human mobility and POIs.” In Proc., 18th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
186–194. New York: Association for Computing Machinery.

Zheng, Y. 2015. “Methodologies for cross-domain data fusion: An over-
view.” IEEE Trans. Big Data 1 (1): 16–34. https://doi.org/10.1109
/TBDATA.2015.2465959.

Zheng, Y., H. Zhang, and Y. Yu. 2015. “Detecting collective anomalies
from multiple spatial-temporal datasets across different domains.”
In Vol. 2 of Proc., 23rd SIGSPATIAL Int. Conf. on Advances in Geo-
graphic Information Systems. New York: Association for Computing
Machinery.

Zhu, Y., and J. Ferreira Jr. 2015. “Data integration to create large-scale spa-
tially detailed synthetic populations.” In Planning support systems and
smart cities, 121–141. New York: Springer.

Ziegler, P., and K. R. Dittrich. 2004. “Three decades of data intecration—
All problems solved?” In Building the information society, 3–12.
New York: Springer.

Zielstra, D., H. H. Hochmair, and P. Neis. 2013. “Assessing the effect of
data imports on the completeness of OpenStreetMap—A United States
case study.” Trans. GIS 17 (3): 315–334. https://doi.org/10.1111/tgis
.12037.

© ASCE 04018063-16 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(2): 04018063

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

St
an

fo
rd

 U
ni

ve
rs

ity
 o

n
01

/0
4/

19
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

rig
ht

s r
es

er
ve

d.

https://doi.org/10.1007/s10708-013-9516-8
https://doi.org/10.1016/j.buildenv.2014.11.037
https://doi.org/10.1109/TVCG.2013.179
https://doi.org/10.1109/TVCG.2013.179
https://doi.org/10.1016/j.jclepro.2014.06.005
https://doi.org/10.1016/j.enbuild.2017.06.075
https://doi.org/10.1016/j.enbuild.2017.06.075
https://www.opengeospatial.org/standards/citygml
https://doi.org/10.1007/BF00991005
https://doi.org/10.1016/j.ufug.2014.03.003
https://doi.org/10.1016/j.ufug.2014.03.003
https://doi.org/10.1525/bio.2013.63.7.7
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000548
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000548
https://doi.org/10.1007/s11390-013-1383-8
https://doi.org/10.1007/s11390-013-1383-8
https://doi.org/10.2200/S00433ED1V01Y201207DMK005
https://doi.org/10.2200/S00433ED1V01Y201207DMK005
https://doi.org/10.1177/0022343311431287
https://doi.org/10.1177/0022343311431287
http://www.un.org/en/development/desa/news/population/world-urbanization-prospects-2014.html
http://www.un.org/en/development/desa/news/population/world-urbanization-prospects-2014.html
http://www.un.org/en/development/desa/news/population/world-urbanization-prospects-2014.html
https://doi.org/10.1016/j.buildenv.2014.08.029
https://doi.org/10.1016/j.buildenv.2014.08.029
https://doi.org/10.14778/2002938.2002939
https://doi.org/10.14778/2002938.2002939
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000469
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000469
https://doi.org/10.1080/13658816.2015.1084420
https://doi.org/10.1109/TBDATA.2015.2465959
https://doi.org/10.1109/TBDATA.2015.2465959
https://doi.org/10.1111/tgis.12037
https://doi.org/10.1111/tgis.12037

