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A B S T R A C T

Shifts in forest tree phenology are one of the most important and conspicuous plant responses to climate
variability. However, systematically documenting changes in phenology of individual trees across large areas at
high temporal frequency is often prohibitively labor- and resource-intensive. Here we present a new method that
uses accelerometers to overcome challenges of measuring high-frequency tree phenology in the field.
Accelerometers are small, portable devices that can be attached to trees to record movement due to forcing by
wind. Time series analyses of tree movement data recorded by accelerometers can yield an approximation of tree
mass. Because leaf emergence and leaf drop alter aboveground tree mass, these phenological events are expected
to be detectable from accelerometer data. To test how well accelerometers can be used to measure phenological
dates, we deployed 20 accelerometers on balsam poplar (Populus balsamifera) trees across a variety of sites
during the 2016 growing season and assessed how well phenology derived from accelerometers matched visual
observation of phenology recorded by citizen scientists. We found that accelerometer measurements fit the
theoretical expectation for the seasonal change in tree mass associated with leaf phenology; specifically, an
increase in tree mass in the spring, and a decline in the autumn. Furthermore, we found that accelerometer-
derived phenology matched visual observations for leaf emergence, with a strong correlation between the dates
of first observed full leaves and accelerometer-derived phenology (r=0.82, p < 0.01). Estimates of leaf drop
from accelerometers and visual observations, however, were not significantly correlated (r=0.16, p= 0.69).
Our work shows that accelerometers can reliably be used to detect spring phenology of forest trees, and have the
potential to overcome some of the challenges related to documenting spring tree phenology at high spatial and
temporal resolution in the field.

1. Introduction

Changes in plant phenology, the timing of periodic life-cycle events,
are among the most prominent biological signals of climate change
(Parmesan and Yohe, 2003). Temperate forests in particular have ex-
hibited extreme sensitivity to climate variability, with the timing of
spring onset fluctuating from days to weeks on an inter-annual basis in
response to recent warming (Schwartz et al., 2006). Because forest
phenology mediates interactions between climate and the biosphere
(Fitzjarrald et al., 2001; Peñuelas et al., 2009), it plays an important
role in ecosystem processes such as carbon and nutrient cycling (Elmore
et al., 2016a; Richardson et al., 2009), and can be diagnostic of eco-
system responses to climate change. Phenology is also known to be
genetically variable, with many species showing strong heritability and
quantitative genetic differentiation for vegetative phenology among

locally adapted populations (Keller et al., 2011; Savolainen et al.,
2007). At the scale of individual plants, phenology has been shown to
influence fitness and reproductive success (Ehrlén and Münzbergová,
2009; Inouye, 2008), thereby playing a role in limiting species dis-
tributions (Chuine, 2010). Ultimately, changes in phenology can have
far-reaching consequences, from exposing individuals to detrimental
abiotic conditions and disrupting species interactions (Visser et al.,
2006) to altering the carbon cycle and even global climate itself.

While forest phenology undisputedly responds to climate varia-
bility, our understanding of phenology has been limited by the ability to
document phenological processes that operate across spatial and tem-
poral scales that span orders of magnitude—from individuals to biomes
and from days to seasons. Repeated visits to individual plants by ob-
servers recording phenophases through direct visual observations are
one means of monitoring phenology (e.g., Jeffree, 1960; Sparks and
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Carey, 1995). While direct observations have improved our under-
standing of how organisms in particular locations have responded to
climate over time, high frequency monitoring is often too labor- and
resource-intensive to be implemented systematically across geo-
graphically widespread field sites. While other approaches have been
developed to monitor forest phenology over larger spatial areas, in-
cluding via satellites, near-surface web cameras (Richardson et al.,
2007), and publicly available traffic cameras (Graham et al., 2010),
there is often a trade-off between spatial-temporal coverage and re-
solution among these systems. Satellite-derived phenology, for instance,
can provide broad spatial coverage, but has limited utility in discerning
the phenology of individual plants. In short, methods that overcome the
challenge of spatial coverage are often too coarse-grained to quantify
phenology of individual plants (Polgar and Primack, 2011), except
when phenology of individual plants correlates with surface phenology
of forests (Elmore et al., 2016b).

Another approach to monitoring phenology of individual trees is
with on-tree sensors. Recent work has shown the utility of a variety of
on-tree sensors to estimate phenology, including light emitting/de-
tecting sensors focused on individual leaf buds (Kleinknecht et al.,
2015) and sensors that measure changes in light transmitted through
the tree canopy during the growing season (Schwartz et al., 2013).
Other studies have explored the idea that phenological events, such as
leaf emergence and leaf drop, will affect aboveground tree mass, which
in turn will alter patterns of acceleration when the tree is subjected to
forcing (e.g., by wind) (Selker et al., 2011; H. Lintz, unpublished).
These studies show that accelerometers – a sensor that detects changes
in tree acceleration related to changes in mass – can be used to detect
changes in tree mass before and after leaf emergence and may offer a
way to detect phenological dates without relying on intensive ground
observations. However, it remains uncertain if accelerometers can be
used to detect the actual dates of phenological events, and how well
accelerometer-derived phenology compares to direct human observa-
tions.

Here we present and validate the use of on-tree accelerometers to
derive high temporal resolution measurements of individual tree phe-
nology. With the help of citizen scientists, we deployed accelerometers
over an entire growing season, in order to: (i) determine if accel-
erometers can be used to derive a season-length phenological signal and
(ii) compare accelerometer-derived phenology with visual observations
made by citizen scientists. We demonstrate that accelerometers re-
present a promising way of measuring the dates of phenological events,
and possibly other biological processes, of individual trees.

2. Materials and methods

2.1. Study species

We focused on the phenology of balsam poplar (Populus balsamifera
L.), a northern broad-leaf tree species, distributed throughout much of
Canada and the northern United States (Zasada and Phipps, 1990).
Poplars are a model system for understanding the genetic and physio-
logical basis of climate adaptation in trees (Soolanayakanahally et al.,
2009), and previous studies have shown that both spring and autumn
vegetative phenology in Populus has a genetic basis and is adapted to
local climate conditions (Keller et al., 2012, 2011; Soolanayakanahally
et al., 2013). High resolution field phenology data may be particularly
useful to research in model systems such as Populus, and other well-
studied tree species, seeking to understand the relationship between
phenology, climate, and genetics.

2.2. Principles of accelerometer operation

Accelerometers detect movement by measuring acceleration in
three dimensions and, when attached to a tree, detect movement caused
by wind or other forces (Selker et al., 2011). When forced by wind, a

tree will vibrate at a particular frequency, similar to how a bell vibrates
at its resonant frequency when struck. The resonant frequency of a tree,
when treated simply as a mass spring with damping, is inversely related
to its mass:

f k
mb

T mb
k

α α0 0⇒
(1)

where f0 is the dominant resonant frequency, T0 is the corresponding
period, k is stiffness, m is mass, and b models the effect of damping. As
Eq. (1) shows, changes in mass will have a direct effect on tree resonant
period (T0). In the context of phenology, when leaves emerge, the
aboveground mass of the tree will increase, causing the resonant period
to increase, while the opposite will occur during leaf drop (i.e., a de-
crease in mass, and a decrease in the resonant period). Because the
dominant resonant period/frequency can be estimated from an accel-
eration signal, it is possible to derive a phenology signal from accel-
erometer data. It is worth emphasizing that there is no need to estimate
the actual mass of the tree over the growing season to document phe-
nology, as only the relative percent change in mass, approximated by a
changing dominant period, is needed. Hence, our use of dominant
period should be interpreted as a proxy measure, proportional to the
percent change in tree mass, and this change in dominant period should
be associated with phenological shifts such as leaf out, leaf drop, and
other large-scale influences on tree mass.

It is important to note that the change in dominant period is affected
by additional factors, such as changes in stiffness (e.g., by the growth
and hardening of xylem, or hydraulic conductance of stem water) and
damping (e.g., altering air resistance by growing or losing leaves). We
consider these changes to be of secondary importance relative to the
change in mass associated with leaf emergence, though potentially in-
teresting topics for follow-up study. Furthermore, we note that a por-
tion of the mass in newly expanding leaves is already present in trees
before leaf emergence (before leaves become autonomous from stored
carbon) in the form of non-structural carbohydrates (Hoch et al., 2003).
Hence, a change in tree mass during leaf emergence and expansion is
likely due to a combination of new leaf material and new water mass in
the leaves and woody tissue. Partitioning the sources of mass increase
would be an interesting topic for future study.

In this study, we used Oregon Research Electronics (Tangent, OR,
USA) AL100 Acceleration Loggers (Fig. 1). The AL100 devices use
STMicro LIS3DSH MEMS accelerometers with supporting electronics.
AL100 loggers operate on one or two C cell batteries and record daily
(24-h) data files to a microSD card inside the unit, which can be up-
loaded to a computer for processing. The AL100 devices incorporate a
real-time, temperature-compensated clock that provides time-stamps
for the recorded data. The electronics are enclosed in a robust weather-
resistant plastic case that can be attached to trees around the primary
trunk using rope or zip ties. These devices are the same as those used in
van Emmerik et al. (2017).

2.3. Citizen scientists & accelerometer deployment

To validate accelerometer-derived phenology with direct estimates
of tree leaf out and leaf drop, we partnered with citizen scientists to
monitor phenology of individual poplar trees across our study region.
Observational data (including phenology) from trained volunteers is
particularly useful when sampling is required across a broad geographic
area and established and reliable protocols are employed to yield high-
quality data (e.g., Bonney et al., 2014). Such an approach has recently
been shown in Populus to correlate well with phenological estimates at
larger spatial scales estimated from satellite remote sensing data
(Elmore et al., 2016b; Vanbeveren et al., 2016). In the present study, we
trained eight citizen scientists to deploy accelerometers and record
phenological observations during the 2016 growing season. This di-
verse group consisted of adults with various experiences monitoring
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phenology through other volunteer programs. Our training workshop
was held at the University of Vermont in October 2015, where volun-
teers learned to identify the species of interest, monitor tree phenology
using a standardized protocol, and deploy accelerometers on native
balsam poplar trees near their home locales. Four volunteers were lo-
cated in Minnesota, three in Wisconsin, and one in Vermont (Fig. 2).

Citizen scientists selected focal trees based on the following char-
acteristics: (i) near their location for ease of obtaining frequent direct
phenology observations, (ii) diameter at breast height (dbh) of less than
approximately 30.5 cm to standardize the effects of tree girth on mea-
surements, and (iii) direct exposure of the tree to wind and/or proxi-
mity to the forest edge to ensure a strong acceleration signal. Each
volunteer received two accelerometers (one volunteer was given three
sets of two accelerometers, see extent box in Fig. 2) to be placed at
different heights on the same tree. We instructed volunteers to attach
one accelerometer at approximately eye level and the other at

approximately 1m above the ground to determine if placement height
affected the phenology signal. While accelerometers will likely perform
best when attached to trees where wind displacement is greatest (i.e.,
high in the tree; van Emmerik et al., 2017), eye level was chosen be-
cause AL100 loggers have a coded light system which can be used to
check that the loggers are functioning properly and recording data.
Volunteers deployed accelerometers in February or March of 2016, and
removed them at the end of the growing season, several weeks after leaf
drop. Prior to deployment, accelerometers were set to record mea-
surements continuously at a frequency of 10 Hz along all three spatial
dimensions. Data collection at this frequency will yield approximately
864,000 samples/day (10 samples/s× 60 s/min× 60min/h× 24 h/
day) per axis dimension (Fig. A1). Citizen scientists used protocols
developed by the National Phenology Network (https://www.usanpn.
org/) to record phenological observations at least twice weekly during
leaf emergence and leaf drop, and approximately weekly during the
remainder of the growing season.

2.4. Data processing, outlier removal, and phenology model fitting

Transforming raw accelerometer data to phenological estimates
proceeded in three main steps: (1) processing the raw daily acceleration
data to derive the spectral density and identify the dominant period for
each day; (2) outlier removal; and (3) fitting a phenology model to the
cleaned data to estimate the dates of spring and autumn onset. We
detail each of these steps below.

We used an autoregressive (AR) modelling approach to determine
the spectral density and dominant period along each spatial dimension,
for each 24-h data file. We tested other approaches to derive the
spectral density (e.g., Welch’s method; Welch, 1967) and found they
were consistent with the AR approach. We chose the AR method as it
tended to create smooth periodograms, which facilitated identifying the
dominant frequency/period. To calculate the dominant period, we first
fit an autoregressive model to the detrended daily acceleration series
for each axis individually. The order of the autoregressive model was
selected by minimizing AIC, using orders between 1 and an upper
threshold of 10*log10(N) (where N is the total number of observations
in the daily series, set internally by the ‘ar’ function in the stats package
in R). For our data, this yielded a typical range of autoregressive orders
of 1 to ∼60. The model that minimized AIC was then used to estimate
the spectral density using the ‘spec.ar’ function in the stats package (R
Core Team, 2017), and peaks in the periodograms were identified using
the ‘findpeaks’ function in the pracma package (Borchers, 2017). Next,
we identified the frequency with the highest density and calculated the
dominant period as 1/f. We calculated the difference between the
spectral density of the dominant and second-most dominant period
(spectradominant− spectra2nd dominant/spectradominant), and used this
metric as a weight when fitting the phenology models described below
(i.e., a greater weight was placed on dominant period values that had a
spectral density much higher than the second most dominant period).
We repeated this process for each 24-h data file and for each spatial
axis. Dominant period values were assigned the day-of-year that the 24-
h data file was created.

Before fitting the phenology model, we removed outlying dominant
period values, as outliers were found to strongly affect the parameter
estimates and fit of the phenology model used in subsequent analyses.
To remove outliers, we fit all dominant period values with a LOESS
(locally weighted regression; Cleveland and Devlin, 1988) curve with a
‘symmetric’ option, with points weighted by the squared difference in
spectra between the dominant and second-most dominant periods
(described above). The ‘symmetric’ option further reduces the influence
of outlying data when fitting the curve, compared to a least-squares
approach. Next, we calculated the interquartile range of the residuals
from the LOESS curve and determined which data points had residuals
beyond 1.5× the interquartile range. Any data points with residuals
that exceeded this threshold were removed. This approach is similar to

Fig. 1. Accelerometer attached to a balsam poplar (Populus balsamifera) tree.

Fig. 2. Location of accelerometers (black points) deployed on balsam poplar
trees and monitored for visual observations of phenology by citizen scientists.
Gray shading indicate balsam poplar’s geographic range (Little, 1971).
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identifying outliers using a Tukey box-and-whisker plot.
After removing outliers, we fit a seven parameter phenology model

(described in Elmore et al. (2012)) to the dominant period values for
each accelerometer. The model is a dual-logistic curve with an addi-
tional parameter that controls the slope of the line between the spring
and autumn logistic curves. The model is given as follows:

T m m m t
e e

( ) ( 1
1

1
1

)m t m m t m0 1 2 7 ( )/ ( )/3 4 5 6
= + − ∙ ∙

+

−

+
− − (2)

where T0 is the dominant period, t is the day of year, m1 is the dominant
period during the winter, m2 is the difference between the summer and
winter dominant period, m3 and m4 affect the shape of the spring lo-
gistic curve, m5 and m6 affect the shape of the autumn logistic curve,
and m7 controls the slope of the curve during the summer. We fit model
parameters using an iterative non-linear least-squares algorithm, re-
quiring an initial estimation of parameter values. Initial starting para-
meters were estimated by visually inspecting the plots of dominant
period over time. The starting parameters were chosen as [23, 26, 148,
6, 200, 3, 1] for parameters m1 through m7, respectively, for all models.
Using this set of starting parameters, only one model for an accel-
erometer with an apparent phenological signal failed to converge. To
attain convergence for this unit, we changed the starting values of the
parameters to the fitted estimates for the complementary accelerometer
mounted on the same tree. Additionally, two accelerometers malfunc-
tioned early in the season and therefore recorded only spring phe-
nology. For these accelerometers, the data were fit with only the spring
portion of the phenology model. As with the LOESS curve, the squared
difference between the spectra of the dominant and second dominant
periods was used as weights in the phenology models. We provide code
to conduct the analyses above, as well as example data, in an R package
hosted at https://github.com/agougher/accel.

2.5. Statistical analyses

We assessed how well visual phenological observations from citizen
scientists related to modeled phenology from the accelerometers using
correlation analyses and major axis (MA) regression. For spring phe-
nology, we assessed the relationship between the date volunteers first
observed unfolded leaves and the associated m3 parameter of the phe-
nology models for the two accelerometers on each tree. The m3 para-
meter indicates the time during the growing season when the dominant
period is increasing the fastest (the spring inflection point), and can be
interpreted as the onset of spring (Elmore et al., 2012), when full leaves
are emerging. For fall phenology, we compared the date full leaves
were last observed and the m5 parameter (i.e., onset of autumn). Unless
otherwise specified, we performed correlation and regression analyses
using phenology parameters averaged across the upper and lower
placed accelerometers on each tree. However, we also explored if ac-
celerometers attached at different heights on the same tree differed
from each other in terms of data quality (frequency of outliers) and
signal strength (magnitude of correlation with observed phenology).

We also sought to determine the effect of sampling frequency and
daily sampling duration on deriving phenology estimates from accel-
erometers. Decreasing sampling frequency and duration will extend
battery life, while also decreasing data storage requirements and pro-
cessing time. Knowing the minimum sampling frequency and duration
needed to derive a phenology signal will help guide future accel-
erometer studies. To simulate different sampling frequencies and daily
durations, we subsetted the accelerometer data in various ways.
Reduced sampling frequencies were simulated by removing every
second and fourth acceleration record from the daily data files to yield
an approximate 5 and 2.5 Hz sampling frequency, respectively. To as-
sess the effects of different daily sampling durations, we extracted and
analyzed the accelerometer recordings (at 10 Hz) for only the first ap-
proximately 30min, 60min, 6 h, and 12 h of each daily data file. Times
were estimated using time stamps recorded every 5 s in the 24 h data

file. Results from the three sampling frequencies (10, 5, and 2.5 Hz) and
five daily sampling durations (30min, 60min, 6 h, 12 h, and 24 h) were
compared for their relative ability to derive a phenology signal. Results
were visually inspected and, when the phenology model could be fit,
parameter estimates were compared across sampling frequencies and
durations. Because we expected the shape of the phenology curves for
the subsetted frequencies and durations to be similar to that of the full
dataset (10 Hz, 24 h), and to maximize the probability of models con-
verging, we used the fitted parameter estimates for the full models as
the starting parameters for the phenology models fit to the subsetted
data.

3. Results

Of the 20 accelerometers deployed, the phenology model could be
fit to the data from 18. Data from the two remaining accelerometers
originated from the same tree and exhibited a weak and sparse phe-
nology signal (i.e., reduced difference between winter and summer
dominant period, and many outliers). We suspect that this was due to
the tree chosen at this particular site, and not a malfunction of the two
accelerometers (see Discussion). This pair of accelerometers was re-
moved from all subsequent analyses. Furthermore, we found that the
axis recording vertical tree movement did not yield a reliable pheno-
logical signal on any tree (as expected), and therefore was also excluded
from all further analyses.

Dominant period values from accelerometers matched the theore-
tical expectation of a seasonal change in aboveground tree mass.
Generally, the dominant period tended to be stable during the winter,
increased abruptly during the spring and decreased in autumn back to
winter levels (Figs. 3, A2 & A3). Furthermore, there was good agree-
ment between spring phenology estimated from direct visual observa-
tions and accelerometers. Pearson’s correlation coefficient between the
date of first observed full leaves and the m3 model parameter (re-
presenting the spring inflection point) was 0.82 (p < 0.01). MA re-
gression between the average m3 parameter and date of first observed
full leaves revealed a slope of 1.37 (95% CI: 0.75–2.93), and a y-in-
tercept of −41.09 (95% CI: −249.45 −42.84) (Fig. 4a). Thus, our
estimates of spring phenology derived from accelerometers had a sig-
nificant relationship with direct visual observations of leaf out.

In contrast to the strong correspondence between accelerometers
and spring leaf out, there was no significant relationship between the
date of last observed leaves and the m5 parameter representing the
autumn inflection point (Pearson’s r=0.16, p= 0.69). This may have
resulted from the dominant period often decreasing during the summer
and autumn (see Fig. 3), sometimes resulting in an indistinct autumn
phenology. MA regression between observed autumn phenology and
the autumn inflection point was also not significant (Fig. 4b).

The m3 and m5 parameters for the upper and lower placed accel-
erometers were not significantly different (paired t-test; p= 0.45, 0.35
for each parameter respectively), indicating height of accelerometers on
the trees did not affect estimates for either of these phenological
parameters. We also tested for differences in the proportion of data
points removed as outliers for the upper and lower accelerometers.
While the lower accelerometers tended to yield a greater proportion of
outliers, the difference was not significant (p= 0.28). However, for
one tree approximately 20% of data points of the upper accelerometer
were removed as outliers, while no outliers were identified for the
lower accelerometer (Fig. A3f). This was due to an exceptionally large
number of outlying data points in the lower accelerometer not being
removed because they were partially driving the shape of the LOESS
curve and therefore not identified as outliers. If this pair of accel-
erometers is excluded, the difference in the proportion of outliers be-
tween the upper and lower place accelerometers became significant
(p < 0.01), with lower placed accelerometers exhibiting a greater
frequency of outlier values.

Sampling frequency and duration had differing effects on the ability
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to derive a phenological estimate from the accelerometer data. In
general, decreasing the sampling frequency resulted in fewer phenology
models being fit, while decreasing sampling duration did not have as
dramatic an effect (Table 1). For instance, using a simulated sampling
frequency of 2.5 Hz, only five of 18 accelerometers could be fit with the
phenology model, while reducing the sampling duration to 6 h (ap-
proximately equivalent to 25% of the full data) resulted in 14 of 18
accelerometers fit with the phenology model. In addition to affecting
model fit, the parameter estimates of the phenology model were more
sensitive to decreasing the sampling frequency than sampling duration.
For instance, decreasing the duration to six hours resulted in an average
shift of< 2 days in the m3 estimate, while decreasing the sampling
frequency to 2.5 Hz resulted in an average shift of> 5 days.

4. Discussion

Forest phenology is a key functional trait of interest in studies of
global change and climate adaptation of forests. Yet obtaining high
resolution phenology data for individual trees over geographically
disparate sites is logistically challenging, and involves either intensive
direct observation by networks of observers, or monitoring facilities
such as phenocams that can represent a substantial investment at each
locality. Here, we report on the feasibility of obtaining high-resolution
phenology data for individual trees across landscapes scales using on-
tree accelerometers. To our knowledge, ours is the first study to de-
scribe the use of accelerometers to estimate dates of phenological
transitions in trees, representing a promising solution to the challenge

Fig. 3. Examples of processed accel-
erometer data (black points), with
outliers removed, fit with a phenology
model (red lines). Vertical gray lines
represent the estimated dates of spring
and autumn onset derived from the
phenology model (m3 and m5 para-
meters, respectively). (For interpreta-
tion of the references to colour in this
figure legend, the reader is referred to
the web version of this article.) See Fig.
A1 for an example of raw data.

Fig. 4. Relationship between observed
leaf phenology and accelerometer-de-
rived phenology for (a) leaf emergence,
and (b) leaf drop. Volunteer-observed
dates reflect (a) the date unfolded
leaves were first observed, and (b) the
date full leaves were last observed. The
black line is a 1:1 line, and the dashed
red line in (a) is a major axis regression
line. The regression in (b) was not sig-
nificant. (For interpretation of the re-
ferences to colour in this figure legend,
the reader is referred to the web ver-
sion of this article.)
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of measuring phenology in large, landscape-scale studies.
In general, the accelerometer data agreed well with the theoretical

expectation of seasonal tree mass variation as well as with visual ob-
servations for spring phenology. Spring phenology was more clearly
defined in our data than was autumn phenology, with nearly all the
accelerometers detecting an abrupt increase in the dominant period
early in the growing season, which coincided closely with observed leaf
emergence. These results indicate that accelerometers can be used to
accurately estimate the timing of spring leaf emergence for individual
trees. The decline in dominant period at the end of the season tended to
be less abrupt and more difficult for the phenology models to fit. In
some cases, the expected decrease in dominant period, coincident with
leaf drop, was entirely absent, contributing to the poor relationship
between observed leaf drop and modelled phenology. More broadly,
however, our results are consistent with remote sensing studies based
on spectral reflectance (e.g., Elmore et al., 2016b) which found stronger
relationships between ground observations and spring phenology than
with autumn phenology. Lack of association between modeled autumn
phenology and leaf drop is not surprising, as many processes other than
leaf abscission are likely to affect aboveground tree mass during the end
of the growing season (e.g., changes in plant water balance or alloca-
tion to belowground tissues). Furthermore, the more diffuse nature of
leaf drop, which can span many days or weeks, compared to leaf
emergence, when many leaves emerge simultaneously, likely con-
tributed to the poor relationship between accelerometers and visual
observations of leaf drop.

Interestingly, the dominant period from seven of the nine trees fit
with phenology models declined during the summer, as indicated by a
positive m7 model parameter, similar to the oft-observed ‘greendown’
phenomenon in remote sensing imagery (Elmore et al., 2012) (although
the sign of this parameter varied between the upper and lower accel-
erometers for two of the seven trees). For many of these trees, the de-
cline began almost immediately after trees reached their peak dominant
period in early spring. In some trees, this decline was so substantial that
the autumn leaf-drop phenophase was not readily apparent from the
accelerometer data, which likely contributed to the poor relationship
with the visual observations. Although the reason for the decline in
dominant period during the growing season is currently unknown,
there are multiple possible explanations. One possibility is that the
hardening of current year secondary xylem tissues throughout the
growing season results in an increase in tree stiffness, which would
translate into a more damped frequency of acceleration. Seasonal
changes in leaf orientation (e.g., Raabe et al., 2015) could produce a
similar effect, by increasing the effect of wind dampening. Seasonal
variation in the mass of the leaves (e.g., leaf water content or leaf mass
per area) could also interact with the canopy to affect overall mass
during the summer (e.g., Coble et al., 2016; Gond et al., 1999; Jurik,
1986; Poorter et al., 2009). Other possibilities include the loss of leaves
during the summer, due to weather events (e.g., wind, rain, hail, etc.),
disease, herbivorous insects, etc. However, it seems unlikely that leaf
loss could result in such a dramatic decline in dominant period across so
many sites (see Figs. A2 & A3). Further study is needed to understand
the exact cause of the decline in dominant period during the summer;
such work could potentially yield information on the timing of other
physiological processes of interest to ecologists.

4.1. Practical findings & recommendations

Based on our findings and experience with deploying accel-
erometers on forest trees to detect leaf phenology, we offer the fol-
lowing recommendations. Because of the currently unknown effects of
tree size and canopy obstruction, when choosing a tree for an accel-
erometer placement, we recommend a tree either in the open, or near
the forest edge, where wind exposure can be expected and canopy
obstruction (with nearby trees or other structures) is minimized.
Furthermore, while both axes recording movement parallel to the
ground yielded similar information, we recommend utilizing both axes,
as outliers in one axis may be mediated by the true phenological signal
in the other axis, ultimately improving the fit of phenology models.
Conversely, despite the upper and lower placed accelerometers yielding
similar phenological estimates, we propose that higher accelerometer
placement should be preferred. Accelerometers should be placed high
enough on the tree to minimize the effects of ground attenuation, while
still being easily accessible for maintenance (van Emmerik et al., 2017).
A higher accelerometer placement may reduce the need to locate a tree
in the open or along the forest edge. Finally, our results suggest that the
daily sampling duration can be reduced considerably, with minimal
effect on the phenological estimates; however, the same is not true for
sampling frequency (Table 1). Hence, if there is a need to balance a
tradeoff in sample duration and frequency, we recommend a higher
sampling frequency and a shorter duration. (See Oregon Research
Electronics, 2016 for information regarding sampling rate error.)

Like other studies (e.g., Fuccillo et al., 2015), we found that citizen
scientists can provide high-quality phenology data. In addition to pro-
viding a needed ground-truthing for phenological dates used to confirm
phenology estimated from accelerometer data, our study further de-
monstrates that the role of citizen scientists can be expanded beyond
data collection. Specifically, our volunteers played an active and pro-
ductive role in development and refinement of this methodological
research. This aligns with other studies that promote and highlight the
broader range of contributions that can be made by citizen scientists
(Shirk et al., 2012). Although the use of citizen scientist data has
sometimes been questioned because of perceived inaccuracies and/or
biases in data collection, highly organized and well-established groups
such as the National Phenology Network have helped to standardize
data collection and submission protocols to help ensure high quality
data is consistently collected.

4.2. Future research needs

Although the accelerometers deployed in our study reliably pro-
duced a phenology signal, there are several unknown factors that may
affect the ability of accelerometers to derive phenology, such as tree
size, and leaf/flower/fruit characteristics. While we attempted to con-
trol for tree size by instructing volunteers to select moderately sized
trees with a dbh< 30.5 cm, we do not know if a phenological signal can
be similarly detected from accelerometers attached to much larger or
smaller trees. For example, if the change in tree mass due to leaf
emergence/drop is low relative to the woody mass of the tree, the
seasonal change in mass may not be detectable by an accelerometer.
Effects of canopy obstruction (e.g., by nearby trees), flower and fruit

Table 1
Average difference in days between the m3 parameter of the phenology model based on the full data (10 Hz, 24 H) and models based on subsetted data representing
different sampling frequencies and durations. Numbers in parentheses indicate the number of accelerometers that could be fit with a phenology model.

Accelerometer position Frequency Duration

5 Hz 2.5 Hz 12 H 6 H 1 H 0.5 H

Upper −0.42 (8) 5.34 (2) 0.31 (9) −0.10 (8) −0.49 (9) 0.49 (9)
Lower −0.65 (7) 11.27 (3) −1.53 (6) −1.33 (6) 0.86 (9) −0.46 (8)
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characteristics (e.g., whether flowers and/or fruit emerge before leaves,
or if species produce relatively heavy fruit), or marcescent foliage could
each also affect the ability of accelerometers to detect leaf phenology or
may affect the shape of the resultant phenology curve. Additional stu-
dies are needed to quantify the effect of these variables on using ac-
celerometers to derive tree leaf phenology.

It also remains unclear what caused outlying dominant period va-
lues on some days. Closer inspection of the spectral density plots for
these days showed no clear peaks in the periodograms, indicating lack
of a clear signal on these days. This sporadic lack of signal could have
multiple causes. Lack of sufficient forcing by wind, for instance, could
result in the tree sway pattern being dominated by noise. Although we
tried to minimize these effects by asking volunteers to choose trees with
direct exposure to the wind, it is unclear if this would have a mean-
ingful impact on windless (or nearly windless) days. A non-stationary
dominant period during the day could also obscure the signal. If the
dominant period varies throughout the day (e.g., due to weather events
or diurnal water dynamics), it could obscure peaks in the periodogram
when using a 24 h sampling duration. However, it is worth noting that
shorter sampling durations still required outliers to be removed – sug-
gesting that a non-stationary dominant period is likely not the sole
cause of the outliers. Identifying the reason why some days do not
generate a clear signal, and minimizing these effects, would likely
further facilitate the use of accelerometers for measuring tree phe-
nology.

4.3. Additional uses of accelerometer data

In addition to monitoring phenology, accelerometer data may be
useful in addressing a variety of other interesting ecological questions.
For instance, the devices we used in this study (Oregon Research
Electronics AL100 units) include an integrated temperature sensor
which could be used to calculate winter chilling and spring heat sum
accumulation prior to leaf emergence. This temperature data, combined
with phenological estimates, could offer very fine-scale understanding
of how individual trees respond to local climatic conditions. The remote
deployment and high temporal precision of accelerometers could also
allow estimation of the timing of phenology, or other tree character-
istics, for many individual trees across large geographic scales and in
multiple remote locations. This opens up possibilities for phenology
experiments that would be challenging, if not impossible, using other
methods such as direct visual monitoring or satellite imagery.
Furthermore, because the accelerometers effectively capture temporal
change in tree mass at very fine temporal scales, they can provide in-
formation on other ecological process contributing to mass change. For
example, like other studies, we've observed evidence of daily mass
fluctuations associated with precipitation events (results not shown).
This suggests the possibility that accelerometer data could inform stu-
dies on plant water balance and precipitation interception (e.g., van
Emmerik et al., 2017). The varied uses of acceleration data should
encourage the further development of accelerometers as a flexible plant
sensor that can be used to quantify multiple plant and environmental
traits of interest to plant scientists.

In sum, our work shows that high resolution acceleration data can
be used to accurately quantify spring phenology of forest trees. Because
of their portability and low cost, accelerometers have the potential to be
a pragmatic solution when high spatial and temporal resolution tree
phenology data is required, contributing to the ongoing development of
high-resolution plant sensors for field phenotyping (Li et al., 2014).
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