This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Semicentralized Deep Deterministic Policy
Gradient in Cooperative StarCraft Games

Dong Xie, Student Member, IEEE, and Xiangnan Zhong™, Member, IEEE

Abstract—1In this article, we propose a novel semicentralized
deep deterministic policy gradient (SCDDPG) algorithm for
cooperative multiagent games. Specifically, we design a two-level
actor-critic structure to help the agents with interactions and
cooperation in the StarCraft combat. The local actor-critic
structure is established for each kind of agents with partially
observable information received from the environment. Then,
the global actor-critic structure is built to provide the local design
an overall view of the combat based on the limited centralized
information, such as the health value. These two structures work
together to generate the optimal control action for each agent
and to achieve better cooperation in the games. Comparing
with the fully centralized methods, this design can reduce the
communication burden by only sending limited information
to the global level during the learning process. Furthermore,
the reward functions are also designed for both local and global
structures based on the agents’ attributes to further improve
the learning performance in the stochastic environment. The
developed method has been demonstrated on several scenarios
in a real-time strategy game, i.e., StarCraft. The simulation
results show that the agents can effectively cooperate with their
teammates and defeat the enemies in various StarCraft scenarios.

Index Terms—Deep deterministic policy gradient (DDPG),
multiagent system, reinforcement learning (RL), StarCraft, sto-
chastic environment.

I. INTRODUCTION

ITH the development of artificial intelligence (Al),
Wpeople have been brought into a promising smart
and intelligent community. Among many of the advanced
techniques, reinforcement learning (RL) has been consid-
ered as one of the most important methods in the past
decade [1], [2]. Recently, the development of deep neural
network has endowed the conventional algorithms with new
vitality [3]. For example, deep Q-network (DQN) combined
the neural network techniques with the Q-learning method to
solve the curse of dimensionality and accelerate the learning
process [4]. Experience replay techniques and target networks
also enriched DQN into a more efficient model. Furthermore,

Manuscript received June 19, 2019; revised February 19, 2020 and Octo-
ber 15, 2020; accepted November 25, 2020. This work was supported by the
National Science Foundation under Grant CNS 1947418 and Grant ECCS
1947419. (Corresponding author: Xiangnan Zhong.)

Dong Xie is with the Department of Electrical Engineering, University of
North Texas, Denton, TX 76207 USA (e-mail: dongxie @my.unt.edu).

Xiangnan Zhong is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA (e-mail: xzhong@fau.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2020.3042943.

Digital Object Identifier 10.1109/TNNLS.2020.3042943

with the optimizing target network, double DQN reduced
overestimate values for stability [5]. Prioritized experience
replay made the batch information more useful and accelerated
the agent learning process [6]. Dueling DQN splitted the Q
value into two different variables in order to improve the
learning efficiency in the complex environment [7].

Different from the DQN methods which make the decision
based on a generated Q value, the policy gradient (PG)
methods provide the opportunity to generate a recommended
control action directly by a neural network [8]. An actor-critic
design was developed in [9] by taking the advantages of
both Q-learning and policy gradient. In this design, an actor
network was built to estimate the control actions and a
critic network was established to provide the correspond-
ing value functions [10]. There are many extensions of the
actor-critic design. One of the most popular methods is
the deep deterministic policy gradient (DDPG) that applied
experience replay and target network in the actor-critic struc-
ture to facilitate the learning process. This design focused
on the continuous action space that improved the learning
efficiency [11], [12]. Recently, multiagent DDPG (MDDPG)
was proposed by developing cooperation and competition
strategies among agents and promising results had been
achieved [13], [14]. In addition, many continuous con-
trol algorithms had been put forward to improve the
development of deep RL, such as asynchronous advan-
tage actor-critic (A3C) [15], proximal policy optimization
(PPO) [16], and trust region policy optimization (TRPO) [17].
In recent years, the hierarchical structure was also introduced
into the RL design to improve the exploration in com-
plex environment [18]-[20]. In particular, a hierarchical-DQN
(h-DQN) was designed in [21] by establishing the hierarchical
action-value functions with different temporal scales to enable
the agent to learn with multistep temporal abstractions. In [22],
a novel hierarchical RL structure with feudal networks (FuNs)
was developed to make the agent accomplish tasks in a
manager and worker architecture.

On the other hand, the development of game AI has
attracted increasing attention in recent years [23]-[25], such
as AlphaGo [26] and AlphaGo Zero [27] developed by the
DeepMind research team. From the traditional board games
to video games, Al continuously challenges and defeats the
most professional human players [26]-[28]. Recently, Deep-
Mind has introduced Al into a popular computer game as
StarCraft II and proposed AlphaStar, which has defeated two
professional players. AlphaStar applied the actor-critic method

2162-237X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 22,2021 at 16:30:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8367-0215

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

and combined with a deep long short-term memory (LSTM)
structure, an optimal policy, and a centralized value standard.
This method can help the system to solve the problem with
highly parallel large-scale learning in StarCraft II [29], [30].
Generally, StarCraft, which is published by Blizzard Entertain-
ment, is considered as one of the most successful real-time
strategy games in the past 20 years. The player can control
different groups of factions (Protoss, Terran, and Zerg) with
their units to accomplish a series of tasks and fight with
enemies in various scenarios. Since StarCraft can simulate
the complex and stochastic environment with different types
of agents, it becomes an ideal testbed for the research and
professional development of the multiagent systems [31].
Later, the release of Brood War application programming
interface (BWAPI) also facilitates this study [32]. Nowadays,
there are many convenient application programming interfaces
including TorchCraft and PySC2 introduced in this area and
can facilitate learning in the StarCraft environment [33]-[35].
In particular, SAIDA and Cherry Pi were two successful bots
developed in 2018, which achieved the first two awards in
StarCraft Al competition [36], [37]. Cooperating with the
search algorithm, SAIDA continuously acquired and analyzed
opponent information. After obtaining the ability of defense,
SAIDA enabled the combat units to analyze the appropriate
instants for attacking. Then, Cherry Pi applied the LSTM
model to estimate the strategy and learned up to 13 different
strategies based on the off-policy method. After obtaining the
opponent’s status and information, Cherry Pi selected the opti-
mal strategy for the units. Moreover, StarCraft micromanage-
ment also attracted increasing attention and many promising
results have been achieved. Usunier et al. [38] developed a
zero-order (ZO) backpropagation heuristic algorithm, which
combined backpropagation with a ZO gradient estimates to
help agents learn the combat strategies. A novel multia-
gent actor-critic method, counterfactual multiagent (COMA),
was developed in [39] based on the decentralized variant
design and partially observable information in the StarCraft
micromanagement. A multiagent bidirectionally coordinated
nets (BicNets) was established in [40] to acquire human-level
coordinating strategies, such as the hit and run tactics, coor-
dinated cover attack, and fire focus in the micromanage-
ment scenario. In addition, the parameter sharing multiagent
gradient-descent Sarsa (PS-MAGDS) algorithm [41], which
combined the Sarsa method with the deep neural networks
and PS-MAGDS, could defeat the enemies with fewer units
in a short training time. Furthermore, QMIX [42] applied a
neural network to evaluate the agent local information so that
it can provide effective strategies for both centralized and
decentralized policies.

Motivated by the above study, in this article, we design a
semicentralized DDPG (SCDDPG) algorithm for multiagent
games to cooperatively accomplish team mission. The major
contributions of this article are as follows. First, this article
develops a two-level actor-critic design to achieve local—global
cooperation. At the local level, the generated control signal is
flexible for each agent to deal with the uncertain and stochastic
environment. At the global level, the agents can perform a
cooperative behavior with limited centralized information, and

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

therefore, the communication load is reduced at the same time.
Second, the reward functions are designed for both levels to
facilitate the learning process. In the multiagent games, each
agent has a different role to guarantee the final victory. There-
fore, the rewards are designed based on their own attributes
to balance the attacking, position, and cooperation. Third, this
method has been applied to the StarCraft computer games with
various scenarios. The results have been compared with the
traditional methods in the literature to show the effectiveness
of the developed SCDDPG method.

The rest of this article is summarized as follows.
In Section II, we introduce the background and formulate the
problem considered in this article. Then, Section III provides
the developed SCDDPG method. The reward functions for
both local and global structures are also designed in this
section. The experimental setup with StarCraft micromanage-
ment scenarios are discussed in Section IV, and the results
and analysis are provided in Section V to demonstrate the
performance of the designed method. Finally, Section VI
concludes our work.

II. PROBLEM FORMULATION

In this section, we first formulate the StarCraft combat in
a Markov decision process. Then, the conventional DDPG
algorithm is discussed.

A. StarCraft Combat as a Markov Decision Process

StarCraft micromanagement process can be viewed as a
multiagent Markov game. Specifically, we control a group
of agents in the StarCraft game to destroy all the enemies
in a certain combat environment. During the combat, each
agent can interact with its neighbors and also receive local
information of the environment. Therefore, the environment
becomes partially observable from the viewpoint of each
agent.

Developing the learning method for such a multiagent
system is a challenging task. In order to build a flexible control
structure for an arbitrary number of agents, we consider that
each agent obtains the state s, at time step ¢, including
its own observation o, of the current combat and partial
teammates information ¢,. The agent takes an action @, based
on the state, and then the environment returns a reward r;
and brings the agent into a new state s,.;. The agents will
continue this process to maximize the cumulative rewards
by cooperating with the teammates and competing with the
opponents.

B. DDPG

The DDPG method takes the advantages of both the
actor-critic design and the DQN method to improve the explo-
ration process. The actor in DDPG is designed to estimate
the control actions, and the critic is to generate the value
functions that determine the quality of the estimated actions.
Specifically, the DDPG method involves four networks as
the actor, the critic, and their corresponding target networks.
Table I shows the input and output for each network, where 8#,

Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 22,2021 at 16:30:06 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE AND ZHONG: SCDDPG IN COOPERATIVE StarCraft GAMES

TABLE I
INPUT AND OUTPUT OF EACH NETWORK IN DDPG

Structure | Network | Input Output
Actor Si wu(si|0*) as the input for the critic
Actor Network network @
i
Target Si+1 ,L/(si+1|9“,) as the input for the
Network critic target network Q'
W
. Critic Si, 4 Q(s4,a;|09) as the predicted value
Critic Network for updating the critic network @
Q
Target Sit1s Q' (si+1, 1 (si41]0#)]09) as the
Network | u/(s;+1) | target value for updating the critic
Q' network Q

0%, 02, and A< are the neural network weights for the actor,
actor target, critic, and critic target networks, respectively.

This method uses experience replay in the updating process.
In each step, N minibatch of information (s;, a;, r;, si+1) is
extracted from the memory pool, where N is the batch size
and i is the index of the sample in this batch. The memory
pool is used to collect and store the information of the previous
experience. In addition, the DDPG method introduces a ran-
dom noise N; that is generated by the Ornstein—Uhlenbeck
process [43] to the output of the actor network u(s;|0*)
to facilitate the exploration in the learning process. Hence,
the control signal becomes

a; = pu(si0") + N ey

Comparing with the DQN method, DDPG uses soft target
updates [11], which makes the target network taking a small
change at each time step to enhance the learning stability.
In this way, the four networks in the DDPG method can
cooperate with each other to optimize the decision-making
process.

1. SCDDPG

In this section, a novel SCDDPG method is designed to
improve the control performance and reduce the communi-
cation burden at the same time. Inspired by the tree and
network algorithms from the data structure, we establish
a hierarchical structure with two levels of the actor-critic
design. In particular, the global actor-critic design is the root
node to provide the macro recommend instructions through
the mapping signals ¢ for individual agents. In order to
reduce the communication burden, the global design will only
receive limited information from each agent. Then, the local
actor-critic design will estimate the actions by considering the
recommendation along with its own local observation. In this
way, each agent will take the action based on not only the
local information but also the partial global information.

The developed SCDDPG method is provided in Fig. 1. Note
that, each actor-critic design has its own memory pool to col-
lect the experience of the agents and update the corresponding
neural networks. The SCDDPG algorithm is expected to build
a bridge between the global and the local actor-critic design

Global Actor-Critic

(850 €0 910, 95141)

Local Actor-Critic n

oca A«,mr u
batch | [

fmini-batch N

~Local 3
Memory Pool 1

atc
eI Lol

Memory Pool n
Hse)

w(se)
Environment
St Tt Qg St

Fig. 1. Designed SCDDPG method for the multiagent system.

that the agents can optimize their strategy based on both the
local and global information.

A. Global Actor-Critic Design

The global actor-critic design is established to estimate
the mapping signals ¢ to provide more information about
the global environment to the local networks. Specifically,
we design the global actor network u,(gs|0;) with weights 6
and the global critic network Q,(gs, c|02) with weights 62.
Meanwhile, we also design the target networks u, and Qf

with weights 63 " and HgQ', respectively, to help the training
process. Note that, the global actor-critic design in this article
can only receive partial local states from the distributed agents
to reduce the communication burden. At each time step f,
a random minibatch with N transition samples will be sampled
from the global memory pool R, to train the neural network
weights. We define i € [r,t + N — 1] as the index for the
samples.

The output of the global actor network is the mapping
signals ¢, and the input is the partial information gs received
from each agent (e.g., the health values of StarCraft units).
Hence, the objective function J, for the global actor network
is

J, = E((gsi;Ci|‘9Q)|Vie[t,t+N—1])
+N—

= Z Qg gstacz|‘9)

where Qg(gs,-,ciIGgQ) is the estimated global value function
and N is the number of samples in the minibatch. Then,
the global actor network weights 65 can be updated by

elt,t+N—-1] (2

6Jg - 1 Hfl an(gsiaCi|‘9gQ)|c,-:yg(gs,-) a,ug(gsllggél)

a0y N p Ot (gsilOf) a0y
(3)
where ¢; = pg(gsi|0y) is the output of the global actor
network.

Furthermore, the input of the global critic network is defined
as [gs, c] and the output is the estimated global value function

Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 22,2021 at 16:30:06 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

0Q,(gs, c|0gQ). Therefore, the loss function of the global critic
network is
1+N—1

z (ygi -

i=t

1
Lg:N

2
Q, (gsi, cil62)) 4)
where y,; is the approximated global target value function,
which is

Yoi = 8ri +7 Q0 (gsi+1, ﬂ’g(gsi+1 wg") IHQ?). Q)

The policy gradient method is applied to train the weights
in both global actor and global critic networks, and an average
method is used to improve the robustness through the changes
of the target networks. The weights updating law can be
summarized as

02 < w62 + (1 —1)6¢ (6)
o) <« 0 + (1 —1)0 @)

where 7 = 0.001 is the update parameter [11].

Note that the global actor-critic design provides the mapping
signals ¢ for each agent only based on the partial information.
Comparing with the fully centralized methods, this design
can reduce the communication burden by only sending a
small portion of the information from each agent. This is
especially important for large size learning problem where the
communication is constrained. Comparing with the distributed
methods, this design can guide individual agent with global
information through the mapping signals, which will improve
the collaboration and facilitate the learning performance.

B. Local Actor-Critic Design

The local actor-critic design is established to estimate the
control actions for individual agents. In the developed method,
the number of local actor-critic networks is the same as the
number of agent types in one group. If a certain group only
involves one type of agent, the local design will provide the
distributed control signals for each agent based on their local
observations.

Specifically, the goal of the local actor network is to
approximate the control actions for distributed agent. The input
is not only the local observation o but also the mapping signal
c received from the global design

s = [o, c]. (8)

We randomly select the minibatch from the local memory pool
R with N transition samples. Therefore, the objective function
J for the local actor network is defined as

J =E(Q(si, ail0?) viepi+n-11)
1+N-1

—Z

where Q(s;, a;]09) is the value function estimated by the local
critic network. The weights §# are updated based on the chain
rule as

+N—
amN ;

slaal|9 s le[t9t+N_1] (9)

St»aileQ)la,-:,u(s,-) . alu(sl|9'“)
Op(si10+) o0+

(10)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

where u(s;|0#) is the output of the local actor network and
the control action will be obtained as a; = u(s;|0*) +
N, in which N is the exploration noise generated by the
Ornstein—Uhlenbeck process.

The value function Q(s;, a;|0?) is estimated by the local
critic network with the input [s;, a;]. It is compared with the
output of the local critic target network to adjust the weights
and the corresponding objective function is defined as

t+N—1
L=—

N Z(yi—

i=t

2
O(si,ai169)) (11)
where N is the sample batch size and y; is the approximated
target value function formulated by

yi=ri+7y Q/(SiJrl, ﬂ/(5i+1|6w,) |9Q,)

in which Q’(sit1, 1/ (si11160#)]60<) is the output of the local
critic target network and ' (s;41|6*") is the output of the local
actor target network.

Therefore, the local network weights updating law can be
summarized as

12)

09 «— 102+ (1 —1)0¢
OF «— 10" + (1 — 7)o"

13)
(14)

where 7 € [0, 1] is the update parameter [11].

C. Reward Function Design

We design the reward functions for both local and global
designs based on the agents’ attributes. This means that dif-
ferent types of agents are expected to learn different strategies
such that they can collaborate together to improve the control
performance as a group.

1) Local Reward Function: The local reward function r is
designed in three parts: the hit reward ry,, the position reward
7p, and the team reward 7,

r=o-rp+pr,+y Tn (15)

where a, f, and y are the weights for the hit, position, and
team rewards, respectively. Note that the weights are designed
at the beginning based on the attributes of each agent and kept
the same thereafter. For example, the agents with the attribute
of long-range attacking are expected to stand farther to protect
themselves but still able to attack the enemies. To achieve
this goal, the position reward r, is expected to take priority
in this situation. Therefore, such agents will be assigned a
higher weight f comparing with a and y . Furthermore, in the
situation that the agents have the attribute of highly damaging,
they are expected to always attack the enemies. Hence, such
agents will be assigned a higher weight a for the hit reward
ry, than the other weights.
Specifically, the hit reward r;, is designed as

rh=01-€ — 0 U (16)

where ¢, is the health value difference of the nearest enemy
between time step ¢ — 1 and ¢, u, is the health value difference
of the agent between time step + — 1 and ¢, J;, and o, are
the adjustable weights. Note that, if the agent and the nearest

Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 22,2021 at 16:30:06 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE AND ZHONG: SCDDPG IN COOPERATIVE StarCraft GAMES

enemy are the same type, the weights J; and J, will be the
same. If the health value of the agent attribute is less than that
of the enemy, then the health value is more important. Hence,
the weight J; will be assigned lower than ;.

Then, the position reward r), is defined as

0, 0<d<A
—0.1, A<d<B
—05, B<d<C

rp(d) = a7)

where d is the distance of the nearest enemy. The areas A-C
represent the agent attack range, the agent observable range,
and the map boundaries, respectively.

Finally, the team reward r,, is provided as

(18)

I'm = My — O

where m,; and o, are the number of the teammates and the
opponents in the agent current observable range, respectively.

Note that, the weights of the rewards are designed based
on the agent’s attributes to perform in a certain task such that
each type of the agents is able to generate their own strategies,
which will enhance the collaboration between different types
as a group and facilitate the learning process.

2) Global Reward Function: The global reward function
is designed based on the agents’ health information, number,
and position of the survival teammates. The global reward
includes attack reward r,, location reward r;, and status reward
rs, which is provided as

gr=Kk-1r,+¢ -r+<-rg (19)

where x, ¢, and ¢ are the weights for the attack, location,
and status rewards, respectively. For example, if the number
of the survival teammates is less than that of the survival
enemies, the location reward r; and the status reward r, are
more important than the attack reward r,. Therefore, ¢ and ¢
will be assigned higher than «.

Specifically, the attack reward r, is defined as

m n

J J

Fa = p1- E e —p2 E uy
j=1

Jj=1

(20)

where Z;f;l e/ is the health value difference of all the survival
enemies between time step r — 1 and ¢, Z;'.zl ul’ is the health
value difference of all the survival agents between time step
t — 1 and ¢, m and n are the numbers of survival enemies
and agents, respectively, and p; and p, are the health value
weights for enemies and agents, respectively, in which p; and
p2 are determined by the agent attributes and the number of
survival teammates and enemies.
Then, the location reward r; is described as

I
= ;;rlf, 21)
0, 0<d/ <A
ri=1-01, A<d <B (22)
-05, B<d/ <C

TABLE 11
ATTRIBUTES OF S1X UNITS IN STARCRAFT COMPUTER GAME

Attributes Vulture | Zergling| Dragoon| Zealot Marine | Wraith
Hitpoints 80 35 100 100 40 120
Range 5 1 4 1 4 5

Sight 8 5 8 7 7 7
Cooldown | 1.26 0.336 1.26 0.924 0.63 0.924
Damage 20 5 20 8 6 20

where d/ is the distance between the jth agent and its
nearest enemy and 1/n Z?:l r} is the average of the local
position reward for all the survival agents. Areas A, B, and
C represent the jth agent attack range, observable range, and
map boundaries, respectively.

Moreover, the status reward r; is designed as

(23)

s =7T1-n—T-Mm

where n and m are the numbers of survival agents and enemies,
respectively, and 7; and 7, are the weights that are designed
based on the total number of the agents and enemies.

In this method, the weights adjustments are involved in
both local and global reward function design. They are pro-
vided based on the attributes of the agents. All the rewards
are normalized in [0, 1] during the learning process. The
developed SCDDPG method is summarized in Algorithm 1.
Note that the random process A in line 17 is generated
by the Ornstein—Uhlenbeck process [43] as the action noise
to improve the exploration during the learning process. This
exploration noise will be multiplied by an exploration rate,
which is decreased every time step until it reaches the thresh-
old and stays thereafter. This design is expected to balance the
exploration and exploitation for the action selection.

IV. EXPERIMENTAL SETUP AND DESIGN

The StarCraft computer game is considered in this section
to demonstrate the effectiveness of our developed SCDDPG
method. The experimental scenarios and the parameters setup
are discussed. The experiment design refers to the litera-
ture [38], [40]. We configure the StarCraft server with BWAPI
and use TorchCraft with Python to train the agents in the
StarCraft games [32], [33].

A. StarCraft Scenario Design

In this article, we apply the developed SCDDPG method on
five StarCraft scenarios involving six unit types as Dragoon,
Marine, Vulture, Wraith, Zergling, and Zealot, from all three
factions (Protoss, Terran, and Zerg). We also compare our
results with other RL algorithms in the literature to further
validate the developed method. The attributes of the StarCraft
units involved in the experiment are provided in Table II.

Since StarCraft is a real-time strategy game, the operational
delay is inevitable. Therefore, we set the frameskip as 10
during the experiment [38], [40]. This means that every action
only lasts ten frames in the game.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 22,2021 at 16:30:06 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Algorithm 1 SCDDPG Algorithm

1: Initialize global critic network Q,(gs, c|<9§) with weights
62 and global actor network 1, (gs|fg) with weight§ 0% .

2: Initialize global target network Q) with weights <9gQ and

1, with weights 04

3: Initialize replay buffer R, with previous model memory

4: for agent type j = 1, K do

5. Initialize local critic network Q; (s, a|<9jQ) with weights
0 ij and local actor network ;(s|07) with weights 0

6: Initialize local target network Q/j with weights 6 jQ’ and
1 with weights 0

. Initialize replay buffer R; with previous model memory

8: end for

9: for episode = 1, M do

10: Initialize a random process A for action exploration

11: Receive initial observation agent state o,

12: Select command c; from global actor-critic

13: Obtain new state s; = [01, ¢1]

14: fort=1,T do

15: Select command c¢,4+; from global actor

16: for agent type j = 1, K do

17: Select action a; = u j(s,|9j’.‘) + N; according to the
current policy and exploration noise

18: Execute action a; at and observe reward r, and
observe new agent state 0,1

19: Obtain new state s,+1 = [0r+1, Cr+1]

20: Store transition (s, a;, ¢, S+1) in R;

21: Sample a random minibatch of N transitions
(si, ai, ri, si+1) from R;

22: Update local critic network with equation (11)(12)

23: Update local actor network with equation (9)

24: Update local target networks with equation (13)(14)

25: end for

26: Observe global reward gr, and extract new global state

8St+1
27: Store transition (gs;, ¢, 871, 8514+1) in R,
28: Sample a random minibatch of N transitions

(gsi, ci, g1i, 8Si+1) from R,
29: Update global critic network with equation (4)(5)
30: Update global actor network with equation (2)
31: Update global target networks with equation (6)(7)
32: end for
33: end for

We consider the StarCraft units as the agents in the RL
design. Then, based on the attributes, we group the units in
the following five scenarios.

1) Two Dragoons and Three Zealots Versus Two Dragoons
and Three Zealots (2D3Zv2D3Z): Each group has two
types of units and the number of units in each type is the
same. Therefore, two local actor-critics and one global
actor-critic are developed in the SCDDPG method. One
local actor-critic structure is design for two Dragoons,
and the other one serves for three Zealots. The global
actor-critic would give a set of mapping signals for each
individual unit.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

2) Three Vultures and Ten Zerglings versus Three Vultures
and 12 Zerglings (3V10Zv3V12Z): Similar to the first
scenario, each group involves two types of units. How-
ever, the enemy has two more Zerglings than our group.

3) Five Marines Versus Five Marines (5Mv5M): Five
Marines join the combat in each group. The SCDDPG
method is designed with one local and one global
actor-critic to control one group of Marines.

4) 15 Marines Versus 16 Marines (15MvI6M): 15 Marines
are in our group, and the enemy includes 16 Marines.

5) 15 Wraiths Versus 17 Wraiths (15WvI7W): 17 Wraiths
are controlled by the opponent, while our group has
15 Wraiths.

Therefore, the combat involves two groups of units. Some
of the groups consist of different types of units. One group
is controlled by the developed SCDDPG method, whereas the
other one is led by the StarCraft game heuristic AI. The goal
of both groups is to eliminate all the opponents.

Note that both groups involve similar units’ structures, and
in some scenarios, the heuristic Al-controlled group also takes
the advantage of the number of units, which makes the task
more challenging. Therefore, the SCDDPG method will design
different reward functions for different types of units based on
their attributes such that they can learn different strategies and
collaborate with each other to guarantee the final victory as a

group.

B. Training With SCDDPG Method

The developed SCDDPG method is applied for the StarCraft
games. The learning rates of the actor and critic networks are
set to be le—6 and le—35, respectively. The discount factor
is defined as 0.99. The exploration rate is set to be 1 at the
beginning and is decreased by 6e—6 every time step until it
reaches 0.4 and stays thereafter. Furthermore, the size of the
memory pool is defined as 1e7 and the batch size is 32.

The local actor-critic design has four inputs: the local state,
the action and the reward function at time step ¢, and the local
state at time step tr + 1. The local state vector for each unit
includes 28 variables, three of which is the global output c.
The remaining 25 variables are the unit information obtained
from BWAPI and the map. The detailed description is shown
next. Note that all the variables are normalized within [0, 1].

1) Health: Six variables are included: the unit current health
value, the unit health value level, the enemy current health
value, the enemy health value level, the unit survival status,
and the enemy survival status.

2) Number: Four variables are included: the number of the
survival units, the number of the survival enemies, and the
number of the teammates and the enemies within the unit
observable range.

3) Attack: Six variables are the unit attack cooldown value,
the enemy attack cooldown value, the unit action, the enemy
action, the unit under-attacking information, and the enemy
under-attacking information.

4) Position: Nine variables are the unit map location (x, y),
the enemy map location (x,y), the nearest enemy distance
coordinates (dx,dy,d), where dx, dy, and d are the hori-
zontal, the vertical, and the minimum distance, respectively,

Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 22,2021 at 16:30:06 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE AND ZHONG: SCDDPG IN COOPERATIVE StarCraft GAMES

and the enemy attack target map location (x, y). If there is
no enemy within the observation, the variable is set as the
distance between the agent and the map boundary.

5) Command: Three variables are included: the global map-
ping signal ¢ received from the global actor-critic network.

Furthermore, the global actor-critic design also has four
inputs: the global state, the command, and the reward function
at time step ¢, and the global state at time step 7+ 1. Note that,
only the 6-D health information is considered as the global
state. For example, in the 2D3Zv2D3Z scenario, the total
number of the unit is five, and therefore, the dimension of
the global state is 6 x 5= 30. This means that the distributed
unit can send the health information only to the global level.
Comparing with the centralized method, this design can reduce
the communication burden and also provide global information
to facilitate the collaboration among units. Both the global
and the local neural networks are established with two hidden
layers and 150 neurons in each hidden layer. A rectifying
linear unit is established as the activation function for the
neural network structure to help with the learning process. The
Adam optimizer is also applied to update the neural network
weights.

Moreover, the output of the local actor-critic design is a
3-D action, which is an instruction with a position coordinates
(z, x, y), where the instruction z will decide whether to move
or to attack and the position coordinates (x,y) decide the
moving direction. All these three variables are normalized
within [—1, 1]. Hence, the unit will attack the nearest enemy
if the instruction z > 0. If the nearest enemy is not within
the range of unit fire, the unit will move to the nearest enemy
with the position coordinates (x, y). If the instruction z < 0,
the unit will take the move action with a certain direction
tan~!(x/y) that is calculated by the position coordinates
(x, y). For example, if the output is [—0.9, —0.25, 0.5] with
the instruction z = —0.9 < 0, then the unit will move with the
direction of tan~'(—0.25/0.5) = —30°. In addition, the output
of the global actor-critic design is the mapping signal ¢ that
is a 3-D vector to provide the global health information for
distributed units.

The memory pools are designed for both the global and
the local structures. Specifically, the local memory pool saves
the current local state, action, reward, and next state of the
unit as one batch for memory replay training and the global
memory pool stores the global state, action, reward, and next
state. During the training process, at each time step, the stored
experience will be randomly selected from each memory pool
based on the batch size to update the corresponding neural
network. Each type of units will have its own memory pool.
Therefore, each type of unit has its own actor-critic structure
with the memory pool corresponding with its own experience.
Meanwhile, all types of units share one global actor-critic
design with limited information received from the distributed
units.

V. EXPERIMENT RESULTS AND ANALYSIS
A. Experimental Evaluation Index

Three evaluation indices are provided to demonstrate and
evaluate the effectiveness of the developed SCDDPG method,

which are the win rate, the normalized reward, and the survival
rate. These evaluation indices are calculated at each episode
as the average for the last 100 episodes. The details of the
evaluation indices are provided as follows.
First, the win rate is the percentage of the winning times,

which can be defined as

2
100
where v is the number of victories within 100 episodes.

Then, the normalized reward is the average of the cumula-
tive rewards, which is

win rate: W = 24)

11101 erl':l Tkj
n-100
where k is the index of episode, j is the index of unit, n is
the number of units, and r;; is the final reward for unit j at

episode k.
Finally, the survival rate is the average rate of the survival
units within 100 episodes, which is

normalized reward: N = (25)

100
k=1 Ik

n - 100
where [, is the number of the survival units in episode k.
Note that, all the evaluation indices are normalized
within [0, 1].

survival rate: § = (26)

B. Scenario Result Analysis

We demonstrate and discuss the experimental results based
on the three evaluation indices (24)—(26). In addition, to further
validate the developed method, we also compare the results
with the literature [38], [40] under the same experimental
setup.

1) Scenario One: This scenario considers the situation
of 3V10Zv3V12Z, which is shown in Fig. 2. The SCDDPG
method is applied, and 1000 episodes (games) have been
conducted. In particular, for each episode, 13 units have been
controlled by the SCDDPG method, including three Vultures
and ten Zerglings. The enemy group has the same unit-type
structure and is under controlled by the StatCraft build-in
game heuristic Al. If our group eliminates all the enemies,
we consider that the group wins the game in this episode;
otherwise, it loses.

The results are shown in Fig. 3, including the trajectories
of the win rate, the normalized reward, and the survival rate.
Specifically, from the trajectory of the win rate, in the first
100 episodes, the SCDDPG-controlled group has not obtained
one win episode, and the enemy wins all games. However,
in the following 300 episodes, the win rate of the controlled
team increased rapidly from O to 0.82. After 600 episodes of
training, the win rate is over 0.9 and reaches a stable period,
which means that the group under the controlled by SCDDPG
method has over 90% chance to win the game.

The rapid growth of the normalized reward comes in
the second 100 episodes, and the normalized reward is from
0.27 to 0.64. At the same time, the corresponding win rate
continuously increases to 0.25, which means that the SCDDPG
team steadily turns the table from being in the passive position

Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 22,2021 at 16:30:06 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

scopra

Local Actor-Critic 2
Vs

\&“‘a?“llr
i
AANAN RS

Fig. 2. Structure of scenario 3V10Zv3V12Z.

e
e
‘N‘&“ﬂ
a3

o o
[e)] 0 =
N
\
s
|

o
~
\
\
|
[
|
[
\
\

Cwin rate
survival rate
normalized reward

evaluation indices
AN

<)
o

A\
\

100 200 300 400 500 600 700 800 900
episodes

1000

Fig. 3. Evaluation indices for scenario 3V10Zv3V12Z including win rate,
normalized reward, and survival rate.

to actively participate in the battle. In the following episodes,
normalized reward increases smoothly. After 600 episodes,
the normalized reward is stable at around 0.9. With the help
of the local and the global reward function, the intelligent
multiagent system can collaborate with each other to achieve
the final victory as a group.

Furthermore, the survival rate is O in the first 100 episodes
because the SCDDPG team loses all games, and there is
no unit in the team survives. After exploiting and training
of 300 episodes, the survival rate in each battle increases from
0 in the first 100 rounds to more than 0.38 in the fourth
100 rounds. After training 600 episodes, since the win rate
and the normalized reward become stable, the survival rate
keeps above 0.4, which means that after destroying all enemy
team members, our team still has five units alive. In other
words, although we lose eight units, we eliminate 15 enemies
and win the game.

2) Scenario Two: In this scenario, we consider the scenario
with 2D3Zv2D3Z. Without loss of generality, the experiment
is conducted with 100 independent runs, where each run
includes 1000 episodes. In order to demonstrate the effective-
ness of the proposed method, we also compare the results of
the SCDDPG method with the DDPG design. The parameters
of both methods are selected as the same, such as the neural
network learning rate, discount factor, exploration rate, and
batch size, among others.

The battle scene of this scenario is shown in Fig. 4. At the
beginning of each episode, the SCDDPG method controls five
red units, including two Dragoons and three Zealots, while the
enemy has the same five units with color blue. Fig. 5 shows the
win rate comparisons of the SCDDPG and the DDPG methods.
In the first 100 episodes, the SCDDPG-controlled group only

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. StarCraft battle scene of scenario 2D3Zv2D3Z. The units are
surrounded by fog. The map settings are based on [38].

)
=06 —
o Ay A
,E \/
304 T
e b
02 o Pt
e £ SCODPG ADDPG
100 200 300 400 500 600 700 800 900 1000

episodes

Fig. 5. Win rate comparisons of SCDDPG and DDPG methods for scenario
2D3Zv2D3Z.

—_

01SCDDPG ADDPG

.- A \\\l,JJ |
508
z 1
=06
o ‘ \
g
=04 /
: / | |
502 7 ./\\/T—T——;
0 _,_—"l 77772//‘1/7 T I
100 200 300 400 500 600 700 800 900 1000
episodes
Fig. 6. Normalized reward comparisons of SCDDPG and DDPG methods

for scenario 2D3Zv2D3Z.

wins one episode, while the enemy group wins 99 games.
After that, the SCDDPG group continuously optimizes its
strategy. In the next 400 rounds, the win rate of the SCDDPG
method shows and explosive growth and increases from O to 1.
After 500 episodes, the SCDDPG group keeps to optimize the
decision and the enemies are unable to win the game. On the
other hand, the DDPG method cannot achieve one victory in
the first 300 episodes, and after that, the win rate increases
slowly. At the end of the training process, the DDPG method
can reach stable a win rate at 0.6.

The comparisons of the average performance of 100 inde-
pendent runs are shown in Figs. 6 and 7 in terms of the nor-
malized reward and the survival rate. Specifically, the average
normalized reward is presented in Fig. 6. The increasing trend
of the normalized reward is consistent with the win rates.
For the SCDDPG method, the normalized reward is about

Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 22,2021 at 16:30:06 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE AND ZHONG: SCDDPG IN COOPERATIVE StarCraft GAMES

TABLE III
WIN RATES OF SIX ALGORITHMS IN FIVE STARCRAFT SCENARIOS [38], [40]

Scenarios SCDDPG DDPG DQN PG 70 BicNet
2D3Zv2D3Z 1.00 0.60 0.61 0.69 0.90 -
3V10Zv3V12Z 0.95 0.45 - - - -
SMv5M 0.94 0.56 0.99 0.92 1.00 0.92
15Mvi6M 0.93 0.89 0.13 0.19 0.79 0.71
1SWv17TW 0.56 0.27 0.16 0.14 0.49 0.53

SCDDPG: semi-centralized deep deterministic policy gradient
ZO: zero-order BicNet: multi-agent bidirectionally-coordinated nets

GSCDDPG ADDPG | l] [
0.8 e e e, S, S
g 4 I ‘ ’ []
£06 .
204 /
2 % {\[/lﬁl__\
o A T T
-1
0 J—T T
100 200 300 400 500 600 700 800 900 1000
episodes
Fig. 7. Survival rate comparisons of SCDDPG and DDPG methods for

scenario 2D3Zv2D37.

0.1 after the first 100 episodes training. At first, the reward
difference between the SCDDPG and the DDPG methods
is quite small. However, after 400 episodes, the normalized
reward of SCDDPG exceeds 0.3 and the normalized reward
of DDPG still stays in 0.05. Then, the trajectory of the
SCDDPG normalized reward has shown explosive growth and
achieves 0.8 within 500 episodes of training. Then, the strategy
of SCDDPG is kept training in the following 400 episodes
and the normalized reward maintains around 1.0. However,
the normalized reward of DDPG increases slowly comparing
with the SCDDPG method in the training process and is
lower than 0.2 until the end. Furthermore, Fig. 7 shows the
average survival rate of 100 runs. In the first 100 episodes,
the survival rates of SCDDPG and DDPG are 0.005 and O,
respectively. After that, the survival rate of SCDDPG shows
a rise and increases to 0.77 after 500 episodes of training.
Then, during the training episodes between 600 and 700,
the survival rate breaks 0.8, which means that we lost only
one unit but defeated five enemies. Thus, the SCDDPG method
can achieve a convincing performance in this scenario. In the
DDPG method, the survival rate trajectory is similar to the
DDPG normalized reward, and the DDPG method can only
save about one or two units at the end of each game after
1000 episodes training.

C. Experimental Comparison of Algorithms

To further demonstrate the SCDDPG method, we com-
pare our results with the other five methods: DDPG, DQN,
PG, ZO, and BicNet. Note that, we take the experiment on
SCDDPG and DDPG, and the other results are from the
literature [38], [40]. For both methods, we train the StarCraft

DDPG: deep deterministic policy gradient

DQN: deep Q-network PG: policy gradient

units for 1000 episodes and fix the neural network weights for
testing. The comparisons are shown in Table III.

In scenario 2D3Zv2D3Z, SCDDPG obtains a 100% win
rate, which is 10% higher than the second-best performance
algorithm ZO. In 3V10Zv3V12Z, although DQN, PG, ZO,
and BicNet have no corresponding experiments, the SCD-
DPG method obtains a 0.95 win rate, which is much better
than DDPG. Moreover, the SCDDPG method has competi-
tive results in the 5SMv5M scenario. In scenario 15Mv16M,
SCDDPG significantly improves the win rate compared with
other methods. In the last scenario 15Wv17W, all algorithms
cannot guarantee to acquire a higher victory rate because of
the difficult setup of the game. However, our method can still
obtain a better performance. Therefore, the results show that
our designed SCDDPG method has better control performance,
especially for powerful opponents.

VI. CONCLUSION AND DISCUSSION

This article proposed an SCDDPG method for multiagent
systems. The method involved two-level structures for the
global and the local actor-critic design. The reward functions
were also developed for different types of agents based on
their attributes to improve collaboration during the learning
process. The method had been implemented on the Star-
Craft micromanagement and compared with other methods
to demonstrate the effectiveness. The results showed that
our developed method can optimize the game and improve
collaboration among different types of StarCraft units.

In this article, we focused on the games between two
groups and the results had been compared with the literature.
In the future, we would like to consider the games involving
multiple groups, which requires the intelligent group to decide
which groups it should collaborate with first to eliminate
the other groups. They have to communicate with the
target groups on an agreement for collaboration.

REFERENCES

[1] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, no. 1, pp. 237-285,
Jan. 1996.

J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Netw., vol. 61, pp. 85-117, Jan. 2015.

Y. Li, “Deep reinforcement learning: An overview,” 2017,
arXiv:1701.07274. [Online]. Available: http://arxiv.org/abs/1701.07274
V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, 2015.

[2]
[3]
[4]

Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 22,2021 at 16:30:06 UTC from IEEE Xplore. Restrictions apply.

[5]

[6]

[7]

[8]

[9]
[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]
[27]
[28]

[29]

[30]

[31]

[32]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double g-learning,” in Proc. AAAI, Phoenix, AZ, USA, vol. 2, 2016,
p. 5.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
experience replay,” 2015, arXiv:1511.05952. [Online]. Available:
http://arxiv.org/abs/1511.05952

Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot,
and N. de Freitas, “Dueling network architectures for deep rein-
forcement learning,” 2015, arXiv:1511.06581. [Online]. Available:
http://arxiv.org/abs/1511.06581

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Proc. Adv. Neural Inf. Process. Syst., 2000, pp. 1057-1063.

V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Proc. Adv.
Neural Inf. Process. Syst., 2000, pp. 1008-1014.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. Int. Conf. Learn. Represent., 2016, pp. 1-14.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” in Proc.
Int. Conf. Mach. Learn., 2016, pp. 1329-1338.

J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in Proc. Int. Conf. Auton.
Agents Multiagent Syst. Cham, Switzerland: Springer, 2017, pp. 66-83.
R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and 1. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6379-6390.
V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928-1937.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.
[Online]. Available: http://arxiv.org/abs/1707.06347

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889-1897.

A. G. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning,” Discrete Event Dyn. Syst., vol. 13, nos. 1-2,
pp- 41-77, 2003.

O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchical
reinforcement learning,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 3303-3313.

C. Florensa, Y. Duan, and P. Abbeel, “Stochastic neural networks for
hierarchical reinforcement learning,” 2017, arXiv:1704.03012. [Online].
Available: http://arxiv.org/abs/1704.03012

T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3675-3683.

A. S. Vezhnevets et al., “Feudal networks for hierarchical reinforce-
ment learning,” in Proc. Int. Conf. Mach. Learn., vol. 70, 2017,
pp. 3540-3549.

M. Buro, “Real-time strategy games: A new Al research challenge,” in
Proc. Int. Joint Conf. Artif. Intell., 2003, pp. 1534-1535.

R. Lara-Cabrera, C. Cotta, and A. J. Fernandez-Leiva, “A review of
computational intelligence in RTS games,” in Proc. IEEE Symp. Found.
Comput. Intell. (FOCI), Apr. 2013, pp. 114-121.

G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games.
Springer, 2018.

D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, p. 354, 2017.

V. Mnih et al., “Playing Atari with deep reinforcement learning,” 2013,
arXiv:1312.5602. [Online]. Available: http://arxiv.org/abs/1312.5602
K. Arulkumaran, A. Cully, and J. Togelius, “AlphaStar: An evolutionary
computation perspective,” 2019, arXiv:1902.01724. [Online]. Available:
http://arxiv.org/abs/1902.01724

O. Vinyals er al., “Grandmaster level in StarCraft II using multi-
agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350-354,
Nov. 2019.

M. Buro and D. Churchill, “Real-time strategy game competitions,” Al
Mag., vol. 33, no. 3, p. 106, Sep. 2012.

A. Heinermann. (2015). BWAPI: Brood War API, an API for
Interacting With starcraft: Broodwar (1.16.1). [Online]. Available:
https://bwapi.github.io

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[33] G. Synnaeve et al., “TorchCraft: A library for machine learning research
on real-time strategy games,” 2016, arXiv:1611.00625. [Online]. Avail-
able: http://arxiv.org/abs/1611.00625

[34] S. Ontanon, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A survey of real-time strategy game Al research and
competition in StarCraft,” IEEE Trans. Comput. Intell. AI Games, vol. 5,
no. 4, pp. 293-311, Dec. 2013.

[35] D. Churchill et al., “Starcraft bots and competitions,” in Encyclopedia
of Computer Graphics and Games. 2016, pp. 1-18.

[36] S. Xu, H. Kuang, Z. Zhuang, R. Hu, Y. Liu, and H. Sun, “Macro
action selection with deep reinforcement learning in StarCraft,” 2018,
arXiv:1812.00336. [Online]. Available: http://arxiv.org/abs/1812.00336

[37] D. Churchill, M. Buro, and R. Kelly, “Robust continuous build-
order optimization in StarCraft,” in Proc. IEEE Conf. Games (CoG),
Aug. 2019, pp. 1-8.

[38] N. Usunier, G. Synnaeve, Z. Lin, and S. Chintala, “Episodic explo-
ration for deep deterministic policies: An application to StarCraft
micromanagement tasks,” 2016, arXiv:1609.02993. [Online]. Available:
http://arxiv.org/abs/1609.02993

[39] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proc. 32nd AAAI Conf.
Artif. Intell., 2018.

[40] P. Peng et al, “Multiagent bidirectionally-coordinated nets: Emer-
gence of human-level coordination in learning to play Star-
Craft combat games,” 2017, arXiv:1703.10069. [Online]. Available:
http://arxiv.org/abs/1703.10069

[41] K. Shao, Y. Zhu, and D. Zhao, “StarCraft micromanagement with
reinforcement learning and curriculum transfer learning,” IEEE Trans.
Emerg. Topics Comput. Intell., vol. 3, no. 1, pp. 73-84, Feb. 2019.

[42] T. Rashid, M. Samvelyan, C. S. Witt, G. Farquhar, J. Foerster, and
S. Whiteson, “QMIX: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 4292-4301.

[43] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian
motion,” Phys. Rev., vol. 36, p. 823, Sep. 1930.

Dong Xie (Student Member, IEEE) received the B.S.
degree in information and computing science from
Shandong Agricultural University, Tai’an, China,
£~ in 2015, and the M.S. degree in applied mathematics
= ! from George Washington University, Washington,
o R W DC, USA, in 2017. He is currently pursuing the
e Ph.D. degree with the Department of Electrical
Engineering, University of North Texas, Denton, TX,
USA.

He was a Graduate Research Assistant at Johns
Hopkins University, Baltimore, MD, USA, and
Fujitsu, Beijing, China, before. His research interests include reinforcement

learning, computer vision, and natural language processing.

Xiangnan Zhong (Member, IEEE) received the B.S.
and M.S. degrees in automation, and control theory
and control engineering from Northeastern Univer-
sity, Shenyang, China, in 2010 and 2012, respec-
tively, and the Ph.D. degree with the Department of
Electrical, Computer, and Biomedical Engineering,
University of Rhode Island, Kingston, RI, USA,
in 2017.

From 2017 to 2019, she was an Assistant Profes-
sor with the Department of Electrical Engineering,
University of North Texas, Denton, TX, USA. She
is currently an Assistant Professor with the Department of Computer and
Electrical Engineering and Computer Science, Florida Atlantic University,
Boca Raton, FL, USA. Her current research interests include computational
intelligence, reinforcement learning, cyber-physical systems, networked con-
trol systems, neural network, and optimal control.

Dr. Zhong was a recipient of the International Neural Network Society
Doctoral Dissertation Award in 2019. She has been actively involved in
numerous conference and workshop organization committees in society.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 22,2021 at 16:30:06 UTC from IEEE Xplore. Restrictions apply.

