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Abstract—Traffic classification has various applications in to-
day’s Internet, from resource allocation, billing and QoS purposes
in ISPs to firewall and malware detection in clients. Classical
machine learning algorithms and deep learning models have
been widely used to solve the traffic classification task. However,
training such models requires a large amount of labeled data.
Labeling data is often the most difficult and time-consuming
process in building a classifier. To solve this challenge, we
reformulate the traffic classification into a multi-task learning
framework where bandwidth requirement and duration of a
flow are predicted along with the traffic class. The motivation
of this approach is twofold: First, the bandwidth requirement
and duration are useful in many applications, including routing,
resource allocation, and QoS provisioning. Second, these two
values can be obtained from each flow easily without the need
for human labeling or capturing flows in a controlled and
isolated environment. We show that with a large amount of easily
obtainable data samples for bandwidth and duration prediction
tasks, and only a few data samples for the traffic classification
task, one can achieve high accuracy. Therefore, our proposed
multi-task learning framework obviates the need for a large
labeled traffic dataset. We conduct two experiments with ISCX
and QUIC public datasets and show the efficacy of our approach.

Index Terms—Maulti-task Learning, Supervised Learning, Net-
work Traffic Classification, QUIC Protocol Classification.

I. INTRODUCTION

Network traffic classification has a wide variety of appli-
cations in today’s Internet, such as resource allocation, QoS
provisioning, billing in ISPs, anomaly detection, etc. The
earliest approaches to solve network traffic classification used
port numbers or unencrypted packet payloads. These methods
relied on human labor for continuously finding patterns in
unencrypted payloads or matching port numbers. Due to
inefficiency and lack of accuracy, new methods based on
classical machine learning algorithms emerged, such as such
as random forest (RF) and k-nearest neighbor (KNN).

For several years, classical machine learning algorithms had
achieved state-of-the-art accuracy in the traffic classification
task. However, these relatively simple methods were not able
to capture more complex patterns which exist in today’s
Internet traffic and, therefore, their accuracy has degraded.
Recently, deep learning models achieved the state-of-the-art
performance in traffic classification. Their ability to learn
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complex patterns and perform automatic feature extraction
makes them desirable for traffic classification.

Although deep learning methods can achieve high accuracy,
they require a large amount of labeled training data. In the
network traffic classification task, labeling is a time-consuming
and cumbersome task. In order to correctly label each flow,
researchers usually capture flows of each class in isolation and
in a controlled environment with minimum background traffic.
This process is time-consuming and labor-intensive. Moreover,
traffic patterns observed in a controlled environment might
differ significantly from real traffic, which makes the inference
inaccurate.

To mitigate the need for a large amount of labeled training
samples, we propose a multi-task learning approach which
performs three predictions (tasks), for which only one requires
human effort and controlled environment for labeling. These
are bandwidth, duration, and traffic class prediction tasks. For
any captured data, whether it is captured in a controlled envi-
ronment in isolation or not, one can easily compute the total
bandwidth and duration of each flow without human labeling.
Hence, by formulating the traffic classification problem in
a multi-task learning framework where the large amount of
model parameters are shared among all tasks, one can train the
model with a large amount of data for bandwidth and duration
tasks and only a small number of labeled samples for traffic
class prediction task. Moreover, for various applications, such
as resource allocation or QoS purpose, bandwidth and duration
prediction is highly useful.

II. RELATED WORK

Before the widespread emergence of deep learning models,
classical machine learning approaches have been widely used
for network traffic classification [1]. These methods usually
relied on supervised learning methods, such as support vector
machine (SVM) [2], [3], C4.5 [4], [5], naive Bayes [6], [7],
k-nearest neighbor [8], [9], etc., or unsupervised clustering
methods, such as k-means [10], [11] or Gaussian mixture
model [12]. However, their accuracy has declined recently due
to the simplicity, manual feature extraction (which becomes
more difficult with today’s strongly encrypted traffic), and
the lack of high learning capacity to capture more complex
patterns.



In the past few years, with the promising success of deep
learning methods on variety of problems, such as image
classification, voice recognition, translation, etc., network re-
searchers recently adopted these methods for traffic classifica-
tion [13]. In [14], a LeNet-5 convolutional Neural Network
(CNN) model, designed in 1998 for handwritten numeral
recognition, is used for traffic type classification. Numerous
statistical features are rearranged into a 2-dimensional image
as input to the model. They report high accuracy, but the
model cannot be used for online applications [15] because it
requires an entire flow to be observed to obtain the statistical
features. In [16], authors use both statistical features and
payload data for traffic classification of QUIC protocol. They
first use statistical features with random forest algorithm to
distinguish between chat and voice call with other classes. If
other classes are detected, they use payload data with a CNN
model to classify video streaming, file transfer, and Google
music. Their first stage needs the entire flow to be observed
and, hence, it is only suitable for offline applications. Payload
information, although encrypted, has been used in other papers
as well. In [17], a CNN and stacked Auto-Encoder (SAE) are
used together on ISCX dataset to classify traffic types and
applications. These methods use deep neural networks as a
black box without identifying human understandable features.

In [18], time-series features of each flow are converted
into 2-dimensional images using Reproducing Kernel Hilbert
Space (RKHS). The produced images are used as input to a
CNN model. They compare their CNN model with classical
machine learning approaches, including SVM, decision tree
and naive Bayes. The CNN model achieve over 99% accu-
racy and outperforms classical machine learning approaches.
In [19], a convolutional neural network, a long short-term
memory (LSTM) model and various combinations are used
for classification of several services, such as YouTube and
Office365. They achieve the accuracy of around 96% when
time-series features and header features are used with the
CNN/LSTM architecture. In [20], CNN and CNN+LSTM
models are used for identification of 80 mobile applications.
They use raw packet header and payload and achieve high
accuracy for large number of classes. They used occlusion
analysis to elucidate how deep learning models can classify
encrypted traffic for the first time. They show that unencrypted
handshake fields in SSL/TLS protocol can be effectively used
for app identification. However, they use large dataset captured
at an operational ISP to train such a large-scale model.

In [15], a general framework is proposed providing a
straightforward guidelines and directions for any traffic clas-
sification task. Most previous work falls under the general
framework. However, all these methods rely on supervised
learning and require a large amount of labeled data for training.
This becomes more problematic for deep models because they
need significantly more training data than classical machine
learning approaches.

The only study that addresses the need for a large labeled
dataset is [21]. This approach consists of a semi-supervised
learning method, where a CNN model is first pre-train to
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Fig. 1. A typical architecture of CNN models [21]

predict several statistical features from the sampled packets.
They use time-series features of sampled packets. Then, they
replace the last few layers with new ones and then re-train
with a small labeled dataset. The advantage of their approach
is that it does not need human effort for labeling the pre-trained
dataset because statistical features can be computed easily
when entire flows are available. However, their approach takes
sampled data packets which means that it needs to observe a
large portion of a flow before performing the classification
which is not suitable for online applications. In this paper, we
propose a multi-task learning approach that outperforms both
single-task learning and transfer learning.

III. DEEP LEARNING BACKGROUND

A. Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are types of deep
learning models consisting of several layers that use convolu-
tion operations. The architecture of CNN models is inspired
by the organization of animal visual cortex. CNNs consist
of several convolution layers, pooling layers, and often fully
connected (FC) layers, as shown in Fig. 1. In a convolution
layer, a set of small kernels with a small number of learnable
parameters are used to capture patterns from the output of the
previous layer. To generate an output, a convolution layer uses
the same set of kernels on the entire input. By using the same
set of kernels in a layer, the number of learnable parameters
are dramatically reduced. Moreover, the use of these kernels on
the entire input helps the model to also capture shift invariant
features more easily. For example, in an image classification
task, a kernel that captures the pattern of a tiger skin can detect
the pattern regardless of the location of the tiger in an image.
This is particularly helpful for tasks that are inherently shift
invariant, including network traffic classification, where some
patterns may occur at the first few packets, at the end of the
flow, or potentially at any part of the flow. Another layer that
is usually used in CNN models is the pooling layer which is
mainly responsible for subsampling. At the end of the set of
convolution and pooling layers, a set of fully connected layers
are often used to capture high-level features of an input.

B. Multi-task Learning (MTL)

Multi-task learning (MTL) aims to perform several learning
tasks simultaneously under the assumption that the tasks are
not completely independent and one can improve the learning
of another. For instance, detecting dangerous objects and a
distance-based danger assessment are two tasks important to
autonomous driving. Since these two tasks are related and can



benefit from a shared representation, one can define a multi-
task learning approach to jointly learn these tasks [22].

The most common approach to multi-task learning is hard
parameter sharing where some parameters of the deep learning
models are shared among tasks and some parameters are
kept task-specific [23]. Our hard parameter sharing model
is explained in Section IV-D. The multi-task learning model
is more effective than several single-task learning models
because in MTL datasets of all tasks can help all other tasks
to be learned better. In this paper, we will show that we
can improve the accuracy of the traffic classification task by
using a multi-task learning approach where the data are easy
to obtain for other tasks, namely predicting bandwidth and
duration of a flow. Hence, we show that the accuracy of traffic
classification task improves significantly when abundant data
of other tasks is used when training a MTL framework.

IV. METHODOLOGY
A. Motivation

This paper is motivated by the following observations: First,
it is difficult to obtain sufficient labeled training data for traffic
classification task. At the same time, there are other prediction
tasks that are needed for resource allocation, have easy-to-
obtain labels, and can be used to improve the accuracy of
traffic classification task. Therefore, we are motivated to solve
the two problems together through multi-task learning.

First, capturing a large enough labeled dataset for traffic
classification to train a deep model is a time-consuming and
cumbersome task [15]. Moreover, correctly labeling captured
data is also challenging, particularly when background traffic
or more than one traffic classes exist during capturing. On
the other hand, unlabeled data is often abundant and easy to
capture. Hence, it is desirable to be able to use a large amount
of unlabeled data to dramatically reduce the number of labeled
data needed for training. In this paper, we use a large unlabeled
datasets with a small number of labeled data in a multi-task
learning framework to solve this problem.

The second motivation of our approach is that ISPs or data
centers often perform traffic classification for billing, resource
allocation or QoS purposes. For such purposes, the traffic class
along with other flow features, such as bandwidth requirement
and duration, can significantly improve ISPs decision for
resource allocation, QoS, etc. In this paper, we propose a
multi-task learning approach that takes the first few time-
series features of a flow and perform three prediction tasks:
bandwidth, duration, and traffic class. Not only the bandwidth
and duration predictions are useful, they do not need human
labor for labeling and one can capture a large amount of flows
and then compute the bandwidth and duration of them easily.

B. Datasets

1) QUIC Dataset: The QUIC dataset [21] is captured at
University of California at Davis. It contains QUIC traffic
of 5 Google services: Google Doc (1251 flows), Google
Drive (1664 flows), Google Music (622 flows), Youtube (1107

flows), Google Search (1945 flows). The dataset contains time-
series features: packet length, relative time, and direction.
The dataset has already been pre-processed. According to
[21], all short flows that have fewer than 100 packets had
been removed. Note that all flows in the dataset are labeled.
However, to evaluate our multi-task learning approach, we
only use a small portion of class labels during training.

2) ISCX VPN-nonVPN Dataset: ISCX Dataset [24] is cap-
tured at University of New Brunswick and it contains raw pcap
files of several traffic types. The dataset provides fine-grained
labels which allows different categorization: application-based
(e.g. AIM chat, Gmail, Facebook, etc), traffic-type-based (e.g.
chat, streaming, VoIP, etc), and VPN/non-VPN. In this paper,
we divide the dataset into 5 categories that have differ-
ent QoS requirements and bandwidth/duration characteristics:
chat, email, file transfer, streaming, and VoIP. Both UDP and
TCP traffic exist in the dataset. For TCP flows, we look for
FIN packet to identify the end of TCP flows. For UDP flows,
we use flow timeout of 15 seconds as in [25] to mark the
end of UDP flows. Similar to the QUIC dataset, all flows
are associated with a traffic type label, but we only use a
small portion of labels for traffic class prediction of multi-
task learning.

C. Input Features and Prediction Outputs

In general, modern network traffic classifiers use one or
a combination of four categories of input features: time-
series, header, payload, and statistical features [15]. Header
information is rarely used nowadays because it does not
achieve high accuracy. Statistical features are obtained from
the entire flow and, consequently, is not suitable for online
classification where the prediction is needed as soon as traffic
emerges. Online classification is necessary when resource
allocation, QoS or routing decisions depend on the prediction
output. Payload data has been shown to be useful for some
datasets and special traffic types and encryption methods [17],
[26]. The success of these methods stems from unencrypted
fields during the handshake phase of TLS 1.2 [21]. However,
modern encryption methods, e.g. QUIC and TLS 1.3, reduce
the number of unencrypted fields as much as possible. Hence,
for the new and stronger encryption protocols, payload in-
formation itself may not be as useful. Note that many traffic
classification approached used statistical features of the entire
flow. Bandwidth requirement and duration of a flow can also
be considered as statistical feature which can be obtained by
observing the entire flow. However, in our proposed method,
we predict the bandwidth and duration because we can only
observe the first few packets, not the entire flow. Hence, we
treat bandwidth and duration as separate tasks as output, in
contrast to common traffic classification methods where they
use these values as input.

In this paper, we use three time-series features, that is,
packet length, inter-arrival time, and direction, of the first &
packets. The input of our model is a vector of length k with
2 channels. The first channel contains the inter-arrival time of
the first k& packets and the second channel contains the length
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and direction combined. As in [21], for the second channel, a
positive value indicates the packet length in forward direction
(from a client to a server) and a negative value indicates the
packet length in backward direction. Moreover, we normalize
the data by assuming a maximum value of 1434 Bytes for
length and 1 second for inter-arrival time.

The common approach for traffic classification often focuses
on predicting traffic types, applications, operating systems,
user actions, etc. In addition to such class labels, we aim to
predict duration and bandwidth requirements of traffic which
can be used for resource allocation, routing, or QoS purposes.
In this paper, we formulate the bandwidth and duration pre-
diction problems as classification instead of regression. In our
experiment, the model takes a long time to converge and
does not perform well when bandwidth and duration tasks
are defined as regression problems. In addition, coarse-grained
predictions are often enough for routing or QoS purposes.
Therefore, we reformulate these tasks as classification tasks.

The labels of bandwidth and duration class definitions are
shown in Table I. We divide the bandwidth and duration
values into five classes. We call [bwy, ..., bwy| and [dy, ..., d4]
bandwidth and duration divider. For example, if the bandwidth
of a flow is between bw; and bws, the class number 2

TABLE I
BANDWIDTH AND DURATION CLASSES DEFINITION

Class number Bandwidth (B) Duration (D)

Class 1 B < bwi D < dy
Class 2 bwi < B<bws di<D<ds
Class 3 bwo < B<bwsg do <D <ds
Class 4 bws < B<bwy d3<D<dy
Class 5 B > bwy D >dy

is assigned as a label to that flow. The number of classes
for bandwidth and duration prediction tasks can be different
from the number of traffic classes. They may depend on the
application, scenario and ISP’s needs. For example, an ISP
that only considers the difference between short-lived and
long-lived flows may only define two duration classes. We
experimentally show in the evaluation section that if the classes
are defined such that the bandwidth and duration classes
correspond to the average values of each traffic class, the
accuracy of all tasks improves. However, we show that even
choosing an arbitrary vales for categorization of bandwidth and
duration in the proposed multi-task framework outperforms a
single-task classifier.

To better understand the distribution of bandwidth and
duration, we illustrate the histogram of bandwidth and duration
for QUIC dataset classes in Fig. 2 and Fig. 3, respectively.
For bandwidth, one class (G Music) considerably consumes
more bandwidth and is mostly larger than 1 mbps, while
other classes vary between lkbps and lmbps. The reason
why G Music bandwidth is considerably larger is because it
attempts to download the entire track when it is played. This
is more obvious by observing the duration of G Music flows
in Fig. 3, which shows the very short-lived nature of G Music
flows. Duration of different classes are relatively distinctive,
despite overlaps in some regions. Note that based on the
dataset, application, and ISP’s need, bandwidth and duration
categorization may change from one scenario to another.

To find the optimal value for [di,...,d4], the duration
divider, we first find the average duration of each class. Then,
we sort the average values and then find the middle point
between two consecutive average values as [dy, ..., d4]. For
instance, in QUIC dataset, average duration for G Music, G
Search, G Drive, YouTube, and G Doc are [2.77, 9.83, 32.08,
56.44, 114.10] seconds. Hence, the duration divider is [6.30,
20.96, 44.26, 85.27]. Similar approach is also used to obtain
the bandwidth divider array. Note that these values are the
optimal values obtained from the entire dataset. However, our
assumption is that only a small number of labeled data is
available. Hence, in our evaluation, we obtain the dividers
based on the small number of labeled samples. Therefore, the
divider values are slightly different from the optimal values.
However, we show in the evaluation section that using these
dividers still improves the performance considerably.

In this paper, we use bandwidth and duration as tasks that
do not need human effort for labeling and can be obtained
easily in large quantities. One can also use other statistical
features for such tasks, such as average packet length, standard
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deviation of inter-arrival time, etc., which are also used in the
transfer learning approach in [21]. Such tasks can also improve
model training. However, these prediction tasks do not have
direct usage and, thus, should be considered as auxiliary tasks.

D. Multi-task Model Architecture

In this paper, we use 1-dimensional convolutional neural
network (CNN) in our multi-task learning model architecture.
CNN architecture was first introduced and used for visual
recognition tasks. However, in the past few years it has been
extensively adopted for various tasks in other fields. One of
the most important features of CNN models is their shift
invariance, which is suitable for traffic classification task with
time-series features because traffic patterns for each class may
not necessarily appear in the same location in flows.

The overall architecture of our approach is shown in Fig. 4.
The details of the model parameters are presented in Table II.
We use max pooling as it is commonly preferred over other
pooling methods. Rectified linear unit (ReLU) activation is
also used as an activation function in the entire model, except
the last layers which contain Softmax.

Suppose bandwidth, duration and traffic class prediction
tasks are denoted by B, D, and T, respectively. Additionally, we
have N training data for which x; represents the input of i-th
data sample and yZ, yP, and y! represent the corresponding
output for bandwidth, duration, and traffic class prediction
tasks'. The objective of the multi-task learning approach can
be formulated as

N
arg min Z [E(yiB,f(Xi;WB))"‘
WB WD WT

(P, Fxis W)+ X(y], f(xis WT))

! Tn this paper, scalar, vector, and matrix are denoted by lowercase, bold
lowercase, and bold capital letter, respectively.

where £ is a cross entropy loss function. A is a weight that sig-
nifies the importance of the traffic class prediction task. Since
this task has considerably fewer training data samples than
the other two tasks, we can increase \ to slightly compensate
for the lack of labeled data. Note that for all training data,
bandwidth and duration labels are available. However, only a
small portion of data samples have traffic class labels. During
training, we multiply the input of traffic class softmax layer
to a mask vector to prevent back-propagation from this task
for data samples that do not have a traffic class label.

V. EVALUATION
A. Implementation Detail

We use python and Keras package to implement our multi-
task learning approach?. We use a server with Nvidia Titan Xp
GPU and Intel Xeon W-2155 with Ubuntu 16.04. We conduct
experiments with both ISCX and QUIC datasets. In all of our
experiments, the training phase took less than a few minutes.
We use batch optimization and Adam optimizer for training.
The loss function and model architecture are explained in
Section IV-D.

B. QUIC Dataset

In this section, we compare the accuracy of our multi-
task learning approach with transfer learning and single-task
learning approaches. Table III shows the accuracy of all ap-
proaches for QUIC dataset. For single-task learning approach,
we use two successful models, namely random forest (RF)
with statistical features [26], and CNN+RNN model proposed
in [19]. We train the model three times from scratch for each
task. For bandwidth and duration prediction, we use the entire
dataset for training since it does not require human effort for
labeling. That is why the accuracy remains the same when
labeled samples are increased in Table III. Note that the RF
approach in [26] takes statistical features of the entire flow as
input. Since the bandwidth and duration is statistical features,
they can be obtained if the entire flow is accessible. So, there
is no need for prediction of bandwidth and duration if the
classifier can observe the entire flow. That is the reason we do
not train RF models on these two tasks. For transfer learning,
we deploy an approach similar to [21] with slightly different
source tasks. We first train the model with the entire dataset to
predict the bandwidth/duration tuple. Note that for this task,
we use both labels of the entire training set. After training
the model, we remove the last layer and replace it with a
new layer and initialized the weight, similar to [21]. Then,
we re-train the model for the traffic class prediction task. The
final model only predicts the traffic class. That is the reason
why Table III does not contain the bandwidth and duration
accuracy for the transfer learning approach. Note that there is
another difference between the transfer learning approach we
use and the one proposed in [21]. In [21], the model takes
sampled time-series features as input which is not suitable for
online classification needed for resource allocation, routing,

2 Codes are available at https://github.com/shrezaei/Multitask TrafficClassification
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TABLE 11
STRUCTURE OF THE CNN MODEL

- Conv  Conv Pool Conv Conv Pool Conv Conv Pool FC FC
Number of filters/neurons 32 32 - 64 64 - 128 128 - 256 256
Kernel size 3 3 2 3 3 2 3 3 2 - -
TABLE III

ACCURACY ON QUIC DATASET

# of labeled samples

Accuracy [Bandwidth, Duration, Traffic Class]

(For traffic class) RF [26] CNN+RNN-2 [19] Transfer learning Multi-task learning
10 [-, -, 48.67%]  [89.33%, 92.00%, 64.67%] [-, -, 85.33%] [89.33%, 91.00%, 93.33%]
20 [-, -, 64.00%] [89.33%, 92.00%, 66.67%] [-, -, 87.33%] [90.33%, 91.33%, 94.67%]
50 [-, -, 78.00%]  [89.33%, 92.00%, 76.67%] [-, -, 90.67%] [90.67%, 91.33%, 96.00%]
100 [-, -, 86.67%] [89.33%, 92.00%, 85.33%] [-, -, 92.67%] [90.67%, 92.00%, 97.33%]
or QoS purposes. Therefore, we take the first k packets as 100
input of the model without sampling. For multi-task learning
approach, we train the entire model with all training data. We Lo J —
use the bandwidth and duration labels of the entire training <
data samples, while we only provide a limited number of labels < 80} 1
. . S}
for the traffic class task (specified in the first column). For g
this experiment, we set A\ to one to emphasize on all three § 70 ¢ )l
tasks equally. Moreover, we use the first 60 packets as input
(k = 60) 60 Bandwidth task
R . Duration task —=—
As it is shown in Table III, the accuracy of the traffic 50 .. Traffic class task -

class prediction, for which we have limited labeled samples, is
considerably higher with our multi-task learning approach than
the transfer learning and single-task learning. In fact, the large
amount of data that is available for bandwidth and duration
tasks significantly improves the training process by allowing
the model parameters to be trained with such abundant data.
Although the transfer learning approach also reaps the benefits
of the large dataset during pre-training, it iS more prone
to catastrophic forgetting [27], losing the ability to perform
previous tasks, or over-fitting, losing the ability to generalize
by fitting closely to a training dataset, particularly when the
target task has a small number of training samples.

In our experiments, we find that the accuracy of a single-
task learning is 97.67% when the entire dataset with all class
labels are used. For traffic class prediction task, the multi-
task learning approach with only 100 labeled samples reach
almost the same accuracy as single-task learning using the
entire labeled dataset. Hence, the multi-task learning approach
can greatly reduce the number of labeled data. There is no sig-
nificant performance difference between single-task learning
and multi-task learning for bandwidth and duration prediction
tasks because there are abundant data samples for these tasks.

Fig. 5 shows the accuracy of the multi-task learning ap-
proach for all three tasks when different number of packets
are used as input’. Interestingly, bandwidth and duration can
be predicted with as few as 30 packets and increasing the
number of packets does not considerably improve the accuracy.
For traffic classification task, there is a significant performance

3 Note that for the experiments with 30 and 45 packets, we removed one
of the convolutional layers with 128 filters because that reduces the model
input to a zero dimensional vector.

30 40 50 60 70 80 90 100 110 120
Number of packets (k) for input

Fig. 5. Number of input packets versus accuracy for QUIC dataset

improvement from 30 to 60 packets. However, the traffic class
prediction does not get more accurate by observing more
packets.

Fig. 6 shows the prediction accuracy of the three tasks
with different \. Intuitively, when the number of training
samples of one task is considerably smaller than other tasks
in multi-task learning, the shared parameters of the deep
model are affected more by tasks with abundant data during
training. Hence, increasing the weight of the loss function
of the task with fewer data, as it is explained in Section
IV-D, may compensate for the lack of data during training
and increase the effect of this task on the training procedure.
As shown in Figure 6, increasing A helps the model to fit to
the traffic class prediction tasks until it reaches the maximum
accuracy. However, increasing the A\ further will degrade the
accuracy of all tasks. That is because when A is very large, the
model highly over-fits to the traffic classification training data
and, consequently, performs worse on test data of all tasks.
Moreover, when A is very large, the value of gradient updates
becomes very large for traffic class prediction in comparison
with other tasks which makes the training process extremely
difficult to converge to local minimum without fine-tuning
learning rate. This phenomenon affect the performance of all
tasks. Hence, for the multi-task learning approach, one should
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find the suitable value of A\ as a hyper-parameter. A good
starting point is to set A with the ratio of the number of samples
of bandwidth and duration tasks over the number of samples
of traffic classification task.

Table IV shows the effect of bandwidth and duration di-
viders on the performance of bandwidth, duration, and traffic
class tasks. The first row shows the optimal dividers which
are obtained from the training set as explained in Section
IV-C. In this experiment, we only use 20 labeled samples from
each class for training traffic class task. As shown, the optimal
dividers achieve the highest accuracy on traffic class task. By
changing the value of dividers, the accuracy of traffic class task
slightly degrades. However, the accuracy of traffic class task is
still considerably larger than single-task learning (66.67%) and
transfer learning (87.33%), which are reported in Table III. In
other word, even with non-optimal dividers, using multi-task
learning is still beneficial and outperforms other approaches.

This is useful because for some applications and scenarios,
such as in ISPs and for resource allocation, the ISP may need
to define a custom bandwidth classes to fulfill its need that
may be different from the optimal divider obtained based on
training data. Hence, not only the multi-task learning approach
can be used to predict bandwidth and duration which can be
useful for resource allocation or QoS provisioning, but it also
improves the accuracy of the traffic class prediction regardless
of the choice of dividers. In other words, the multi-task
learning approach effectively kills two birds with one stone.
Note that an arbitrary bad choice of dividers may lead to lower
accuracy on the bandwidth and duration tasks, as in the last
row of Table IV. But, it still improves the accuracy of traffic
class because it helps the model to learn the shared parameters
of the model with abundant data. Hence, if the bandwidth
and duration tasks are planned to be used as auxiliary tasks
to improve the accuracy of traffic class task, it is better to
choose the optimal divider, as explained in Section IV-C. If
the bandwidth and duration predictions are planned to be used
for resource allocation or QoS proposes, defining the problem
in a multi-task framework still improves the accuracy of traffic
classification task.
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Fig. 7. Number of input packets versus accuracy for ISCX dataset

C. ISCX Dataset

In this section, we use ISCX dataset and combine all
classes into 5 different traffic types as explained in Section
IV-B. Although it has been shown that a CNN model with
payload information as input achieves higher accuracy for
this dataset [17], we conduct experiments with ISCX dataset
to only show the performance improvement of our multi-
task learning approach over single-task learning and transfer
learning approach in general.

Table V presents the accuracy of bandwidth, duration, and
traffic class tasks for ISCX dataset. Regardless of the learning
approach, the accuracy of traffic class task is lower in ISCX
dataset (Table V) than QUIC dataset (Table III). Similar to
Section V-B, we set the A to one and k to 60 packets. As shown
in Table V, the accuracy of bandwidth and duration tasks are
similar for multi-task learning and single-task learning ap-
proaches. This suggests that patterns and convolutional filters
that are suitable for bandwidth prediction are also suitable for
duration prediction because in multi-task learning approach
they shared the same model parameters and they achieve
the same accuracy. The accuracy of the traffic class task is
not as high as other tasks, but the table shows a significant
improvement with multi-task learning approach in comparison
with other approaches.

Figure 7 illustrates the accuracy of the three tasks versus
the number of packets, k. Unlike QUIC dataset, the duration
task needs to observe more packets for accurate prediction.
In QUIC dataset, the duration task accuracy is almost the
same for different number of packets. However, For ISCX
dataset, k = 30 leads to much lower accuracy than k >= 40.
Bandwidth and traffic class prediction tasks show the same
trend as QUIC dataset. Interestingly, both ISCX and QUIC
datasets almost achieve their maximum accuracy for all their
tasks with around 60 input packets.

Figure 8 shows the accuracy of all tasks when using
different \. In this experiment, we use 20 labeled data samples
per class (for traffic class prediction) and the entire dataset for
bandwidth and duration tasks. Similar to QUIC dataset (Figure
6), the maximum accuracy of the traffic class prediction



TABLE IV
ACCURACY OF QUIC DATASET WITH DIFFERENT BANDWIDTH AND DURATION DIVIDERS

Bandwidth divider (kbps)

Duration divider (s)

Accuracy [Bandwidth, Duration, Traffic Class]

[21.15, 164.02, 568.82, 2890.56]

[5.97, 21.35, 44.80, 84.00]

[90.67%, 91.33%, 94.67%]

[21.15, 164.02, 568.82, 2890.56]

[20, 40, 80, 100]

[91.33%, 92.00%, 93.33%]

[21.15, 164.02, 568.82, 2890.56]

[1, 50, 100, 150]

[91.33%, 94.00%, 92.66%]

[10, 50, 100, 1000]

[5.97, 21.35, 44.80, 84.00]

[92.00%, 90.66%, 94.00%]

[50, 100, 200, 300]

[5.97, 21.35, 44.80, 84.00]

[84.66%, 90.00%, 93.00%]

[50, 100, 200, 300]

[1, 50, 100, 150]

[82.00%, 93.00%, 92.00%]

TABLE V
ACCURACY ON ISCX DATASET

Accuracy [Bandwidth, Duration, Traffic Class]

Number of labeled samples (For traffic class)

CNN+RNN-2 [19]

Transfer learning Multi-task learning

10 [88.33%, 90.00%, 52.33%] [-, -, 54.67%] [88.67%, 90.00%, 60.00%]
20 [88.33%, 90.00%, 57.00%] [-, -, 62.00%] [88.00%, 89.33%, 65.33%]
50 [88.33%, 90.00%, 60.67%] [-, -, 69.33%] [91.33%, 90.00%, 72.67%]
100 [88.33%, 90.00%, 77.33%] [-, -, 79.33%] [89.33%, 91.33%, 80.67%]
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Fig. 8. A versus accuracy for ISCX dataset

reaches around \ = 10. Similarly, as in Section V-B, by further
increasing )\, the model over-fits to traffic classification task
which degrades the performance of all tasks.

VI. DISCUSSION

In this paper, we use bandwidth and duration predictions
as tasks with abundant training data. These two tasks have
potential usage, as discussed earlier. However, for scenarios
where these predictions are not important and they only serve
to improve the accuracy of traffic classification, one can also
use other prediction tasks (e.g. average inter-arrival time or
number of bursts) as auxiliary tasks. Auxiliary tasks should
have two characteristics: First, it should be highly relevant
to the traffic classification task. Second, the label should be
easy to obtain. In such cases, finding the best set of auxiliary
tasks to improve the traffic class prediction should be treated
similar to hyper-parameter tuning. The study and analysis of
various auxiliary tasks are out of the scope of this paper and
is considered as future work.

In our experiments, our multi-task learning approach out-
performs, or performs as accurately as, the transfer learning

approach. However, in many cases, transfer learning is the
only option. For instance, if the pre-trained model is given
without the training data, we can only use transfer learning.
Additionally, if the time or computational complexity of train-
ing process is important, it may be desirable to avoid multi-
task learning since it needs to train the whole model using
both unlabeled data and labeled data. If a pre-trained model is
available, transfer learning can train a model extremely fast,
although using a public pre-trained model is shown to expose
security threat [28]. Otherwise, the multi-task learning frame-
work is more effective than the transfer learning approach.

VII. CONCLUSION

In this paper, we propose a multi-task learning approach
that predicts traffic class labels as well as bandwidth and
duration of network traffic flows. Because the bandwidth and
duration tasks do not require human effort or controlled and
isolated environment for labeling, a large amount of data can
be easily captured and used for training these two tasks. We
show that by providing a large enough dataset for bandwidth
and duration tasks, one can train the traffic class prediction
task with only a small number of samples. Hence, it obviates
the need for a large amount of labeled data samples for traffic
classification. Moreover, bandwidth and duration predictions
can be used for resource allocation, routing and QoS purposes
in ISPs. We conduct experiments with two public datasets:
QUIC and ISCX VPN-nonVPN. We illustrate that our multi-
task learning approach significantly outperforms both single-
task and transfer learning approaches.
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