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I. SUMMARY

Investigating the underlying optimality criteria used by humans
during motion can inform theories for motor control as well as aid
in designing robot controllers. Inverse optimal control generates
cost functions that are minimized by a set of observed state and
control trajectories, allowing for provable claims about optimality.
This work applies a recent approach by [1] to experimental Sit-
To-Stand (STS) data to obtain individualized cost functions for
11 subjects. When used in optimal control synthesis, the cost
functions are found to re-create the observed angular trajectories
in a leave-one-out analysis with a maximum normalized error of
7.6% across subjects. The normalized coefficients of these cost
functions between subjects are all within a Euclidean distance
of 0.25. This result suggests that the study participants exhibit
similar underlying optimality criteria during STS.

II. INTRODUCTION

A common assumption is that humans and animals behave
optimally during locomotion by minimizing some cost, such
as the cost of transport [2]. Unfortunately, many claims about
underlying optimality criteria involve comparing human data to
trajectories produced by hand-picked cost functions, e.g., [3].
Inverse optimal control (IOC) aims to extract a cost function
from a set of observed state and input trajectories. IOC has been
implemented in various forms for a range of human motions,
including manipulation tasks [4], seated posture [5], and walking
[6]. These methods either make assumptions about the control
strategy being used, do not ensure that the globally optimal
cost function is found, or use high-dimensional models which
introduce difficulties in real-world implementation.

In this work, we use a formulation developed by [1] applied to
the Sit-To-Stand (STS) motion, a task necessary for maintaining
independence and quality of life [7]. This semidefinite program-
ming (SDP) method guarantees the recovery of a globally optimal
solution. We solve for individualized polynomial cost functions
of various degrees using kinematic data from 11 subjects. These
cost functions are then used to generate optimal controllers and
simulate trials in a leave-one-out context. We compare error
between simulated and real data and analyze the cost function
coefficients across all subjects.

III. METHODS

Motion capture data were collected from 11 subjects as they
performed the STS task. For the nominal trials, each subject stood
from a comfortable seated position five times. Next, the subject
shifted their feet forward, then backward from the nominal
position in two-inch increments.

We model the STS motion using an inverted pendulum model
(IPM), which represents the angle x; and angular velocity x5 of
each subject’s center of mass (COM) relative to the pendulum
base throughout the STS trajectory. A torque w is applied to the
pendulum at its base.

We used a formulation developed by [1], restricting the
functions to polynomials with coefficients in [-1,1]. First, we
performed a leave-one-out analysis by running IOC with all of
a subject’s nominal and footshifted trials except one. We found
these individualized polynomial cost functions of state and input
for degrees 2, 4, and 6. Next, we simulated the left-out trajectory
using these cost functions, and calculated the root mean square
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Monomials in Cost Function

Fig. 1: Weights on all monomials of the best fitting cost function for each subject,
normalized to have unit norm, shown here for degree 2.

deg2 deg4 degb
E(p+to) | 76£1.8% | 5.6+1.3)% | (5.8+1.H)%
max. d 0.25 0.13 0.18

TABLE I: For cost-function degrees 2, 4, and 6: Normalized leave-one-out root
mean square error, averaged across trials of all subjects, and maximum Euclidean
distance between any two subjects’ set of coefficients with unit norm.

error F/ between the simulated angle (Z1) and actual angle (z1).
The error values were normalized by the total range of z;-values.
For each degree of cost function, we averaged the leave-one-out
E across all subjects and trials. Then, we ran IOC for all of a
subject’s trials to create one cost function per subject and degree.
Treating the set of coefficients as vectors, we normalized each to
have a unit norm and used a Euclidean distance metric to measure
the distance d between subjects’ sets of coefficients.

IV. RESULTS AND DISCUSSION

Fig. 1 shows the coefficients of each subject’s degree-2 cost
function plotted for each monomial of w, x;, and x,. Table I
reports the average leave-one-out E-values across subjects and
trials as well as the maximum d between any two subjects’ sets of
coefficients. For comparison, the maximum possible d between
any two unit norm vectors is 2. For all three degrees of cost
function, the coefficients are strikingly similar across subjects,
suggesting the study participants had similar optimiality criteria
during STS. Future work will aim to connect these polynomial
cost functions to physical meanings as well as develop strategies
for incorporating these cost functions into high-level controllers
for wearable robotics.
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