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Abstract—To move while using new sensor information, mobile
robots use receding-horizon planning, executing a short plan while
computing anewone.Aplan should have dynamic feasibility (obey-
ing a robot’s dynamics and avoiding obstacles), liveness (planning
frequently enough to complete tasks), and optimality (minimizing,
e.g., distance to a goal).Reachability-based trajectorydesign (RTD)
is a method to generate provably dynamically feasible plans in
real time by solving a polynomial optimization program (POP)
in each planning iteration. However, RTD uses a derivative-based
solver,whichmay converge to localminima that impact liveness and
optimality. This article proposes a parallel constrained Bernstein
algorithm (PCBA) branch-and-bound method to optimally solve
RTD’s POP at runtime; the resulting optimal planner is called
RTD*. The specific contributions of this article are the PCBA
implementation, proofs of PCBA’s bounded time and memory
usage, a comparison of PCBA with state-of-the-art solvers, and
a demonstration of PCBA/RTD* on hardware. RTD* shows better
optimality and liveness than RTD in dozens of environments with
random obstacles.

Index Terms—Motion planning, robot control, trajectory
optimization.

I. INTRODUCTION

FOR mobile robots to operate successfully in unforeseen
environments, they must plan their motion as new sensor

information becomes available. This receding-horizon strategy
requires iteratively generating a plan while simultaneously ex-
ecuting a previous plan. Typically, this requires solving an
optimization program in each planning iteration (see, e.g., [1]).
This work considers a mobile ground robot tasked with reach-

ing a global goal location in an arbitrary static environment. To
assess receding-horizon planning performance, we consider the
following characteristics of plans. First, a plan should be dynam-
ically feasible, meaning that it obeys the dynamic description
of the robot and obeys constraints such as actuator limits and
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Fig. 1. Segway RMP mobile robot using the proposed PCBA/RTD* method
to autonomously navigate a tight obstacle blockade. The executed trajectory is
shown fading from light to dark blue as time passes, and the robot is shown at four
different time instances. The top right plot shows the Segway’s (blue circle with
triangle indicating heading) view of the world at one planning iteration, with
obstacles detected by a planar lidar (purple points). The top left plot shows the
optimization program solved at the same planning iteration; the decision variable
is (q1, q2), which parameterizes the velocity and yaw rate of a trajectory plan; the
pink regions are infeasible with respect to constraints generated by the obstacle
points in the right plot; and the blue contours with number labels depict the cost
function, which is constructed to encourage the Segway to reach a waypoint (the
star in the top right plot). The optimal solution found by PCBA is shown as a
star on the left plot, in the nonconvex feasible area (white). This optimal solution
generates a provably safe trajectory for the Segway to track, shown as a blue
dashed line in the right plot. A video is available at roahmlab.com/PCBA_demo.

obstacle avoidance. Second, a plan should maintain liveness,
by which we mean it keeps the robot moving without stopping
frequently to replan; frequent stops can prevent a robot from
achieving a task in a user-specified amount of time. Third, a plan
should be optimal with respect to a user-specified cost function,
such as reaching a goal quickly.
Ensuring that plans have these characteristics is challenging

for several reasons. First, robots typically have nonlinear dy-
namics; this means that creating a dynamically feasible plan
often requires solving a nonlinear program (NLP) at runtime.
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However, it is difficult to certify that an NLP can be solved
in a finite amount of time, meaning that the robot may have
to sacrifice liveness. Furthermore, even if a robot has linear
dynamics, the cost function may be nonlinear; in this case, it
is challenging to certify optimality due to local minima.
This article extends prior work on reachability-based trajec-

tory design (RTD). RTD is able to provably generate dynami-
cally feasible trajectory plans in real time, but cannot guarantee
optimality or liveness (the robot will generate plans in real
time, but may brake to a stop often). We address this gap by
proposing the parallel constrained Bernstein algorithm (PCBA),
which provably finds globally optimal solutions to polynomial
optimization problems (POPs), a special type of NLP. We apply
the PCBA to RTD to produce an optimal version of RTD, which
we callRTD* in the spirit of thewell-knownRRT*algorithm [2].
We show on hardware that RTD* improves a robot’s liveness (in
comparison to RTD) for trajectory optimization.

A. Related Work

1) Receding-Horizon Planning: A variety of methods ex-
ist that attempt receding-horizon planning while maintaining
dynamic feasibility, liveness, and optimality. These methods
can be broadly classified by whether they perform sampling
or solve an optimization program at each planning iteration.
Sampling-based methods typically either attempt to satisfy live-
ness and dynamic feasibility by choosing samples offine [3],
[4] or attempt to satisfy optimality at the potential expense of
liveness and dynamic feasibility [2]. Optimization-based meth-
ods attempt to find a single optimal trajectory. These methods
typically have to sacrifice dynamic feasibility (e.g., by lineariz-
ing the dynamics) to ensure liveness [5] or sacrifice liveness to
attempt to satisfy dynamic feasibility [6], [7] (also see [8, Sec. 9]
and [9]).
2) Reachability-Based Trajectory Design: RTD is an

optimization-based receding-horizon planner that requires
solving a POP at each planning iteration [8], [10]–[14]. RTD
specifies plans as parameterized trajectories. Since these tra-
jectories cannot necessarily be perfectly tracked by the robot,
RTD begins with an offline computation of a forward reachable
set (FRS). The FRS contains every parameterized plan, plus
the tracking error that results from the robot not tracking any
plan perfectly. At runtime, in each planning iteration, the FRS is
intersected with sensed obstacles to identify all parameterized
plans that could cause a collision (i.e., be dynamically infea-
sible). This set of unsafe plans is represented as a (finite) list
of polynomial constraints, and the user is allowed to specify
an arbitrary polynomial cost function, resulting in a POP. At
each planning iteration, either the robot successfully solves the
POP to find a new plan or it continues executing its previously
found plan. While the decision variable is typically only two- or
three-dimensional, each POP often has hundreds of constraints,
making it challenging to find a feasible solution in real time [8].
Each plan includes a braking maneuver, ensuring that the robot
can always come safely to a stop if the POP cannot be solved
quickly enough in any planning iteration.

Note that, for RTD, optimality means finding the optimal
solution to a POP at each planning iteration. The cost function
in RTD’s POPs typically encodes behavior such as reaching a
waypoint between the robot’s current position and the global
goal (e.g., [8, Sec. 9.2.1]; RTD attempts to find the best dynam-
ically feasible trajectory to the waypoint. RTD does not attempt
to find the best waypoints themselves (best, e.g., with respect
to finding the shortest path to the global goal). Such waypoints
can be generated quickly by algorithms such as A* or RRT* by
ignoring dynamic feasibility [2], [8].
3) Polynomial Optimization Problems: POPs require mini-

mizing (ormaximizing) a polynomial objective function, subject
to polynomial equality or inequality constraints. As a fundamen-
tal class of problems in nonconvex optimization, POPs arise
in various applications, including signal processing [15]–[17],
quantum mechanics [18], [19], control theory [8], [20], [21],
and robotics [22], [23]. This article presents a novel PCBA for
solving POPs.
The difficulty of solving a POP increases with the dimension

of the cost and constraints, with the number of constraints, and
with the number of optima [24]. Existing methods attempt to
solve POPswhileminimizing time andmemory usage (i.e., com-
plexity). Doing so typically requires placing limitations on one
of these axes of difficulty tomake solving a POP tractable. These
methods broadly fall into the following categories: derivative-
based, convex relaxation, and branch-and-bound.
Derivative-based methods use derivatives (and sometimes

Hessians) of the cost and constraint functions, along with first-
or second-order optimality conditions [24, Sec. 12.3, 12.5], to
attempt to find optimal, feasible solutions to nonlinear problems
such as POPs. These methods can find local minima of POPs
rapidly despite high dimension, a large number of constraints,
and high degree cost and constraints [24, Ch. 19.8]. However,
thesemethods donot typically converge to global optimawithout
requiring assumptions on the problem and constraint structure
(see, e.g., [25]).
Convex relaxation methods attempt to find global optima by

approximating the original problem with a hierarchy of convex
optimization problems. These methods can be scaled to high-
dimensional problems (up to ten dimensions), at the expense of
limits on the degree and sparse structure of the cost function;
furthermore, they typically struggle to handle large numbers of
constraints (e.g., the hundreds of constraints that arise in RTD’s
POPs), unless the problem has low-rank or sparse structure [22].
Well-known examples include the lift-and-project linear pro-
gram (LP) procedure [26], reformulation-linearization tech-
nique [27], and semidefinite program (SDP) relaxations [22],
[28]. By assuming structure such as homogeneity of the cost
function or convexity of the domain and constraints, one can
approximate solutions to a POP in polynomial time, with con-
vergence to global optima in the limit [29]–[33]. Convergence
within afinite number of convex hierarchy relaxations is possible
under certain assumptions (e.g., a limited number of equality
constraints [34], [35]).
Branch-and-bound methods perform an exhaustive search

over the feasible region. These methods are typically limited
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to up to four dimensions, but can handle large numbers of
constraints and high degree cost and constraints. Examples
include interval analysis techniques [36]–[39] and the Bernstein
algorithm (BA) [40]–[42]. Interval analysis requires cost and
constraint function evaluations in each iteration and, therefore,
can be computationally slow. The BA, on the other hand, does
not evaluate the cost and constraint functions; instead, the BA
represents the coefficients of the cost and constraints in the
Bernstein basis, as opposed to the monomial basis. The coef-
ficients in the Bernstein basis provide lower and upper bounds
on the polynomial cost and constraints over box-shaped subsets
of Euclidean space by using a subdivision procedure [43], [44].
In other words, the unique properties of the Bernstein basis are
suitable for polynomial optimization. Note that one can also
use the Bernstein basis to transform a POP into an LP on each
subdivided portion of the problem domain, which allows one to
find tighter solution bounds given by the Bernstein coefficients
alone [42]. Since subdivision can be parallelized [45], the time
required to solve a POP can be greatly reduced by implementing
BA on a graphics processing unit (GPU). In terms of developing
BA, our work picks up where these previous results left off.

B. Contributions and Article Organization

This article makes four contributions. First, we extend the
parallelized BA from [45] to include inequality and equal-
ity constraints, resulting in our proposed PCBA. Second, we
prove bounds on the rate of convergence and memory usage
of PCBA (and therefore of parallel BA), which are not shown
in [45]. Third, we benchmark PCBA on a suite of well-known
POPs, on which it outperforms the bounded sum of squares
(BSOS) [35] solver, a generic nonlinear solver (MATLAB’s
fmincon), and the DIRECT branch-and-bound solver [39].
Fourth, we apply the PCBA to RTD to make RTD*, a provably
safe, optimal, and real-time trajectory planning algorithm for
mobile robots, thereby demonstrating dynamic feasibility, live-
ness, and optimality. We have also made our code open source:
github.com/ramvasudevan/GlobOptBernstein.
1) Novelty: Our work is most similar to [8], [41], and [45].

However, [45], which presents a parallelized BA, does not
include constraints or prove bounds on the rate of convergence or
memory usage. Similarly, [41] presents a constrained BA with-
out parallelization, equality constraints, or proofs of bounds. On
the other hand, [8], which proposes RTD, does not incorporate
any notion of provable optimality, which limits a robot’s liveness
during real-time trajectory planning. We directly address each
of these limitations. Critically, the present work bridges the gap
between the BA literature and the robotics literature. To the best
of our knowledge, this is the first practical application of BA to
mobile robotics.
2) Article Organization: This article is organized as follows.

Section II introduces POPs andBernstein form. Section III intro-
duces RTD. Section IV presents our proposed PCBA. Section V
proves bounds on PCBA’s convergence and memory usage.
SectionVI benchmarks PCBAagainst BSOS [35], fmincon [46],
and DIRECT [39]. Section VII demonstrates PCBA/RTD* on
hardware. Section VIII concludes this article.

II. POPS AND BERNSTEIN FORM

This section introduces notation, POPs, the Bernstein form,
and subdivision. These form the basis for our proposed PCBA
method in Section IV.

A. Notation

1) Polynomial Notation: We follow the notation in [41].
Let x := (x1, x2, . . . , xl) ∈ Rl be real variables of dimension
l ∈ N. Amulti-index J is defined as J := (j1, j2, . . . , jl) ∈ Nl,
and the corresponding multipower xJ is defined as xJ :=
(xj1

1 , xj2
2 , . . . , xjl

l ) ∈ Rl. Given another multi-index N :=
(n1, n2, . . . , nl) ∈ Nl of the same dimension, an inequality
J ≤ N should be understood componentwise.An l-variate poly-
nomial p in canonical (monomial) form can be written as

p(x) =
∑
J≤N

aJx
J , x ∈ Rl (1)

with coefficients aJ ∈ R and some multi-index N ∈ Nl. The
space of polynomials of degree d ∈ N, with variable x ∈ Rl, is
Rd[x].
Definition 1: We call N ∈ Nl the multidegree of a polyno-

mial p; each ith element of N is the maximum degree of the
variable xi out of all of the monomials of p. We call d ∈ N the
degree of p; d is the maximum sum, over all monomials of p, of
the powers of the variable x. That is, d = ||N ||1, where || · ||1
is the sum of the elements of a multi-index.
2) Point and Set Notation: Let x := [x1, x1]× · · · ×

[xl, xl] ⊂ Rl denote a general l-dimensional box in
Rn, with −∞ < xμ < xμ < +∞ for each μ = 1, . . . , l.
Let u := [0, 1]l ⊂ Rl be the l-dimensional unit box.
Denote by |x| the maximum width of a box x, i.e.,
|x| = max{xμ − xμ : μ = 1, . . . , l}. For any point y ∈ Rl,
denote by ‖y‖ the Euclidean norm of y, and denote by BR(y)
the closed Euclidean ball centered at y with radius R > 0.

B. Polynomial Optimization Problems

We denote a POP as follows:

min
x∈D⊂Rl

p(x)

s.t gi(x) ≤ 0 i = 1, . . . , α
hj(x) = 0 j = 1, . . . , β.

(P)

The decision variable is x ∈ D ⊂ Rn, where D is a compact
box-shaped domain and l ∈ N is the dimension of the pro-
gram. The cost function is p ∈ Rd[x], and the constraints are
gi, hj ∈ Rd[x] (α, β ∈ N). We assume for convenience that d is
the greatest degree among the cost and constraint polynomials;
we call d the degree of the problem.

C. Bernstein Form

To solve POPs, we take advantage of several properties of the
Bernstein form. A polynomial p in monomial form (1) can be
expanded into Bernstein form over an arbitrary l-dimensional

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:39:25 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON ROBOTICS

box x as

p(x) =
∑
J≤N

B
(N)
J (x) b

(N)
J (x, x) (2)

where b
(N)
J (x, ·) is the J th multivariate Bernstein polynomial

of multidegree N over x, and B
(N)
J (x) are the corresponding

Bernstein coefficients of p over x. A detailed definition of
Bernstein form is available in [47]. Note that the Bernstein form
of a polynomial can be determined quickly [48], by using a
matrix multiplication on a polynomial’s monomial coefficients,
with the matrix determined by the polynomial degree and di-
mension. This matrix can be precomputed, and the conversion
from monomial to Bernstein basis only needs to happen once
for the proposed method (see Algorithm 1).
For convenience, we collect all such Bernstein coefficients

in a multidimensional array B(x) := (B
(N)
J (x))J≤N , which

is called a patch. We denote by minB(x) (respectively,
maxB(x)) the minimum (respectively, maximum) element in
the patch B(x). The range of polynomial p over x is contained
within the interval spanned by the extrema of B(x), formally
stated as the following theorem.
Theorem 2 (see [41, Lemma 2.2]): Let p be a polynomial

defined as in (2) over a box x. Then, the following property
holds for a patch B(x) of Bernstein coefficients:

minB(x) ≤ p(x) ≤ maxB(x) ∀x ∈ x. (3)

This theorem provides a means to obtain enclosure bounds
of a multivariate polynomial over a box by transforming the
polynomial to Bernstein form. Note that when the min/max
values of p on x occur at the boundary of x, the bounds are
“sharp,” meaning the max/min Bernstein coefficients are equal
to the max/min of p [49]. This range enclosure can be further
improved either by degree elevation or by subdivision. Thiswork
uses subdivision, discussed next, to refine the bounds.

D. Subdivision Procedure

Consider an arbitrary box x ⊂ Rl. The range enclosure in
Theorem2 is improved by subdividingx into subboxes and com-
puting the Bernstein patches over these subboxes. A subdivision
in the rth direction (1 ≤ r ≤ l) is a bisection of x perpendicular
to this direction. That is, let

x := [x1, x1]× · · · × [xr, xr]× · · · × [xl, xl] (4)

be an arbitrary box over which the Bernstein patch B(x) is
already computed. By subdividing x in the rth direction, we
obtain two subboxes xL and xR, defined as

xL = [x1, x1]× · · · × [xr, (xr + xr)/2]× · · · × [xl, xl]

xR = [x1, x1]× · · · × [(xr + xr)/2, xr]× · · · × [xl, xl]. (5)

Note that we have subdivided x by halving its width in the rth
direction; we choose 1/2 as the subdivision parameter in this
work, but one can choose a different value in [0,1] (see [41, eq.
(10)]).
The new Bernstein patches, B(xL) and B(xR), can be com-

puted by a finite number of linear transformations [41, Sec. 2.2]

Fig. 2. Third iteration of PCBA (see Algorithm 1) on a one-dimensional
polynomial cost (top) with one inequality constraint (middle) and one equality
constraint (bottom). The rectangles represent Bernstein patches (as in Section II-
D), where the horizontal extent of each patch corresponds to an interval of the
decision variable, over which Bernstein coefficients are computed. The top and
bottom of each patch represent the maximum and minimum Bernstein coeffi-
cients, which bound the cost and constraint polynomials on the corresponding
interval. As per Definition 9, the green patch is feasible, the pink patches are
infeasible, and the gray patches are undecided; the purple dashed lines show the
inequality constraint cutoff (zero) and the equality constraint tolerance εeq = 1
(note that εeq is chosen to be this large only for illustration purposes). Per
Definition 11, the light blue patch is suboptimal; the blue dashed line in the
top plot is the current solution estimate (see Definition 10). The infeasible and
suboptimal patches are each marked with × for elimination (see Algorithm 5),
since they cannot contain the global optimum (see Theorem 12); the feasible and
undecided patches are kept for the next iteration. The leftmost pink patch is both
suboptimal and infeasible, but is checked for infeasibility before suboptimality
in Algorithm 4.

as

B(xL) = Mr,LB(x)

B(xR) = Mr,RB(x). (6)

where Mr,L and Mr,R are constant matrices, which can be
precomputed, for each r (notice that [41, eq. (10)] obtainsB(xL)
with linear operations on B(x)). The patches and one iteration
of the subdivision procedure are shown in Fig. 2.
Remark 3: To reduce wordiness, we say that we subdivide

a patch to mean the subdivision of a single subbox into two
subboxes and the computation of the corresponding Bernstein
patches for the POP cost and constraints.
By repeatedly applying the subdivision procedure and Theo-

rem 2, the bounds on the range of polynomial in a subbox can
be improved. In fact, such bounds can be exact in the limiting
sense if the subdivision is applied evenly in all directions.
Theorem 4 (see [50, Th. 2]): Let x(n) be a box of maximum

width 2−n (n ∈ N) and letB(x(n)) be the corresponding Bern-
stein patch of a given polynomial p; then

minB(x(n)) ≤ min
x∈x(n)

p(x) ≤ minB(x(n)) + ζ · 2−2n (7)

where ζ is a nonnegative constant that can be given explicitly
independent of n.
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Notice from the proof of Theorem 4 that changing the sign of
p does not change the value of ζ. By substituting p with−p into
Theorem 4, one can easily show that a similar result holds for
the maximum of p over x(n).

Corollary 5: Let x(n) andB(x(n)) be as in Theorem 4. Then,
we have

maxB(x(n))− ζ · 2−2n ≤ max
x∈x(n)

p(x) ≤ maxB(x(n)) (8)

where ζ is the same nonnegative constant as in Theorem 4.
Theorem 4 and Corollary 5 provide shrinking bounds for

values of a polynomial over subboxes as the subdivision process
continues. By comparing the bounds over all subboxes, one can
argue that the minimizers of a polynomial may appear in only
a subset of the subboxes. This idea underlies the BA for solving
POPs [41], [44], discussed in Section IV.
Next, we provide an overview of RTD to motivate our pro-

posed method by introducing a specific POP that arises in safe
real-time planning for mobile robots.

III. REACHABILITY-BASED TRAJECTORY DESIGN

RTD is a method for provably safe, real-time, receding-
horizon trajectory planning, but comes with no optimality guar-
antees [8], [10]–[14]. In this section, we apply RTD to the
differential-drive Segway robot in Fig. 1. RTD performs tra-
jectory optimization by solving a POP at each receding-horizon
planning iteration. In [8], this POP is solved with a generic non-
linear solver,which often converges to localminimaor infeasible
solutions, causing the robot to safely brake as opposed tomoving
through its environment. In this work, by applying PCBA to the
RTDPOP,wemakeRTD*,whichprovablyfinds the best feasible
trajectory plan (if one exists) in each receding-horizon iteration.
See [8] and [51, Ch. 3] for a more detailed and general overview
of RTD.
To proceed, we review RTD’s offline robot modeling, trajec-

tory parameterization, tracking error, and FRS computation. We
then pose RTD’s online receding-horizon trajectory optimiza-
tion POP.

A. Offline Modeling and Reachability Analysis

1) High-Fidelity Model: RTD requires that the robot is de-
scribed by a high-fidelity state-space model, which accurately
represents the robot’s motion through the world. For the Segway
robot in this work, we consider the state (x1, x2, θ, ω, v) in
the space Xhi ⊆ SE(2)×R2. The state consists of position
(x1, x2), heading θ, yaw rate ω, and speed v. Its control inputs
are (u1, u2) ∈ U ⊆ R2, where u1 is the yaw acceleration and u2

is the longitudinal acceleration.Note thatU is compact (meaning
the inputs saturate). The high-fidelity model is fhi : Xhi × U →
R5, for which

fhi(xhi(t), u(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ1(t)

ẋ2(t)

θ̇(t)

ω̇(t)

v̇(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

v(t) cos θ(t)

v(t) sin θ(t)

ω(t)

u1(t)

u2(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

where t ∈ [0,∞) is time. We further require that ω and v are
bounded as ω(t) ∈ [−1, 1] rad/s and v(t) ∈ [0, 1.2] m/s.

2) Trajectory Parameterization: Generating safe trajectory
plans with (9) in real time is challenging due to nonlinearity and
saturation. We, therefore, use a simpler planning model f : T ×
X ×Q → R3, specified offline, to generate plans at runtime.
Plans (i.e., trajectories of the planning model) are defined over
a short time horizon T = [0, tf]. The model has state spaceX =
R2 and trajectory parameters q ∈ Q ⊂ R2, whereQ is compact.
Plans obey the differential equation

f(t, x(t), q) =

[
ẋ1(t; q)

ẋ2(t; q)

]
= s(t)

[
q2 − q1x2(t; q)

q1x1(t; q)

]
(10)

and q̇ = 0. The notation (t; q) indicates that a plan is parame-
terized by q = (q1, q2), which are yaw rate q1 and speed q2 [8,
Example 9]. Note that f implicitly parameterizes the planned
heading as θ(t; q) = q1t. Also, the position states are shared
between the high-fidelity and planning models. The function
s : T → [0, 1] is given by

s(t) = min

{
1,
(

tf−t
tf−tplan

)4
}

(11)

which causes the trajectory plan to brake to a stop from the
time tplan onwards (tplan is discussed more in the following).
The duration tf is chosen to be large enough for the robot to
brake to a stop from its maximum speed, subject to its maximum
acceleration (recall that U is compact) [8, Remark 37].
3) Receding-Horizon Formulation: The duration tplan > 0 is

called the planning time, which we set to 0.5 s in this work.
In each receding-horizon planning iteration, the robot has tplan
seconds within which to find a new trajectory plan (i.e., a new
q ∈ Q). Otherwise, it must continue its plan from the previous
planning iteration. So, s ensures that every plan ends with a
braking maneuver. Therefore, assuming the robot has an initial
collision-free plan, then the robot always has a fail-safe maneu-
ver available even if it cannot find a collision-free plan in a given
planning iteration [8, Sec. 5.3].
For real-time planning, the robot generates a new plan while

executing its previous plan. This requires it to estimate its future
initial condition for each plan as follows. First, every plan begins
from t = 0 ∈ T ; this is without loss of generality (WLOG) since
the high-fidelity model is not time dependent. To find where
each plan should begin in space, we forward-integrate the high-
fidelitymodel, which uses a controller (discussed below) to track
the previously found plan, for the duration tplan. Since the high-
fidelity model is not position or heading dependent, we then
transform this initial condition to (0, 0, 0, ω0, v0) WLOG. We
similarly treat every plan as beginning from the point 0 ∈ X .
4) Tracking Controller and Tracking Error: Given a plan

q ∈ Q, the robot uses a tracking controlleruq : T ×Xhi ×X →
U to track it. The Segway uses a proportional–derivative con-
troller [8, Example 10]. As mentioned earlier, the robot cannot
necessarily perfectly track any plan, resulting in tracking error
that must be compensated for to ensure collision avoidance.
However, it is reasonable to assume that this tracking error
is bounded, since 1) plans are drawn from a compact set Q;
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2) the high-fidelity model is Lipschitz continuous in t, xhi, and
u; and 3) the duration of each plan T is compact. In particular,
we assume that there exist functions ferr,1, ferr,2 : T → R that
bound the tracking error in each coordinate ofX [8, Assumption
13]. That is, we require maxxhi∈Xhi,0 |x1,hi(t; q)− x1(t; q)| ≤∫ tf
0 ferr,1(t)dt, where x1,hi (respectively, x1) is the trajectory of
the high-fidelitymodel (respectively, planningmodel) in the first
position coordinate; we require ferr,2 similarly for the second
position coordinate. The set Xhi,0 ⊂ Xhi is the set of all initial
conditions xhi(0; k) = (0, 0, 0, ω0, v0); since the yaw rate and
speed are bounded, the max is taken over a compact set. Also
note that [51, Ch. 7] provides a general approach to estimating
these tracking error functions.
Let ferr = (ferr,1, ferr,2) : T → R3. LetLd = L1(T, [−1, 1]2)

be the space of absolutely integrable functions from T to
[−1, 1]2. Consider the model f + ferr · d, where d ∈ Ld and the
product is taken elementwise. By choosing d, this model allows
us to add tracking error to a plan evolving inX (with dynamics
f ) and, therefore, replicate the motion of the high-fidelity model
in the lower dimensional subspace X [8, Lemma 16]. In other
words, we now have a low-dimensional representation of the
high-fidelity model, which we use for reachability analysis next.
5) Forward Reachable Set: The FRS, denoted F , contains

the points reached by the high-fidelity model when tracking any
plan:

F = {(x, q) ∈ X ×Q | ∃ t ∈ T, d ∈ Ld s.t.

ẏ = f + ferr · d, y(0) = 0, and y(t) = x} (12)

where ferr · d is again taken elementwise.
We compute the FRS by posing a sum-of-squares (SOS)

program [8, Sec. 3, Program (D)] (also see [51, Ch. 4]). Per [8,
Lemma 19], this program produces gFRS : X ×Q → R, for
which

(x, q) ∈ F ⇒ gFRS(x, q) ≥ 1. (13)

In practice, we represent the SOS program using polynomials
of finite degree, producing a conservative overapproximation of
F [8, Remark 22]. In particular, we find gFRS as a polynomial
in R12[x, q]. Next, we discuss how we use gFRS for runtime
trajectory optimization.

B. Online Planning With a POP

RTD uses the FRS to generate collision avoidance constraints
for trajectory optimization at runtime. To explain this procedure,
we first discuss obstacles and then represent trajectory optimiza-
tion as a POP using the polynomial gFRS.

1) Obstacles: For this work, we assume that obstacles are
static; note that RTD can also handle dynamic obstacles [11],
[12]. We further assume that, in each planning iteration, obsta-
cles are represented as a union of compact polygons, denoted
O ⊂ X . We apply [8, Algorithm 1] to convert O into a finite
discretized obstacle set {xobs,i}Nobs

i=1 ⊂ X , for which, if the robot
avoids colliding with each xobs,i, then the robot avoids colliding
withO [8, Th. 68]. Note that, per [8, Th. 39], we can also specify
a minimum sensor distance, within which obstacles must be
sensed to guarantee safety. The Segway senses obstacles, using

a planar lidar, well within the 2-m minimum sensor distance
required (see [8, Sec. 9.6]).Also note thatwe can treat occlusions
as obstacles.
2) Trajectory Optimization: We perform trajectory opti-

mization as follows. First, offline, we use Euler integration to
approximate the planning model’s position at time tf, for any
plan q ∈ Q, as a degree 10 polynomial xf : Q → X . Second,
at runtime, we create waypoints used to construct an objective
function. In particular, we generate Nwp ∈ N waypoints (i.e.,

desired locations), denoted {wn}Nwp

n=1 ⊂ R2. We discuss how
we generate these waypoints in Section VII for each hardware
demonstration; in general, such waypoints can be created using,
e.g., A* or RRT. Third, also at runtime, given the discretized
obstacle {xobs,i}Nobs

i=1 , we create the following POP:

argmin
q ∈Q

Nwp∏
n=1

(
‖xf(q)− wn‖22

)

s.t gFRS(xi, q) + εq ≤ 1∀ i = 1, . . . , Nobs. (14)

The objective function is degree 2× 10×Nwp, and the con-
straints are each degree 12. Notice that the objective function
has as many global minima as there are waypoints. For the con-
straints, the tolerance εobs = 10−4 is used to ensure optimization
over a closed set (by (13), gFRS(xi, q) < 1 implies that the plan
q avoids collision with the point xi).
The takeaway of this section is that, if we can solve (14)

every tplan seconds at runtime, a robot can always find safe plans
that move it through arbitrary environments in real time. This
motivates the next two sections, wherein we propose PCBA and
prove its rate of convergence. Then, we use PCBA to find global
optima of (14) at runtime.

IV. PARALLEL CONSTRAINED BERNSTEIN ALGORITHM

This section proposes the PCBA (seeAlgorithm 1) for solving
a general POP. We extend the approach in [41]. This approach
utilizes Bernstein form to obtain upper and lower bounds of
both objective and constraint polynomials (see Theorem 2),
iteratively improves such bounds using subdivision (see The-
orem 4 and Corollary 5) and removes patches that are cannot
contain a solution (see Theorem 12). We discuss the algorithm,
the list used to store patches, tolerances and stopping criteria,
subdivision, a cutoff test for eliminating patches, and the advan-
tages and disadvantages of PCBA. Section V proves that PCBA
finds globally optimal solutions to POPs up to user-specified
tolerances.
Before proceeding, we make an assumption for notational

convenience, and to make the initial computation of Bernstein
patches easier.
Assumption 6: WLOG, the domain of the decision variable

is the unit box (i.e.,D = u), since any nonempty box in Rl can
be mapped affinely onto u [48].

A. Algorithm Summary

We now summarize PCBA, implemented in Algorithm 1. The
algorithm is initialized by computing the Bernstein patches of
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the cost and constraints on the domain u (Line 1). Subsequently,
the PCBA subdivides each patch as in Remark 8 (Line 5 and
Algorithm 2). Then, the PCBAfinds the upper and lower bounds
of each new patch (Line 6 and Algorithm 3). These bounds are
used to determine which patches are feasible, infeasible, and un-
decided as in Definition 9 (Line 7; see Algorithm 4 and Theorem
12). Algorithm 4 also determines the current solution estimate
(the smallest upper bound over all feasible patches) and marks
any patches that are suboptimal as in Definition 11. If every
patch is infeasible (Line 8), the PCBA returns that the problem is
infeasible (Line 13); otherwise, the PCBA checks if the current
solution estimate meets user-specified tolerances (Line 9). If
the tolerances are met, the PCBA returns the solution estimate
(Line 12). Otherwise, the PCBA eliminates all infeasible and
suboptimal patches (Line 10 and Algorithm 5) and then moves
to the next iteration (Line 11). Note that Algorithms 2, 3, and 5
are parallelized.

B. Items and the List

Denote an item as the tuple � = (x, Bp(x), Bgi(x)), Bhj(x)),
where Bgi(x) (respectively, Bhj(x)) is shorthand
for the set of patches {Bgi(x)}αi=1 (respectively,

{Bhj
(x)}βj=1). We use the following notation for items. If

� = (x, Bp(x), Bgi(x), Bhj(x)), then �1 = x, �2 = Bp(x),
�3 = Bgi(x), and �4 = Bhj(x).
We denote the list L = {�μ : μ = 1, . . . , NL}, NL ∈ N, in-

dexed by μ ∈ N. The PCBA adds and removes items from L by
assessing the feasibility and optimality of each item.

C. Tolerances and Stopping Criteria

Recall that, by Theorem 2, Bernstein patches provide upper
and lower bounds for polynomials over a box. From Theorem 4
and Corollary 5, as we subdivide u into smaller subboxes, the
bounds of the Bernstein patches on each subbox more closely
approximate the actual bounds of the polynomial. However, to
ensure that the algorithm terminates, we must set tolerances
on optimality and equality constraint satisfaction (the equality
constraints hj(x) = 0 may not be satisfied for all points in
certain subboxes). During optimization, one also typicallywants
to find the optimal up to some resolution. In our case, this
resolution corresponds to themaximumallowable subboxwidth,
which we refer to as the step tolerance.
Definition 7: We denote the optimality tolerance as ε > 0,

the equality constraint tolerance as εeq > 0, and the step tol-
erance as δ > 0. We terminate Algorithm 1 either when L
is empty (the problem is infeasible) or when there exists an
item (x, Bp(x), Bgi(x)), Bhj(x)) ∈ L that satisfies all of the
following conditions.
1) |x| ≤ δ.
2) maxBgi(x) ≤ 0 for all i = 1, . . . , α.
3) −εeq ≤ minBhj(x) ≤ 0 ≤ maxBhj(x) ≤ εeq for all

j = 1, . . . , β.
4) maxBp(x)−minBp(y) ≤ ε for all y ∈ L.
We discuss feasibility inmore detail in Section IV-ENote that,

to implement the step tolerance δ, since we subdivide by halving

the width of each subbox, we need only ensure that sufficiently
many iterations have passed.
Note that we do not set a tolerance on inequality con-

straints, since these are “one-sided” constraints; for any in-
equality constraint gi and subbox x, we satisfy the constraint
ifmaxBgi(x) ≤ 0 (see Definition 9 and Theorem 16).

D. Subdivision

Recall that subdivision is presented in Section II-D. We im-
plement subdivision with Algorithm 2. Since the subdivision of
one Bernstein patch is computationally independent of another,
each subdivision task is assigned to an individual GPU thread,
making Algorithm 2 parallel.
Note that the subdivision of Bernstein patches can be done

in any direction, leading to the question of how to select the
direction in practice. Example rules are available in the literature,
such as maximum width [52, Sec. 3], derivative-based [53, Sec.
3], or a combination of the two [52, Sec. 3]. In the context of
constrained optimization, the maximum width rule is usually
favored over derivative-based rules for two reasons: first, com-
puting the partial derivatives of all constraint polynomials can
introduce significant computational burden, especially when the
number of constraints is large (see Section VI-C); second, the
precision of Bernstein patches as bounds to the polynomials
depends on the maximum width of each subbox (see Theorem
4 and Corollary 5), so it is beneficial to subdivide along the
direction of maximum width for better convergence results.
In each nth iteration of PCBA, we subdivide in each direction

r, in the order 1, 2, . . . , l. We halve the width of each subbox
each time we subdivide, leading to the following remark.
Remark 8: In the nth iteration, the maximum width of any

subbox in L is 2−n.

E. Cutoff Test

Subdivision would normally occur for every patch in every
iteration, leading to exponential memory usage (2n patches in
iterationn). However, by using a cutoff test, some patches can be
deleted, reducing both the time andmemory usage of PCBA (see
Section V for complexity analysis). To decide which patches are
to be eliminated, we require the following definitions.
Definition 9: An item (x, Bp(x), Bgi(x), Bhj(x)) ∈ L is

feasible if both of the following hold.
1) maxBgi(x) ≤ 0 for all i = 1, . . . , α.
2) −εeq ≤ minBhj(x) ≤ 0 ≤ maxBhj(x) ≤ εeq for all

j = 1, . . . , β.
An item is infeasible if any of the following hold.
3) minBgi(x) > 0 for at least one i = 1, . . . , α.
4) minBhj(x) > 0 for at least one j = 1, . . . , β.
5) maxBhj(x) < 0 for at least one j = 1, . . . , β.
An item is undecided if it is neither feasible nor infeasible.
Notice, in particular, that a feasible item must not be

infeasible.
Definition 10: The solution estimate p∗up is the smallest upper

bound of the cost over all feasible items in L:
p∗up = min {max{�2 | � ∈ L, � feasible}} (15)
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Algorithm 1: Parallel Constrained Bernstein Algorithm.

Inputs: Polynomials p, {gi}αi=1, {hj}βj=1 as in (P), of dimension l;
optimality tolerance ε > 0, step tolerance δ > 0, and equality constraint
tolerance εeq > 0; and maximum number of patchesM ∈ N and of
iterationsN ∈ N.
Outputs: Estimate p∗ ∈ R of optimal solution, and subbox x∗ ⊂ u
containing optimal solution.
Algorithm:
1: Initialize patches of p, gi, and hj over l-dimensional initial domain

box u as in [48]
[Bp(u), Bgi(u), Bhj(u)] ← InitPatches(p, gi, hj)

2: Initialize lists of undecided patches and patch extrema on the GPU
L ← {(u, Bp(u), Bgi(u), Bhj(u))}
Lbounds ← {}

3: Initialize iteration count and subdivision direction
n ← 1, r ← 1

4: Test for sufficient memory (iteration begins here)
if 2× length(L) > M then go to Line 12
else continue
end if

5: (Parallel) Subdivide each patch in L in the rth direction to create two
new patches using Algorithm 2

L ← Subdivide(L, r)
6: (Parallel) Find bounds of p, gi, and hj on each new patch using

Algorithm 3
Lbounds ← FindBounds(L)

7: Estimate upper bound p∗up of the global optimum as the least upper
bound of all feasible patches, and determine which patches to
eliminate using Algorithm 4

[p∗up, p∗lo,Lsave,Lelim] ← CutOffTest(Lbounds);
8: Test if problem is feasible

if length(Lsave) = 0 then go to Line 13
9: Test stopping criteria for all (x, Bp(x), Bgi(x), Bhj(x)) ∈ L

if p∗up − p∗lo ≤ ε
and |x| ≤ δ
and −εeq ≤ minBhj(x) ≤ maxBhj(x) ≤ εeq

then go to Line 12
end if

10: (Parallel) Eliminate infeasible, suboptimal patches using Algorithm 5
L ← Eliminate(L,Lsave,Lelim);

11: Prepare for next iteration
r ← (mod(r + 1, l)) + 1
if r = 1 then n ← n+ 1
end if
if n = N then go to Line 12
else go to Line 4
end if

12: Return current best approximate solution
p∗ ← p∗up
x∗ ← x for which maxBp(x) = p∗up

13: return p∗, x∗
14: No solution found (problem infeasible)

Algorithm 2: L = Subdivision(L, r) (Parallel).
1: K ← length(L)
2: parfor k ∈ {1, . . . ,K} do
3: (x, Bp(x), Bgi(x), Bhj(x)) ← L[k];
4: Subdivide x along the rth direction into xL and xR

5: Compute patches Bp(xL) and Bp(xR)
6: Compute patches Bgi(xL) and Bgi(xR)
7: Compute patches Bhj(xL) and Bhj(xR)
8: L[k] ← (xL, Bp(xL), Bgi(xL), Bhj(xL))
9: L[k +K] ← (xR, Bp(xR), Bgi(xR), Bhj(xR))

10: end parfor
11: return L

where �2 = Bp(x) if � = (x, Bp(x), Bgi(x), Bhj(x)).
Definition 11: An item (x, Bp(x), Bgi(x), Bhj(x)) ∈ L is

suboptimal if

minBp(x) > p∗up. (16)

Note that Definitions 10 and 11 are dependent on L, that is,
for the purposes of PCBA, optimality is defined in terms of the
elements of L. We show in Corollary 13 how this notion of
optimality coincides with optimality of the POP itself.
Feasible, infeasible, undecided, and suboptimal patches are

illustrated in Fig. 2. Any item that is infeasible or suboptimal
can be eliminated from L, because the corresponding subboxes
cannot contain the solution to the POP (formalized in the fol-
lowing theorem).We call checking for infeasible and suboptimal
items the cutoff test.
Theorem 12 (Cutoff test): Let (x, Bp(x), Bgi(x), Bhj(x)) ∈

L be an item. If the item is infeasible (as in Definition 9) or
suboptimal (as inDefinition 11), thenx does not contain a global
minimizer of (P). Such an item can be removed from the list L.
Proof: Let (x, Bp(x), Bgi(x), Bhj(x)) be an item in L. We

only need to show the following.
a) If (x, Bp(x), Bgi(x), Bhj(x)) is feasible, then all points

in x are feasible (up to the tolerance εeq).
b) If (x, Bp(x), Bgi(x), Bhj(x)) is infeasible, then all points

in x are infeasible (up to the tolerance εeq).
c) If (x, Bp(x), Bgi(x), Bhj(x)) is suboptimal, then all

points in x are not optimal.
Note that (a) and (b) follows directly from Theorem 2. To

prove (c), let y ⊂ u be a subbox on which the solution estimate
p∗up is achieved, that is, (y, Bp(y), Bgi(y), Bhj(y)) is feasible
and

maxBp(y) = p∗up. (17)

Let y ∈ y be arbitrary; then, it follows from Theorem 2 and the
definition of suboptimality that

p(x) ≥ minBp(x) > maxBp(y) ≥ p(y) (18)

for all x ∈ x. Since such point y is necessarily feasible [per
condition (b)], x cannot be global minimum to the POP.

Corollary 13: Suppose that there exists a (feasible) global
minimizer x∗ of the POP (P). Then, while executing Algorithm
1, there always exists an item (x, Bp(x), Bgi(x), Bhj(x)) ∈ L
such that x∗ ∈ x.
Proof: This result is the contrapositive of Theorem 12. �
We implement the cutoff tests as follows. Algorithm 3 (Find-

Bounds) computes the maximum and minimum element of
each Bernstein patch, Algorithm 4 (CutOffTest) implements
the cutoff tests and marks all subboxes to be eliminated with
a list Lelim, and Algorithm 5 (Eliminate) eliminates the marked
subboxes from the list L. Algorithms 3 and 5 are parallelizable,
whereas Algorithm 4 must be computed serially.

F. Advantages and Disadvantages of PCBA

The PCBA has several advantages. First, it always finds a
global optimum (if one exists), subject to tolerances. The PCBA
does not require an initial guess and does not converge to
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Algorithm 3: Lbounds = FindBounds(L) (Parallel).
1: K ← length(L)
2: parfor k ∈ {1, . . . ,K} do
3: (x, Bp(x), Bgi(x), Bhj(x)) ← L[k]
4: FindminBp(x) and maxBp(x) by parallel reduction
5: FindminBgi(x) andmaxBgi(x) similarly
6: FindminBhj(x) andmaxBhj(x) similarly

7: Lbounds[k] ← (x,
{minBp(x), maxBp(x)}
{minBgi(x), maxBgi(x)}
{minBhj(x), maxBhj(x)}

)

end parfor
9: return Lbounds

Algorithm 4: [p∗up, p
∗
lo,Lsave,Lelim] = CutOffTest(Lbounds).

1: p∗up ← +∞, p∗lo ← +∞
2: K ← length(Lbounds)
3: for k ∈ {1, . . . ,K} do

4: (x,
{minBp(x), maxBp(x)}
{minBgi(x), maxBgi(x)}
{minBhj(x), maxBhj(x)}

) ← Lbounds[k]

5: if −εeq ≤ minBhj(x) ≤ 0 ≤ maxBhj(x) ≤ εeq then
6: ifmaxBgi(x) ≤ 0 then
7: p∗up ← min(p∗up,maxBp(x))
8: end if
9: ifminBgi(x) ≤ 0 then

10: p∗lo ← min(p∗lo,minBp(x))
11: end if
12: end if
13: end for
14: Initialize lists for indices of patches to save or eliminate Lsave ← {},

Lelim ← {}
15: for k ∈ {1, . . . ,K} do
16: if minBhj(x) ≤ 0 ≤ maxBhj(x) then

and minBgi(x) ≤ 0
and minBp(x) ≤ p∗up

17: Append k to Lsave

18: else
19: Append k to Lelim

20: end if
21: end for
22: return p∗up, p∗lo,Lsave, Lelim

local minima, unlike generic nonlinear solvers (e.g., fmincon
[46]). It also does not require tuning hyperparameters. As we
show in Section V, the PCBA has bounded time and memory
complexity under certain assumptions. Finally, due to paral-
lelization, the PCBA is fast enough to enable RTD* for real-
time, safe, optimal trajectory planning, which we demonstrate
in Section VII.
However, thePCBAalsohas several limitations in comparison

to traditional approaches to solving POPs. First, to prove the
bounds on time and memory usage, at any global minimum,
we require that active constraints are linearly independent, and
that the Hessian of the cost function is positive definite (see
Theorems 14 and 16). Furthermore, due to the number of Bern-
stein patches growing exponentially with the decision variable
dimension, we have not yet applied PCBA to problems larger
than four-dimensional.

Algorithm 5: L = Eliminate(L,Lsave,Lelim) (Parallel).
1: Ksave ← length(Lsave)
2: Kelim ← length(Lelim)
3: Kreplace ← Kelim − 1
4: if Kelim = 0 or Lelim[1] > Kelim then
5: returnL
6: end if
7: for k ∈ {1, . . . ,Kelim} do
8: if Lelim[k] ≥ Ksave then
9: Kreplace ← k − 1

10: break
11: end if
12: end for
13: parfor k ∈ {1, . . . ,Kreplace} do
14: L[Lelim[k]] ← L[Lsave[Ksave + 1− k]]
15: end parfor
16: return L

V. COMPLEXITY ANALYSIS

In this section, we prove that Algorithm 1 terminates by
bounding the number of iterations of PCBA for both uncon-
strained and constrained POPs. We also prove the number of
Bernstein patches (i.e., the length of the list L in Algorithm
1) is bounded after sufficiently many iterations, under certain
assumptions. For convenience, in the remainder of this sec-
tion, we use x ∈ L as a shorthand notation for x = �1, where
� = (x, Bp(x), Bgi(x), Bhj(x)) ∈ L. All proofs are provided
in the supplementary material available at1.

A. Unconstrained Case

We first consider unconstrained POPs, whose optimal so-
lutions are not on the boundary of u. Note that we can treat
optimal solutions on the boundary of u as having active linear
constraints; see Section V-B for the corresponding complexity
analysis. In the unconstrained case, all points in u are feasible,
and we are interested in solving

min
x∈u⊂R

p(x) (19)

where p is an l-dimensional multivariate polynomial. Given an
optimality tolerance ε and step tolerance δ, we bound the number
of iterations to solve (19) with PCBA as follows.
Theorem 14: Let p in (19) be a multivariate polynomial of

dimension l with Lipschitz constant Lp. Then, the maximum
number of iterations needed to solve (19) up to accuracy ε and
δ is

N =

⌈
max

{
− log2 δ,−

1

2
log2

(
ε

4ζp

)
,

− log2

(
ε

2Lp

√
l

)}⌉
(20)

where ζp is the constant in Theorem 4 corresponding to polyno-
mial p, and �·� rounds up to the nearest integer.

1https://www.roahmlab.com/s/PCBA_supplement.pdf
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According to (20), the rate of convergence with respect to the
decision variables is quadratic (first term); the rate of conver-
gence with respect to the objective function is either quadratic
(second term) or linear (third term), depending on which term
dominates. However, a tighter bound exists if one of the global
minimizers satisfies the second-order sufficient condition for
optimality [24, Th. 2.4], which we prove in the supplementary
material available at2.
We now discuss the number of patches remaining after suf-

ficiently many iterations, which gives an estimate of memory
usage when Algorithm 1 is applied to solve (19).
Theorem 15: Suppose that there arem < ∞ global minimiz-

ers x∗
1, . . . , x

∗
m of (19), and none of them are on the boundary

of the unit box u. Let the Hessian ∇2p be positive definite
at these minimizers. Then, after sufficiently many iterations of
Algorithm 1, the number of Bernstein patches remaining (i.e.,
length of the list L in Algorithm 1) is bounded by a constant.
The constant bound in Theorem 15 scales exponentially with

the problem dimension and is a function of the condition number
of the cost function’s Hessian at the minimizers.

B. Constrained Case

Theorem 16: Suppose that the linear independence constraint
qualification [24, Def. 12.4] is satisfied at all global minimiz-
ers x∗

1, . . . , x
∗
m of the constrained POP (P), and at least one

constraint is active (i.e., the active set A(x∗) [24, Def. 12.1]
is nonempty) at some minimizer x∗ ∈ {x∗

1, . . . , x
∗
m}. Then,

the maximum number of iterations needed to solve (P) up to
accuracy ε, δ, and equality constraint tolerance εeq is

N : =

⌈
max

{
C7, − log2 δ, − log2 εeq

+ C8, − log2 ε+ C9

}⌉
(21)

where C7, C8, and C9 are constants.
Theorem 16 gives a bound on the number of PCBA iterations

needed to solve a POP up to specified tolerances. In particular,
(21) shows that the rate of convergence is linear in step tolerance
(second term), equality constraint tolerance (third term), and
objective function (fourth term), once the number of iterations
is larger than a constant (first term).Wenext prove a bound on the
number of items in the list L after sufficiently many iterations.
Theorem 17: Suppose that there arem (m < ∞) global min-

imizers x∗
1, . . . , x

∗
m of the constrained problem (P), and none of

them are on the boundary of the unit box u. Let the critical cone
(see [24, eq. (12.53)]) be nonempty for (Pn) as in the proof of
Theorem 16 see the supplementary material available at3. Then,
after sufficiently many iterations of Algorithm 1, the number of
Bernstein patches remaining (i.e., length of the listL) is bounded
by a constant.
The constant proved in Theorem 17 scales exponentially with

respect to the dimension of the problem.

2https://www.roahmlab.com/s/PCBA_supplement.pdf
3https://www.roahmlab.com/s/PCBA_supplement.pdf

Fig. 3. Maximum number of patches (left axis) and corresponding GPU
memory used (right axis) at each iteration of PCBA, for P4 of the benchmark
problems (see Section VI). This problem took 24 iterations to solve. Notice that
the number of patches peaks in iteration 5 and then stays under 400 patches at
every iteration from iteration 9 onwards; this visualizes Theorem 17.

C. Memory Usage Implementation

We now state the amount of GPU memory required to store a
single item (x, Bp(x), Bgi(x), Bhj(x)) ∈ L, given the degree
and dimension of the cost and constraint polynomials. Note that,
for our implementation, all numbers in an item are represented
using 4B of space, as either floats or unsigned integers.
For a multi-index J = (j1, . . . , jl) ∈ Nl, let ΠJ = j1 ×

· · · × jl, and let J + n = (j1 + n, . . . , jl + n) for n ∈ N. Let
P be the multidegree of the cost p. LetG be a multidegree large
enough for all inequality constraints gi, and H a multidegree
large enough for all equality constraints hj . By “large enough,”
we mean that, if gi is the multidegree of any gi, then gi ≤ G
(and similarly for H). Then, as per [48, Sec. 4.1], an item can
be stored in memory as an array with the following number of
entries:

2l + (Π(P + 1)) + (α ·Π(G+ 1)) + (β ·Π(H + 1)) (22)

where the first 2l entries store the upper and lower bounds (in
each dimension) of the subbox x.

D. Summary

We have shown that PCBA will find a solution to (P), if one
exists, in bounded time. We have also shown that the memory
usage of PCBA is bounded after a finite number of iterations,
which implies that the memory usage is bounded, and we have
provided a way to compute how much memory is required to
store the list L.
In terms of RTD, this section provides a critical result: the

runtime and memory usage of PCBA are bounded by a constant
that is known before the robot runs. This is possible because
the degree and dimension of the cost function are fixed a priori
in (14), and, in practice, the number of constraints is bounded
(see Fig. 7). This means that we can choose the planning time
tplan (as in Section III-A3) to be as small as possible offline. A
smaller planning time limit means a less conservative FRS and
an increased probability that the robot can find a newplan in each
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Fig. 4. Results for an increasing number of constraints on the Powell objective
function (see the Appendix, available at https://www.roahmlab.com/s/PCBA_
supplement.pdf) for PCBA, BSOS, fmincon, and DIRECT. The top plot shows
the time required to solve the problem as the number of constraints increases.
The bottom plot shows the error between each solver’s solution and the true
global optimum. For both time and error, fmincon is shown as a box plot over
50 trials with random initial guesses; the central red line indicates the median,
the top and bottom of the red box indicate the 25th and 75th percentiles, the
black whiskers are the most extreme values not considered outliers, and the
outliers are red plus signs. The PCBA solves the fastest in general; fmincon
typically solves slightly slower than PCBA for more than 40 constraints; BSOS
and DIRECT are the slowest solvers. PCBA, BSOS, and DIRECT always find
the global optimum, as does fmincon with few constraints, because the Powell
objective function is convex. Above 30 constraints, fmincon frequently has large
error due to convergence to local minima.

receding-horizon iteration. In other words, Theorem 16 enables
us to increase a robot’s liveness when planning with RTD, as we
show in Section VII.
Next, before applying PCBA to RTD, we benchmark PCBA

and compare it to two other solvers.

VI. PCBA EVALUATION

In this section, we compare the PCBA against a convex
relaxation solver (Lasserre’s BSOS [35]), a derivative-based
solver (MATLAB’s fmincon [46]), and a branch-and-bound
solver (DIRECT [39]). First, we test all four solvers on eight
“Benchmark Evaluation” problems. Second, we compare the
solvers on several “Increasing Number of Constraints” prob-
lems, to assess how each solver scales on a variety of difficult
objective functions [54].

Fig. 5. Approximate peak GPU memory used by the PCBA for the Powell
problem, as a function of the number of constraints. Since the amount ofmemory
required per item in the list L grows linearly with the number of constraints, the
overall memory usage also grows linearly. However, at 160 constraints, we see a
drop in the memory usage; this is because the additional constraints render more
parts of the problem domain infeasible, resulting in more items being eliminated
per PCBA iteration. Note that the maximum memory usage is well under the
several GB available on a typical GPU.

Fig. 6. Solve times of PCBA and fmincon on 528 POPs generated by the
Segway robot navigating random scenarios in Demo 1. Each POP was solved
25 times by each solver. While fmincon can often find a solution an order of
magnitude faster than PCBA, it also has a much higher standard deviation,
meaning that it is less consistent at obeying the real-time limit required by
mobile robot trajectory planning.

Fig. 7. Number of POPs from Demo 1, out of 528, that fall into the given
bins of number of constraints; we see that most of the POPs had 100–140
constraints. This number of constraints can make it challenging to solve a POP
while constrained by a real-time planning limit.
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All of the solvers/problems in this section are run on a com-
puter with a 3.7-GHz processor, 16 GB of RAM, and an Nvidia
GTX 1080 Ti GPU. The PCBA is implemented with MATLAB
R2017b executables and CUDA 10.0. Our code is available at4.

A. Parameter Selection

To set up a fair comparison, we scale each problem to the u =
[0, 1]l box, where l is the problem dimension. For the PCBA, we
use the stopping criteria in Section IV. To choose ε, we first
compute the patch B(u) and then set

ε = (10−7) · (maxB(u)−minB(u)) . (23)

We set the maximum number of PCBA iterations to N = 28.
We do not set δ, which determines the minimum number of
iterations; δ is only needed to prove the complexity bounds in
Section V.
BSOS [35, Sec. 4] requires the user to specify the size of the

semidefinite matrix associated with the convex relaxation of the
POP. This is done by selecting a pair of parameters, d and k (note
these are different from our use of d and k). Though one has to
increase d and k gradually to ensure convergence, larger values
of d and k correspond to larger SDPs, which can be difficult
to solve. We chose d and k separately for each benchmark
evaluation problem see the code at5. We used d = k = 2 for
the Increasing Number of Constraints.
For fmincon [46], we set the OptimalityTolerance op-

tion to ε in (23). We set MaxFunctionEvaluations = 105

andMaxIterations = 104.We also providefminconwith
the analytic gradients of the cost and constraints.
For DIRECT, we set the optimality tolerance to ε as in (23)

and the maximum number of function evaluations to 5× 105.
For the benchmark evaluation, we set the maximum number
of iterations large enough that there was no change in the cost
estimate after this maximum number for at least five iterations.
As per [39], we tuned the constraint penalty for each benchmark
problem by hand until DIRECT found a solution close to the
global optimum. For the Increasing Number of Constraints, we
used a constraint penalty of 1.
We note that BSOS, fmincon, and DIRECT are not paral-

lelized. While one could attempt to parallelize these solvers, to
the best of our knowledge, no such fully developed implementa-
tions are available. Furthermore, since each algorithm operates
on different principles, simply applying parallelization does not
guarantee a fair comparison. However, these comparisons help
place PCBA in the context of readily available state-of-the-art
solvers.

B. Benchmark Evaluation

1) Setup: We tested PCBA, BSOS, fmincon, and DIRECT
on eight benchmark POPs [41], listed as P1–P8. The problems
are reported in the supplementary material available at6. We
ran each solver 50 times on each problem; we report the median

4https://github.com/ramvasudevan/GlobOptBernstein
5 https://github.com/ramvasudevan/GlobOptBernstein
6https://www.roahmlab.com/s/PCBA_supplement.pdf

solution error and time required to find a solution. Since fmincon
may or may not converge to the global optimum depending on
its initial guess, we used random initial guesses for each of the
50 attempts.
2) Results: The results are summarized inTable I. Additional

results are available online at https://github.com/ramvasudevan/
GlobOptBernstein.
In terms of solution quality, the PCBA always found the

solution to within the desired optimality tolerance ε, except on
P1,where the PCBAstopped at themaximumallowednumber of
iterations (28); the PCBA always used 22–28 iterations. BSOS
always found a lower bound to the solution, as expected. While
fmincon converged to the global optimum at least once on every
problem, it often converged to local minima, hence the large
error values on some problems. DIRECT rarely found a solution
within the optimality tolerance, which is likely due to using
a constraint penalty as opposed to enforcing hard constraints.
Unfortunately, DIRECT struggles to converge to global optima
in the constrained case; tuning the penalty leads to a tradeoff
between feasibility and optimality [39, p. 31]. This is especially
true for P2, which has large coefficients (on the order of 106)
in the cost and constraints; these cause DIRECT to produce
a large range of possible rate-of-change constants, which are
used to estimate bounds on the cost function [38, Def. 3.1].
Consequently, DIRECT produces a poor cost estimate.
In terms of solve time, fmincon solves the fastest (in 10–

20 ms). The PCBA is about twice as slow as fmincon. BSOS
and DIRECT are one to two orders of magnitude slower than
the PCBA.
For the PCBA, the memory usage [computed with (22)]

increases roughly by one order of magnitude for each additional
dimension of the decision variable increases (Table I reports
the peak GPU memory used by the PCBA on each benchmark
problem). Notice that the PCBA never uses more than several
MB of GPU memory, which is much less than the 11 GB
available on the Nvidia GTX 1080 Ti GPU. Fig. 3 shows the
number of patches and the amount of GPU memory used on
P4. We see that the memory usage peaks and then stays below
a constant, as predicted by Theorem 17.

C. Increasing Constraint Problems

Next, we tested each solver on problems with an increasing
number of constraints, to assess each solver for usewithRTD;we
find in practice that RTD’s POP (14) contains 30–300 constraints
at each planning iteration (see Fig. 7).
1) Setup: We first choose an objective function with either

many local minima or a nearly flat gradient near the global opti-
mum (the global optimizer is known for each function). In partic-
ular, we tested on the ElAttar–Vidyasagar–Dutta, Powell,Wood,
Dixon–Price (with l = 2, 3, 4), Beale, Bukin02, and Deckkers–
Aarts problems (see the supplementary material and [54]).
For each objective function, we generate 200 random con-

straints in total, while ensuring that at least one global opti-
mizer stays feasible (if there are multiple global optimizers, we
choose one at random that will be feasible for all constraints).
To generate a single constraint g : u → R, we first create a
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TABLE I
RESULTS FOR PCBA, BSOS, fmincon, AND DIRECT ON EIGHT BENCHMARK PROBLEMS

The column l indicates the problem dimension. The error columns report each solver’s resultminus the true globalminimum. For all four solvers, the reported error and time to find a solution
are the median over 50 trials (with random initial guesses for fmincon). For PCBA, we also report the optimality tolerance ε (as in (23)), number of iterations to convergence, and peak
GPU memory used. Note that, on P1 and P5, PCBA stopped at the maximum number of iterations (28). See the appendix, available at https://www.roahmlab.com/s/pcbasupplement.pdf,
for more details.

polynomial gtemp as a sum of the monomials of the decision
variable with maximum degree 2, with random coefficients in
the range [−5, 5]. To ensure that x∗ is feasible, we evaluate gtemp

on x∗ and then subtract the resulting value from gtemp to produce
g (i.e., g ← gtemp − gtemp(x

∗)).
We ran PCBA, BSOS, fmincon, and DIRECT on each objec-

tive function for 20 trials, with ten random constraints in the first
trial, plus ten constraints in each subsequent trial. As before, we
ran fmincon 50 times for each trial with random initial guesses.
2) Results: To illustrate the results, data for the Powell ob-

jective function are shown in Fig. 4. The data (and plots) for the
other objective functions are available online at8.

In terms of solution quality, all four algorithms converge
to the global optimum often when the number of constraints
is low, but fmincon converges to suboptimal solutions more
frequently as the number of constraints increases. PCBA,BSOS,
and DIRECT are always able to find the optimal solution. The
PCBA is always able to find the global optimum regardless of the
number of constraints, unlikeBSOS (which runs out ofmemory)
or fmincon (which converges to local minima). Interestingly,
DIRECT is less sensitive to the constraint penalty for these
problems than for the benchmark problems in Section VI-B.
All four solvers require an increasing amount of solve time as

the number of constraints increases. The PCBA is comparable
in speed to fmincon on 2-D problems, but is typically slower
on higher dimensional problems. Regardless of the number of
constraints, BSOS takes three to four orders of magnitude more
time to solve than PCBA or fmincon. DIRECT takes two orders
of magnitude more time than PCBA, but could potentially be
parallelized.
More details on the PCBA are presented in Table II. PCBA’s

time to find a solution increases roughly by an order of mag-
nitude when the decision variable dimension increases by 1;
however, the PCBA solves all of the increasing constraint POPs
within 0.5 s. The memory usage increases by one to three orders
of magnitude with each additional dimension; however, the
PCBA never uses more than 650 MB of GPU memory, well
below the 11 GB available. Therefore, it may be possible to in-
troduce heuristics, such as additional subdivisions per iteration,
to improve PCBA’s performance. Fig. 5 shows PCBA’s GPU

8https://github.com/ramvasudevan/GlobOptBernstein

TABLE II
RESULTS FOR THE INCREASING CONSTRAINTS PCBA EVALUATION

Abbreviated problem names (as in the Appendix, available at https://www.
roahmlab.com/s/PCBA_supplement.pdf) are on the left, along with each
problem’s decision variable dimension l. Over all 20 trials (with 10–200
constraints), we report the maximum time spent find a solution, the maximum
number of items in the list L, and the maximum amount of GPU memory
used. Note that the problems all solved under 0.5 s regardless of the number
of constraints, and no problem requested more than 650 MB of memory.

memory usage versus the number of constraints for the Powell
objective function.

D. Summary

As expected from the complexity bounds in Section V-B,
our results indicate that PCBA can quickly solve 2-D POPs
with hundreds of constraints. We leverage this next by applying
PCBA to solve RTD’s POP (14) for real-time receding-horizon
planning.

VII. HARDWARE DEMONSTRATIONS

Recall from Section III that RTD enables real-time prov-
ably collision-free trajectory planning via solving a POP every
planning iteration. RTD is provably collision-free regardless of
the POP solver used, meaning that we are able to test PCBA
safely on hardware; when the PCBA is applied to RTD, we call
the resulting trajectory planning algorithm RTD*. See Fig. 1 and
the video available at9.

In this section, we apply RTD* to a Segway robot navigating a
hallway with static obstacles. Recall that RTD always produces
dynamically feasible trajectory plans [8]. As proven in Corollary
13 and demonstrated in Section VI, the PCBA always finds op-
timal solutions. This section shows that PCBA/RTD* improves

9https://youtu.be/YcH4WAzqPFY
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the liveness of a robot by successfully navigating a variety of
scenarios and outperforming fmincon/RTD.

A. Overview

1) Demonstrations: We ran two demonstrations in a 20×
3 m2 hallway. First, we filled the hallway with random static
obstacles and ran RTD*. Second, we constructed two difficult
scenarios and ran PCBA/RTD* and fmincon/RTD on each.
In both demonstrations, the robot must find a new plan

[i.e., solve (14)] every tplan = 0.5 s, or else it begins executing
the braking maneuver associated with its previously computed
plan [8, Remark 70]. In other words, we require PCBA to return
a feasible solution or that the problem is infeasible. The PCBA
is given a time limit of 0.4 s to find a solution, because the robot
requires 0.1 s for other onboard processes.
2) Hardware: We use a Segway differential-drive robot with

a planar Hokuyo UTM-30LX LIDAR for mapping and obstacle
detection (see Fig. 1). Mapping, localization, and trajectory
optimization run onboard on a 4.0-GHz laptop with an Nvidia
GeForce GTX 1080 GPU.

B. Demo 1

The first demo shows the ability of the RTD* to plan safe
trajectories in randomly generated scenarios in real time, demon-
strating dynamic feasibility, optimality, and liveness.
1) Setup: The robot was required to move autonomously

back and forth ten times between two global goals spaced 12 m
apart, while 30-cm3 box-shaped obstacleswere randomly placed
in its path. At each planning iteration, we generated Nwp = 2
waypoints, wL and wR ∈ R2, both 1.5 m ahead of the robot in
the direction of the global goal; wL is on the left side of the
hallway relative to the robot, and wR is on the right.

After running the robot with RTD*, we ran fmincon on the
528 saved POPs generated during these ten trials (we do not
run BSOS or DIRECT due to their slow solve times). Each
POP has 49–245 constraints (see Fig. 7). For each POP, we
initialized fmincon with 25 random initial guesses and did not
require fmincon to solve within 0.4 s (i.e., we did not enforce
the real-time planning constraint). To understand the timing of
PCBAand for fair comparisonwith fmincon,we reran the PCBA
25 times on each trial and did not require it to solve in real time.
2) Results: The robot running RTD* successfully completed

every trial (meaning that it reached the global desired goal
location without collisions, and without human assistance).
When rerunning on the saved POPs, fmincon performs nearly

as well as PCBA in terms of finding solutions. Out of all
25× 528 attempts in which fmincon converged to a feasible
solution, fmincon converged to a greater cost than PCBA 93.9%
of the time (recall that PCBA provably upper bounds the optimal
solution); however, the fmincon solutionwas only 0.77%greater
in cost than the PCBA solution on average, indicating that
fmincon was often able to find a global optimum when given
enough attempts. In terms of feasibility, the PCBA and fmincon
also show similar results. The PCBA reports that 7.01% of the
POPs are infeasible, whereas fmincon converged to an infeasible
result on 8.08% of the 25× 528 total attempts. Note that, on

14.2% of the 528 POPs, fmincon converged to an infeasible
result least once out of 25 attempts.
Where fmincon suffers with respect to PCBA is in its con-

sistency of finding an answer within the time limit (see Fig. 6).
While fmincon is often able to solve in 10−2 s (an order of
magnitude faster than PCBA), it has a standard deviation of up
to 10 s. On the other hand, the PCBA always finds a solution or
returns infeasible within 0.4 s and has a standard deviation of
2.4 ms on average over all 25× 528 POPs. To summarize, as
we expect from the theory in Section V, PCBA’s solve time
in practice appears constant on real trajectory optimization
problems.

C. Demo 2

The second demo shows that RTD* can navigate difficult
scenarios because the PCBA is able to rapidly solve POPs with
hundreds of constraints. Recall that, in any planning iteration,
RTD and RTD* commands the robot to begin braking if they
cannot find a new trajectory plan (i.e., solve (P)). By difficult
scenarios, we mean that the obstacles are arranged to cause the
robot to have to brake often. Therefore, by RTD*’s successful
navigation of these scenarios, we demonstrate liveness.
1) Setup: The robot was required to navigate two difficult

scenarios autonomously. In the first scenario, static obstacles
were arranged to force the robot to turn frequently, and to decide
to go left or right around each obstacle. In the second scenario,
the robot was required to navigate a tight obstacle blockade.
For each scenario, we ran PCBA/RTD* and fmincon/RTD once
each. At each planning iteration, we generateNwp = 1waypoint
positioned 1.5 m away from the robot along a straight line to the
global goal; this produces a convex cost function for (14), but
the constraints make the problem nonconvex.
2) Results: In the first scenario, both RTD* and RTD suc-

cessfully reach the goal. Recall that the robot begins emergency
braking when it does not find a feasible trajectory in a planning
iteration. RTD* brakes six times, whereas RTD brakes 13 times;
furthermore, RTD* only takes 27 s to navigate to the goal,
whereas RTD takes 43 s. In other words, PCBA/RTD* is half as
conservative as fmincon/RTD.
The results of the second scenario confirm that RTD* is less

conservative thanRTD. In this scenario, RTD* is able to navigate
the entire scenario autonomously without human assistance,
whereasRTDcauses the robot to become stuck (seeFig. 8 and the
video available at10, and a human operator must drive the robot
for a short time to enable to it to continuemoving autonomously.

D. Discussion

Wehave demonstrated that RTD* is capable of dynamic feasi-
bility, optimality, and liveness for online trajectory optimization
on robot hardware. RTD* is able to find an optimal solution, if
it exists, at every receding-horizon planning iteration, leading to
it consistently navigating random scenarios without collisions.
Furthermore, RTD* outperforms RTD at the same tasks. This is

10https://youtu.be/YcH4WAzqPFY
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Fig. 8. Robot becomes stuck when planning with RTD/fmincon in the second
scene of the second hardware demo, because fmincon cannot find an optimal so-
lution quickly enough given the high number of constraints produced by the sur-
rounding obstacles. The robot requires human assistance to proceed,whereas it is
able to navigate the entire scene autonomouslywhen planningwithRTD*/PCBA
(see Fig. 1). See the video available at https://youtu.be/YcH4WAzqPFY.

due to PCBA’s ability to find solutions more quickly than fmin-
con on problems with hundreds of constraints. To the best of our
knowledge, this is the first time any BA has been demonstrated
as practical for a real-time mobile robotics application.

VIII. CONCLUSION

Mobile robots typically use receding-horizon planning to
move through the world. Plans should be dynamically feasible
and optimal, but also need to be generated quickly; otherwise,
a robot may stop frequently and never complete its task. The
existing RTD method creates plans by solving a POP, but uses a
derivative-based nonlinear solver that cannot guarantee solving
speed or optimality. We proposed and implemented a PCBA
to rapidly and optimally solve this POP, resulting in the RTD*
planning algorithm. RTD* outperforms RTD on a variety of
hardware demonstrations. To the best of our knowledge, this is
the first time a BA has been used for real-time mobile robotics.
Furthermore, the PCBA outperforms the BSOS, fmincon, and
DIRECT solvers on a variety of benchmark POPs. For future
work, we plan to explore nonpolynomial optimization problems
and to improve the proposed time and space complexity bounds
of PCBA; our goal is to apply RTD* and PCBA to more types
of robots.
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