
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS 1

Data-Driven Control of Soft Robots Using Koopman
Operator Theory

Daniel Bruder , Xun Fu, R. Brent Gillespie , C. David Remy, and Ram Vasudevan

Abstract—Controlling soft robots with precision is a challenge
due to the difficulty of constructing models that are amenable to
model-based control design techniques. Koopman operator theory
offers a way to construct explicit dynamical models of soft robots
and to control them using established model-based control meth-
ods. This approach is data driven, yet yields an explicit control-
oriented model rather than just a “black-box” input–output map-
ping. This work describes a Koopman-based system identification
method and its application to model predictive control (MPC)
design for soft robots. Three MPC controllers are developed for
a pneumatic soft robot arm via the Koopman-based approach, and
their performances are evaluatedwith respect to several real-world
trajectory following tasks. In terms of average tracking error,
these Koopman-based controllers are more than three times more
accurate than a benchmark MPC controller based on a linear
state-space model of the same system, demonstrating the utility
of the Koopman approach in controlling real soft robots.

Index Terms—Koopman operator, model learning for control,
optimal control, soft robots.

I. INTRODUCTION

SOFT robots have bodies made of intrinsically soft and/or
compliant materials. This softness enables them to safely

interact with delicate objects and to passively adapt their shape
to unstructured environments [1]. Such traits are desirable for

Manuscript received August 5, 2020; accepted October 13, 2020. This work
was supported in part by the National Science Foundation Graduate Research
Fellowship Program under Grant 1256260 DGE, in part by the Naval Research
under Grant N00014-18-1-2575, and in part by the National Science Foundation
under Grant 1751093. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation. Toyota Research Institute
(TRI) provided funds to assist the authors with their research, but this article
solely reflects the opinions and conclusions of its authors and not TRI or any
other Toyota entity. This article was recommended for publication by Associate
Editor J.Kober andEditor P. RobuffoGiordano upon evaluation of the reviewers’
comments. (Corresponding author: Daniel Bruder.)

Daniel Bruder was with the Department of Mechanical Engineering, Univer-
sity ofMichigan,AnnArbor,MI 48109USA.He is nowwith the JohnA. Paulson
School of Engineering and Applied Sciences, Harvard University, Cambridge,
MA 02138 USA (e-mail: dbruder@seas.harvard.edu).

Xun Fu, R. Brent Gillespie, and Ram Vasudevan are with the Department of
Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: xunfu@umich.edu; brentg@umich.edu; ramv@umich.edu).

C. David Remy is with the Institute for Nonlinear Mechanics, University of
Stuttgart, 70174 Stuttgart, Germany (e-mail: remy@inm.uni-stuttgart.de).

This article has supplementary material provided by the authors and color
versions of one or more figures available at https://doi.org/10.1109/TRO.2020.
3038693. The material consists of a video. The video introduces the hardware
used in experiments and shows the robotic system performing various trajectory-
following tasks using the control algorithms described in this article. Contact
dbruder@seas.harvard.edu for further questions about this work.

Digital Object Identifier 10.1109/TRO.2020.3038693

robotic applications that demand safe human–robot interaction,
such as wearable robots, in-home assistive robots, and medical
robots. Unfortunately, the soft bodies of these robots also impose
modeling and control challenges, which have restricted their
functionality to date. While many novel soft devices such as
soft grippers [2], crawlers [3], and swimmers [4] exploit the
flexibility of their bodies to achieve coarse behaviors such as
grasping and locomotion, they do not exhibit precise control
capabilities.
The challenge of achieving precise control is largely due to the

difficulty of devising models of soft robots that are amenable to
model-based control design techniques. Consider, for instance,
a rigid-bodied robotic system that is made up of rigid links
connected together by joints. Since joint displacements can
be used to fully describe the configuration of a rigid-bodied
system, joint displacements and their derivatives make a natural
choice for the state variables for rigid-bodied robots [5]. One
can use this choice of state variables to describe the dynamics of
the rigid-bodied robot. This, as a result, makes the application
of model-based control design techniques such as feedback
linearization [5], nonlinear model predictive control [6], linear–
quadratic regulator trees [7], sequential action control [8], and
others feasible.
Soft robots, in contrast, do not exhibit localized deformation

at joints, but instead deform continuously along their bodies
and have infinite degrees of freedom. In the absence of joints,
there does not exist a canonical choice of state variables to
describe the geometry of a soft robot. As a result, existing
representations are typically only rich enough to describe the
system under simplifying physical assumptions. For example,
the popular piecewise constant curvature model [9] provides a
low-dimensional description of the shape of continuum robots,
but only under the assumption that their shapes can be rep-
resented by consecutive arcs. Other simplified models such
as pseudo-rigid-body [10], quasi-static [11]–[14], or simplified
geometry [15]–[18] have proven useful, but they are only able
to describe behavior in the subset of conditions over which their
physical simplifying assumptions hold. Thismakes thesemodels
insufficient for model-based control in tasks that would require
violating their physical simplifying assumptions. For example,
a controller based on the soft actuator model presented in [16]
would be insufficient for tasks that require bending, since the
model assumes cylindrical geometry of the actuator.
Alternatively, data-driven methods such as traditional ma-

chine learning and deep learning can be applied to construct
models without making such physical simplifying assumptions.

1552-3098 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7683-2725
https://orcid.org/0000-0002-1051-0026
https://orcid.org/0000-0003-1978-0572
mailto:dbruder@seas.harvard.edu
mailto:xunfu@umich.edu
mailto:brentg@umich.edu
mailto:ramv@umich.edu
mailto:remy@inm.uni-stuttgart.de
https://doi.org/10.1109/TRO.2020.3038693

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON ROBOTICS

Fig. 1. Nonlinear dynamical system (bottom-left) has a linear representation
in the lifted space made up of all real-valued functions (top-left). While a model
predictive controller designed for the nonlinear system in state space requires
solving a nonconvex optimization problem to choose inputs at each time step
(bottom-right), this problem is convex for amodel predictive controller designed
for the lifted linear system (top-right). This article develops a data-drivenmethod
to construct such a lifted model representation for soft robotic systems in the
presence of outliers aswell as a convex-model-based controller for such systems.

These models provide a “black-box” mapping from inputs to
outputs and have been shown to predict behavior well across
various configurations of soft robots [12], [19]. However, the
structure of these types of models is not amenable to existing
model-based control design techniques, since they are typically
nonlinear and may not be easily invertible.
Koopman operator theory offers a data-driven approach that

avoids physical simplifying assumptions, but also yields ex-
plicit control-orientedmodels. The approach leverages the linear
structure of the Koopman operator to construct linear models of
nonlinear controlled dynamical systems from input–output data
[20]–[24], and to control them using established linear control
methods [25]–[28]. In theory, this approach involves lifting the
state space to an infinite-dimensional space of scalar functions
(referred to as observables), where the flow of such observables
along trajectories of the nonlinear dynamical system is described
by the linearKoopman operator. In practice, however, it is infea-
sible to compute an infinite-dimensional operator, so a process
called extended dynamic mode decomposition (EDMD) [29] is
typically employed to compute a finite-dimensional projection
of the Koopman operator onto a finite-dimensional subspace
of all observables (scalar functions). This approximation of
the Koopman operator describes the evolution of the output
variables themselves, provided that they lie within the finite
subspace of observables upon which the operator is projected.
Hence, this approach makes it possible to control the output of
a nonlinear dynamical system using a controller designed for its
linear Koopman representation (see Fig. 1).
TheKoopman approach tomodeling and control is well suited

for soft robots for several reasons. Soft robots pose less of a phys-
ical threat to themselves or their surroundings when subjected

to random control inputs than conventional rigid-bodied robots.
This makes it possible to safely collect input–output data over a
wide range of operating conditions, and to do so in an automated
fashion. Furthermore, since the Koopman procedure is entirely
data driven, it inherently captures input–output behavior and
avoids the ambiguity involved in choosing a discrete set of states
for a structure with infinite degrees of freedom.
Portions of the work presented here originally appeared in

[30]. Thatwork introduced amodification to theKoopman linear
system identification procedure described in [26] to make the
resulting Koopman operator both more sparse and less sensitive
to outliers and noise in the training data. It then applied that
approach to model and control a physical soft robot arm using
linear model predictive control (MPC). This work builds on
those previous contributions by incorporating the Koopman-
based nonlinear system identification procedure described in
[21] and using it to control a physical soft robot using nonlinear
model predictive control (NMPC). It includes a comparison
between these Koopman-based controllers, which highlights the
relative strengths and weaknesses of linear and nonlinear model
predictive controlllers applied to soft robots.
The rest of this article is organized as follows. In Section II,

we formally introduce the Koopman operator and describe how
it is used to construct models of nonlinear dynamical systems
from data. In Section III, we describe how the Koopman model
can be used for linear model predictive control (MPC) and
nonlinear model predictive control (NMPC). In Section IV, we
describe the set of experiments used to evaluate the performance
of Koopman-based model predictive controllers on a real soft
robot platform. In Section V, the results of these experiments
are discussed and interpreted. Finally, Section VI concludes this
article.

II. SYSTEM IDENTIFICATION

Any finite-dimensional Lipschitz continuous nonlinear dy-
namical system has an equivalent infinite-dimensional linear
representation in the space of all scalar-valued functions of the
system’s state [31, Def. 3.3.1]. This linear representation, which
is called the Koopman operator, describes the flow of functions
along trajectories of the system. While it is not possible to nu-
merically represent the infinite-dimensional Koopman operator,
it is possible to represent its projection onto a finite-dimensional
subspace as a matrix. This section shows that for a given choice
of basis functions, a dynamical system model can be extracted
directly from such a matrix approximation of the Koopman
operator.
The remainder of this section outlines an approach for approx-

imating theKoopmanoperator fromdata andusing it to construct
a linear or nonlinear system model. Section II-A introduces the
Koopman operator. Section II-B describes a process by which
a matrix approximation of the Koopman operator can be fit
from data. Sections II-C and II-D present the construction of a
linear/nonlinear dynamical model using a matrix approximation
of the Koopman operator. Section II-E presents modifications to
the system identification process to promote sparsity and reduce
overfitting of the resulting models.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRUDER et al.: DATA-DRIVEN CONTROL OF SOFT ROBOTS USING KOOPMAN OPERATOR THEORY 3

A. Koopman Representation of a Dynamical System

Consider a dynamical system

ẋ(t) = F (x(t)) (1)

where x(t) ∈ X ⊂ Rn is the state of the system at time t ≥ 0,
X is a compact subset, and F is a continuously differentiable
function. Denote by φt(x0) the solution to (1) at time t when
beginning with the initial condition x0 at time 0. φt is referred
to as the flow map.
The system can be lifted to an infinite-dimensional function

space F composed of all continuous real-valued functions with
compact domain X ⊂ Rn. Elements of F are called observ-
ables. In F , the flow of the system is characterized by the
set of Koopman operators Ut : F → F , for each t ≥ 0, which
describes the evolution of the observables f ∈ F along the
trajectories of the system according to the following definition:

Utf = f ◦ φt (2)

where◦ indicates function composition.As desired,Ut is a linear
operator even if the system (1) is nonlinear, since for f1, f2 ∈ F
and λ1, λ2 ∈ R

Ut(λ1f1 + λ2f2) = λ1f1 ◦ φt + λ2f2 ◦ φt

= λ1Utf1 + λ2Utf2.
(3)

Thus, the Koopman operator provides a linear representation
of the flow of a nonlinear system in the infinite-dimensional
space of observables [32]. Contrast this representation with the
one generated by the (nonlinear) flow map that for each t ≥
0 describes how the initial condition evolves according to the
dynamics of the system. In particular, if one wants to understand
the evolution of an initial condition x0 at time t according to
(1), then one could solve the nonlinear differential equation to
generate the flow map. In contrast, one could apply Ut (a linear
operator) to the function that projects onto each component of
the state to generate the flow map for each component of the
state.

B. Identification of the Koopman Operator

Since the Koopman operator is an infinite-dimensional ob-
ject, it cannot be represented by a finite-dimensional matrix.
Therefore, we settle for the projection of the Koopman op-
erator onto a finite-dimensional subspace. Using a modified
version of the EDMD algorithm [21], [22], [29], we identify
a finite-dimensional approximation of the Koopman operator
via linear regression applied to observed data. The remainder
of this subsection describes the mathematical underpinnings of
this process.
Define F̄ ⊂ F to be the subspace of F spanned by N > n

linearly independent basis functions {ψi : Rn → R}Ni=1. We
denote the image of ψi as Ri, which is equal to
{w ∈ R|∃x ∈ Rn, ψi(x) = w}. For convenience, we assume
that the first n basis functions are defined as

ψi(x) = xi (4)

where xi denotes the ith element of x. Any observable f̄ ∈ F̄
can be expressed as a linear combination of elements of these

basis functions

f̄ = θ1ψ1 + · · ·+ θNψN (5)

where each θi ∈ R. To aid in presentation, we define the vector
of coefficients θ := [θ1 · · · θN]� and define the lifting function
ψ : Rn → RN as

ψ(x) :=
[
xi · · · xn ψn+1(x) · · · ψN (x)

]�
. (6)

We denote the image of ψ asM = R1 × · · · × RN ⊂ RN . By
(5) and (6), f̄ evaluated at a point x in the state space is given
by

f̄(x) = θ�ψ(x). (7)

We, therefore, refer toψ(x) as the lifted state, and θ as the vector
representation of f̄ .
Given this vector representation for observables, a linear op-

erator on F̄ can be represented as anN ×N matrix. We denote
by Ūt ∈ RN×N the approximation of the Koopman operator on
F̄ , which operates on observables via matrix multiplication

Ūtθ = θ′ (8)

where θ and θ′ are each vector representations of observables in
F̄ . Our goal is to find a Ūt that describes the action of the infinite-
dimensional Koopman operator Ut as accurately as possible in
the L2-norm sense on the finite-dimensional subspace F̄ of all
observables.
To perfectly mimic the action of Ut on any observable

f̄ ∈ F̄ ⊂ F , according to (2), the following should be true for
all x ∈ X:

Ūtf̄(x) = f̄ ◦ φt(x) (9)

(Ūtθ)
�ψ(x) = θ�ψ ◦ φt(x) (10)

Ū�
t ψ(x) = ψ ◦ φt(x) (11)

where (10) follows by substituting (7), and (11) follows since
the result holds for all f̄ . Since this is a linear equation, it
follows that for a given x ∈ X , solving (11) for Ūt yields the
best approximation of Ut on F̄ in the L2-norm sense [33]:

Ūt =
(
ψ�(x)

)†
(ψ ◦ φt(x))

� (12)

where superscript † denotes the Moore–Penrose pseudoinverse.
To approximate the Koopman operator from a set of experi-

mental data, we takeK discrete state measurements in the form
of so-called snapshot pairs (a[k], b[k]) for each k ∈ {1, . . . ,K},
where

a[k] = x[k] (13)

b[k] = φTs
(x[k]) + σ[k] (14)

where σ[k] denotes the measurement noise, Ts is the sampling
period which is assumed to be identical for all snapshot pairs,
and x[k] denotes the measured state corresponding to the kth
measurement. Note that consecutive snapshot pairs do not have
to be generated by consecutive state measurements. We then lift
all of the snapshot pairs according to (6) and compile them into

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON ROBOTICS

the following K ×N matrices:

Ψa :=

⎡
⎢⎢⎣
ψ(a[1])�

...

ψ(a[K])�

⎤
⎥⎥⎦ Ψb :=

⎡
⎢⎢⎣
ψ(b[1])�

...

ψ(b[K])�

⎤
⎥⎥⎦ . (15)

ŪTs
is chosen so that it yields the least-squares best fit to all of

the observed data, which, following from (12), is given by

ŪTs
:= Ψ†

aΨb. (16)

The dynamics of mechanical systems are described by
second-order differential equations. Expressed in state-space
form, the state of such a system includes both the positions
and velocities of a set of generalized coordinates. Therefore,
when identifying the dynamics of a mechanical system from
data, it is prudent to include velocities in the state. For a discrete
system representation, velocity information can be included by
incorporating a delay into the set of snapshot pairs, since it
encodes the change in the value of the measured state over a
single time step. To incorporate one or more delays, we define
the snapshot pairs as

a[k] =
[
x[k]�, x[k − 1]� . . . , x[k − d]�

]�
(17)

b[k] =
[
(φTs

(x[k]) + σk)
� x[k]� . . . x[k − d+ 1]�

]�
(18)

where d is the number of delays. We then modify the domain of
the lifting function such thatψ : Rn+nd → RN to accommodate
the larger dimension of the snapshot pairs. Once these snapshot
pairs have been assembled, the model identification procedure
is identical to the case without delays.

C. Building a Linear Model From the Koopman Operator

For dynamical systems with inputs, we are interested in using
the Koopman operator to construct discrete linear models of the
following form:

z[j + 1] = Az[j] +Bu[j]

x[j] = Cz[j]
(19)

for each j ∈ N, where x[0] is the initial condition in state
space, z[0] = ψ(x[0]) is the initial lifted state, u[j] ∈ Rm is
the input at the jth step, and C acts as a projection operator
from the lifted space onto the state space. Specifically, we desire
a representation in which (nonlifted) inputs appear linearly,
because models of this form are amenable to real-time convex
optimization techniques for feedback control design, as we
describe in Section III.
We construct a model of this form by applying the system

identification method of Section II-B to the following lifted
snapshot pairs with the input appended:

α[k] =

[
ψ(a[k])

u[k]

]
β[k] =

[
ψ(b[k])

u[k]

]
(20)

for each k ∈ {1, . . . ,K}. The input u[k] in snapshot k is not
lifted to ensure that it appears linearly in the resulting model.

With these pairs, we define the followingK × (N +m) matri-
ces:

Γα =

⎡
⎢⎢⎣
α[1]�

...

α[K]�

⎤
⎥⎥⎦ Γβ =

⎡
⎢⎢⎣
β[1]�

...

β[K]�

⎤
⎥⎥⎦ (21)

and solve for the corresponding Koopman operator according to
(12)

ŪTs
:= Γ†

αΓβ . (22)

Note that by (11) and (22), the transpose of this Koopman
matrix is the best approximation of a transition matrix be-
tween the elements of snapshot pairs in the L2-norm sense, i.e.,
ŪTs

∈ R(N+m)×(N+m) is the minimizer to

min
U ′

K∑
k=1

∥∥∥U ′�α[k]− β[k]
∥∥∥2
2

(23)

and we desire the A ∈ RN×N and B ∈ RN×m matrices that
minimize

min
A′,B′

K∑
k=1

‖A′ψ(a[k]) +B′u[k]− ψ(b[k])‖22 . (24)

Therefore, the best A and B matrices of (19) are embedded in
Ū�
Ts

and can be isolated by partitioning it as follows:

Ū�
Ts

=

[
AN×N BN×m

Om×N Im×m

]
(25)

where I denotes an identity matrix, O denotes a zero matrix,
and the subscripts denote the dimensions of each matrix. The C
matrix is defined as

C =
[
In×n On×(N−n)

]
(26)

since, by (4), x = [ψ1(x), . . . , ψn(x)]
�. Note that we can also

incorporate input delays into the model by appending them to
the snapshot pairs as we did in (17) and (18). Algorithm 1
summarizes the proposed linear model construction process.

D. Building a Nonlinear Model From the Koopman Operator

The Koopman operator can also be used to identify a contin-
uous nonlinear dynamical model of the form

ẋ(t) = F (x(t), u(t)). (27)

This representation admits nonlinear input terms, sowe augment
the snapshot pairs to have the input appended

a[k] =

[
x[k]

u[k]

]
(28)

b[k] =

[
φTs

(x[k]) + σ[k]

u[k]

]
(29)

and modify the lifting function to take this augmented state as
its input argument ψ : Rn+m → RN . We then approximate the
Koopman operator just as in Section II-B via (15) and (16).

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRUDER et al.: DATA-DRIVEN CONTROL OF SOFT ROBOTS USING KOOPMAN OPERATOR THEORY 5

To construct a model in the form of (27), we introduce
the infinitesimal generator of the set of Koopman operators
G : F → F [31, eq. (7.6.5)], which is defined in terms of the
vector field F as

G = F · ∇x. (30)

This generator describes the dynamics of the observables along
trajectories of the system, whereas the set of Koopman operators
describes the flow of observables. Framed in terms of the more
familiar context of finite-dimensional linear systems, an observ-
able is analogous to the state, G is analogous to the A matrix
describing the dynamics of the state, and Ut is analogous to the
state-transition matrix for time t. The state-transition matrix of a
finite-dimensional linear system is related to itsAmatrix via the
matrix exponential, and similarly, the relationship between the
Koopman operator and its generator is given by the following
matrix exponential expression:

Ut = eGt. (31)

In practice, our goal is to find a function F̄ : Rn ×Rm → Rn

that describes the behavior of the functionF as accurately as pos-
sible in theL2-norm sense on the finite-dimensional subspace F̄ .
With the approximation of the Koopman operator ŪTs

in hand,
we can solve for the infinitesimal generator Ḡ by inverting (31):

Ḡ =
1

Ts
log ŪTs

∈ RN×N (32)

where log denotes the principal matrix logarithm [34, Ch. 11].
Note that the principal matrix logarithm is only defined for
matrices whose eigenvalues all have nonnegative real parts, and
that ŪTs

mayhave zero or negative eigenvalueswhen the number
of data points is too small [21, Sec. III-B]. Therefore, thismethod
might fail if the number of data points is insufficient. In this
instance, more systemmeasurements can be taken to resolve the
issue.
With Ḡ known, (30) can be used to identify F̄ . Consider

G applied to an observable f ∈ F . According to (30), this is
equivalent to the inner product of the vector field F and the
gradient of f with respect to x:

Gf(x, u) =
∂f(x, u)

∂x
F (x, u). (33)

Again using θ to denote the vector representation of an observ-
able f̄ and a = [x�, u�]� to represent the augmented state with
the input appended, the finite-dimensional equivalent of (33) is
given by

(Ḡθ)Tψ(a) = θT
∂ψ(a)

∂x
F̄ (x, u). (34)

We seek the vector field F̄ such that (34) holds aswell as possible
in theL2-norm sense for all observed data. Therefore, we choose
the least-squares solution to (34) over the set of all observed data
points {ak = [x�

k , u
�
k]

�|k = 1, ...,K}, which is given by

F̄ (x, u) =

⎡
⎢⎢⎣

∂ψ(a1)
∂x
...

∂ψ(aK)
∂x

⎤
⎥⎥⎦
† ⎡
⎢⎢⎣
ḠT

...

ḠT

⎤
⎥⎥⎦ψ(a). (35)

Algorithm 2 summarizes this nonlinear system identification
process. For a more thorough treatment, see [21] and [22].

E. Practical Considerations: Overfitting and Sparsity

A pitfall of data-driven modeling approaches is the tendency
to overfit. While least-squares regression yields a solution that
minimizes the total L2-norm error with respect to the training
data, this solution can be particularly susceptible to outliers and
noise [35]. To guard against overfitting to noisewhile identifying
ŪTs

, we utilize the L1-regularization method of Least Absolute
Shrinkage and Selection Operator (LASSO) [36]

	̄UTs
= argmin

�UTs

||	Γα
	UTs

− 	Γβ ||22 + λ||	UTs
||1 (36)

whereλ ∈ R+ is theweight of theL1 penalty term, and	· denotes
a vectorized version of each matrix with dimensions consistent
with the stated problem. For λ = 0, (36) provides the same
unique least-squares solution as (22); as λ increases, it drives
the elements of 	UTs

to zero. For an overview of the LASSO
method and its implementation, see [36].
The benefit of using L1-regularization to reduce overfitting

rather thanL2-regularization (e.g., ridge regression) is its ability
to drive elements to zero, rather than just making them small.
This promotes sparsity in the resultingKoopman operatormatrix
(and consequently the A and B matrices of the linear model).
Sparsity is desirable since it reduces the memory needed to store
these matrices on a computer, enabling a higher dimensional set
of basis functions to be used to construct the lifting function ψ.
Though sparsity is desirable, it can carry a cost in prediction

accuracy for the lifted linear model described by (19). As illus-
trated in Fig. 2, the lifting function ψ maps from Rn to M, but
at some time step j, Aψ(a[j]) +Bu[j] may not map onto M.
When this happens and we try to simulate our linear model from
an initial condition, it may leave the space of legitimate “lifted
states” and fail to predict behavior accurately. We, therefore,
desire the sparsest model that minimizes the distance from M
at each iteration.
This can be accomplished by applying a projection operator

at each time step. For each snapshot pair, the ideal projection
operator P should satisfy the following for all k:

P (Aψ(a[k]) +Bu[k]) = ψ(b[k]). (37)

To build an approximation to this operator, we construct the
following K ×N matrix:

Ωa :=

⎡
⎢⎢⎣

(Aψ(a[1]) +Bu[1])�

...

(Aψ(a[K]) +Bu[K])�

⎤
⎥⎥⎦ . (38)

Then, the best projection operator in the L2-norm sense based
on our data is given by

P :=
(
Ω†

aΨb

)�
. (39)

Composing P with the A and B matrices in (19) yields a
modified linear model that significantly reduces the distance

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON ROBOTICS

Fig. 2. Illustration of the effect of deviating from the image of the lifted
functions M and how it can be remedied by defining a projection operation,
as described in Section II-E. The evolution of the finite-dimensional system
in the state space X from x[0] is depicted as a red curve. The lifted version
of this evolution is depicted as the blue curve, which is contained in M. The
discrete-time system representation in the higher dimensional space created by
iteratively applying the state matrix A to z[j] may generate a solution that is
outside of M. Though one can still apply C to z̄ to project it back to X , this
may result in poor performance. Instead, by projecting z̄[j] onto the manifold
at each discrete time step to define a new lifted state ẑ[j], the deviation fromM
is reduced, which improves overall predictive performance.

Algorithm 1: Koopman Linear System Id.

Input: λ , {a[k], b[k]} and u[k] for k = 1, ...,K
Step 1: Lift data via (6)
Step 2: Combine lifted data and inputs via (20)
Step 3: Approx. Koopman operator ŪTs

via (22) or (36)
Step 4: Extract model matrices A,B via (25)
Step 5: (optional) Identify projection operator P via (39)

Output: A, B, C :=
[
In×n On×(N−n)

]
,

(optional) Â := PA, B̂ := PB

fromM at each iteration

z[j + 1] = Âz[j] + B̂u[j] (40)

where Â := PA and B̂ := PB. An unfortunate side effect of ap-
plying the projection operator P is an increase in matrix density.
However, this does not completely negate the sparsity benefits of
L1-regularization. As we show in Fig. 6 in Section IV, for a real
soft robotic system, the resulting Âmatrix is still sparser than the
one identified using pure least-squares regression, but is nearly
identical in accuracy. Algorithm 1 summarizes the proposed
linear model construction process with this added projection.

III. MODEL PREDICTIVE CONTROL

Asystemmodel enables the designofmodel-based controllers
that leverage model predictions to choose suitable control inputs

Algorithm 2: Koopman Nonlinear System Id. [21].

Input: λ , {a[k], b[k]} and u[k] for k = 1, ...,K
Step 1: Lift data via (6)
Step 2: Combine lifted data and inputs via (20)
Step 3: Approx. Koopman operator ŪTs

via (22) or (36)
Step 4: Identify infinitesimal generator Ḡ by (34)
Step 5: Solve for vector field F̄ via (35)
Output: F̄ : Rn ×Rm → Rn

for a given task. In particular, model-based controllers can antic-
ipate future events, allowing them to optimally choose control
inputs over a finite time horizon. A popular model-based control
design technique is model predictive control (MPC), wherein
one optimizes the control input over a finite time horizon, applies
that input for a single time step, and then optimizes again,
repeatedly [37].
This section introduces several MPC controllers based on

models constructed from the Koopman operator. Section III-A
describes the MPC optimization problem for a linear Koopman
model in the form of (19). Section III-B describes the MPC
optimization problem for a nonlinear Koopman model in the
form of (27). Section III-C discusses the relative computational
efficiency of each approach.

A. Linear MPC

For linear systems, MPC consists of iteratively solving a
convex quadratic program. Importantly, this is also the case for
Koopman-based linear MPC, which we refer to by the abbrevi-
ation K-MPC, wherein one solves for the optimal sequence of
control inputs over a receding horizon according to the following
quadratic program at each time instance k of the closed-loop
operation:

min
{u[i]∈Rm}Nh

i=0

{z[i]∈RN}Nh
i=0

z[Nh]
TG[Nh]z[Nh] + g[Nh]

T z[Nh]+

+

Nh−1∑
i=0

(z[i]TG[i]z[i] + u[i]TH[i]u[i]+

+ g[i]T z[i] + h[i]Tu[i])

s.t. z[i+ 1] = Âz[i] + B̂u[i] ∀{i}Nh−1
i=0

E[i]z[i] + F [i]u[i] ≤ b[i] ∀{i}Nh−1
i=0

z[0] = ψ(x[k]) (41)

where Nh ∈ N is the prediction horizon, G[i] ∈ RN×N and
H[i] ∈ Rm×m are positive-semidefinite matrices, and where
each time the program is called, the predictions are initialized
from the current lifted state ψ(x[k]). The matricesE[i] ∈ Rc×N

and F [i] ∈ Rc×m and the vector b[i] ∈ Rc define state and input
polyhedral constraints, where c denotes the number of imposed
constraints. While the size of the cost and constraint matrices
in (41) depends on the dimension of the lifted state N , Korda
and Mezić [26] show that these can be rendered independent

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRUDER et al.: DATA-DRIVEN CONTROL OF SOFT ROBOTS USING KOOPMAN OPERATOR THEORY 7

Algorithm 3: Koopman-Based Linear MPC [26].
Input: Prediction horizon: Nh

Cost matrices: Gi, Hi, gi, hi for i = 0, ..., Nh

Constraint matrices: Ei, Fi, bi for i = 0, ..., Nh

Model matrices: Â, B̂
for k = 0, 1, 2, ... do
Step 1: Set z[0] = ψ(x[k])
Step 2: Solve (41) to find optimal input (u[i]∗)Nh

i=0

Step 3: Set u[k] = u[0]∗

Step 4: Apply u[k] to the system

of N by transforming the problem into its so-called dense
form. Algorithm 3 summarizes the closed-loop operation of this
Koopman-based linear MPC.

B. Nonlinear MPC

To control a soft robot using NMPC, a reference trajectory is
assumed to be given, xref : [t0, tf] → Rn, where 0 ≤ t0 < tf ,
the initial position of the robot x0 ∈ Rn is assumed known, and
we solve the following optimal control problem:

min
u∈L2([t0,tf];Rm)

∫ tf

t0

(
(x(t)− xref(t))

T Q(x(t)− xref(t)
)
+

+ u(t)TRu(t)) dt

s.t. ẋ(t) = F (x(t), u(t)) ∀t ∈ [t0, tf]

x(t0) = x0

L(x(t), u(t)) ≤ 0q ∀t ∈ [t0, tf] (42)

where L2([t0, tf];Rm) is the space of square integrable
functions from [t0, tf] to Rm, Q ∈ Rn×n and R ∈ Rm×m

are positive-semidefinite matrices, L : Rn ×Rm → Rq defines
state and input constraints, and 0q is the vector of all 0s with
q-elements. We solve this problem by applying a commercial
optimal control problem solver—GPOPS-II [38].
Solving (42) quickly enough for real-time receding horizon

control is often not possible. In practice, the optimal control
inputs must be computed offline and then applied to the system
in open loop. Without feedback, the controller is incapable of
overcoming model error that causes performance to degrade as
the time horizon increases. To counteract this shortcoming, an
NMPC controller can be supplemented with a linear feedback
controller based on the local linearization of the nonlinearmodel
about the reference trajectory (see [39, Sec. 5.4]). At each time
step k, the optimal input u∗[k] is then given by the sum of the
open-loop control input computed by solving the aforemen-
tioned NMPC problem offline, denoted u[k], and a feedback
term based on the local linearization that is computed online,
denoted δu[k],

u∗[k] = u[k] + δu[k] (43)

where δu[k] is chosen such that it drives the locally linearized
dynamics to zero. In practice, we compute δu[k] at each time
step by solving a linear MPC program with structure similar to
(41).

C. MPC Versus NMPC

Convex optimization programs, i.e., those which have a con-
vex cost function and convex feasible set, have global extrema
and can be solved reliably and efficiently [40]. Nonconvex
optimization programs, on the other hand, may exhibit multiple
local extrema, and there is no computationally tractable tech-
nique for finding global solutions to generic problems. Typically,
nonconvex optimization methods only find local solutions that
depend on an initial guess. Thus, for real-time optimal control
problems, convexity is desirable. A major advantage of lifting
and identifying a linear system model using the Koopman oper-
ator is that the MPC problem for such models is convex.
The MPC optimization problem described in Section III-A is

convex because it has a quadratic cost function and model dy-
namics that are describedby linear constraints. Since it is convex,
it has a unique globally optimal solution that can efficiently be
identified without initialization for models with thousands of
states and inputs [40]–[42]. The NMPC optimization problem
described in Section III-B also has a quadratic cost function,
but it is not convex because it has model dynamics that are de-
scribed by nonlinear constraints. As a result, algorithms to solve
this problem typically require initialization and can struggle to
find globally optimal solutions [43]. Though techniques have
been proposed to improve the speed of such algorithms [38],
[44] or even globally solve NMPC problems without requiring
initialization [45], these formulations still take several seconds
per iteration, which make them too slow to be applied in most
real-time control scenarios. This difference is highlighted in
Section V via computation time comparisons betweenMPC and
NMPC for a soft robot.

IV. APPLICATION: CONTROL OF A SOFT ROBOT ARM

This section describes the soft robot platform and the set of
experiments used to demonstrate the efficacy of the modeling
and control methods described in Sections II and III. Footage
from the final experiment of the soft robot performing several
tasks can be found in a supplementary video file,1 and code used
to construct Koopman-based models and controllers from data
can be found in a publicly accessible repository.2

A. Robot Description: Soft Arm With a Laser Pointer

We experimentally evaluated the Koopman control approach
on a soft robot arm performing the task of drawing shapes with
a laser pointer, similar to the handwriting task described in [46].
The robot is a suspended soft arm with a laser pointer attached
to the end-effector (see Fig. 3). The laser dot is projected onto
a 50× 50 cm flat board, which sits 34 cm beneath the tip of
the laser pointer when the robot is in its relaxed position (i.e.,
hanging straight down). The position of the laser dot ismeasured
by a digital webcam overlooking the board.
The arm consists of two bending sections. The interior of

each section is composed of three pneumatic artificial muscles

1[Online]. Available: https://youtu.be/1-XSDGHKous
2[Online]. Available: https://github.com/ramvasudevan/soft-robot-koopman

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

https://youtu.be/1-XSDGHKous
https://github.com/ramvasudevan/soft-robot-koopman

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON ROBOTICS

Fig. 3. Soft robot consists of two bending segments encased in a foam exterior
with a laser pointer attached to the end-effector. A set of three pressure regulators
is used to control the pressure inside of the PAMs, and a camera is used to track
the position of the laser dot.

or pneumatic actuators (PAMs) (also known as McKibben ac-
tuators [47]) adhered to a central foam spine by latex rubber
bands (see Fig. 3). The exterior is composed of polyurethane
foam, which serves to dampen high-frequency oscillations. The
PAMs in the upper and lower sections are internally connected
so that only three input pressure lines are required, and they
are arranged such that for any bending of the upper section,
bending in the opposite direction occurs in the lower section.
This ensures that the laser pointer mounted to the end-effector
points approximately vertically downward and the laser light
strikes the board at all times. The pressures inside the actu-
ators are regulated by three Enfield TR-010-g10-s pneumatic
pressure regulators, which accept 0–10-V command signals
corresponding to pressures of approximately 0–140 kPa. In the
experiments, the input is three-dimensional and corresponds to
the voltages applied to the three pressure regulators. The state is
two-dimensional and corresponds to the position of the laser dot
with respect to the center of the board in Cartesian coordinates.

B. Characterization of Dynamic Uncertainty

Most real mechanical systems exhibit some dynamic uncer-
tainty (i.e., an identical input and state may produce a slightly
different output). Electronic pressure regulators demonstrate this
type of behavior, which can limit the precision of pneumatically
driven soft robotic systems and undermine the predictive capa-
bility of models.
We quantified the dynamic uncertainty of our soft robot sys-

tem by observing the variations in output from period-to-period
under sinusoidal inputs to the three actuators of the form

u[k] =

⎡
⎢⎢⎢⎣

6 sin(2πT kTs) + 3

6 sin(2πT kTs − T
3) + 3

6 sin(2πT kTs − 2T
3) + 3

⎤
⎥⎥⎥⎦ (44)

Fig. 4. Left plot shows the average response of the soft robot system over
a single period when the sinusoidal inputs of varying frequencies described by
(44) are applied. All of the particular responses are subimposed in light gray. The
right plot shows the distribution of trajectories about the mean, with all distances
within two standard deviations (0.43 cm) highlighted in gray. The width of the
distribution illustrates how it is possible for identical inputs to produce outputs
that vary by almost 1 cm.

for periods of T = 6, 7, 8, 9, 10, 11, 12 s and a sampling time
of Ts = 0.083 s with a zero-order hold between samples. Under
these inputs, the laser dot traces out a circlewith some variability
in the trajectory over each period. In Fig. 4, the trajectories over
210 periods are superimposed along with the average over all
trials. The standard deviation of this distribution is 0.215 cm.
This inherent uncertainty will limit the tracking performance of
the system, independent of the employed controller.

C. Data Collection and Model Identification

Data for constructingmodelswere collected over 12 trials last-
ing approximately 5 min each. A randomized “ramp and hold”
type input was applied during each trial to generate a representa-
tive sampling of the system’s behavior over its entire operating
range. To ensure randomization, a matrix Υ ∈ [0, 10]3×1000 of
uniformly distributed random numbers between 0 and 10 was
generated to be used as an input lookup table. Each control input
was varied between elements in consecutive columns of the table
over a transition period Tu, with a time offset of Tu/3 between
each of the three control signals, and with a sampling time of
Ts = 0.083 s with a zero-order hold between samples

ui[k] =
(Υi,j+1 −Υi,j)

Tu

(
kTs +

(i− 1)Tu

3

)
+Υi,j (45)

where j = floor(kTs/Tu) is the current index into the lookup
table at time t. Three trials were conducted using each of the
transition periods Tu = 2, 3, 4, 5 s.

Four models were fit from data: a linear state-space model us-
ing the subspacemethod [48], a linearKoopmanmodel using the
approach from Section II-C, a nonlinear Koopman model using
the approach from Section II-D, and a nonlinear autoregressive
with external input (NARX) neural networkmodel identified us-
ing the Levenberg–Marquardt backpropogation algorithm. Each
of these models was trained from the randomly generated data
just once, independent of any specific task.
The linear state-space model provides a baseline for com-

parison and was identified from the same data as the Koopman
models using theMATLAB System Identification Toolbox [49].
This model is a four-dimensional linear state-space model ex-
pressed in observer canonical form.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRUDER et al.: DATA-DRIVEN CONTROL OF SOFT ROBOTS USING KOOPMAN OPERATOR THEORY 9

Fig. 5. Eigenvalues of the Âmatrix of the linear Koopmanmodel all lie within
or on the boundary of the complex unit disk, indicating that the discrete linear
Koopman model is marginally stable.

Fig. 6. As the weight of λ [the L1 penalty term in (36)] increases, the density
of the lifted system matrix Â decreases compared to the least-squares solution,
whichoccurs atλ = 0. If the projectionoperatorP [defined in (39)] is not applied
(shown by the solid lines), this decrease in density produces a large increase in
model prediction error. If the projection operator P is applied (shown by the
dashed lines), the decrease in density is less significant, but the increase inmodel
prediction error is negligible. The model prediction error refers to the average
Euclidean distance between the predicted and measured trajectory normalized
such that a constant prediction of zeros corresponds to an error of 1.

The linear Koopman model was identified on a set of 45,103
snapshot pairs {a[k], b[k]} that incorporate a single delay d = 1:

a[k] =
[
x[k]� x[k − 1]� u[k − 1]�

]�
(46)

b[k] =
[
(φTs

(x[k]) + σ[k])� x[k]� u[k]�
]�

(47)

and used anN = 36 dimensional set of basis functions consist-
ing of all monomials of maximum degree 2. To find the sparsest
acceptable matrix representation of the Koopman operator, (36)
was solved for λ = 0, 1, 2, ..., 50. Predictions from the resulting
models were evaluated against a subset of the training data, with
the error quantified as the average Euclidean distance between
the prediction and actual trajectory at each point, normalized by
the average Euclidean distance between the actual trajectory and
the origin. Fig. 6 shows that as λ increases so does this error, but
the density of the Â matrix of the lifted linear model decreases.
The model chosen used a value of λ = 50, because it yielded an

TABLE I
AVERAGE PREDICTION ERROR UNDER SINUSOIDAL INPUTS (IN CENTIMETERS)

Âmatrix with roughly 80% of its elements equal to zero without
significantly increasing the model prediction error.
The eigenvalues of Â are plotted on the complex plane in

Fig. 5. All of the eigenvalues lie inside or on the unit circle,
indicating that the discrete dynamical system described by Â
is marginally stable [39]. This is consistent with our intuition
regarding the behavior of the soft robot arm. In the absence of
a control input, the state returns to a neighborhood of the origin
from any initial condition, but does not necessarily converge
to the origin itself. This lack of asymptotic stability can be
attributed to robot’s foam exterior, which introduces hysteresis.
The nonlinear Koopman model was identified on a set of

45,103 snapshot pairs {a[k], b[k]} that have the input appended,
but do not incorporate any delays:

a[k] =
[
x[k]� u[k]�

]�
(48)

b[k] =
[
(φTs

(x[k]) + σ[k])� u[k]�
]�

(49)

and used anN = 35 dimensional set of basis functions consist-
ing of all monomials of maximum degree 3. To construct the
Koopman operator matrix for this model, (36) was solved with
λ = 0, which corresponds to the least-squares solution.

The NARX neural network model was identified using the
same set of 45,103 snapshot pairs as the linear Koopman model,
which incorporates a single delay d = 1. The model was trained
using theMATLABNeural Network Toolbox [49] with sigmoid
activation functions, and the number of hidden neurons was
tuned from 5 to 20. The best results were achieved with ten
hidden neurons, so this is whatwas used for themodel prediction
comparison described in Section IV-D.

D. Experiment 1: Model Prediction Comparison

The accuracy of the predictions generated by each of the
four models was evaluated by comparing them to the actual
behavior of the system under the sinusoidal inputs defined in
(44). These comparison data were not part of the training set.
The model responses were simulated over one period of the
sinusoidal inputs given the same initial condition and input as
the real system. Table I displays the average Euclidean distance
between the predicted laser dot position and the actual position
at each point in time, and Fig. 7 shows the tracking performance
for the case when the inputs have period T = 6 s. These results

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON ROBOTICS

Fig. 7. Actual response and the model predictions for the robot with the
sinusoidal inputs described in (44) with period T = 6 seconds applied. The left
plot shows the actual trajectory of the laser dot alongwithmodel predictions. The
error displayed on the bottom plot is defined as the Euclidean distance between
the predicted laser dot position and the actual position at each point in time.

illustrate that both Koopman models generate more accurate
predictions than the state-space and neural network models
with the nonlinear Koopman model producing slightly better
predictions than the linear Koopman model.

E. Experiment 2: Model-Based Control Comparison

Three of the identified models were used to construct
four model predictive controllers denoted by the following
abbreviations:

L-MPC: linear MPC based on the linear state-space
model;

K-MPC: linear MPC based on the linear Koopman
model;

K-NMPC: NMPC based on the nonlinear Koopman
model;

K-NMPC+LL: NMPC based on the nonlinear Koopman
model plus a linear feedback term.

The neural networkmodelwas not used to construct anNMPC
controller. Due to the inherent computational advantages of
linear MPC, we were only interested in comparing it against
the best-case version of NMPC. The nonlinear Koopman model
demonstrated superior prediction accuracy in Experiment 1;
therefore, we considered the inclusion of a neural-network-
based NMPC to be superfluous.
The two controllers based on linear models (L-MPCand K-

MPC) both solve an optimization problem in the form of (41)
at each time step using the Gurobi Optimization software [50].
They run in closed loop at 12 Hz, feature an MPC horizon of 2 s
(Nh = 24), and a cost function that penalizes deviations from a
reference trajectory yref[k] over the horizon with both a running
and terminal cost:

Cost = 100
(
y[Nh]− yref[Nh]

)� (
y[Nh]− yref[Nh]

)
+

+

Nh−1∑
i=0

0.1
(
y[i]− yref[i]

)� (
y[i]− yref[i]

)
.

(50)

In the L-MPC case, y[i] = CLxL[i], where xL is the four-
dimensional system state and CL is the projection matrix that
isolates the states describing the current laser dot coordinates.
In the K-MPC case, y[i] = Cz[i], whereC is defined as in (26).
The two controllers based on the nonlinear Koopman model

(K-NMPC and K-NMPC+LL) compute open-loop inputs of-
fline that refresh at a rate of 2 Hz for an entire task by solv-
ing an optimization problem in the form of (42) offline, with
Q = 100× I2×2, R = I3×3. The K-NMPC then applies these
inputs to the system in open loop without any feedback. The
K-NMPC+LL controller utilizes the same open-loop inputs, but
also computes online feedback based on a local linearization of
the nonlinear Koopmanmodel about the reference trajectory and
applies inputs in the form of (43) at a rate of 10 Hz. In all four
controllers, the inputs are constrained to be in [0,10], since a
voltage outside of this interval is not a valid command signal
into the pressure regulators.
The tracking performance of the controllerswas assessedwith

respect to a set of three trajectory following tasks. Each task
was to follow a reference trajectory as it traced out one of the
following shapes over a specified amount of time:
1) Task 1: Pac-Man (90 s);
2) Task 2: Star (120 s);
3) Task 3: Block letter M (180 s).
The error for each trialwas quantified as the averageEuclidean

distance from the reference trajectory at each time step over the
length of the trial

Error =

∑Nsteps
i=1

√
(y[i]− yref[i])� (y[i]− yref[i])

Nsteps
(51)

whereNsteps denotes the total number of time steps in a trial. The
performances of all four controllers in completing tasks 1–3 are
shown visually in Fig. 8, and the error for each trial is shown in
Table II.
The K-NMPC open-loop control inputs took 2.80, 11.57, and

15.82 h to compute offline for tasks 1–3, respectively, using
GPOPS-II on a high-end computer setup with 1-TB RAM and

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRUDER et al.: DATA-DRIVEN CONTROL OF SOFT ROBOTS USING KOOPMAN OPERATOR THEORY 11

Fig. 8. Results of the L-MPC (row 1, red), the K-MPC (row 2, blue), the K-NMPC (row 3, orange), and the K-NMPC+LL controller (row 4, purple) in performing
trajectory-following tasks 1–3. The reference trajectory for each task is subimposed in black as well as a gray buffer with width equal to two standard deviations
of the noise probability density shown in Fig. 4.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON ROBOTICS

TABLE II
AVERAGE EUCLIDEAN DISTANCE ERROR IN TRAJECTORY-FOLLOWING

TASKS (IN CENTIMETERS)

144 CPUs running at 2.4 GHz. The L-MPC and K-MPC op-
timization problems were solved online repeatedly in less than
0.083 s for a 2-s receding horizon on a computer with 16-GB
RAM and a 3.6-GHz CPU, requiring no offline computations.

V. DISCUSSION

In all three tasks, the K-NMPC+LL controller achieved the
best tracking performance, exhibiting an overall average error
of 0.40 cm, followed closely by the K-MPC controller with an
average error of 0.46 cm. The K-NMPC controller exhibited a
larger average error of 0.96 cm as it was unable to correct for
errors online without the assistance of feedback. The L-MPC
controller exhibited the worst tracking performance with an
average error of 3.45 cm, which is more than three times larger
than the average error of any of the Koopman-based controllers.
The K-NMPC controller had the lowest standard deviation

in its error, which is evident by the relative smoothness of its
trajectories compared to those of the other controllers. This
can likely be attributed to the fact that the K-NMPC controller
optimized the control input over the entire trial at once and did
not have any way to correct for deviations online. The other con-
trollers use feedback to try to correct for tracking errors online,
which results in some overshooting and oscillations about the
desired trajectory. In some applications, the reduced accuracy
of the K-NMPC controller may be preferable to the higher
frequency behavior of the other controllers. It should be noted,
however, that this higher frequency behavior could likely be
reducedby tuning theMPCcost function parameters to eliminate
overshoot. Therefore, the oscillatory behavior observed in these
experiments does not necessarily reflect a fundamental feature
of the proposed MPC algorithms themselves, but is likely just
an artifact of this particular choice of cost function.
Considering that the standard deviation under repeated in-

puts as described in Section IV-B is 0.215 cm, even a per-
fect controller would be expected to have an average error of
approximately 0.215 cm. If we normalize that by the 50-cm
width of the robot’s square-shaped workspace, it amounts to an
error of 4.3× 10−3%. Normalized the same way, the average
errors exhibited by the K-MPC and K-NMPC+LL controllers
are 9.2× 10−3% and 8.0× 10−3%, respectively. Hence, their
performance may be considered on par with what is expected
from a perfect controller in the sense that their normalized error
is of the same order of magnitude. In contrast, the normalized
L-MPC error is 6.9× 10−2%, a full order of magnitude larger
than that of the other controllers.
The poor performance of the L-MPC controller can be at-

tributed to the inaccuracy of the linear state-space model upon

which it was based, since it is identical to the K-MPC controller
in every other way. This should not be surprising considering the
results of Experiment 1, in which the linear state-space model
consistently provided the worst predictions over a 2-s horizon
(shown in Table I).
While the K-NMPC+LL controller achieved a slightly better

tracking performance than the K-MPC controller, the K-MPC
controller would still be preferable for most applications due to
its vastly superior computational efficiency. The K-NMPC op-
timization problem took so long to solve (> 2 h) that its solution
had to be computed offline, whereas the K-MPC optimization
problem could be repeatedly solved in less than 0.083 s over a 2-s
receding horizon online. The K-MPC controller is also capable
of adapting to a changing reference trajectory online, since it
does not rely on linearizations about a predetermined path. This
should make it much more reliable in the presence of external
disturbances.

VI. CONCLUSION

In this article, a data-driven modeling and control method
based on Koopman operator theory was successfully applied
to a soft robot. Three Koopman-based MPC controllers were
shown to be capable of commanding a soft robot to accurately
follow a reference trajectory better than anMPCcontroller based
on another linear data-driven model. By making it possible to
construct accurate control-oriented models of soft robots from
data when no physics-based model is available, this method
enables the rapid development of new control strategies and
applications.
This work also demonstrated how the Koopman approach

can simplify the control of nonlinear systems even when a
good model is available. While the nonlinear model predictive
control achieved the highest accuracy in our experiments, the
Koopman-based linear controller was able to achieve nearly
identical accuracy with significantly lower computational de-
mand. Koopman operator theory offers a linearization method
that does not suffer from the decline in predictive performance
normally associated with linearization, making accurate linear
control of nonlinear systems achievable.
While these preliminary results are promising, further work

is needed to make such methods feasible for higher dimensional
robotic systems. In this particular case, the number of observed
states needed to uniquely describe the configuration of the robot
is quite low. More complicated systems may require a higher
number of observed states, which, in turn, would yield a much
higher dimensional Koopman model. This dimensionality issue
is the primary motivation for the sparsity promoting methods
described in Section II-E. Additional work will explore strate-
gies for further promoting sparsity, choosing the most effective
basis of observables and building models that can account for
external loading and contact forces.

REFERENCES

[1] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,”
Nature, vol. 521, no. 7553, pp. 467–475, 2015.

[2] F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. White-
sides, “Soft robotics for chemists,” Angewandte Chemie, vol. 123, no. 8,
pp. 1930–1935, 2011.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BRUDER et al.: DATA-DRIVEN CONTROL OF SOFT ROBOTS USING KOOPMAN OPERATOR THEORY 13

[3] M. T. Tolley et al., “A resilient, untethered soft robot,” Soft Robot., vol. 1,
no. 3, pp. 213–223, 2014.

[4] A. D. Marchese, C. D. Onal, and D. Rus, “Autonomous soft robotic
fish capable of escape maneuvers using fluidic elastomer actuators,” Soft
Robot., vol. 1, no. 1, pp. 75–87, 2014.

[5] M. Spong and M. Vidyasagar, Robot Dyn. Control. New Delhi, India:
Wiley, 2008.

[6] F. Allgöwer and A. Zheng, Nonlinear Model Predictive Control, vol. 26.
Cambridge, MA, USA: Birkhäuser, 2012.

[7] R. Tedrake, I. R.Manchester,M. Tobenkin, and J.W.Roberts, “LQR-trees:
Feedbackmotion planning via sums-of-squares verification,” Int. J. Robot.
Res., vol. 29, no. 8, pp. 1038–1052, 2010.

[8] A. R. Ansari and T. D. Murphey, “Sequential action control: Closed-form
optimal control for nonlinear and nonsmooth systems,” IEEE Trans.
Robot., vol. 32, no. 5, pp. 1196–1214, Oct. 2016.

[9] R. J. Webster III and B. A. Jones, “Design and kinematic modeling of
constant curvature continuum robots:A review,” Int. J. Robot. Res., vol. 29,
no. 13, pp. 1661–1683, 2010.

[10] L. L. Howell, A. Midha, and T. Norton, “Evaluation of equivalent spring
stiffness for use in a pseudo-rigid-body model of large-deflection compli-
ant mechanisms,” J. Mech. Des., vol. 118, no. 1, pp. 126–131, 1996.

[11] D. Bruder, A. Sedal, R. Vasudevan, and C. D. Remy, “Force generation
by parallel combinations of fiber-reinforced fluid-driven actuators,” IEEE
Robot. Autom. Lett., vol. 3, no. 4, pp. 3999–4006, Oct. 2018.

[12] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Model-based
reinforcement learning for closed-loop dynamic control of soft robotic
manipulators,” IEEE Trans. Robot., vol. 35, no. 1, pp. 124–134, Feb. 2019.

[13] I. A. Gravagne, C. D. Rahn, and I. D. Walker, “Large deflection dynamics
and control for planar continuum robots,” IEEE/ASME Trans. Mechatron-
ics, vol. 8, no. 2, pp. 299–307, Jun. 2003.

[14] D. Trivedi, A. Lotfi, and C. D. Rahn, “Geometrically exact models for soft
robotic manipulators,” IEEE Trans. Robot., vol. 24, no. 4, pp. 773–780,
Aug. 2008.

[15] A. Sedal, A. Wineman, R. B. Gillespie, and C. D. Remy, “Com-
parison and experimental validation of predictive models for soft,
fiber-reinforced actuators,” Int. J. Robot. Res., to be published,
doi: 10.1177/0278364919879493.

[16] D. Bruder, A. Sedal, J. Bishop-Moser, S. Kota, and R. Vasudevan, “Model
based control of fiber reinforced elastofluidic enclosures,” in Proc. IEEE
Int. Conf. Robot. Autom. 2017, pp. 5539–5544.

[17] A. Sedal, D. Bruder, J. Bishop-Moser, R. Vasudevan, and S. Kota,
“A constitutive model for torsional loads on fluid-driven soft robots,”
in Proc. Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf, 2017,
Art. no. V05AT08A016.

[18] J. Bishop-Moser, G. Krishnan, C. Kim, and S. Kota, “Design of soft
robotic actuators using fluid-filled fiber-reinforced elastomeric enclosures
in parallel combinations,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst,
2012, pp. 4264–4269.

[19] M. T. Gillespie, C. M. Best, E. C. Townsend, D. Wingate, and M. D.
Killpack, “Learning nonlinear dynamic models of soft robots for model
predictive control with neural networks,” in Proc. IEEE Int. Conf. Soft
Robot, 2018, pp. 39–45.

[20] D. Bruder, C. D. Remy, and R. Vasudevan, “Nonlinear system identifica-
tion of soft robot dynamics using Koopman operator theory,” in Proc. Int.
Conf. Robot. Autom, 2019, pp. 6244–6250.

[21] A. Mauroy and J. Goncalves, “Linear identification of nonlinear systems:
A lifting technique based on the Koopman operator,” in Proc. IEEE 55th
Conf. Decis. Control (CDC), 2016.

[22] A. Mauroy and J. Goncalves, “Koopman-based lifting techniques for
nonlinear systems identification,” IEEE Trans. Autom. Control, 2019,
pp. 2550–2565.

[23] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koopman in-
variant subspaces and finite linear representations of nonlinear dynamical
systems for control,” PLoS One, vol. 11, no. 2, 2016, Art. no. e0150171.

[24] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “GeneralizingKoopman theory
to allow for inputs and control,” SIAM J. Appl. Dyn. Syst., vol. 17, no. 1,
pp. 909–930, 2018.

[25] I. Abraham, G. de la Torre, and T. Murphey, “Model-based control using
Koopman operators,” in Proc. Robot.: Sci. Syst. Conf., Cambridge, MA,
USA, Jul. 2017.

[26] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical sys-
tems: Koopman operator meets model predictive control,” Automatica,
vol. 93, pp. 149–160, 2018.

[27] I. Abraham and T. D. Murphey, “Active learning of dynamics for data-
driven control using Koopman operators,” IEEE Trans. Robot., vol. 35,
no. 5, pp. 1071–1083, Oct. 2019.

[28] G. Mamakoukas, M. Castano, X. Tan, and T. Murphey, “Local Koopman
operators for data-driven control of robotic systems,” in Proc. Robot.: Sci.
Syst. Conf., 2019.

[29] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data-driven
approximation of the Koopman operator: Extending dynamic mode de-
composition,” J. Nonlinear Sci., vol. 25, no. 6, pp. 1307–1346, 2015.

[30] D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan, “Modeling and
control of soft robots using the Koopman operator and model predictive
control,” in Proc. Robot.: Sci. Syst. Conf., Freiburg im Breisgau, Germany,
Jun. 2019.

[31] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic
Aspects of Dynamics, vol. 97. Berlin, Germany: Springer, 2013.

[32] M. Budišić, R. Mohr, and I. Mezić, “Applied Koopmanism,” Chaos:
Interdiscipl. J. Nonlinear Sci., vol. 22, no. 4, 2012, Art. no. 047510.

[33] R. Penrose, “On best approximate solutions of linear matrix equations,”
in Mathematical Proceedings of the Cambridge Philosophical Society,
vol. 52. Cambridge, U.K.: Cambridge Univ. Press, 1956, pp. 17–19.

[34] N. J. Higham, Functions of Matrices: Theory and Computation, vol. 104.
Philadelphia, PA, USA: SIAM, 2008.

[35] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detec-
tion, vol. 589. Hoboken, NJ, USA: Wiley, 2005.

[36] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. Roy.
Statist. Soc., vol. 58, no. 1, pp. 267–288, 1996.

[37] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and
Design. Madison, WI, USA: Nob Hill Pub., 2009.

[38] M. A. Patterson and A. V. Rao, “GPOPS-II: A MATLAB software for
solving multiple-phase optimal control problems using hp-adaptive Gaus-
sian quadrature collocation methods and sparse nonlinear programming,”
ACM Trans. Math. Softw., vol. 41, no. 1, 2014, Art. no. 1.

[39] K. J. Aström and R. M. Murray, Feedback Systems: An Introduction for
Scientists and Engineers. Princeton, NJ, USA: Princeton Univ., 2010.

[40] S. Boyd and L.Vandenberghe,ConvexOptimization. NewYork, NY,USA:
Cambridge Univ. Press, 2004.

[41] J. A. Paulson, A. Mesbah, S. Streif, R. Findeisen, and R. D. Braatz, “Fast
stochastic model predictive control of high-dimensional systems,” inProc.
IEEE 53rd Annu. Conf. Decis. Control, 2014, pp. 2802–2809.

[42] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: An
operator splitting solver for quadratic programs,” in Proc. 12th Int. Conf.
Control, 2018, pp. 339–339.

[43] E. Polak, Optimization: Algorithms and Consistent Approximations,
vol. 124. Berlin, Germany: Springer, 2012.

[44] A. Hereid and A. D. Ames, “FROST: Fast robot optimization and sim-
ulation toolkit,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017,
pp. 719–726.

[45] P. Zhao, S. Mohan, and R. Vasudevan, “Control synthesis for nonlinear
optimal control via convex relaxations,” in Proc. Amer. Control Conf.,
2017, pp. 2654–2661.

[46] T. Kalisky et al., “Differential pressure control of 3D printed soft flu-
idic actuators,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017,
pp. 6207–6213.

[47] B. Tondu, “Modelling of the McKibben artificial muscle: A review,” J.
Intell. Mater. Syst. Struct., vol. 23, no. 3, pp. 225–253, 2012.

[48] P. Van Overschee and B. De Moor, Subspace Identification for Linear
Systems: Theory ImplementationApplications. Berlin,Germany: Springer,
2012.

[49] MATLAB Version 7.10.0 (R2017a), MathWorks Inc., Natick, MA, USA,
2017.

[50] Gurobi Optimizer Reference Manual, Gurobi Optimization, LLC, Hous-
ton, TX, USA, 2018.

Daniel Bruder received the B.S. degree in engineer-
ing sciences from Harvard University, Cambridge,
MA, USA, in 2013, and the M.S. and Ph.D. degrees
in mechanical engineering from the University of
Michigan, Ann Arbor, MI, USA, in 2020.

He is currently a Postdoctoral Researcher with the
John A. Paulson School of Engineering and Applied
Sciences, Harvard University. His research interests
include robotics, dynamics, and controls with a spe-
cific focus on soft robots.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1177/0278364919879493

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON ROBOTICS

Xun Fu received the B.S. degree in mechatronics
engineering from Northwestern Polytechnical Uni-
versity, Xi’an, China, in 2018, and themaster’s degree
in mechanical engineering in 2020 from the Univer-
sity of Michigan, Ann Arbor, MI, USA, where he is
currentlyworking toward the Ph.D. degree in robotics
with the Robotics Institute.

His research interests include modeling, design,
and control of robotic systems.

R. Brent Gillespie received the B.S. degree in me-
chanical engineering from the University of Califor-
nia, Davis, CA, USA, in 1986, the master’s degree in
piano performance from the San Francisco Conser-
vatory of Music, San Francisco, CA, in 1989, and the
M.S. and Ph.D. degrees in mechanical engineering
from Stanford University, Stanford, CA, in 1992 and
1996, respectively.

He is currently with the Department ofMechanical
Engineering, University ofMichigan,AnnArbor,MI,
USA. His current research interests include haptic

interface and teleoperator control, human motor control, and robot-assisted
rehabilitation after neurological injury.

C. David Remy received the Diploma degree in engi-
neering cybernetics from the University of Stuttgart,
Stuttgart, Germany, in 2007, the M.Sc. degree in me-
chanical engineering from the University of Wiscon-
sin,Madison,WI,USA, in 2006, and the Ph.D. degree
in science from ETH Zurich, Zürich, Switzerland, in
2011.

He is currently a Full Professor with the Institute
for Nonlinear Mechanics, University of Stuttgart. His
research interests include the design, simulation, and
control of legged robots, exoskeletons, and other

nonlinear systems. Drawing inspiration from biology and biomechanics, he is
particularly interested in the effects, exploitation, and control of natural dynamic
motions.

Ram Vasudevan received the B.S. degree in elec-
trical engineering and computer sciences, the M.S.
degree in electrical engineering, and the Ph.D. de-
gree in electrical engineering from the University of
California, Berkeley, CA, USA, in 2006, 2009, and
2012, respectively.

He is currently an Assistant Professor of Mechan-
ical Engineering with the University of Michigan,
Ann Arbor, MI, USA, with an appointment in the
University of Michigan’s Robotics Program. His re-
search interests include the development and applica-

tion of optimization and systems theory to quantify and improve human–robot
interaction.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2021 at 19:48:31 UTC from IEEE Xplore. Restrictions apply.

