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a b s t r a c t 

This paper presents the theoretical formulation and numerical implementation of an anisotropic damage 

model for materials with intrinsic transverse isotropy. Crack initiation and propagation are modeled by 

phenomenological damage evolution laws, controlled by four equivalent strain measures. The latter are 

constructed so as to distinguish the mechanical response of the material in tension and compression, 

along the direction perpendicular to the bedding plane and within the bedding plane. To avoid mesh 

dependency induced by softening, equivalent strains are replaced by nonlocal counterparts, defined as 

weighted averages over a neighborhood scaled by two internal length parameters. Finite Element equa- 

tions are solved with a normal plane arc length control algorithm, which allows passing limit points in 

case of snap back or snap through. The model is calibrated against triaxial compression tests performed 

on shale, for different confinements and loading orientations relative to the bedding plane. Gauss point 

simulations confirm that the model successfully captures the variation of uniaxial tensile strength with 

respect to the bedding orientation. Finite Element simulations of three-point bending tests and compres- 

sion splitting tests show that nonlocal enhancement indeed avoids mesh dependency, and that the axial 

and transverse dimensions of the damage process zone are scaled by the two characteristic lengths. Re- 

sults further show that the damage process zone is direction dependent both in tension and compression. 

The model can be used for any type of textured brittle material; it allows representing several concurrent 

damage mechanisms in the macroscopic response and interpreting the failure mechanisms that control 

the damage process zone. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Many geomaterials exhibit strong orientation dependent me-

hanical behavior (anisotropy) due to bedding, layering or crack

atterns, as evidenced in shale ( Niandou et al., 1997; Gautam

nd Wong, 2006; Sone and Zoback, 2013 ), clay stone ( OKA et al.,

002 ), schists ( Nasseri et al., 2003 ) and sand ( Dafalias et al., 2004 ).

aboratory tests, such as uniaxial and triaxial compression tests

 Niandou et al., 1997; Nasseri et al., 2003; Fu et al., 2012 ), Brazilian

ndirect tension tests ( Cho et al., 2012; Vervoort et al., 2014 ), di-

ect shear tests ( Heng et al., 2015 ) and triaxial shear tests ( Ye and

hassemi, 2016 ), further demonstrate that material strength and

ailure modes significantly depend on the confining pressure and

he loading orientation with respect to microstructure. Prior to

rack propagation, most geomaterials can be considered transverse

sotropic: the maximum uniaxial compressive strength is reached
∗ Corresponding author. 
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hen weak planes are either parallel or perpendicular to the load-

ng direction, and the minimum strength is reached when weak

lanes are oriented at 30 ◦ − 60 ◦ with respect to the loading direc-

ion ( Donath, 1961; Niandou et al., 1997 ). In indirect tensile tests,

he tensile strength is maximum when tensile stress is applied

ithin the weak plane, and gradually decreases as the orientation

ngle between the tensile stress direction and the bedding plane

ncreases ( Cho et al., 2012 ). 

In geomaterials models, intrinsic and induced anisotropy are ei-

her accounted for in the failure criterion or in the expression of

he free energy. Hill (1948) extended the von Mises yield criterion

o orthotropic ductile materials, by using 6 quadratic stress terms.

o further account for the strength difference in tension and com-

ression, Hoffman (1967) added 3 linear terms of stress into Hill’s

ailure criterion. Tsai and Wu (1971) then expressed failure criteria

hat depend on all possible linear and quadratic stress terms. These

ield criteria were used by de Borst ( Schellekens and De Borst,

990; Hashagen and De Borst, 2001 ) to model perfectly plastic and

ardening materials. Reinicke and Ralston (1977) carried out limit

nalyses using parabolic yield functions (Hoffman’s criteria). 
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Fig. 1. Definition of the intrinsic damage directions in transverse isotropic shale, 

modified from Bramlette (1943) . 
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Other approaches were proposed to introduce either the fourth

order projection tensor or the second order microstructure ten-

sor in the yield criteria or in the expression of the free en-

ergy. Boehler and Sawczuk (1977) used the microstructure ten-

sor in the constitutive model for transverse isotropic materials.

Cazacu et al. (1998) and Cazacu and Cristescu (1999) employed

a fourth order projection tensor to transform the stress tensor

into a characteristic tensor with embedded microstructure infor-

mation. They extended the Mises–Schleicher yield criterion initially

expressed for isotropic materials to transversely isotropic materi-

als, by using the fourth order characteristic tensor. Another ap-

proach, based on different projection tensors, consists in projecting

the strength in Drucker–Prager and Mohr–Coulomb yield criteria

( Rouabhi et al., 2007 ). The microstructure tensor can also be con-

structed with eigenvectors representing the axes of material sym-

metry to capture the orientation dependence of strain hardening,

softening, damage and plasticity in shale ( Pietruszczak and Mroz,

20 0 0; 20 01; Pietruszczak et al., 2002; Chen et al., 2010 ). For soils,

fabric tensors were used to represent microstructure in yield crite-

ria ( Oda and Nakayama, 1989 ). Thermodynamic models were also

proposed, in which the free energy was expressed in terms of mi-

crostructure tensor and strain invariants ( Halm et al., 2002; Nedjar,

2016 ). 

Alternatively, the Representative Element Volume (REV) can be

viewed as a set of cracks or planes of discontinuities. Intrinsic

anisotropy is accounted for by assigning different material prop-

erties to crack families of different orientations ( Chen et al., 2012;

Hu et al., 2013 ). In micromechanics models, a static constraint is

applied to projections of stress on the crack planes, and the ex-

pression of the REV free energy is obtained by homogenization.

In microplane models, a kinematic constraint is applied to pro-

jections of strains on the crack planes; the principle of virtual

work is used to upscale the microscopic relationships and calcu-

late the macroscopic stress. Anisotropy is accounted for by consid-

ering complex microplane orientation distributions and by formu-

lating different evolution criteria for different microplanes ( Li et al.,

2017 ). 

Once implemented in the Finite Element Method (FEM),

anisotropic models that account for plastic/damage softening suf-

fer from mesh dependency. Integration-based nonlocal formula-

tions alleviate spurious mesh sensitivity but cannot be easily

used with stress-based yield/damage criteria, in which the out-

of-balance stress at a point has to be calculated iteratively from

the yet-unknown stress in a given neighborhood. Hence in this

paper, we integrate a measure of strain to formulate a nonlo-

cal anisotropic damage model for transverse isotropic geomateri-

als. In Section 2 , we formulate a constitutive law for predicting

stress-induced anisotropy in an initially transverse isotropic mate-

rial. The evolution laws of damage components are expressed in

terms of equivalent strains, which are direction dependent. Two

internal length parameters are used to avoid mesh dependency

and account for intrinsic anisotropy. In Section 3 , we calibrate the

model against stress/strain curves obtained during triaxial com-

pression tests performed on shale. A sensitivity analysis is pre-

sented based on a series of uniaxial tension tests simulated on a

single element (at the Gauss point). In Section 4 , we present sim-

ulations of three-point bending and splitting tests and we show

that the size of the fracture process zone is direction dependent,

but mesh independent. Results also reveal the underlying failure

mechanisms associated to damage orientation. Note that we use

Voigt matrix notations throughout the paper. Lower cases are used

for scalar variables, bold lower cases for vectors and bold upper

cases for matrices. Note that the soil mechanics sign convention

is adopted throughout the paper, in which compression is counted

positive. 
. Formulation and implementation of the nonlocal 

nisotropic damage model for transverse isotropic materials 

.1. Damage operator and damaged stiffness tensor 

At the scale of the REV, the inception, propagation and co-

lescence of micro-cracks result in hardening or softening of

tress/strain relations and stiffness reduction. The nominal stress,

, is related to the damaged effective stress, ˆ σ, through 

ˆ = M σ (1)

here M is a damage operator. Assuming that damage compo-

ents in each direction evolve independently, the damage operator

 has a diagonal form, as follows: 

 ii = 

1 

1 − ω i 

i = 1 , 2 , . . . , 6 (2)

ote that Voigt notations are adopted here, so that ˆ σ4 = ˆ τ23 =
τ23 

1 −ω 4 
, in which: 

 4 = 1 − (1 − ω 2 )(1 − ω 3 ) 

 5 = 1 − (1 − ω 1 )(1 − ω 3 ) 

 6 = 1 − (1 − ω 1 )(1 − ω 2 ) (3)

he diagonal form of M ensures that the damaged compliance ma-

rix resulting from Eq. (1) is symmetrical. We consider a geomate-

ial with transverse isotropy with respect to the normal direction

f bedding planes. Fig. 1 shows the example of shale, which is a

edimentary rock ( Gautam and Wong, 2006; Waters et al., 2011; Ye

t al., 2016 ). We set the local coordinate system so that direction

, called the axial direction, is perpendicular to the bedding plane.

irections 2 and 3, along the bedding plane, are called transverse

irections. Correspondingly, in Eq. (2) , ω 1 is called axial damage

nd ω 2 , ω 3 are the transverse damage variables. 

We focus on transverse isotropic behavior in quasi-brittle

aterials. With negligible inelastic deformation, the non-linear

tress/strain behavior results from damage evolution only (micro-

rack development). Adopting the principle of strain equivalence,

he constitutive relation is expressed as 

= S 0 M σ. (4)

or a transverse isotropic material, the elastic compliance matrix

 
0 depends on 5 parameters. In the local coordinate system, S 0 is
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Fig. 2. The two primary failure modes in transversely isotropic materials. 
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xpressed as: 

 
0 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 
E 1 

− ν12 

E 2 
− ν12 

E 2 
0 0 0 

− ν21 

E 1 

1 
E 2 

− ν23 

E 2 
0 0 0 

− ν21 

E 1 
− ν32 

E 2 

1 
E 2 

0 0 0 

0 0 0 2(1+ ν23 ) 
E 2 

0 0 

0 0 0 0 1 
G 13 

0 

0 0 0 0 0 1 
G 12 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(5) 

here 
ν12 
E 2 

= 

ν21 
E 1 

, ν23 = ν32 and G 13 = G 12 . 

We construct damage evolution laws that directly relate dam-

ge components to equivalent strain measures, defined below. We

ocus on plane strain loading conditions, in which the out-of-plane

omponents of equivalent strains are zero, and consequently, the

ut-of-plane component of damage, ω 3 , is zero. With ω 3 = 0 , the

amaged stiffness matrix C can be explicitly expressed as 

 = 

⎛ 

⎜ ⎝ 

C 11 C 12 C 13 0 
C 21 C 22 C 23 0 
C 31 C 32 C 33 0 
0 0 0 C 44 

⎞ 

⎟ ⎠ (6) 

n which 

C 11 = E 1 (1 − ω 1 )((1 − ω 2 ) ν
2 
23 − 1) /D 

 22 = E 2 (1 − ω 2 )((1 − ω 1 ) ν12 ν21 − 1) /D 

 33 = E 2 (1 − ω 1 )(1 − ω 2 )(ν21 ν12 − 1) /D 

 44 = G 12 (1 − ω 1 )(1 − ω 2 ) 

 12 = − E 1 ν21 (1 − ω 1 )(1 − ω 2 )(1 + ν23 ) /D 

 21 = − E 2 ν12 (1 − ω 1 )(1 − ω 2 )(1 + ν23 ) /D 

 13 = − E 1 ν21 (1 − ω 1 )(1 + (1 − ω 2 ) ν23 ) /D 

 31 = − E 2 ν12 (1 − ω 1 )(1 + (1 − ω 2 ) ν23 ) /D 

 32 = C 23 = −E 2 (1 − ω 2 )(ν23 + (1 − ω 1 ) ν12 ν21 ) /D (7) 

here σ = C : ε, E 2 ν12 = E 1 ν21 , and 

 = (1 − ω 2 ) ν
2 
23 + 2(1 − ω 1 )(1 − ω 2 ) ν12 ν21 ν23 

+ (1 − ω 1 )(2 − ω 2 ) ν12 ν21 − 1 (8) 

.2. Concept of equivalent strain 

Equivalent strains can take various forms ( Huerta and Pijaudier-

abot, 1994; Mazars, 1986; De Vree et al., 1995; Desmorat et al.,

007; Comi and Perego, 2004; Jirásek and Patzák, 2002 ). For

sotropic materials, the most widely used equivalent strains are:

he energy release rate thermodynamically conjugated to damage

 Huerta and Pijaudier-Cabot, 1994 ), the square root of the positive

rincipal strains ( Mazars, 1986 ), and a modified von Mises strain

 De Vree et al., 1995 ). Equivalent strain measures were introduced

n damage evolution laws to capture unilateral effects, differences

f behavior in tension and compression, and macroscopic harden-

ng and softening due to mixed mode micro crack initiation and

ropagation. For direction dependent transverse isotropic materi-

ls, a complete set of new equivalent strains needs to be defined.

nspired from the stress invariants used in Hill’s yield criterion

 Hill, 1948 ) and in Hashin’s failure criterion ( Hashin, 1980 ) (for

nidirectional fiber composites), we introduce the following strain

easures, which are strain invariants if axis 1 is normal to the

edding planes: 
 1 = ε11 

 2 = ε22 + ε33 

 3 = 

1 

4 
(ε22 − ε33 ) 

2 + ε2 
23 

 4 = ε2 
12 + ε2 

13 

 5 = 2 ε12 ε13 ε23 − ε22 ε
2 
13 − ε33 ε

2 
12 (9) 

 3 is the square of the maximum transverse shear strain while I 4 is

he square of the maximum axial shear strain. Following the form

f Hill’s and Hashin’s models, we choose a quadratic damage crite-

ion. Based on the invariants defined above, the most general form

f a transversely isotropic quadratic failure criterion is 

 1 I 
2 
1 + A 2 I 

2 
2 + A 3 I 3 + A 4 I 4 + B 12 I 1 I 2 = 1 (10)

n which A 1 , A 2 , A 3 , A 4 and B 12 are material parameters. Field in-

estigation and laboratory experiments ( Tien and Kuo, 2001; Gal-

ant et al., 2007 ) indicate that there are two primary failure modes

n transversely isotropic rock ( Fig. 2 ): the sliding mode, in which

ailure is controlled by the shear strength of the bedding planes,

nd the non-sliding mode, in which failure is controlled by the

trength of the matrix material. In sliding mode, failure is the re-

ult of normal and shear stresses, and occurs along the bedding

lane (x 2 − x 3 ) . In terms of continuum mechanics variables, it im-

lies that failure in sliding mode is controlled by strain compo-

ents ε11 , ε12 and ε13 . In non-sliding mode, the normal direction

f the failure surface is contained in the bedding plane. Due to ma-

erial isotropy in the bedding plane (x 2 − x 3 ) , failure in non-sliding

ode is controlled by all strain components except ε11 . Conse-

uently, we are seeking two failure criteria expressed in the fol-

owing form: 

 1 I 
2 
1 + A 4 I 4 = 1 

 2 I 
2 
2 + A 3 I 3 + A 4 I 4 = 1 (11) 

or the sliding mode and the non-sliding mode, respectively. 

We define the equivalent strain measures as εeq 
1 

/κ0 
1 

=
 

A 1 I 
2 
1 

+ A 4 I 4 and ε
eq 
2 

/κ0 
2 

= 

√ 

A 2 I 
2 
2 

+ A 3 I 3 + A 4 I 4 . Noting ε
t0 
11 

(respec- 

ively εt0 
22 
) and εc0 

11 
(respectively εc0 

22 
) the initial tensile and com-

ressive strain thresholds for the sliding mode (respectively for the

on-sliding mode), we have κ0 
1 

= εt0 
11 

(respectively κ0 
2 

= εt0 
22 
) in

ension, κ0 
1 

= εc0 
11 

(respectively κ0 
2 

= εc0 
22 
) in compression. Hence

he equivalent strain in the axial direction is constructed as: 

eq 
1 j 

= 

√ 

I 2 
1 

+ I 4 
(
ε j0 
11 

/ εs 0 
12 

)2 
= 

√ 

(ε11 ) 2 + 

(
(ε12 ) 2 + (ε13 ) 2 

)(
ε j0 
11 

εs 0 
12 

)2 

, j = t, c (12) 

e took A 
j 
1 

= 1 / (ε j0 
11 

) 2 and A 4 = 1 / (εs 0 
12 

) 2 where εs 0 
12 

is the initial

ut-of-bedding-plane shear strain threshold. Similarly, the equiva-
ent strain in the transverse directions is defined as: 

eq 
2 j 

= 

√ 

I 2 
2 

+ I 3 

(
ε j0 
22 

εs 0 
23 

)2 

+ I 4 

(
ε j0 
22 

εs 0 
12 

)2 

, j = t, c 

eq 
2 j 

= 

√ 

( ε22 + ε33 ) 
2 + 

1 

4 

(
ε j0 
22 

εs 0 
23 

)2 [
(ε22 − ε33 ) 2 + ε2 

23 

]
+ 

(
ε j0 
22 

εs 0 
12 

)2 (
ε2 
12 

+ ε2 
13 

)
(13) 
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We took A 
j 
2 

= 1 / (ε j0 
22 

) 2 and A 3 = 1 / (εs 0 
23 

) 2 , where εs 0 
23 

is the initial

shear strain threshold within the bedding plane. 

2.3. Damage criteria and evolution laws in tension 

Since crack orientations and propagation modes are differ-

ent in tension and compression ( Jin and Arson, 2017a, 2017b ),

we distinguish tensile and compressive damage components,

noted ω it , ω ic , i = 1 , 2 , 3 , respectively. Unlike ( Mazars and Pijaudier-

Cabot, 1989 ), in which total damage is calculated as the weighted

average of tensile and compressive damage components, we con-

sider that tensile damage components ω it and compressive dam-

age components ω ic are two sets of independent internal state

variables. When the volumetric strain εv = ε1 + ε2 + ε3 is positive
(respectively, negative), compressive damage components ω ic (re-

spectively, tensile damage components ω it ) are substituted into

Eq. (2) to construct the damage operator. As a result, unilateral ef-

fects due to crack closure can be captured. Damage components

take values between 0 (no micro-crack in the direction considered)

and 1 (no more stiffness in the direction considered). 

Two loading surfaces are used to distinguish micro-crack prop-

agation in the axial and transverse directions. For tensile damage,

we consider the two following damage criteria: 

g 1 t (ε, κ1 ) = εeq 
1 t 

− κ1 , g 2 t (ε, κ2 ) = εeq 
2 c 

− κ2 (14)

Where the equivalent strains εeq 
i 

are scalar measures of strain de-

fined in the axial and transverse directions. κ1 and κ2 are the in-

ternal variables that control the evolution of damage: they repre-

sent the equivalent strain thresholds before the initiation of dam-

age in directions 1 and 2, respectively. After damage initiation, κ1 

and κ2 are the largest equivalent strains ever reached during the

past loading history of the material. Damage can only grow if the

current stress state reaches the boundary of the elastic domain,

g i = 0 . Karush–Kuhn–Tucker complementary conditions are used to

account for loading-unloading stress paths: 

g 1 ≤ 0 , ˙ κ1 ≥ 0 , ˙ κ1 g 1 = 0 

g 2 ≤ 0 , ˙ κ2 ≥ 0 , ˙ κ2 g 2 = 0 (15)

Now, we establish a relationship between the internal variables

κ1 , κ2 , defined as the maximum equivalent strains ever encoun-

tered in the material, and the damage variable ω. Since both the

internal variables and the damage components grow monotoni-

cally, it is admissible to postulate the evolution law of damage

in the form ω i = f (κi ) , i = 1 , 2 . The exact form of the function f

should be identified from actual stress paths monitored in experi-

ments, such as uniaxial stress-strain curve in axial and transverse

directions. In the absence of such data, we assume that in tension,

the axial damage component follows an exponential law, which re-

flects rapid micro crack propagation in mixed I-II mode: 

ω 1 t = 

{ 

0 , if κ1 ≤ εt0 
11 

1 − exp 

(
− κ1 −εt0 

11 

αt 
11 

)
, if κ1 > εt0 

11 

(16)

Where αt 
11 

is a material parameter that controls the damage

growth rate. We use a similar evolution law for tensile damage

growth in the transverse directions: 

λ2 t = 

1 

2 
( χ2 t + χ3 t ) = 

{ 

0 , if κ2 ≤ εt0 
22 

1 − exp 

(
− κ2 −εt0 

22 

αt 
22 

)
, if κ2 > εt0 

22 

(17)

Where αt 
22 

controls the ductility of the response in the transverse

directions. Based on the definition of the equivalent strain εeq 
2 t 

, we

split the transverse damage components as follows: 
χ2 t = 2 λ2 t 

ε2 
22 + ε22 ε33 + 

(
1 
4 〈 ε22 − ε33 〉 2 + 

1 
2 (ε23 ) 

2 

)(
εt0 
22 

εs 0 
23 

)2 

+ ε2 
12 

(
εt0 
22 

εs 0 
12 

)2 

(κ2 ) 2 

χ3 t = 2 λ2 t 

ε2 
33 + ε22 ε33 + 

(
1 
4 〈 ε33 − ε22 〉 2 + 

1 
2 (ε23 ) 

2 

)(
εt0 
22 

εs 0 
23 

)2 

+ ε2 
13 

(
εt0 
22 

εs 0 
12 

)2 

(κ2 ) 2 

 2 t = 

{ 
ω̄ 2 t , if χ2 t ≤ ω̄ 2 t 

χ2 t , if χ2 t > ω̄ 2 t 
, ω 3 t = 

{ 
ω̄ 3 t , if χ3 t ≤ ω̄ 3 t 

χ3 t , if χ3 t > ω̄ 3 t 
(18)

here we introduced the McAuley brackets: 〈 x 〉 = 0 if x < 0, 〈 x 〉 =
 if x ≥0. ω̄ 2 t and ω̄ 3 t are the tensile damage values in the two

ransverse directions at the previous increment. Fig. 3 (a) below

hows the evolution of tensile damage with the tensile equivalent

train: once the threshold is reached, damage evolves rapidly, and

he growth rate slows down close to final failure. 

.4. Damage criteria and evolution laws in compression 

Different from mixed mode crack propagation, pure mode II

liding in compression is confining (normal) stress dependent. We

econstruct the two compressive loading surfaces in axial and

ransverse directions as: 

 1 c (ε, κ1 ) = εeq 
1 c 

+ η〈 (σ2 + σ3 ) / 2 〉 − κ1 

 2 c (ε, κ2 ) = εeq 
2 c 

+ η〈 σ1 〉 − κ2 (19)

here η controls the influence of the confining stress on com-

ressive damage. Note that the McAuley brackets are introduced

o account for compressive confining stress only. Similar to ten-

ile loading functions in Eq. (14) , the internal state variables κ1 ,

2 in Eq. (19) represent the largest value taken by the terms
eq 
1 c 

+ η〈 (σ2 + σ3 ) / 2 〉 , εeq 
2 c 

+ η〈 σ1 〉 in the entire loading history of
he material. Since geomaterials exhibit a pre-peak hardening and

ost-peak softening behavior for mode II sliding in compression

 Amendt et al., 2013 ), we choose an evolution function f ( κ1 ) with

 low growth rate at the beginning and a high growth rate after

he peak, as follows: 

 1 c = 

{ 

0 , if κ1 ≤ εc0 
11 

exp [ (κ1 −βc 
11 ) /α

c 
11 ] 

1+ exp [ (κ1 −βc 
11 

) /αc 
11 ] 

, if κ1 > εc0 
11 

(20)

here βc 
11 

and αc 
11 

are parameters that represent the initiation of

oftening in the absence of confinement and the damage growth

ate in the axial direction, respectively. Fig. 3 (b) shows the evo-

ution of compressive damage with the compressive equivalent

train. We define the evolution function f ( κ2 ) in the transverse di-

ections in a similar way as in the axial direction, as follows: 

2 c = 

1 

2 
( χ2 c + χ3 c ) = 

{ 

0 , if κ2 ≤ εc0 
22 

exp [ (κ2 −βc 
22 ) /α

c 
22 ] 

1+ exp [ (κ2 −βc 
22 

) /αc 
22 ] 

, if κ2 > εc0 
22 

(21)

n which we split the transverse damage components based on the

efinition of equivalent strain εeq 
2 c 

in Eq. (13) and loading surface in

q. (19) , as follows: 

χ2 c = 2 λ2 c 

ε2 
22 + ε22 ε33 + 

(
1 
4 
〈 ε22 − ε33 〉 2 + 

1 
2 
(ε23 ) 2 

)(
εc0 
22 

εs 0 
23 

)2 

+ ε2 
12 

(
εc0 
22 

εs 0 
12 

)2 

+ 
η〈 σ1 〉 

2 

(κ2 ) 2 

χ3 c = 2 λ2 c 

ε2 
33 + ε22 ε33 + 

(
1 
4 
〈 ε33 − ε22 〉 2 + 

1 
2 
(ε23 ) 2 

)(
εc0 
22 

εs 0 
23 

)2 

+ ε2 
13 

(
εc0 
22 

εs 0 
12 

)2 

+ 
η〈 σ1 〉 

2 

(κ2 ) 2 

 2 c = 

{ 
ω̄ 2 c , if χ2 c ≤ ω̄ 2 c 

χ2 c , if χ2 c > ω̄ 2 c 
, ω 3 c = 

{ 
ω̄ 3 c , if χ3 c ≤ ω̄ 3 c 

χ3 c , if χ3 c > ω̄ 3 c 
(22)



W. Jin, C. Arson / International Journal of Solids and Structures 139–140 (2018) 29–42 33 

Fig. 3. Explicit damage evolution laws. 
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.5. Anisotropic nonlocal regularization 

The accumulation of damage leads to a softening behavior,

hich results in localized failure paths in finite element simula-

ions. The energy required to create a unit area of fracture, which

hould be a material constant, does not converge upon mesh re-

nement ( Jirásek, 1998 ). Mathematically, the partial differential

quations governing quasi-static problems loose ellipticity, which

akes the boundary problem ill-posed. Several regularization tech-

iques exist to avoid mesh dependency and fracture localization,

ncluding: the introduction of integration-based variables in the

onstitutive model ( Pijaudier-Cabot and Bažant, 1987; Bažant and

ijaudier-Cabot, 1988; Desmorat et al., 2007; Grassl et al., 2014 ),

radient-enhanced formulations ( De Borst et al., 1995; Peerlings

t al., 1996a; 1996b; Geers et al., 1998; Peerlings et al., 1998 ), the

icropolar (Cosserat) continuum theory ( Lin et al., 2015; Vernerey

t al., 2007 ), and the local regularization of material properties

ased on element size and direction (crack band theory) ( Hoover

nd Bažant, 2014; Bažant and Oh, 1983 ). All of these regularization

ethods involve an internal length parameter, typically a char-

cteristic length equal to 2 to 3 times the maximum grain size

 Bažant and Pijaudier-Cabot, 1989 ). Note that the gradient theory

equires additional boundary conditions, which have no physical

eaning, to calculate the third order double stress tensor. The

rack band theory fails to capture the process zone of macro frac-

ures. The micropolar continuum theory is particularly suitable for

odeling shear bands in granular materials. Here, we adopt a ver-

atile integral-based nonlocal regularization technique, in which

he damage evolution and subsequent stiffness reduction at a ma-

erial point not only depend on the stress state at that point, but

lso on the stress of points located within a certain neighborhood,

he size of which is controlled by internal length parameters. Nu-

erically, we replace the local equivalent strains εeq 

i,k 
, used to check

amage criteria, by their nonlocal counterparts εeq 

i,k 
. The nonlocal

quivalent strain εeq 

i,k 
is calculated as the weighted average of the

ocal equivalent strain over an influence volume V , as follows: 

eq 

i,k 
(x ) = 

∫ 
V 

α(x , ξ) εeq 

i,k 
(ξ) d V (ξ) , (i = 1 / 2 , k = t/c) . (23)

here x and ξ are the position vectors of the local point consid-

red and of a point located in the influence volume, respectively.

( x , ξ) is a weight function, which decreases monotonically when

he distance r = ‖ x − ξ‖ increases. In a uniform equivalent strain

eld εeq ( x ), the nonlocal strain εeq (x ) should be uniform and equal

o εeq ( x ). That is why the weight function should also satisfy the

ollowing normalizing condition: 

 

α(x , ξ) d V (ξ) = 1 . (24)

V 
ore generally, we ensure that the partition of unity is satisfied by

efining the weight function as follows: 

(x , ξ) = 

α0 (x , ξ) 

V r (x ) 
= 

α0 (x , ξ) ∫ 
V α0 (x , ξ) d V (ξ) 

. (25)

here V r ( x ) is called the characteristic volume. For isotropic mate-

ials, the weight function α0 ( x , ξ) is often defined as a Gauss func-
ion (normal distribution) or a bell-shaped function, with a single

nternal length. For transversely isotropic materials however, the

onlocal influence zone is direction dependent. Due to the weak-

ning effects of the bedding plane, the development of damage at

 point has more influence when cracks propagate in planes that

ontain the transverse directions than the axial direction ( Fig. 1 ).

oting l ci the internal length in direction i , we have: l c3 = l c2 > l c1 
 Based on these considerations, we propose the following modified

ell-shaped weight function: 

0 (x , ξ) = 

〈
1 −

3 ∑ 

i =1 

‖ x i − ξi ‖ 
2 

l 2 
ci 

〉2 
. (26)

he internal lengths l ci provide the size of the volume of influence

 Fig. 4 ), therefore no cut-off is needed (unlike in the Gauss func-

ion). 

In a Finite Element code, nonlocal averaging and integration

re performed by summation over Gauss points located inside the

nfluence zone ( De Vree et al., 1995 ). For instance, the nonlocal

quivalent strain is calculated as follows: 

eq 

i,k 
(x ) = 

∑ N GP 
j=1 

α(T (x − ξ j ) 
T ) εeq 

i,k 
(ξ j )�V j ∑ N GP 

j=1 
α( T ( x − ξ j ) T )�V j 

(27) 

here N GP is the total number of Gauss points located within the

nfluence zone. �V j is the integration volume associated with the

j th neighboring Gauss point. T is the rotation matrix that trans-

orms global coordinates to local coordinates. In plane strain con-

itions (adopted in this study), we have: 

 = 

(
cosφ −sinφ
sinφ cos φ

)
(28) 

here φ is the counter-clockwise angle between the global and

ocal coordinate systems. In Eq. (27) , the distance ‖ x i − ξi ‖ first in-
roduced in Eq. (26) was replaced by the transformed coordinate

omponents of vector T (x − ξ j ) 
T . 

.6. Finite element implementation 

Since the damage evolution laws are expressed explicitly, no

teration is needed at the Gauss point to update the state of

tress, strain and damage. However, due to the nonlocal formula-

ion adopted here, the calculation of state and internal variables

t a point requires calculating the average of the values taken by
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Fig. 4. Modified bell-shaped weight function for the nonlocal formulation, with l c1 = 0 . 01 , l c2 = 0 . 02 . 
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those variables at the Gauss points located in the influence zone,

as explained in Eq. (27) . In order to handle these calculations, we

used an open source package called ‘Object Oriented Finite Ele-

ment Method’ (OOFEM) ( Patzák and Bittnar, 2004; Patzák, 2012 ).

We used 3D elements without nonlocal regularization and 2D tri-

angular plane strain elements with nonlocal regularization for the

following simulations. 

At the Gauss point, from the constitutive relations above, the

consistent tangent operator (Jacobian matrix) in plane strain can

be explicitly derived as follows: 

J = 

d σ

d ε
= 

d C (ω 1 , ω 2 ) 

d ε
: ε + C (ω 1 , ω 2 ) 

= 

(
d C 

d ω 1 

d ω 1 

d κ1 

d κ1 

d ε
+ 

d C 

d ω 2 

d ω 2 

d κ2 

d κ2 

d ε

)
: ε + C (ω 1 , ω 2 ) (29)

In tension, we have: 

d ω 1 

d κ1 

= 

d ω 1 

d εeq 
1 t 

= 

exp 
(
−
(
εeq 
1 t 

− εt 
11 

)
/αt 

11 

)
αt 
11 

d ω 2 

d κ2 

= 

d ω 2 

d εeq 
2 t 

= 

exp 
(
−
(
εeq 
2 t 

− εt 
22 

)
/αt 

22 

)
αt 
22 

(30)
d εeq 

1 t 

d ε
= 

1 

εeq 
1 t 

[
ε11 0 0 ε12 

(
εt 
11 

εs 
12 

)2 ]T 

d εeq 
2 t 

d ε
= 

1 

εeq 
2 t 

[ 

0 

[ 

1 + 

1 

2 

(
εt0 
22 

εs 0 
23 

)2 
] 

ε22 0 ε12 

(
εt 
22 

εs 
12 

)2 
] T 

We obtain the explicit expression of the Jacobian matrix for a com-

pressive stress state in a similar way. The discretization ensures

quadratic convergence when solving the global equilibrium equa-

tions. 

However, with nonlocal enhancement, the Jacobian matrix de-

pends on the state and internal variables of all the Gauss points

located within the nonlocal influence zone ( Eq. (27) ). Deriving the

analytical expression of the tangent operator for a nonlocal for-

mulation is challenging and computationally intensive ( Jirásek and

Patzák, 2002; Liu et al., 2016; de Pouplana and Oñate, 2016 ). Af-

ter assembling all the Finite Element equations, the global stiffness

matrix becomes non-symmetric and the half band size increases.

In the present case, the proposed nonlocal model considers intrin-

sic anisotropy, thus matrix rotation is needed whenever the local

and global coordinate systems do not coincide. All of these compli-

cated operations make it unfeasible to obtain the nonlocal consis-

tent tangent stiffness matrix analytically. That being said, symmet-

rical positive definite local secant operators can be used without

changing the assembling process. Even if quadratic convergence

is lost, the computation terminates successfully ( Desmorat et al.,

2007; Pegon and Anthoine, 1997 ). 
In addition, the degradation of stiffness due to damage induces

train softening, which may result in a global force-displacement

urve that exhibits multiple limit points (snap through) and a

escending curve (snap-back). A standard load controlled or dis-

lacement controlled algorithm based on Newton–Raphson itera-

ion scheme is insufficient to find localized post-peak solutions. In

rder to overcome this limitation, we adopt an arc length control

lgorithm. Initially proposed in Riks (1979) , the essential idea of

rc length control is to change the increment of load and the in-

rement of displacement simultaneously. The increments of load

nd displacement are constrained to ensure that solutions obtained

t convergence are indeed on the constitutive stress/strain curve.

n this study, we use the so-called spherical arc length method

 Crisfield, 1981 ), in which the constraint equation is expressed as:

 s = 

√ 

d u 
T d u + d λ2 ψ 

2 q T q , (31)

here d s is the arc length, d u is the increment of displacement, q

s the external load imposed and λ is a parameter controlling the

ntensity of the load increment. ψ controls the ratio between the

oad and displacement increments. Because the constraint equa-

ion involves all the degrees of freedom of the domain, it might

till encounter convergence issues when localization occurs. Hence,

e implement a local version of the arc length control algorithm,

ased on the local normal plane method ( May and Duan, 1997 ):

nly the displacement of dominating elements, i.e. elements that

ontribute to damage growth within the process zone, are used to

ormulate the constraint equation: 
 

e 

[ ∇ ( d u 
e 
1 ) 

T ∇ ( d u 
e 
i )] = ( d s ) 2 (i = 1 , 2 , 3 , . . . ) . (32)

here e is the element number within the set of dominating el-

ments. Note that the set of dominating elements is only updated

t the beginning of each loading increment. For an element with n

odes, ∇u is the relative displacement vector, defined as follows:

(u 
e ) = [ u e 1 − u e n , u 

e 
2 − u e 1 , u 

e 
3 − u e 2 , . . . , u 

e 
n − u e n −1 ] . (33)

. Calibration and sensitivity of the local damage model 

.1. Calibration for Bakken shale 

The proposed nonlocal anisotropic damage model depends on

 elastic parameters ( E 1 , E 2 , ν12 , ν23 , G 12 ), 13 constitutive pa-

ameters that control damage growth under tension and compres-

ion (εt0 
11 

, αt 
11 

, εt0 
22 

, αt 
22 

, εs 0 
12 

, εs 0 
23 

, εc0 
11 

, αc 
11 

, βc 
11 

, εc0 
22 

, αc 
22 

, βc 
22 

, η) , and

wo internal length parameters ( l c 1 , l c 2 ). Except for the fitting pa-

ameters α, β and η, all the model parameters have a sound phys-

cal meaning. For example, εc0 
22 

represents the damage initiation

hreshold due to compressive strains in the transverse direction.

everal stress paths with loading in both axial and transverse di-

ections are required to calibrate all the model parameters, in-



W. Jin, C. Arson / International Journal of Solids and Structures 139–140 (2018) 29–42 35 

c  

t  

a  

n  

a  

D  

o  

d  

d  

i  

t  

c  

t  

d  

i  

p  

fi  

i  

s  

 

l

 

r  

i  

w  

A  

 

o  

d  

R  

W  

T  

l  

k  

d  

w  

t  

o  

w  

u  

m

B  

W  

a

 

a  

m  

w  

a  

fi  

a  

s  

p  

b  

f  

n  

s  

e  

c  

d  

t  

t  

m  

d  

s  

B  

d  

s  

o  

r

 

a  

f  

2  

b  

d  

s  

f  

i  

e  

p  

i  

m  

l

3

 

d  

i  

 

t  

d  

t  

d  

t  

a  

u  

p  

r  

w  

o  

t  

d  

t

 

t  

t  

u  

(  

v  

p  

w  

g  

a  

c  

p  

s  

s  

l  

p  

i

4

 

n  

m  
luding uniaxial and triaxial compression tests, uniaxial tension

ests and directional shear tests. In addition, microstructure im-

ges or acoustic measurements are needed to determine the inter-

al lengths. In the following, we calibrate the local damage model

gainst a series of triaxial compression tests performed on North

akota Bakken shale plugs in ConocoPhillips rock mechanics lab-

ratory ( Amendt et al., 2013 ). Plugs were all cored from the same

epth and lithology, both parallel and perpendicular to the bed-

ing plane, and were selected to avoid major bedding discontinu-

ties. For model calibration, we used the stress/strain curves ob-

ained for a loading perpendicular to the bedding plane under

onfinements of 10 0 0 psi (6.9 MPa) and 30 0 0 psi (20.7 MPa), and

he stress/strain curve obtained for a loading parallel to the bed-

ing plane under a confinement of 30 0 0 psi (20.7 MPa). We val-

dated the model using stress/strain data with loading direction

erpendicular to the bedding plane under 20 0 0 psi (13.8 MPa) con-

nement. The stress paths used for calibration allow determin-

ng E 1 , E 2 , ν12 , ν23 , ε
c0 
11 

, αc 
11 

, βc 
11 

, εc0 
22 

, αc 
22 

, βc 
22 

, η. In the absence of
ufficient experimental data, the values of the other parameters

(G 12 , ε
t0 
11 

, αt 
11 

, εt0 
22 

, αt 
22 

, εs 0 
12 

, εs 0 
23 

) will be assigned values found in the

iterature for rock materials, as explained below. 

We first used a linear regression to obtain the elastic pa-

ameters E 1 , E 2 , ν12 , ν23 , as shown in Fig. 5 (e). For all load-

ng directions, only the linear portion of the stress-strain curves

ere exploited for calibration. Then we used the Interior Point

lgorithm in MATLAB to determine the unknown vector B =
(εc0 

11 
, αc 

11 
, βc 

11 
, εc0 

22 
, αc 

22 
, βc 

22 
, η) that minimizes the squared residual

f the distance between experimental results y i and numerical pre-

ictions f i ( X , B ). The residual, minimized iteratively, is defined as:

 (B ) = 

n ∑ 

i =1 

[ y i − f i (X , B )] 2 . (34)

here X stands for the vector of known input variables of strain.

he algorithm was initialized with an initial guess, as well as the

ower bound and the upper bound of the coefficients of the un-

nown parameter vector B . Then, triaxial compression tests with

ifferent confinement and loading orientations were simulated

ith the proposed model at the material point, and the value of

he residual R ( B ) was calculated based on the set of parameters

btained at the previous iteration. The gradient of the residual R ( B )

ith respect to each parameter in the vector B was calculated and

sed to minimize the difference between numerical and experi-

ental stress-strain curves, as follows: 

 n +1 = B n − γn �R (B ) (35)

here γ n is the barrier parameter, which is updated at each iter-

tion step in the Interior Point Algorithm. 

Fig. 5 (a) shows the stress-strain experimental data (markers)

nd numerical predictions (lines) after calibration with confine-

ents of 6.9 MPa (colored in red) and 20.7 MPa (colored in black),

hen loading is applied perpendicular to the bedding plane. In

ddition, we simulated the triaxial compression test with a con-

nement of 13.8 MPa (blue lines) using the calibrated parameters,

nd compared the predictions with the experimental data (blue

quares). Note that we only used the first portion of the post-

eak experimental data, after macroscopic fractures initiate, but

efore macroscopic fracture propagation becomes dominated by

riction along the fracture planes (a propagation regime that can-

ot be captured by the proposed model). Both lateral and axial

tress/strain curves obtained numerically satisfactorily match the

xperimental data for all confinements, and the proposed model

aptures the nonlinear hardening and softening behavior and the

ependence of strength to confinement. Fig. 5 (b) shows the evolu-

ion of damage for the three tests where loading is perpendicular

o the bedding plane. In continuum damage models proposed for
aterials with no intrinsic anisotropy, transverse damage is pro-

uced to reflect the presence of vertical cracks due to deviatoric

tress ( Jin et al., 2017; Xu and Arson, 2014; Jin and Arson, 2017c ).

y contrast, according to the constitutive model in Eq. (4) , axial

amage ω 1 is produced, which results in a reduction of the axial

tiffness. When the confining stress is increased, damage initiation

ccurs at higher axial stress. After damage initiation, the damage

ate is independent of the confining pressure. 

Fig. 5 (c) compares the predictions of the calibrated model

gainst experimental results for a triaxial compression test per-

ormed with a loading parallel to the bedding plane, under a

0.7 MPa confinement. Experimental measurements are indicated

y circle markers and numerical predictions are represented by

otted lines. For the sake of comparison with the experimental re-

ults, we average the two horizontal strain components generated

rom the model, which are predicted as different due to transverse

sotropy, but are not distinguished in the experimental dataset. The

xperimental and numerical curves match satisfactorily and the

roposed model captures the dependence of strength to the load-

ng direction at equal confining pressure ( Fig. 5 (a) and 5 (c)). The

aterial parameters calibrated for North Dakota Bakken shale are

isted in Table 1 . 

.2. Sensitivity analysis of uniaxial tension test 

In the absence of datasets on tension and shear tests con-

ucted at various angles compared to the bedding plane, it is

mpossible to calibrate the remainder of the model parameters

(εt0 
11 

, αt 
11 

, εt0 
22 

, αt 
22 

, εs 0 
12 

, εs 0 
23 

, G 12 ) . So we used values that correspond

o typical rock properties ( Cho et al., 2012 ) (see Table 2 ). In or-

er to check that the chosen model parameters are reasonable and

o demonstrate that the proposed model can capture the direction

ependent stress-strain behavior, we simulated a series of uniaxial

ensile tests for various orientation angles θ between the loading

xis and the direction normal to the bedding plane ( Fig. 6 (c)). We

sed a single-cubic-element FEM model with the chosen damage

arameters reported in Table 2 and with the calibrated elastic pa-

ameters given in Table 1 . Displacements at the four bottom nodes

ere fixed and concentrated forces were applied at the four nodes

f the upper face. The arc length control algorithm was used. After

he simulations, we extracted the state variables (stress, strain and

amage) from the 8 Gauss points and averaged them to generate

he plots shown in Fig. 6 . 

Fig. 6 (a) presents the stress-strain curves of uniaxial tension

ests simulated with different bedding plane orientations. The elas-

ic part is almost the same in all tests because the Young’s mod-

li E 1 , E 2 in the axial and transverse directions are very close

 Table 1 ). However, the maximum stress reached during the test

aries with θ : the peak stress is minimum when the loading is ap-

lied perpendicular to the bedding plane ( θ = 0 ◦), and increases
hen θ increases. Fig. 6 (b) shows that, for higher orientation an-

les θ , the initiation of the axial damage ω 1 occurs under higher

xial strain. For θ = 90 ◦, no axial damage is produced (i.e., no

racks along the bedding plane); instead, transverse damage ω 2 is

roduced (i.e. cracks perpendicular to the bedding plane in non-

liding mode). Fig. 6 (c) provides the variations of the uniaxial ten-

ile strength (maximum stress reached during loading) with the

oading orientation θ . Numerical analyses satisfactorily reproduce

ublished results of indirect Brazilian tests ( Cho et al., 2012 ), both

n trend and order of magnitude. 

. Simulation of anisotropic fracture localization 

In this section, we solve boundary value problems with the Fi-

ite Element Method to test the ability of the model to simulate

esh-independent and direction dependent fracture propagation
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Fig. 5. Calibration of the proposed model against triaxial compression tests performed on Bakken shale for different loading orientations with respect to the bedding plane. 

(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

Table 1 

Material parameters calibrated from triaxial compression tests. 

Direction Elasticity Compression 

Axial E 1 / GPa ν12 εc0 
11 βc 

11 αc 
11 η/MPa −1 

3.59 0.22 2 . 51 × 10 −3 8 . 02 × 10 −3 2 . 41 × 10 −3 2 . 08 × 10 −4 

Transverse E 2 / GPa ν23 εc0 
22 βc 

22 αc 
22 η/MPa −1 

3.77 0.33 1 . 98 × 10 −3 6 . 39 × 10 −3 2 . 46 × 10 −3 2 . 08 × 10 −4 
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Fig. 6. Simulation of uniaxial tension tests on a single element. Note: The soil mechanics sign convention is used. 

Table 2 

Material parameters assigned with no calibration for the sensitivity 

analysis. 

Direction Shear Tension 

Axial εs 0 
12 εt 

11 αt 
11 G 12 / GPa 

1 . 8 × 10 −4 1 . 5 × 10 −4 3 . 0 × 10 −4 14.68 

Transverse εs 0 
23 εt 

22 αt 
22 

2 . 6 × 10 −4 2 . 5 × 10 −4 4 . 0 × 10 −4 

i  

T
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Fig. 7. Geometry and boundary conditions adopted in the three-point bending test. 
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n mixed mode. We use the constitutive parameters listed in

ables 1 and 2 . 

.1. Three-point bending test 

We simulate a three-point bending test. The specimen geome-

ry, notch size and boundary conditions are shown in Fig. 7 . Linear

riangular elements are used in plane strain conditions. The trans-

erse characteristic length l c 2 is set to 20 mm (internal length par-

llel to the bedding). We study various ratios R = l c2 /l c1 to investi-

ate the influence of nonlocal anisotropy on the global response. 
.1.1. Influence of nonlocal enhancement 

We first test the nonlocal regularization technique by simulat-

ng the three point bending test with and without nonlocal en-

ancement, for three different mesh densities. In all tests, the load-

ng direction is perpendicular to the bedding plane (orientation

oted θ = 90 ◦) and the internal length ratio is set to R = 2 . Fig. 8

hows the post-failure distribution of the transverse damage com-

onent ω 2 , which corresponds to vertical cracks perpendicular to

he bedding plane that propagate by layer breaking (non-sliding
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Fig. 8. Damage distribution in local axis-2 (i.e. vertical cracks perpendicular to the bedding plane) obtained in the three-point bending tests, without and with nonlocal 

enhancement, for various mesh densities. In all cases, bedding orientation angle is θ = 90 ◦, and the internal length ratio is l c2 /l c1 = 2 . 

Fig. 9. Spatial distribution of the tensile damage components expressed in the local coordinate system of the bedding plane, for loads applied at an angle θ = 0 ◦, 30 ◦, 60 ◦, 90 ◦

compared to the transverse direction of the bedding plane. 
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mode). Comparing Fig. 8 (a) and (b), we note that simulations done

with the local model exhibit a strong mesh dependency: the width

of the fracture process zone is one element in size, no matter what

the size of the elements is. As a result, the energy dissipated tends

to zero upon mesh refinement. For very fine meshes, no conver-

gence is reached. On the contrary, no mesh dependence is noted

with the nonlocal model, as shown in Fig. 8 (c) and (d). Fig. 11 (a)

shows the variations of the vertical force with vertical displace-

ment at the node where the external load is applied. The peak

force and subsequent softening behavior match for all simulations

done with the nonlocal model, whereas they differ in the simula-

tions done with the local model. Results thus confirm that the reg-

ularization technique not only alleviates mesh dependency for the

failure path, but also for the global response of the domain. Note

that in this particular test, nonlocal enhancement results in an in-
reased stiffness of the domain, which turns out to be 2–3 times

arger than that obtained with the local model. This points out the

mportance of proper calibration of the internal length parameters.

.1.2. Influence of the bedding orientation (intrinsic anisotropy) 

Now that we showed that the nonlocal model alleviates mesh

ependency, we perform all the simulations with the median-

ized mesh. Fig. 9 shows the damage process zone for different

edding orientations, and highlights the underlying failure mech-

nism. When the loading force is parallel to the bedding plane

 θ = 0 ◦), only axial damage ( ω 1 ) develops, which corresponds to

eak plane debonding. Damage propagates in pure mode I right

bove the notch. In the case of θ = 30 ◦, failure in mixed mode is

bserved. Damage propagates in both the axial ( ω 1 ) and transverse

 ω ) directions of the bedding coordinate system. The failure path
2 
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Fig. 10. Spatial distribution of the tensile damage component in the transverse direction 2 (cracks perpendicular to the bedding plane) for orientation angle θ = 90 ◦, and in 
the axial direction 1 (cracks parallel to the bedding plane) for orientation angle θ = 0 ◦, for various internal length ratios defined as R = l c2 /l c1 . 

Fig. 11. Force-displacement curves at the node where the load is applied during the three-point bending tests. 

i  

p  

z  

e  

p  

(  

c  

h  

t  

d  

a  

a  

d  

n  

u  

i  

z  

t  

t  

n  
nitially follows the bedding direction, and then turns up to be

arallel to the loading force direction. The extent of the damage

one is larger for ω 1 than ω 2 . Similarly, when the bedding ori-

ntation angle is 60 ° with respect to the horizontal axis, damage

ropagates in mixed mode in both axial and transverse directions

 ω 1 , ω 2 ). The adopted resolution algorithm still has some short-

omings when the global response exhibits severe snap back be-

avior: convergence issues still exist and it is impossible to obtain

he final expected damage zone. Here, we show the intermediate

amage process zone, obtained just before the calculation stopped:
t this stage, damage propagates mostly along the bedding plane;

lignment with the loading force has just started. When the bed-

ing plane is horizontal ( θ = 90 ◦), the damage zone aligns with the

otch like in the case of a vertical bedding plane ( θ = 0 ◦), but fail-
re is mostly due to layer breakage and not weak plane debond-

ng: ω 2 > ω 1 . As expected, the overall size of the damage process

one increases as the angle θ between the loading direction and

he transverse bedding plane direction increases. Fig. 11 (b) shows

he load-deflection curves obtained at the node where the exter-

al force is applied, for the four cases simulated. The maximum
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Fig. 12. Geometry, mesh and boundary conditions of the splitting test, simulated 

based on experiments reported in ( Comi and Perego, 2001 ). 
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load force required to induce failure increases as the bedding ori-

entation angle θ increases. This could be expected: weak plane

debonding at θ = 0 ◦ requires less energy than layer breakage at

θ = 90 ◦. Note that the local arc length control method employed

in the resolution algorithm makes it possible to predict the snap

back behavior (decreasing load with decreasing displacement) in

the case of θ 
 = 90 °. 
Fig. 13. Spatial distribution of the tensile and compressive damage components in th
.1.3. Influence of the ratio of internal lengths (microstructure) 

We analyze the influence of the internal length ratio R = l c2 /l c1 
or l c2 = 20 mm ( Fig. 10 ). We use the median sized mesh and we

tudy two bedding orientations: θ = 0 ◦, 90 ◦. Damage propagates in

ode I due to weak layer debonding in the case of θ = 0 ◦, and
ue to layer breakage in the case of θ = 90 ◦. Since the extent of
he influence zone in the transverse direction is the same in all

imulations (i.e., l c 2 is fixed), the width of the transverse damage

rocess zone is the same for all simulations with θ = 90 ◦. By con-
rast, the length of the transverse damage zone increases with l c 1 .

imilarly, for θ = 0 ◦, the area of the axial damage zone increases

ith l c 1 (i.e. increases when R = l c2 /l c1 decreases). Microstructure

nisotropy, represented by the internal length parameters, thus

ranslates into anisotropy of the damage process zone. When com-

aring the load-displacement curves ( Fig. 11 ), we note that for both

= 0 ◦ and 90 °, a higher peak force is reached for a lower internal

ength ratio R (i.e. for an increasing internal length l c 1 ). A lower

orce is required to cause failure by weak plane debonding when

he axial internal length l c 1 is high. For θ = 0 ◦, we note that the

ost-peak portion of the load-displacement curves match. We hy-

othesize that the internal length l c 2 , fixed to the same value in

ll the simulations, controls the post-peak softening behavior. The

xceptionally high value of the peak force for R = 1 , θ = 0 ◦ can be

xplained by the large size of the influence zone in that particular

ase, delimited by the circles in Fig. 10 . 

.2. Splitting test 

We simulate splitting tests described in Comi and Perego

2001) to investigate compressive damage development for various

edding orientations. The geometry and boundary conditions are

hown in Fig. 12 . Plane strain triangular elements are used to mesh

he domain. Since the nonlocal formulation proved to successfully

lleviate mesh dependency in the previous case studies, we only

se one mesh density for the splitting test simulations. The trans-

erse characteristic length l c 2 is set to 20 mm; the axial internal

ength l c 1 is set to 10 mm. We simulate a force-controlled test,

hich allows using the local arc length control method to solve the

lobal FEM equations by scaling load and displacement increments
e axial and transverse directions, with a bedding plane of various orientations. 
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t each iteration. A uniform stress is applied on the top central

art of the sample, and we stop the simulation once the applied

tress reaches 100 MPa ( Fig. 12 ). 

Fig. 13 shows the spatial distribution of damage for various

edding orientations, and also indicates the potential failure path

t macro scale. For θ = 0 ◦ (vertical bedding plane, parallel to the

oading direction), the failure mechanism is dominated by the

ropagation of horizontal cracks, i.e. transverse compression dam-

ge ω 2 c . This is counter-intuitive: the failure mechanism was ex-

ected to be controlled by weak plane debonding resulting in ver-

ical planes. This discrepancy comes from the construction of the

odel itself, in which compressive equivalent strains are used to

alculate compressive damage in axial and transverse directions,

hich are directly injected in the expression of the stiffness ten-

or to account for the degradation of elastic properties. Similarly

or θ = 90 ◦ (horizontal bedding plane, perpendicular to the load-

ng direction), the main failure mechanism is the development of

orizontal cracks, i.e. axial compressive damage ω 1 c . However, both

f these two cases yield vertical fracture paths (damage concentra-

ion zone) along the central line at sample scale, which is conform

o experimental observations ( Comi and Perego, 2001 ). For θ = 30 ◦

nd θ = 60 ◦, the proposed model does not only capture the macro

ailure paths (the fracture propagates through the sample at an

ngle with respect to the loading direction), but also reveals the

nderlying failure mechanism. The compressive shear damage ω 2 c 

ontrols the failure for the case of θ = 30 ◦, and the compressive

liding along the layers ω 1 c is the dominating failure mechanism

or θ = 60 ◦. It is clear that the development of damage and the

ormation of fracture paths are direction dependent. 

. Conclusions 

The proposed model is designed to predict the complex non-

inear behavior of materials with intrinsic anisotropy upon crack

ropagation. Crack initiation and propagation are modeled by phe-

omenological damage evolution laws. The principle of equiva-

ent elastic deformation is used to calculate the stiffness tensor

f the damaged material. Following the choice of stress invari-

nts made in Hill’s quadratic yield criteria (for orthotropic mate-

ials) and Hashin’s failure criteria (for unidirectional fiber compos-

tes), four equivalent strain measures are constructed to distinguish

he mechanical response of the material in tension and compres-

ion, along the direction perpendicular to the bedding plane and

ithin the bedding plane. Damage evolution laws are formulated

xplicitly in terms of the maximum equivalent strain ever encoun-

ered in the loading history. For Finite Element implementation,

he equivalent strains are replaced by nonlocal counterparts, de-

ned as weighted averages over a certain neighborhood, the size

f which is controlled by two internal length parameters that rep-

esent microstructure anisotropy. Due to the complexities involved

n the derivation of the tangent operator with nonlocal models, we

sed a local secant operator and solved the Finite Element equa-

ions with a normal plane arc length control algorithm, which al-

ows passing limit points in case of snap back or snap through. 

Model calibration requires knowing the material behavior for

everal bedding plane orientations under several independent

tress paths. Elastic and compression damage parameters were cal-

brated against triaxial compression test data of Bakken shale with

xial loading parallel and perpendicular to the bedding under dif-

erent confinements. Sensitivity analyzes confirmed that the model

uccessfully captures the variation of uniaxial tensile strength with

espect to the bedding orientation. Finite Element simulations of

hree-point bending tests and compression splitting tests showed

hat nonlocal enhancement indeed avoids mesh dependency and

hat the size of the damage process zone along and perpendicular

o the bedding plane is scaled by the two characteristic lengths.
esults further show that the damage process zone is direction de-

endent both in tension and compression. In particular, the three-

oint bending test simulations reveal that mixed mode fracture

ropagation dominates when the loading force is not aligned with

he bedding plane. 

Although calibrated for geomaterials, the proposed damage

odel with anisotropic nonlocal enhancement can be applied to

ny brittle textured material, such as ceramics, polymers or met-

ls. Anisotropy is accounted for at the microstructure scale and at

he phenomenological scale of the REV. Damage constitutive laws

re direction-specific, which makes it possible to represent several

oncurrent damage mechanisms in the macroscopic response, and

o interpret the failure mechanisms that control the damage pro-

ess zone. Hence, the proposed modeling approach and the associ-

ted numerical methods employed in this paper can be utilized to

olve a wide range of engineering problems involving the mechan-

cal integrity of structural members, borehole stability, or delami-

ation of composites, to cite only a few. Future work will be ded-

cated to calibration methods and microstructure-enrichment for a

ore precise and computationally effective topological representa-

ion of the damage process zone. 
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