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Abstract
In this paper, a numerical method is proposed to simulate multi-scale fracture propagation driven by fluid injection in

transversely isotropic porous media. Intrinsic anisotropy is accounted for at the continuum scale, by using a damage model

in which two equivalent strains are defined to distinguish mechanical behavior in the direction parallel and perpendicular to

the layer. Nonlocal equivalent strains are calculated by integration and are directly introduced in the damage evolution law.

When the weighted damage exceeds a certain threshold, the transition from continuum damage to cohesive fracture is

performed by dynamically inserting cohesive segments. Diffusion equations are used to model fluid flow inside the porous

matrix and within the macro-fracture, in which conductivity is obtained by Darcy’s law and the cubic law, respectively. In

the fractured elements, the displacement and pore pressure fields are discretized by using the XFEM technique. Interpo-

lation on fracture elements is enriched with jump functions for displacements and with level set-based distance functions

for fluid pressure, which ensures that displacements are discontinuous across the fracture, but that the pressure field remains

continuous. After spatial and temporal discretization, the model is implemented in a Matlab code. Simulations are carried

out in plane strain. The results validate the formulation and implementation of the proposed model and further demonstrate

that it can account for material and stress anisotropy.

Keywords Cohesive zone � Hydraulic fracturing � Multi-scale fracture propagation � Nonlocal damage � Transverse
isotropy � XFEM

Nomenclature
aðbÞ Mode I (mode II) cohesive law shape factor

aðxÞ Nonlocal weight function

atii Material parameters controlling damage

growth rate

�p Prescribed pore pressure
�t Prescribed traction on exterior boundary
�td Cohesive traction vector on fracture surfaces

in global coordinate

�u Prescribed displacement

��eqi Nonlocal equivalent strain components

�q Prescribed flow rate

�qd Flow rate difference across fracture

a Biot coefficient tensor

� Strain tensor

x Damage variables

r Stress tensor

a Enriched degree of freedom on displacement

b Enriched degree of freedom on pore pressure

g Gravity vector

mCd
Unit tangent vector along fracture

nCd
Unit normal vector along fracture

q Fluid flow rate

s Fracture natural coordinate

v Fluid velocity

jm Matrix permeability tensor

DnðDtÞ Separations in the normal (shear) direction at

current time

dnðdtÞ Separations in the normal (shear) direction at

failure

�eqi Local equivalent strain components
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�s012 Initial out-of-bedding-plane shear strain

threshold

�t0ii Initial tensile strain thresholds

CnðCtÞ Mode I (mode II) energy constants

ji Internal state variables controlling damage

evolution

knðktÞ Mode I (mode II) initial slope indicator

C Stiffness tensor

M Damage operator in Voigt notation

S=C Compliance/stiffness matrix in Voigt notation

l Fluid viscosity

/ Matrix porosity

/ðxÞ Level set function

/nð/tÞ Mode I (mode II) cohesive energy release rate

qf Fluid density

rmaxðsmaxÞ Mode I (mode II) cohesive strength

c Fracture hydraulic conductivity

Hs Helmholtz free energy

HCd
Heaviside jump function

Kf Fluid bulk modulus

lc Nonlocal internal length parameter

M Biot modulus

m(n) Mode I (mode II) non-dimensional exponents

mf Fluid mass

N Biot skeleton modulus

NuiðNpiÞ Shape functions for displacement (pore

pressure)

p Pore pressure

Qin Fluid injection rate

TnðTtÞ Normal (shear) cohesive traction in local

coordinate

w Fracture aperture

1 Introduction

The study of damage and fracture in brittle solids has

numerous engineering applications, such as aerospace

metal optimization, construction design and hydraulic

fracturing techniques used in the oil and gas industry.

Hydraulic fracturing is used to stimulate well production,

both in regular and tight formations. It is a complex process

that involves host rock deformation, fracture propagation,

fluid flow and fluid leak-off. Solving the problem of

hydraulic fracturing either analytically or numerically is

still very challenging because of the nonlinear, history

dependent fluid flow with moving boundary conditions and

also because of the anisotropic nonlinear behavior of the

host rock.

Pioneering work on hydraulic fracturing dates back from

the 1950s [36, 50, 78]. Classical solutions are based on the

so-called PKN and KDG models. In 1961, Perkins and

Kern [68] used the theory of elasticity to solve for the

fracture width w and the fluid pressure p along the fracture

length l in plane strain conditions, in which the fracture

height h was constant. Later, Nordgren [60] improved the

model by accounting for the fluid leak-off into the sur-

rounding rock matrix (hence the name, PKN model). By

further assuming that the width of the fracture w is constant

in the direction perpendicular to the fracture plane,

Khristianvic and Zheltov [50] and Geertsma and De Klerk

[32] independently developed another set of analytical

solutions for hydraulic fracturing—the so-called KGD

model. Spence and Sharp [80] extended the KGD model

with self-similar relations (power law relations between the

cavity volume and the injection time), and they accounted

for rock toughness. In addition to the plane strain models,

analytical solutions for the radial or penny-shaped fracture

growth under constant fluid injection pressure was obtained

by Sneddon [78] and later extended to elliptical fracture

growth [36]. The penny-shaped fracture growth model was

further applied to hot, dry rock [1, 2]. Note that by

invoking scaling laws, Detournay [17] found that there are

three competing energy dissipation mechanisms that con-

trol the process of hydraulic fracturing, depending on the

value of the fracture toughness, the fluid viscosity and the

leak-off term. Based on Detournay’s analyses, numerous

semi-analytical solutions were developed for plane strain

conditions [3, 4, 27–29, 38] and for penny-shaped fractures

[7, 8, 72]. These solutions, based on a variety of governing

laws for fluid rheology (viscosity), fluid flow in the matrix

(leak-off) and rock toughness, are important tools to

understand hydraulic fracture propagation regimes. As

pointed out by Detournay and Peirce [18], the analytical

solutions reviewed above were all obtained with ad hoc

assumptions and did not properly account for the boundary

conditions at the tip and near the tip. To address these

limitations, a number of studies were carried out to find

analytical solutions for the singularity of the tip and to

predict the limiting propagation regimes, such as the

toughness dominated regime (index k), the leak-off domi-

nated regime (index ~m), and the viscous dominated regime

(index m). The m�vertex solution was explained by Des-

roches et al. [16] for the zero-toughness and impermeable

case, the ~m-vertex solution was presented by Lenoach [53]

for the zero-toughness and leak-off dominated case, and the

k-vertex solution was obtained from Linear Elastic Fracture

Mechanics (LEFM) asymptotes. In the general case, frac-

ture propagation may evolve within the parametric space of

the three limiting cases. Recently, Garagash et al. [30] and

Dontsov and Peirce [20] obtained the universal tip
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asymptotic solution that can be used for any location in the

parametric space.

Analytical solutions were used for industry applications

at the inception of hydraulic fracturing. However, the

overly constraining assumptions limit their application. So-

called pseudo-3D (P3D) models were the first numerical

simulators developed to relax those constraints. Numerical

P3D models are still based on the assumption that a vertical

plane fracture propagates in a homogeneous rock forma-

tion, but fracture height growth is accounted for. In lumped

P3D models, fractures are assumed to be ellipsoids [55]. In

cell-based P3D models, fractures are regarded as connected

rectangular elements [61, 74]. The latest P3D models

include the stacked height [11] and the enhanced [19]

models. The planar 3D numerical models (PL3D) were

proposed to account for the variation of elasticity, tough-

ness and confining pressure across formation layers

[5, 67, 75, 84], which relaxes analytical constraints even

further. Either the adaptive mesh method or the structured

mesh enhanced with level set method is used to obtain the

dynamic planar fracture footprint. The two-dimensional

fluid flow as well as the elastic equilibrium are considered.

The PL3D model significantly increases the accuracy of the

hydraulic fracturing model, but also increases dramatically

its computational cost.

In the past years, research on hydraulic fracturing

modeling focused on three major objectives. The first one

is to reduce the computational cost while maintaining

solution accuracy in P3D and PL3D models, by incorpo-

rating the tip asymptotic solutions [21, 22, 66] into the

simulation code. The second is to relax the constraints of

the P3D and PL3D models, by considering non-planar

fracture geometries [9, 37], by simulating the simultaneous

propagation of multiple hydraulic fractures [21, 83] and by

incorporating the interaction with natural fractures

[46, 48, 51]. To meet these two first objectives, the force

equilibrium in elastic formation, the mass balance equation

for the fluid with leak-off and the propagation of fracture

tip are accounted for. However, the process of fluid flow

within the porous matrix, as well as the nonlinear rock

deformation and the cohesive fracture propagation are

ignored. The third objective is thus to incorporate these

physical processes by employing advanced numerical

methods, such as interface elements [10], the eXtended

Finite Element Method (XFEM) [24] and the phase field

method [56].

The XFEM allows simulating fracture propagation in

arbitrary directions explicitly, without remeshing. The

XFEM was used extensively in the last decade to simulate

hydraulic fracturing. For instance, considering an imper-

meable matrix, Gordeliy and Peirce [33–35] investigated

the enrichment strategy, the coupling scheme, and the

convergence of the XFEM hydraulic fracturing models.

Dontsov and Peirce [21] later enriched the fracture tip with

a universal tip asymptotic solution to account for all pos-

sible cases in the toughness/viscosity/leak-off dominated

regimes. Considering a fully saturated matrix, De Borst

et al. [15] pioneered the formulation of XFEM models for

stationary fractures. Afterward, fracture propagation in

saturated porous media was simulated using XFEM-cohe-

sive segments [49, 57, 59, 69], in which different enrich-

ment functions were adopted to represent the pore pressure

distribution across the fracture. This idea was further

extended to model the propagation of multiple fluid-driven

fractures [83] and to model the intersection with natural

fractures [47]. Considering a partially unsaturated matrix,

Salimzadeh and Khalili [71] employed the XFEM to model

hydraulic fracturing in a three-phase system.

The numerical methods reviewed above for modeling

hydraulic fracturing have addressed a wide range of chal-

lenges and have significant value; however, some

assumptions on host rock deformation and fracture propa-

gation are overly simplified. As explained in

[12, 14, 45, 77, 85], quasi-brittle materials fail following

two stages: diffused damage inception followed by exten-

sive damage localization leading to macro-fracture propa-

gation. The singularity at the fracture tip from LEFM does

not exist physically, and the cohesive segment concept by

which the diffuse damage process zone is condensed into a

surface or line was never assessed for its accurate repre-

sentation of fracture propagation. In addition, most of

reservoir sedimentary host rocks (e.g., shale) behave

anisotropically [54, 73]. The propagation direction of fluid-

driven fractures remains as a puzzle when material aniso-

tropy and stress anisotropy compete.

In this paper, we thus propose a numerical scheme to

predict multi-scale hydraulic fracture propagation in

transversely isotropic porous materials based on the

XFEM. To capture the two-stage fracture propagation

process, we couple a nonlocal damage model with a

cohesive zone method, following the methods previously

presented by the authors [42]. We first present the strong

and weak forms of the governing equations of the problem

of hydraulic fracturing in saturated porous media, in Sect.

2. We detail the momentum balance equations for the solid

and fluid phases as well as the mass balance equations for

the fluid phase inside the solid skeleton and inside the

fracture. Constitutive equations include a nonlocal aniso-

tropic damage model (for the deformation and damage of

the porous matrix), the Park–Paulino–Roesler (PPR)

cohesive model (for fracture propagation), Darcy’s law (for

fluid flow in the solid matrix) and the cubic law (for fluid

flow within the fractures). In Sect. 3, we present the XFEM

used for space discretization and the finite difference

method used for time discretization. A Newton–Raphson

iterative scheme is employed to solve the global nonlinear
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system of equations. In Sect. 4, we first validate the for-

mulation and implementation of the computational model

by simulating the Khristianovic–Geertsma–de Klerk

(KGD) problem; we then conduct parametric studies in

plane strain conditions to understand the mechanisms that

control fracture path formation in the presence of both

material and stress anisotropy.

2 Coupled hydro-mechanical governing
equations for saturated porous media
with intrinsic transverse isotropy

2.1 Strong formulation

Hydraulic fracturing in porous media is a complex prob-

lem, which involves coupled physical processes that hap-

pen simultaneously, mainly micro-crack propagation and

coalescence in the solid porous matrix; fluid flow through

the porous medium; fluid flow within the macro-fracture;

fluid exchange between the porous matrix and the fracture.

Correspondingly, the governing equations required to

model these processes shall include: momentum balance

equations and constitutive laws for predicting the defor-

mation field, micro-crack development in the solid matrix

and the propagation of macro-fractures; fluid mass balance

equation and fluid transport constitutive equation, both in

the solid matrix and in the macro-fracture.

We start with the classical Biot theory [6] to describe the

mechanical behavior of elastic porous media saturated with

a single-phase fluid. Following Dormieux’s approach [23],

we consider that the development of micro-cracks (dam-

age) will have a direct influence on elasticity parameters

and on porosity. For the sake of simplicity, we assume that

damage development (i.e., the initiation and propagation of

micro-cracks) does not generate inelastic deformation, i.e.,

damage only affects the stiffness tensor. Porosity and

permeability are affected indirectly by damage, through the

expression of Biot’s effective stress. Consequently, the

potential energy density of a Representative Elementary

Volume (REV) of transversely isotropic porous material

can be expressed as:

Hsð�; p;xÞ ¼
1

2
� : CðxÞ : �� p2

2N
� pa : � ð1Þ

where Hs is also called Helmholtz free energy, � is the

strain tensor, p is the fluid pressure, x stands for the

damage variable, C is the elastoplastic stiffness tensor and

aij ¼ �o2Hs=o�ijop is Biot’s coefficient tensor. a linearly

relates the porosity change to the strain variation when

pressure is held constant (p ¼ 0). Due to Maxwell’s sym-

metry [13], a also linearly relates the stress increment to

the pressure increment when strain is held constant (� ¼ 0).

1=N ¼ �o2Hs=op
2 is the inverse of Biot’s skeleton mod-

ulus, linking pressure variation dp with the porosity vari-

ation when strain is held constant (� ¼ 0). According to the

thermodynamic conjugation relationships, the Biot’s

effective stress tensor r and the porosity / can be

expressed in following state equations:

r ¼ oHs

o�
¼ CðxÞ : �� ap

/� /0 ¼ � oHs

op
¼ a : �þ p

N

ð2Þ

where /0 is the initial porosity.

2.1.1 Mixture governing equations

Under quasi-static conditions, the momentum balance

equation of the REV (made of the mixture solid ? fluid) is:

r � rþ qg ¼ 0: ð3Þ

where q is the average mass density of the mixture, defined

as q ¼ ð1� /Þqs þ /qf , in which qs (respectively qf )
stands for the mass density of the solid phase (respectively,

density of the fluid phase). g is the body force vector.

Substituting the state Eq. 2 into Eq. 3, we get the strong

form of the governing equation for the mixture, as follows:

r � CðxÞ : �� ap½ � þ qg ¼ 0 ð4Þ

2.1.2 Fluid governing equations in the saturated porous
matrix

Fluid flow inside the porous matrix is fundamentally gov-

erned by the fluid mass balance equation, which expresses

that the mass change within the considered REV should be

equal to the difference between the fluid mass flowing out

the REV and the fluid mass flowing in the REV, as follows:

r � ðqfvÞ þ
omf

ot
¼ 0 ð5Þ

where v is the velocity vector of the fluid. qf and mf rep-

resent the mass density and the mass of the fluid, respec-

tively. Since the porous medium is saturated with the fluid,

we have: mf ¼ qf/, where / is the porosity. According to

the state equation of the fluid, the mass density of the fluid

is related to the pore pressure through the following

equation:

d qf
qf

¼ d p

Kf
ð6Þ

where Kf is the bulk modulus of the fluid. We assume that

fluid flow inside the porous matrix is laminar and that it is

governed by Darcy’s seepage equation as:
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v ¼ � km

l
ðrp� qfgÞ ð7Þ

where l is the dynamic viscosity of the fluid, km is the

intrinsic anisotropic permeability tensor of the solid

skeleton. For simplicity, we assume that permeability

remains constant in this paper. Note that future develop-

ments are necessary to account for the dependence of

permeability to the geometry and connectivity of pores and

cracks within the solid skeleton. By substituting the state

equations (Eqs. 2, 6), the Darcy’s law (Eq. 7) into Eq. 5,

we get the governing equation for the fluid flow through the

permeable porous medium surrounding the fracture, as

follows:

a :
o�

ot
þ 1

M

op

ot
¼ r � km

l
ðrp� qfgÞ; ð8Þ

where it is assumed that the spatial variability of the fluid

mass density is negligible (i.e., rqf 6¼ 0). M is the so-

called Biot’s modulus, defined by

1

M
¼ 1

N
þ /
Kf

: ð9Þ

2.1.3 Fluid governing equations along the fracture

Different from the fluid flow inside the porous matrix, the

mass balance equation that governs the fluid flow inside the

fracture involves a direction-dependent hydraulic conduc-

tivity. Consider a plane strain REV such that a face of the

REV is a unit fracture surface, as sketched in Fig. 1. The

local fracture width is noted w (perpendicular to fracture

faces). The fluid mass change per unit of time within the

REV is equal to the variation of flow rate in the direction of

the fracture plane, plus the variation of flow rate in the

direction perpendicular to the fracture surfaces. The mass

balance equation is thus expressed as:

rs � qfqðsÞ½ � þ ½½qfvðsÞ�� � nCd
þ o

ot
ðqfwÞ ¼ 0: ð10Þ

where rs represents the gradient in the tangent direction of

the local fracture surface, in which s denotes the natural

coordinate of the fracture. q is the flow rate inside the

fracture. Accordingly, the first term represents the change

of fluid mass due to a flow rate variation within the frac-

ture. The velocity v is related to the flow in the matrix and

can be discontinuous at the two fracture surfaces: vþ 6¼ v�.
We note ½½vðsÞ�� the velocity jump across the fracture. After

multiplying by the normal direction of the fracture surfaces

nCd
and the fluid density qf , the second term represents the

amount of fluid exchanged between the matrix and the

fracture.

The flow rate q is typically computed by the integral of

the velocity over the thickness of the fracture. It can vary

with the location s of the point on the fracture surface, and

it is related to the pressure gradient in the fracture surface

by the following law:

qðsÞ ¼ � cðsÞðrspðsÞ � qfgÞ

¼ � w3ðsÞ
12l

ðrspðsÞ � qfgÞ
ð11Þ

where cðsÞ is the hydraulic conductivity of the fracture at

the natural coordinate s. Here, we use Poiseuille fluid flow

equation and accordingly, we calculate cðsÞ from the cubic

law.

By substituting the constitutive law (Eq. 11) and the

state equation (Eq. 6) into Eq. 10, we get the governing

equation for the fluid flow within the fracture, as follows:

½½vðsÞ�� � nCd
þ owðsÞ

ot
þ wðsÞ

Kf

opðsÞ
ot

¼ rs �
w3ðsÞ
12l

ðrspðsÞ � qfgÞ
� �

:

ð12Þ

Since � and w can be both expressed in terms of the dis-

placement field in the solid skeleton and of the fluid

pressure, the unknowns in Eqs. 4, 8, and 12 can all be

related to u and p. Thus, these governing equations are

usually referred to as the u� p formulation.

2.2 Weak formulation

In order to obtain the weak formulation of the problem

from its strong formulation, it is necessary to define the

essential and natural boundary conditions at the exterior

and interior boundaries of the domain. In this chapter, we

focus on two-dimensional problems, as described in Fig. 2.

The domain X with exterior boundary C has a discontinuity

Cd, which is treated as an interior boundary and may

evolve due to fluid pressurization. The two surfaces of the

discontinuity Cd are noted Cþ
d and C�

d . We note nCd
the

unit normal vector on the fracture surface, pointing toward

Xþ, i.e., ðnCd
¼ nC�

d
¼ �nCþ

d
Þ.

As shown in Fig. 2, the essential boundary conditions

(respectively, natural boundary conditions) are imposed on

the external boundary of the domain by the prescribing the

primary variables and �p (respectively, the secondary

variables, traction and fluid outflow rate �q), as follows:

u ¼ �u on Cu

p ¼ �p on Cp

ð13Þ

and
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Fig. 1 Sketch of a unit plane strain REV for fluid flow along the fracture. s is the natural coordinate along fracture surface, qðsÞ is the flow rate

across the fracture width w at s, v is the fluid velocity inside matrix and nCd
is the unit normal direction of the fracture

Fig. 2 Boundary conditions on a domain X that contains a discontinuity Cd . X is subjected to boundary conditions, as follows: Cu (respectively,

Cp) is subjected to displacement (respectively, pore pressure �p); and Ct (respectively, Cq) is subjected to traction �t (respectively, fluid flux �q).
Cu [ Ct ¼ C and Cu \ Ct ¼ ; hold for the solid phase, Cp [ Cq ¼ C and Cp \ Cq ¼ ; hold for the fluid phase. The discontinuity Cd is treated as

an interior boundary with a positive surface Cþ
d and a negative surface C�

d , subjected to cohesive traction tþd and t�d , respectively. Unit normal

vectors are noted nCþ
d
and nC�

d
for the positive and negative fracture surface, respectively. Note that the level set function / is defined so as that it

is positive on the side of the domain that contains Cþ
d , and negative on the side of the domain that contains C�

d
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r � nC ¼ on Ct

v � nC ¼ �q on Cq

ð14Þ

where nC is the unit outward normal vector to the external

boundary C. Note: Cu [ Ct ¼ C and Cu \ Ct ¼ ; hold for

the solid phase, and Cp [ Cq ¼ C and Cp \ Cq ¼ ; hold for

the fluid phase.

From a physics perspective, the existence of the fracture

Cd in the domain X leads to a hydro-mechanical coupling

between the fracture and the bounding matrix. Fluid flow

along the fracture exerts pressure on the two fracture sur-

faces and pushes them apart, while the two surfaces

transmit cohesive traction. Reversely, pressure gradients

drive fluid flow into/out of the bounding matrix surround-

ing the fracture. Thus, the essential and natural boundary

conditions at the interior boundary Cd are expressed as

r � nCd
¼ td � pnCd

on Cd

ðvþ � v�Þ � nCd
¼ ½½v�� � nCd

¼ qd on Cd

ð15Þ

where td is the cohesive traction which governs the

mechanical behavior of the macro-fracture once the frac-

ture is initiated. In this paper, we employ the potential-

based PPR [65] cohesive model detailed in Sect. 2.4.

Moreover, qd represents the fluid flow into the matrix, i.e.,

leak-off in the fracture flow model.

For the hydraulic fracturing problem, an additional

boundary conditions needs to be specified at the fracture tip

and at the fracture mouth (i.e., at the intersection point

between the domain surface C and the fracture Cd). In

typical field operations, a fluid injection rate Qin is applied

at the fracture mouth ðs ¼ 0Þ and a zero flux is applied at

the fracture tip ðs ¼ smaxÞ:
qjs¼0 ¼ Qin; qjs¼smax

¼ 0; on oCd ð16Þ

We first obtain the weak form of the mixture governing

equation by multiplying Eq. 4 with a virtual displacement du
and by integrating over the whole domain X. After applying
the divergence theoremand theboundaryconditions,wehave:Z

X
rsdu : CðxÞ : rsudX�

Z
X
rsdu : apdX

þ
Z
Cd

d½½u�� � ðtd � pnCd
ÞdC ¼

Z
Ct

du � �tdC

þ
Z
X
qdu � gdX

ð17Þ

where the kinematic strain-displacement relation rsu ¼ �

is used. We use rs to denote the symmetric part of the

gradient operator. Note that Ritz method is adopted, in

which the interpolation functions (shape functions) used to

approximate the displacement field also serve as weight

functions to calculate the weighted integral residuals. In

order to ensure that the above equation holds for all

admissible solutions of displacement, the virtual displace-

ment must satisfy the essential boundary condition

dujCu
¼ 0. It is worth noting that the mechanical coupling

term comes from the boundary condition along the fracture

surfaces Cd, derived as follows:

�
Z
Cþ
d

du � ðr � nCþ
d
Þ d C�

Z
C�
d

du � ðr � nC�
d
Þ d C

¼
Z
Cd

ðduþ � du�Þ � ðr � nCd
Þ d C

¼
Z
Cd

d½½u�� � ðtd � pnCd
Þ d C

ð18Þ

We recall that ðnCd
¼ nC�

d
¼ �nCþ

d
Þ.

Similarly, we can obtain the weak form of the governing

equation of the fluid flowing in the matrix (Eq. 8), as

follows:Z
X
dp

1

M

op

ot
d Xþ

Z
X
dpa : rs ou

ot
d X

þ
Z
X
rdp � km

l
rp

� �
d X

�
Z
Cd

dpqd d C ¼ �
Z
Cq

dp�q d C

þ
Z
X

qfkm
l

rdp � g d X

ð19Þ

Note that dp is the virtual pressure that satisfies dpjCp
¼ 0.

The boundary condition km
l ð�rpþ qfgÞ � nC ¼ v � nC ¼ �q

is used for the exterior boundary Cq. Note that the

hydraulic coupling term in the above formula results from

the interior boundary conditions at the fracture surfaces, in

virtue of the following equation:Z
Cþ
d

dpðv � nCþ
d
Þ d Cþ

Z
C�
d

dpðv � nC�
d
Þ d C

¼ �
Z
Cd

dpðvþ � v�Þ � nCd
d C

¼ �
Z
Cd

dpqd d C

ð20Þ

The above equation states that the velocity of the fluid

normal to the fracture is discontinuous, which indicates,

according to Darcy’s law, that the gradient of fluid pressure

along the normal to the fracture surface is discontinuous.

At the same time, the fluid pressure field as well as the

virtual pressure should be continuous across the fracture so

that Darcy’s law can be applied. Thus, we use the same

virtual pressure dp as in Eq. 19 to multiply the governing

equation of the fluid flowing in the fracture (Eq. 12), and
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we integrate it over the fracture domain Cd to obtain the

following weak form:Z
Cd

dp½½v�� � nCd
d C ¼

Z
Cd

dpqd d C

¼ �
Z
Cd

dp
ow

ot
d C�

Z
Cd

dp
w

Kf

op

ot
d C

�
Z
Cd

rmdp �
w3

12l
rmp

� �
d C

þ dpQinjs¼0

ð21Þ

where rm denotes the one-dimensional gradient along the

fracture tangent direction (mCd
, as shown in Fig. 2). The

width of the fracture is computed through the following

relationship:

w ¼ ðuþ � u�Þ � nCd
¼ ½½u�� � nCd

: ð22Þ

The weak form of governing equation for the fluid flow

inside the fracture can be directly injected into the weak

form of the governing equation for the fluid flowing in the

matrix (Eq. 19), since the same virtual field dp is used.

2.3 Nonlocal continuum damage model
for transversely isotropic materials

As explained by Roth et al. [70], Wang and Waisman [85]

and Leclerc et al. [52], the mechanical failure of quasi-

brittle materials occurs in two phases: the process starts

with diffused material degradation due to microscopic

defects inception and evolution and continues with local-

ized macroscopic fracture propagation. The first phase can

be modeled with continuum damage mechanics. Nonlocal

enhancement is needed to capture softening. The evolution

of damage can then be used to predict the initiation of a

localized macroscopic fracture in the second phase.

In the following, we briefly introduce the nonlocal

damage model for transversely isotropic materials, pro-

posed by the authors in [40, 41] and used to govern matrix

behavior in this paper. Note that we focus on plane strain

conditions with tensile damage development. The model is

built on the principle of strain equivalence, which states

that the deformation of the damaged material under the

actual stress r is the same as that of the non-damaged

material under the so-called effective stress, r̂, defined as:

r̂ ¼ M : r ð23Þ

where M is a fourth-order damage operator (second-order

with Voigt notation M). Assuming that damage

components in each direction evolve independently, the

damage operator M has a diagonal form, as follows:

Mii ¼
1

1� xi

i ¼ 1; 2; 3; 4 ð24Þ

where xi are the components of damage variable x ( in

Eq. 1). Note that Voigt notations are adopted here, so that

r̂4 ¼ ŝ12 ¼ s12
1�x4

, in which x4 ¼ 1� ð1� x1Þð1� x2Þ.
The diagonal form of M ensures that the damaged com-

pliance matrix resulting from Eq. 23 is symmetric. We

consider transversely isotropic materials, in which the local

coordinate system is oriented so that direction 1, called the

axial direction, is perpendicular to the bedding plane.

Directions 2 and 3, along the bedding plane, are called

transverse directions. Correspondingly, in Eq. 24, x1 is

called axial damage and x2 and x3 are the transverse

damage variables. Damage components are directly related

to equivalent strains, as explained below. We focus on

plane strain conditions, in which the equivalent strain in the

out-of-plane direction is zero, which implies that the

damage component x3 is zero.

We focus on quasi-brittle materials, in which the non-

linear stress/strain relation results from damage evolution

only (micro-crack development), with negligible inelastic

deformation. Adopting the principle of strain equivalence,

the constitutive relation is expressed as

� ¼ S0 : M : r: ð25Þ

where S0 is the material elastic compliance matrix, which

depends on 5 independent parameters for transversely

isotropic materials, and they are Young’s modulus in axial

and transverse direction ðE1=E2), shear modulus G12,

Poisson’s ratio in the bedding plane m23 and in the plane

perpendicular to the bedding plane ðm12Þ. In plane strain

conditions, the damaged stiffness tensor CðxÞ ¼ ðS0 :

MÞ�1
can be explicitly expressed by using Voigt notation,

as follows:

C ¼

C11 C12 C13 0

C21 C22 C23 0

C31 C32 C33 0

0 0 0 C44

0
BBB@

1
CCCA ð26Þ

in which
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C11 ¼ E1ð1� x1Þ
�
ð1� x2Þm223 � 1

�
=D

C22 ¼ E2ð1� x2Þ
�
ð1� x1Þm12m21 � 1

�
=D

C33 ¼ E2ð1� x1Þð1� x2Þðm21m12 � 1Þ=D

C44 ¼ G12ð1� x1Þð1� x2Þ

C12 ¼ �E1m21ð1� x1Þð1� x2Þð1þ m23Þ=D

C21 ¼ �E2m12ð1� x1Þð1� x2Þð1þ m23Þ=D

C13 ¼ �E1m21ð1� x1Þ
�
1þ ð1� x2Þm23

�
=D

C31 ¼ �E2m12ð1� x1Þ
�
1þ ð1� x2Þm23

�
=D

C32 ¼ C23 ¼ �E2ð1� x2Þ
�
m23 þ ð1� x1Þm12m21

�
=D

ð27Þ

where E2m12 ¼ E1m21, and D ¼ ð1� x2Þm223 þ 2ð1� x1Þ
ð1� x2Þm12m21m23 þ ð1� x1Þð2� x2Þm12m21 � 1:

In order to distinguish damage development in axial and

transverse directions, two loading surfaces g1=g2 are

defined as:

g1ð�; j1Þ ¼ �eq1 � j1; g2ð�; j2Þ ¼ �eq2 � j2 ð28Þ

where the equivalent strains �eq1 =�
eq
2 are scalar measures of

strain defined in the axial and transverse directions. j1 and
j2 are the internal state variables that control the evolution
of damage: they represent the equivalent strain thresholds

before the initiation of damage in directions 1 and 2,

respectively. After damage initiation, j1 and j2 are the

largest equivalent strains ever reached during the past

loading history of the material.

Field investigation and laboratory experiments [26, 81]

indicate that there are two primary failure modes in

transversely isotropic rock (Fig. 3): the sliding mode, in

which failure is controlled by the tensile and shear strength

of the bedding planes, and the non-sliding mode, in which

failure is controlled by the strength of the matrix material.

Correspondingly, the two equivalent strains in two loading

surfaces (Eq. 28) for direction-dependent transverse iso-

tropic materials under plane strain condition are defined as:

�eq1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�11Þ2 þ ð�12Þ2

�t011
�s012

� �2
s

;

�eq2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�22Þ2 þ ð�12Þ2

�t022
�s012

� �2
s ð29Þ

where �t011 (respectively �t022) is the initial tensile strain

threshold for the sliding mode (respectively for the non-

sliding mode), and �s012 is the initial out-of-bedding-plane

shear strain threshold. They are all material properties and

are calibrated from experimental data.

The loading surfaces in Eq. 28, together with the defi-

nition of equivalent strains in Eq. 29, determine the current

boundary of the elastic domain gi\0. Damage can only

grow if the current strain state reaches the boundary gi ¼ 0.

Karush-Kuhn-Tucker complementary conditions are used

to account for loading-unloading stress paths:

g1 � 0; _j1 � 0; _j1g1 ¼ 0

g2 � 0; _j2 � 0; _j2g2 ¼ 0
ð30Þ

Now, we establish a relationship between the internal state

variables j1, j2, defined as the maximum equivalent strains

ever encountered in the material, and the damage variable

components xi; ði ¼ 1; 2Þ. Since both the internal variables

and the damage components grow monotonically, it is

admissible to postulate the evolution law of damage in the

form xi ¼ f ðjiÞ; i ¼ 1; 2. The exact form of the function f

should be identified from actual stress paths monitored in

experiments, such as uniaxial stress–strain curve in axial

and transverse directions. In the absence of such data, we

assume that in tension, the axial damage component fol-

lows an exponential law, which reflects rapid micro-crack

propagation in mixed I–II mode:

x1 ¼
0; if j1 � �t011

1� exp � j1 � �t011
at11

� �
; if j1 [ �t011

8><
>: ð31Þ

where at11 is a material parameter that controls the damage

growth rate. We use a similar evolution law for tensile

damage growth in the transverse directions:

Fig. 3 The two primary failure modes in transversely isotropic materials
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x2 ¼
0; if j2 � �t022

1� exp � j2 � �t022
at22

� �
; if j2 [ �t022

8><
>: ð32Þ

where at22 controls the ductility of the response in the

transverse directions.

The constitutive law in Eq. 25 leads to stress-strain

softening behavior, which results in the well-known mesh

dependence issue in finite element simulations. Specifi-

cally, the size of the damage zone, which is linearly related

to energy release rate and should be a material constant,

does not converge upon mesh refinement [43]. Mathemat-

ically, the partial differential equations governing quasi-

static problems loose ellipticity, which makes the boundary

problem ill-posed. To address this issue, we adopt the

integral-based nonlocal regularization technique, in which

the damage evolution at a material point not only depends

on the stress state at that point, but also on the stress of

points located within a certain neighborhood, the size of

which is controlled by internal length parameters.

Numerically, we replace the local equivalent strains �eqi in

the loading surfaces (Eq. 28) by their nonlocal counterparts

�eqi , which are calculated as the weighted averages of the

local equivalent strains over an influence volume V:

�eqi ðxÞ ¼
Z
V

aðx; nÞ�eqi ðnÞdVðnÞ; ði ¼ 1=2Þ: ð33Þ

where x and n are the position vectors of the local point

considered and of a point located in the influence volume,

respectively. aðx; nÞ is a weight function and is normalized

to preserve constant fields, as follows:

aðx; nÞ ¼ a0ðkx� nkÞR
V
a0ðkx� nkÞdVðnÞ : ð34Þ

where the function a0ðrÞ monotonically decreases with the

increasing distance r ¼ kx� nk. We choose a0ðrÞ to be a

bell-shaped function with a bounded nonlocal influence

zone lc as

a0ðrÞ ¼
	
1� r2

l2c


2

: ð35Þ

in which lc provides an internal length parameter that

serves as a localization limiter to alleviate mesh sensitivity.

In addition, the size of lc also determines the size of the

damage process zone.

2.4 Macro cohesive zone model: PPR

The nonlocal damage model performs well for modeling

diffused damage development during micro-crack propa-

gation. However, it suffers spurious damage growth during

macro-fracture localization because the fixed interaction

domain used in the nonlocal formulation enables the

transfer of energy from the damage process zone to a

neighboring unloading elastic region [31, 76]. In addition,

macro-fracture surfaces are not explicitly represented.

Therefore, in this paper, we employ the nonlocal damage

model to simulate micro-crack propagation (i.e., the dam-

age process zone development) and we define a damage

threshold xcrit above which a macroscopic fracture seg-

ment represented by a cohesive zone model is inserted to

simulate the macro-fracture localization. We adopt the

potential-based PPR cohesive model [65]. The main trac-

tion-separation equations are explained in the following.

The PPR meets the following requirements: (1) Com-

plete normal and shear failure are reached when normal or

tangential separation reaches a maximum value; (2) the

traction rate is equal to zero when the traction is equal to

the cohesive strength; (3) the energy release rate is equal to

the area enclosed by the traction-separation curve. The

expression of the potential is

WðDn;DtÞ ¼ minð/n;/tÞ

þ
�
Cn

�
1� Dn

dn

�a�
m

a
þ Dn

dn

�m

þ h/n � /ti
�

�
�
Ct

�
1� jDtj

dt

�b�
n

b
þ jDtj

dt

�n

þ h/t�/ni
�
:

ð36Þ

where Dn and Dt (respectively dn and dt) stand for the

separations in the normal and shear directions at the current

time (respectively, at failure) as shown in Fig. 4. /n (re-

spectively /t) is the mode I (respectively, mode II) cohe-

sive energy release rate. a and b are the shape factors that

control the concave or convex nature of the softening

curve. The mechanical response of brittle materials is best

represented by power law softening equations or bilinear

softening laws [79]. Accordingly, we use a ¼ b ¼ 4, which

allows representing concave shaped softening curves with a

power law. Cn and Ct are energy constants, related to /n

and /t as follows:

Cn ¼ ð�/nÞh/n�/ti=ð/n�/tÞ
�

a
m

�m

;

Ct ¼ ð�/tÞh/t�/ni=ð/t�/nÞ
�
b
n

�n

:

ð37Þ

where m, n, called the non-dimensional exponents, are

expressed in terms of the shape factors a; b (a ¼ b ¼ 4 in

this study) and of the initial slope indicator ðkn; ktÞ, as
follows:

m ¼ aða� 1Þk2n
ð1� ak2nÞ

; n ¼ bðb� 1Þk2t
ð1� bk2t Þ

ð38Þ
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The initial slope indicators are defined as the ratios of

critical crack opening width to the final crack opening

width (Fig. 4), i.e., kn ¼ dnc=dn; kt ¼ dtc=dt.
According to thermodynamic principles, the traction

vector in the local coordinate system ðTn; TtÞ, noted td in

the global coordinate system shown in Fig. 2, is obtained

directly from the derivative of the potential in equation 36:

TnðDn;DtÞ ¼
Cn

dn

�
m

�
1� Dn

dn

�a�
m

a
þ Dn

dn

�m�1

� a

�
1� Dn

dn

�a�1�
m

a
þ Dn

dn

�m�

�
�
Ct

�
1� jDtj

dt

�b�
n

b
þ jDtj

dt

�n

þ h/t � /ni
�

TtðDn;DtÞ ¼
Ct

dt

�
n

�
1� jDtj

dt

�b�
n

b
þ jDtj

dt

�n�1

� b

�
1� jDtj

dt

�b�1�
n

b
þ jDtj

dt

�n�

�
�
Cn

�
1� Dn

dn

�a�
m

a
þ Dn

dn

�m

þ h/n � /ti
�
Dt

jDtj

ð39Þ

Usually, the extrinsic CZM, in which the elastic behavior

(or initial ascending slope) is excluded, is used to model

fracture propagation when a cohesive segment or a cohe-

sive interface element is adaptively inserted. Only the

softening branch is used, because the elastic deformation of

the material is already accounted for by the continuum

damage model. However, numerical simulations indicate

that the absence of one-to-one relationship at the point

Dn ¼ Dt ¼ 0 causes stability issues. In the following, we

use the intrinsic cohesive zone model with kn ¼ kt ¼ 0:01

to improve the convergence rate, and to avoid unwanted

elastic separation.

To close the formulation of the PPR cohesive model,

relationships between the cohesive strengths ðrmax; smaxÞ
and the final normal and shear crack opening widths

ðdn; dtÞ are needed. The traction rate is equal to zero when

traction is equal to the cohesive strength, so we have:

dn ¼
/n

rmax

akn

�
1� kn

�a�1

ða
m
þ 1Þ

�
a
m
kn þ 1

�m�1

dt ¼
/t

smax

bkt

�
1� kt

�b�1

ðb
n
þ 1Þ

�
b
n
kt þ 1

�n�1

ð40Þ

As explained in [63], the tangent Jacobian matrix can be

calculated analytically from the potential-based cohesive

segment model, which is critical to achieve quadratic

convergence in the Newton–Raphson iterative scheme. The

reader is referred to [64, 65] for the expression of the

Jacobian matrix for loading, unloading and reloading stress

paths.

3 Discretization and resolution procedure

3.1 XFEM spatial discretization for displacement
and pressure

To model fracture propagation without remeshing, we

adopt the XFEM to discretize the primary variables. The

Heaviside enrichment function is employed to account for

the displacement jump across the macro-fracture. Note that

the bounding medium is modeled by the proposed aniso-

tropic damage model with softening, so there is no singu-

larity at the macro-fracture tip. Thus, the classical

Fig. 4 PPR cohesive model of macro-fracture propagation. rmax (respectively, smax) denotes normal (respectively, shear) cohesive strength at

normal separation dnc (respectively, at shear separation dtc). dn (respectively, dt) is the normal (respectively, shear) separation at which cohesive

traction is zero. /n and /t are the mode I and mode II cohesive energy release rates, respectively
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branching functions are not necessary here. As a result, the

approximate function of displacement uhðx; tÞ is expressed
in the following form:

uhðx; tÞ ¼
X
i2S

NuiðxÞuiðtÞ

þ
X
i2SH

NuiðxÞ
1

2
HCd

ðxÞ � HCd
ðxiÞ½ �aiðtÞ

¼ NuðxÞUðtÞ þ NaðxÞAðtÞ

ð41Þ

where NuiðxÞ is the standard shape function associated with

node i, S is the set of all nodal points and SH is the set of

enriched nodes, the supports of which are bisected by the

fracture. uiðtÞ and aiðtÞ denote the nodal value of the dis-

placement field associated with the standard and enriched

degree of freedoms respectively. The Heaviside jump

function HðxÞ is defined as

HCd
ðxÞ ¼

þ1; /ðxÞ[ 0

�1; /ðxÞ\0

�
ð42Þ

where /ðxÞ is the level set function, which is defined as the

closest distance from the fracture surface, with positive or

negative, depending on which side of the fracture the point

x is located—see Fig. 2. It is worth noting that the shifted

jump function 1=2 HCd
ðxÞ � HCd

ðxiÞ½ � is used to avoid the

problem of postprocessing and blending elements [25]. The

analytical form of the displacement jump across the frac-

ture Cd is:

½½uðx; tÞ�� ¼
X
i2SH

NuiðxÞaiðtÞ ¼ NaðxÞAðtÞ ð43Þ

Note that the displacement jump is directly used to cal-

culate the fracture aperture w in the fluid flow governing

equation, as w ¼ ½½uðx; tÞ�� � nCd
(Eq. 22). For the fluid

pressure field, enrichment is done with the distance func-

tion. The approximate pressure field is expressed as:

phðx; tÞ ¼
X
i2S

NpiðxÞpiðtÞ

þ
X
i2SH

NpiðxÞ DCd
ðxÞ � DCd

ðxiÞ½ �RðxÞbiðtÞ

¼ NpðxÞPðtÞ þ NbðxÞBðtÞ
ð44Þ

where NpiðxÞ is the standard finite element shape function

associated with node i. Nodal sets S and SH are the same as

for the displacement field. piðtÞ and biðtÞ denote the nodal

value of the fluid pressure associated with the standard and

enriched degree of freedom, respectively. DCd
ðxÞ is the

distance function, defined as:

DCd
ðxÞ ¼

þ/ðxÞ; if/ðxÞ[ 0

�/ðxÞ; if/ðxÞ\0

�
ð45Þ

The gradient of the distance function along the direction

normal to the fracture is discontinuous, with:

rDCd
� nCd

¼ HCd
. As a result, enriching the FEM with the

distance function for the pressure field allows ensuring a

continuous pressure field and a discontinuous gradient of

pressure across the fracture. Thus, the fluid exchange

between the fracture and the matrix can be accounted for.

Similar to the displacement approximation, the shifted

enrichment function DCd
ðxÞ � DCd

ðxiÞ½ � is used and RðxÞ is
a weight function, defined as RðxÞ ¼

P
i2SH NpiðxÞ as pro-

posed by Mohammadnejad and Khoei [58]. It is worth

noting that the pressure field at the tip of the fracture does

not need to be enriched to satisfy the ‘‘no leakage flux’’

boundary condition.

From now on, we use the following (simplified) nota-

tions: NuðxÞ and NpðxÞ (respectively, NaðxÞ and NbðxÞ) are
the matrices of standard (respectively, enriched) shape

functions for the displacement field u and for the pressure

field p, respectively. UðtÞ and PðtÞ (respectively, AðtÞ and
BðtÞ) are the vectors of the standard (respectively, enri-

ched) displacement and pressure degrees of freedom,

respectively. By substituting the approximations

(Eqs. 41, 44) into the governing weak form equations

(Eqs. 4, 8, 12 ), we can obtain the discretized form of the

governing equations, as follows:

KuuU þ KuaA� QupP� QubB� Fext
u ¼ 0

KT
uaU þ KaaA� QapP� QabB� QadPd þ Fint

a � Fext
a ¼ 0

QT
up
_U þ QT

ap
_A

þMpp
_PþMpb

_BþHppPþHpbB� Fint
p � Fext

p ¼ 0

QT
ub
_U þ QT

ab
_AþMT

pb
_PþMbb

_B

þHT
pbPþHbbB� Fint

b � Fext
b ¼ 0

ð46Þ

where the Ritz method is used, i.e., in which the virtual

displacement du and the virtual pressure dp are used as

weight functions. The matrices Kabða; b ¼ u; aÞ are the

mechanical stiffness matrices, which can be expressed as:

Kab ¼
Z
X
BT
aCBbdX ð47Þ

where B is the strain–displacement matrix (derivative of

shape functions with respect to the coordinates), and C is

the Voigt matrix of damage stiffness tensor C.

The matrices Qabða; b ¼ u; pÞ are hydro-mechanical

coupling terms, which can be expressed as:
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Qup ¼
Z
X
BT
uaNpdX; Qub ¼

Z
X
BT
uaNbdX

Qap ¼
Z
X
BT
aaNpdX; Qab ¼

Z
X
BT
a aNbdX

ð48Þ

in which N is the shape function vector.

The matrices Mabða; b ¼ p; bÞ represent the compress-

ibility of the fluid and of the solid skeleton and they are

expressed as:

Mpp ¼
Z
X
NT

p

1

M
NpdX; Mpb ¼

Z
X
NT

p

1

M
NbdX;

Mbb ¼
Z
X
NT

b

1

M
NbdX

ð49Þ

whereM is the Biot modulus defined in Eq. 9. The matrices

Habða; b ¼ p; bÞ represent the hydraulic conductivity and

are expressed as

Hpp ¼
Z
X
rNT

p

km

l
rNpdX;

Hpb ¼
Z
X
rNT

p

km

l
rNbdX;

Hbb ¼
Z
X
rNT

b

km

l
rNbdX

ð50Þ

It is worth noting that the mass balance equation for the

fluid flow in the fracture does not explicitly appear in the

discrete form (Eq. 46). Instead, we introduce the internal

force (flux) vector ðFint
p ;Fint

b Þ to account for the mass

exchange between the matrix and the fracture, as follows:

Fint
p ¼

Z
Cq

NT
p qd d C

¼ �
Z
Cd

NT
p

w

Kf

_pdC�
Z
Cd

NT
p ½½_�� � nCd

dC

�
Z
Cd

rNT
p �mCd

w3

12l
rp �mCd

dCþ NpQinjs¼0

Fint
b ¼

Z
Cq

NT
b qd d C

¼ �
Z
Cd

NT
b

w

Kf

_pdC�
Z
Cd

NT
b ½½_�� � nCd

dC

�
Z
Cd

rNT
b �mCd

w3

12l
rp �mCd

dC

ð51Þ

The mechanical coupling term between the fracture and the

matrix constitutes another internal force vector Fint
a in the

equilibrium equation, expressed as

Fint
a ¼

Z
Cd

NT
a ðtd � pnCd

Þ d C ¼
Z
Cd

NT
a td d C

�
Z
Cd

NT
anCd

p d C:
ð52Þ

where the fluid pressure p and the cohesive traction td are

both exerted on the fracture surfaces. The remainder of the

external force (flux) vectors in Eq. 46 are listed in the

following:

Fext
u ¼

Z
Ct

NT
u
�t d Cþ

Z
X
qNT

ug d X

Fext
a ¼

Z
Ct

NT
a
�t d Cþ

Z
X
qNT

ag d X

Fext
p ¼ �

Z
Cq

NT
p �q d Cþ

Z
X

qfkm
l

rNT
p � gdX

Fext
b ¼ �

Z
Cq

NT
b �q d Cþ

Z
X

qfkm
l

rNT
b � gdX

ð53Þ

3.2 Finite difference temporal discretization
and resolution procedure

In order to further simplify the notations in the following

derivations for time discretization, we condense the enri-

ched and standard degree of freedoms for displacement and

pressure as UðU;AÞ and PðP;BÞ. The weak form of the

governing equation discretized in space (Eq. 46) can be

rewritten as

KU� QPþ Fint
U ðU;PÞ � Fext

U ¼ 0

QTUþMPþHP� Fint
P ðU;PÞ � Fext

P ¼ 0
ð54Þ

To solve the above equations, we use a linear discretization

scheme in time: first-order time derivatives _X are expressed

in terms of the difference between X at time step nþ 1 and

X at time step n:

_Xnþh �
Xnþ1 � Xn

Dt
ð55Þ

where Dt is the time step. X at the current time is the

weighted value between time step nþ 1 and time step n:

Xnþh ¼ ð1� hÞXn þ hXnþ1 ð56Þ

in which the weight h can be any value between 0 and 1. If

h ¼ 0, the time discretization method is the explicit for-

ward Euler scheme; if h ¼ 1, the time discretization

method is the implicit Euler scheme. We use h ¼ 2=3 to

ensure unconditional stability. After injecting the time

discretization equations into the spatially discretized gov-

erning equations (Eq. 54), we obtain the residual at time

step nþ 1, as follows:
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RU;nþ1 ¼ KUnþ1 � QPnþ1 þ Fint
Unþ1

� Fext
Unþ1

¼ 0

RP;nþ1 ¼ QTUnþ1 þ ðM þ hDtHÞPnþ1

� Fint
Pnþ1

� GPnþ1
¼ 0

ð57Þ

where GPnþ1
is the vector of known values at time step n,

expressed as:

GPnþ1
¼ DtFext

Pnþ1
þ QTUn þ

�
M � Dtð1� hÞH

�
Pn

þ
Z
Cd

NT
P

w

Kf

pndCþ
Z
Cd

NT
P½½u��n � nCd

dC

� Dtð1� hÞ
Z
Cd

rNT
P �mCd

w3

12l
rpn �mCd

dC

ð58Þ

and Fint
Pnþ1

is the flux vector that accounts for the mass

exchange between the matrix and the fracture at time step

nþ 1:

Fint
Pnþ1

¼�
Z
Cd

NT
P

w

Kf

pnþ1dC�
Z
Cd

NT
P½½u��nþ1 � nCd

dC

� Dth
Z
Cd

rNT
P �mCd

w3

12l
rpnþ1 �mCd

dC

þ DtNPQinjs¼0

ð59Þ

The nonlinear system (Eq. 57) is solved iteratively. We

adopt the Newton–Raphson method to linearize the system

with respect to displacement and pressure at the equilib-

rium iteration i within the time step nþ 1, as follows:

Riþ1
U;nþ1

Riþ1
P;nþ1

" #
¼

Ri
U;nþ1

Ri
P;nþ1

" #

þ

oRU

oU

oRU

oP
oRP

oU

oRP

oP

2
664

3
775
i

nþ1

dUi
nþ1

dPi
nþ1

" #
¼ 0

ð60Þ

The derivative of the residual with respect to the unknown

degrees of freedom is the Jacobian matrix J. Note that the

mechanical stiffness KðxÞ depends on damage and is

therefore a function of the unknown displacement. The

internal forces and flux vectors ðFint
U ;Fint

P Þ are also func-

tions of the unknowns at time step nþ 1. As a result, the

full consistent tangent matrix J is:

J ¼

oRU

oU

oRU

oP
oRP

oU

oRP

oP

2
664

3
775

¼
K þ oK

oU
Uþ oFint

U

oU
�Qþ oFint

U

oP

QT � oFint
P

oU
M þ hDtH � oFint

P

oP

2
664

3
775

¼

eKuu
eKua

eKT
ua

eKaa þ
oFint

a

oa

QT
up QT

ap �
oFint

p

ob

QT
ub QT

ab �
oFint

b

ob

2
6666666664

�Qup �Qub

�Qap þ
oFint

a

op
�Qab þ

oFint
a

ob

Mpp þ hDtHpp �
oFint

p

op
Mpb þ hDtHpb �

oFint
p

ob

MT
pb þ hDtHT

pb �
oFint

b

op
Mbb þ hDtHbb �

oFint
b

ob

3
77777777775
:

ð61Þ

where eK ¼ K þ oK
oU

U. The analytical expression for eK is

complex due to the nonlocal contribution, detailed in

Sect. 3.3. The other terms in Eq. 61 are expressed as:

oFint
U

oU
¼ oFint

a

oa
¼
Z
Cd

NT
aK

TTcohKNadC

oFint
a

op
¼
�
oFint

p

oa

�T

¼ �
Z
Cd

NT
anCd

NpdC

oFint
a

ob
¼
�
oFint

b

oa

�T

¼ �
Z
Cd

NT
anCd

NbdC

oFint
p

op
¼ �

Z
Cd

NT
p

w

Kf

NpdC

� hDt
Z
Cd

rNT
p �mCd

w3

12l
rNp �mCd

dC

oFint
p

ob
¼
�
oFint

b

op

�T

¼ �
Z
Cd

NT
p

w

Kf

NbdC

� hDt
Z
Cd

rNT
p �mCd

w3

12l
rNb �mCd

dC

oFint
b

ob
¼ �

Z
Cd

NT
b

w

Kf

NbdC

� hDt
Z
Cd

rNT
b �mCd

w3

12l
rNb �mCd

dC

ð62Þ
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in which K is the rotation matrix used to transform the

expression of the displacement jumps from the local

coordinate system ðDn;DtÞ to the global coordinate system

½½u��. It is defined as

K ¼ cosh sinh

�sinh cosh

" #
ð63Þ

where h is the angle between the fracture path and the

horizontal axis.

Tcoh in Eq. 62 is the derivative of the cohesive traction

force tdðTn; TtÞ with respect to the local displacement jump

ðDn;DtÞ. Since we adopt the PPR cohesive model, Tcoh can

be explicitly calculated from the expression of

oðTn;TtÞ=oðDn;DtÞ, as shown by Park and Paulino [64]. Note
that the above formulation does not account for fluid flow

within the fracture explicitly. Instead, for those elements with

enriched degrees of freedom, the XFEM is used to account

for the influence of the fracture on the permeability matrix H,

on the coupling term Q and on the compressibility term M,

through the terms ðoFint
U =oU; oFint

P =oPÞ. This approach

integrates fluid flow in both the fracture and the matrix and

requires few degrees of freedom, which makes the imple-

mentation of the model easier and allows achieving faster

convergence rates. It is also important to note that the extra

terms oFint

oP
are added to the coupling and permeability

matrixes, which allows using the same linear interpolation

function without concerning stability issue.

3.3 Analytical expression of the mechanical
tangent stiffness matrix

Due to the adopted nonlocal formulation, the calculation of

internal variables at a point requires calculating the average

of the values taken by those variables at the Gauss points

located in the influence zone. Consequently, additional

terms need to be added to the consistent stiffness matrix

eKabða; b ¼ u; aÞ due to nonlocal enhancement. Following

the procedure of Jirásek and Patzák [44], we have

eKab ¼Kab þ
oKab

ou
u

¼
Z
X

 
BT
aCBb þ BT

a
oC
ou

Bbu

!
dX:

ð64Þ

where the first term on the right-hand side is the local

Gauss point contribution, which can be numerically

expressed as

Z
X
BT
aCBbdX ¼

XNI

I¼1

wIðBI
aÞ

TCBI
b; ð65Þ

where NI is the total number of Gauss points, and wI are the

corresponding integration weights. The second term on the

right-hand side of Eq. 64 constitutes the nonlocal Gauss

points contribution. According to the chain rule, the

derivative of the stiffness tensor with respect to the dis-

placement reads:

oCðxiÞ
ou

¼ oC
oxi

oxi

oji

oji
o��eqi

d�eqi
du

ð66Þ

For the plane strain case studied in this paper, it is possible

to obtain the explicit expression of each of the partial

derivatives involved in the above equation. In particular,

the derivative of stiffness with respect to damage is:

oC
oxi

¼ 1

D2

oxi
C11D� oxi

DC11 oxi
C12D� oxi

DC12 0

oxi
C12D� oxi

DC12 oxi
C22D� oxi

DC22 0

0 0 oxi
C33D2

0
B@

1
CA

ð67Þ

in which

ox1
D ¼ �2ð1� x2Þm12m21m23 � ð2� x2Þm12m21

ox2
D ¼ �m223 � 2ð1� x1Þm12m21m23 � ð1� x1Þm12m21

ox1
C11 ¼ �E1

�
ð1� x2Þm223 � 1

�

ox2
C11 ¼ �E1m

2
23ð1� x1Þ

ox1
C22 ¼ �E2m12m21ð1� x2Þ

ox2
C22 ¼ �E2

�
ð1� x1Þm12m21 � 1

�

ox1
C33 ¼ �G12ð1� x2Þ

ox2
C33 ¼ �G12ð1� x1Þ

ox1
C12 ¼ E1m21ð1� x2Þð1þ m23Þ

ox2
C12 ¼ E1m21ð1� x1Þð1þ m23Þ

ð68Þ
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According to Eqs. 31 and 32, the partial derivatives of the

damage components with respect to ji can be calculated as

ox1

oj1
¼ 1

at11
exp � j1 � �t011

at11

� �
;

ox2

oj2
¼ 1

at22
exp � j2 � �t022

at22

� �
:

ð69Þ

Note that the partial derivative terms

oj1
o��eq1

¼
0; if�eq1 \j1
1; if�

eq
1 ¼ j1

�
;

oj2
o��eq2

¼
0; if�eq2 \j2
1; if�

eq
2 ¼ j2

� ð70Þ

are actually the loading-unloading indicators.

Differentiating the nonlocal strains defined in Eq. 33

with respect to displacement, we obtain

o��eqi xIð Þ
ou

¼
XNJ

J¼1

wJaIJ

�
o�eqi
ou

�
J

¼
XNJ

J¼1

wJaIJ

�
d�eqi
d�

�
J

o�J
ou

¼
XNJ

J¼1

wJaIJ

�
d�eqi
d�

�
J

BJ

ð71Þ

in which:

aIJ ¼
a0ðkx� nkÞPNJ

J¼1 a0ðkx� nkTÞwJ

ð72Þ

and in which the notation of wJ in Eqs. 71 and 72 is the

volume DV associated to Gauss point J. NJ is the total

number of Gauss points within the nonlocal influence zone

for Gauss point I. d�eqi and d� are vectors, which can be

calculated from the definition of the equivalent strains as

d�eq1
d�

¼ 1

�eq1
�11 0 �12

�t011
�s12

� �2
" #

;

d�eq2
d�

¼ 1

�eq2
0 �22 �12

�t022
�s012

� �2
" # ð73Þ

Combining all the above expressions, we can obtain the

analytical expression of the consistent tangent stiffness

ðeKab; a; b ¼ u; aÞ as:

eKab ¼
XNI

I¼1

wIðBI
aÞ

TCBI
b

þ
XNI

I¼1

XNJ

J¼1

X2
i¼1

wIwJaIJðBI
aÞ

T

�
oC
oxi

oxi

oji

oji
o�eqi

�
I�

d�eqi
d�

�
J

BJ
bB

I
buI

ð74Þ

3.4 Damage-driven cohesive fracture
propagation

The transition from continuum damage to macro-fracture is

modeled by inserting cohesive segments to regular finite

elements when damage reaches a critical threshold.

Because the damage model employed in this paper is

phenomenological, the transition can be triggered at any

level of damage. We set xcrit ¼ 0:1 for all simulation cases

presented in this paper. To compute the damage value at

the crack tip, we adopt the method proposed by Wang and

Waisman [85] and Wells et al. [86]. As shown in Fig. 5, we

assume that the fracture propagates when the maximum

component of the weighted damage vector (xi; i ¼ 1; 2 for

Fig. 5 Principle of the transition between continuum damage and

discrete fracture in the hydraulic fracturing problem
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2D) over the half-circle patch (shaded in blue) exceeds the

threshold xcrit ¼ 0:1. Mathematically, we first obtain �xi by

using the bell-shaped weight function a0ðkx� nkÞ, through

�xiðxtipÞ ¼
Z
XT

aðxtip; nÞxiðnÞdXTðnÞ

¼
PNGP

j¼1 a0ðkxtip � njkÞxiðnjÞDVjPNGP

j¼1 a0ðkxtip � njkÞDVj

; ði ¼ 1; 2Þ

ð75Þ

where xtip and n are the global coordinates of fracture tip

and the Gauss points in XT , respectively. NGP is the total

number of Gauss points in XT , and DVJ is the geometrical

volume associated with Gauss point j. Note that the size of

XT is controlled by the internal length lc because the

weight function used for nonlocal enhancement is the bell-

shaped function (Eq. 35).

The macro-fracture propagates in the direction �di, cal-
culated as the weighted average of the damage directions in

the half-circle patch, as follows:

�diðxtipÞ ¼
Z
XT

aðxtip; nÞxiðnÞ
d

kdk dXTðnÞ; ði ¼ 1; 2Þ

ð76Þ

where d ¼ n� xtip, as shown in Fig. 5. To summarize, we

first compare maxð �xiÞ; i ¼ 1; 2 with xcrit. If

maxð �xiÞ�xcrit, we propagate the fracture in the direction

of �di with a user-defined growth length Da. For all the

simulations presented in this chapter, we choose Da ¼ lc.

Since only the Heaviside function is used for XFEM dis-

cretization, no cohesive segment is inserted into the tip

element if the fracture tip is located inside an element. It is

worth noting that for a given time increment, the size of the

zone in which damage satisfies the transition criterion may

exceed the growth length Da. Thus, we repeat the above

calculation until maxð �xiÞ\xcrit. Within a single time

increment, the length of the propagated fracture equals

several times Da. Every time the fractures grows by a

length Da, we add extra degrees of freedom at the enriched

nodes and we add enriched shaped functions for the ele-

ments that contain newly enriched nodes. In addition, to

ensure consistent displacement jumps across the fracture,

we adopt the classical sub-region quadrature technique to

divide a quadrilateral element into multiple triangles, as

illustrated in Fig. 5. We use three Gauss points within each

triangle to calculate the Jacobian matrix and the residual.

To transform the internal and state variables from the ini-

tial to the new set of Gauss points, we adopt the super-

convergent patch recovery method proposed by Zienkie-

wicz and Zhu [87]. After remapping, we recheck the

propagation criterion and repeat all the follow-up steps.

Once the propagation criterion is not satisfied, we march to

the next increment and construct the global matrix equa-

tions, and the problem is iteratively solved. When con-

vergence is reached and the results are postprocessed, the

fracture propagation procedure is repeated. For clarifica-

tion, the overall computational steps of the proposed

numerical tool is presented in Algorithm 1.

Acta Geotechnica (2020) 15:113–144 129

123



4 Engineering applications

We implemented the proposed numerical framework in

MATLAB for modeling fluid-driven multi-scale fracture

propagation in transversely isotropic porous media. In the

following, we validate the formulation and implementation

of the multi-scale hydraulic fracturing model by comparing

simulation results to analytical solutions for the classical

Khristianovic–Geertsma–de Klerk (KGD) problem of

hydraulic fracturing. Then, we investigate the relative

influence of material and stress anisotropy on the fracture

path during hydraulic fracturing. Note that linear quadri-

lateral plane strain elements are used to discretize the

domain in all cases.

Algorithm 1: Computational procedures of the proposed multiscale hy-
draulic fracturing

Read input of node, element, fracture, and boundary conditions;
Initialize level set function φ(x);
Initialize interface gauss points for current cohesive segments, volumetric
gauss points for current enriched and unenriched elements;
for all volumetric gauss points in the elements do

Add neighboring gauss points ξ to the nonlocal table of the current
gauss point x if r = ‖x − ξ‖ < lc;
Compute the nonlocal weight according to eqs. 34 and 35;

end
while t < assigned simulation time do

Set residual = 1, t = t + Δt;
while residual > tolerance do

for all volumetric gauss points do
Compute and store equivalent strain according to eq. 29;

end
for all volumetric and cohesive gauss points do

Assemble the Jacobian matrix J according to eq. 61;
Update the residual according to eq. 57;

end
if residual (eq. 57) < tolerance then

Break;
end
Solve the linear equation and update the iterative u and p;

end
Update internal variables from converged u and p at this increment;
Output and post-process the converged results;
Set propagation = true;
while propagation == true do

Determine the tip detection region ΩT ;
Compute ω̄i(xtip) and d̄i(xtip) according to eqs. 75 and 76;
if max(ω̄i) > ωcrit then

Propagate the fracture in the weighted direction with length
Δa = lc;

else
propagation = false;

end
if propagation == true then

Update the level set function φ(x);
Update the volumetric and cohesive gauss points;
Remap variables from the old to the new set of gauss points;
Update and remap the primary variable vectors;

end
end

end

130 Acta Geotechnica (2020) 15:113–144

123



4.1 Model verification: KGD Injection Problem

The KGD problem is that of fracture propagation due to the

injection of a viscous fluid in a borehole embedded in an

infinite isotropic porous medium. Figure 6 presents the

geometry, dimensions, boundary conditions and mesh used

for the simulations. Only a half of the plane strain domain

is modeled due to symmetry, and the size of the domain is

chosen to avoid boundary effects. The internal length lc is

set to 0.05 m. We refine the mesh along the expected

fracture propagation path with an element size 0.015 m.

Note this element size satisfies the requirement of nonlocal

regularization as it is less than 1/3 of the internal length

lc ¼ 0:05 m. In addition, the proposed cohesive element

size is 10 times smaller than the cohesive process zone,

which can be estimated as lp ¼ 0:1EG=r2max according to

Turon et al. [82]. An initial fracture with length 0.1 m is

placed at the borehole, and a constant injection rate of

Q ¼ 0:0002m2=s is applied at the fracture mouth. For all

the simulation cases in this section, we set the initial

effective stress and fluid pressure to zero, and we employ a

constant time increment Dt ¼ 0:01s for a total simulation

time of 10 s. The remainder of the material parameters for

the porous medium is given in Table 1.

Given that the considered domain is isotropic, the elastic

constants as well as the damage evolution parameters are

not direction dependent (Table 1). In addition, we assume

that the cohesive strength and the cohesive energy release

rate have the same value for mode I and mode II fracture

propagation (/n ¼ /t ¼ G; rmax ¼ smax) in all simulation

cases. It is also worth noting that the damage initiation and

evolution parameters (�t011; �
t0
12; a

t
11) as well as the cohesive

fracture parameters (G; rmax) are calibrated to ensure a

consistent transition from damage to fracture. In this work,

a constant cohesive strength and a constant energy release

rate are assigned to each new cohesive segment inserted

during fracture propagation. Note that it is possible to track

the amount of energy dissipated by damage and to

dynamically calculate the cohesive energy release rate as

the difference between the total energy release rate and the

damage energy release rate (see [39, 42]). The calibration

of the multi-scale fracture propagation model is explained

in Fig. 7. We first simulate a mode I splitting test using

cohesive segments without damage development within the

matrix. All the cohesive segments are inserted along the

predefined fracture path (assumed to be known a priori in

this particular case) and we use

G ¼ 100N=m; rmax ¼ 1MPa. We choose the rest of the

parameters of the PPR cohesive model

(m ¼ n ¼ 4; kn ¼ kt ¼ 0:01) so as to represent brittle

fracture propagation and to ensure fast convergence. We

track the global response of the opening displacement (u)

and the reaction force (F) at the point where the dis-

placement boundary is applied and we obtain the dis-

placement–force curve marked with red circles in Fig. 7.

We carry out another simulation with the same boundary

conditions, with the proposed multi-scale fracturing model

this time, in which nonlocal damage is modeled in the

matrix at the first place, and cohesive segments are

dynamically inserted once the maximum weighted damage

component exceeds the threshold ðxcritÞ. We adjust the

damage initiation and evolution parameters (�t011; �
t0
12; a

t
11)

and the cohesive fracture parameters (G; rmax) by trial and

error, until the global response (u� F curve marked withFig. 6 The geometry, boundary conditions and finite element mesh of

the KGD problem

Table 1 Material parameters for the KGD problem: hydraulic frac-

turing in an infinite isotropic porous medium

Young’s modulus E ¼ 15:96 GPa

Poisson’s ratio m ¼ 0:2

Initial tensile strain threshold �t011 ¼ 3:5� 10�5

Initial shear strain threshold �t012 ¼ 1:5� 10�4

Damage evolution parameter at11 ¼ 1:5� 10�4

Internal length lc ¼ 0:05 m

Cohesive energy release rate G ¼ 90 N/m

Cohesive traction strength rmax ¼ 1 MPa

Intrinsic permeability jiiði ¼ 1; 2; 3Þ ¼ 2� 10�14

m2

Dynamic viscosity of water l ¼ 1� 10�3 Pa�s
Bulk modulus of solid phase Ks ¼ 36 GPa

Bulk modulus of water Kw ¼ 3 GPa

Biot’s constant aiiði ¼ 1; 2; 3Þ ¼ 0:79

Initial porosity /0 ¼ 0:19

Critical Damage xcrit ¼ 0:1
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blue plus signs in Fig. 7) matches the response obtained

when only cohesive segments are considered. For both

simulation cases, the same Young’s modulus and Poisson

ratio are used (Table 1), and the nonlocal internal length is

lc ¼ 0:05m. After calibration, we obtain the same cohesive

strength rmax ¼ 1MPa for the multi-scale framework as for

the cohesive segment model, but a lower cohesive energy

release rate GI ¼ 90N=m. In summary, simulating multi-

scale fracture propagation with the calibrated parameters

represents fracture propagation in a porous material that

has a 1 MPa strength and a total 100 N / m energy release

rate according to laboratory measurements.

Figure 8 shows the distribution of damage, nonlocal

equivalent strain, pore pressure and stress on the deformed

mesh (displacements multiplied by 1000) at t ¼ 10 s. As

expected, diffused damage x2 (horizontal micro-cracks) is

obtained within the process zone surrounding the macro-

fracture. Note that damaged elements are replaced by

cohesive segments when the weighted damage exceeds the

threshold xcrit ¼ 0:1, and not when a particular component

of damage exceeds that threshold. That explains why the

fracture tip does not advance when maxð �xiÞ\xcrit, even

when the value of damage components at a few Gauss

points within the tip detection region XT exceed the

threshold, maxðxiÞ�xcrit (Fig. 5). The distribution of the

nonlocal equivalent strain ��eq shown in Fig. 8 indicates that

tensile strains only exist in the area near the fracture tip.

The fracture surface behind the tip is under compressive

strain even when the pore pressure in this area is positive.

Note that we assume that the entire simulation domain

including the macro-fracture is saturated, i.e., the fluid lag

is not considered. However, a suction zone with negative

pore pressure is obtained at the fracture tip, which indicates

that a mathematical fluid lag exists. We will consider

multi-phase flow with explicit consideration of fluid lag in

future studies. The distribution of r2 further confirms that

only a limited zone close to the fracture tip is under tension

during hydraulic fracturing; the rest of the domain is under

compression.

An analytical solution to the KGD problem was

obtained for an elastic and impermeable medium in which

a fracture propagates due to the injection of an incom-

pressible fluid [32], as follows:

CMOD ¼ 1:87

�
lð1� mÞQ3

Gs

�1=6

t1=3

L ¼ 0:68

�
GsQ

3

lð1� mÞ

�1=6

t2=3

CMP ¼ 1:135

�
G3

sQl

ð1� mÞ3L2

�1=4

ð77Þ

where Gs is the shear modulus, L is the fracture length at

time t, CMOD stands for crack mouth opening displace-

ment, and CMP stands for crack mouth pressure. The other

notations are the same as in Table 1.

Figure 9 shows our simulation results of CMP, CMOD

and L, plotted against injection time. We also simulated the

KGD test with different permeabilities (j ¼ 2� 10�13m2,

and j ¼ 2� 10�15m2), keeping the rest of the parameters

Fig. 7 Trial and error calibration process for the multi-scale model of hydraulic fracturing: (1) Simulation of a splitting test with pre-inserted

cohesive segments without damage evolution inside the matrix to obtain the global force-displacement curve; (2) simulation of the same splitting

test with the proposed multi-scale framework, in which cohesive segments are dynamically inserted, to obtain the F � u curve; (3) adjustment of

the material parameters used in simulation (2) until the two F � u curves match
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the same (Table 1). Results are compared to the analytical

KGD solution [32]. As expected, results highlight the

significant influence of the intrinsic permeability on the

evolution of the fracture geometry (j ¼ 2� 10�13m2 vs

j ¼ 2� 10�14m2). The CMP builds up and lasts longer for

porous media with high permeability (Fig. 9a). Because the

fluid leak-off decreases the fluid pressure in the fracture,

the final fracture length is smaller in porous media with

higher permeability. On the contrary, the CMP quickly

decreases for porous media with low permeability, because

the macro-fracture propagates quickly, thus creating space

for the fluid to flow into. This phenomenon does not hold

for all permeabilities. Below a certain permeability value,

Fig. 8 Distribution of damage component x2, nonlocal equivalent strain ��eq, pore pressure, and stress component r2 on the deformed mesh

(displacements multiplied 103 times) at the end of the simulation (t ¼ 10 s). Note that the fracture propagates in direction 1 (x-axis)
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the CMP does not change any longer (j ¼ 2� 10�14m2 vs

j ¼ 2� 10�15m2). For t� 1s, with a very low intrinsic

permeability, the evolutions of L and of the CMOD found

numerically match the analytical solution, in which the

bounding medium is assumed to be impermeable. After 1s,

the analytical solution overestimates the fracture length

L and underestimates the CMOD. This discrepancy is

because: (1) even for media with very low permeability,

the assumption of impermeability does not hold because

the fluid flow into the matrix decreases the effective stress

that applies to the fracture faces; (2) the proposed multi-

scale hydraulic fracture propagation model depends on the

material’s strength and energy release rate, while the

analytical solution is for a purely brittle fracture propaga-

tion problem, independent of strength or energy release

rate.

We further investigate the influence of the fluid injection

rate on hydraulic fracturing for the KGD problem. All the

material parameters are kept the same as in Table 1, and

we vary the injection rate from Q ¼ 0:0002m2=s to

Q ¼ 0:0005m2=s. Figure 10 shows the calculated CMOD

and fracture length evolution against the injection time, and

the fracture opening displacement profile, the hydraulic

water pressure profile as well as the effective cohesive

attraction profile along the propagated fracture surface at

the end of the simulation (at t ¼ 10 s). The evolution of the
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(c) Evolution of fracture length over time

Fig. 9 Comparison of injection simulation results for various bounding medium permeabilities against the KGD analytical solution, in which the

medium is assumed to be impermeable
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CMOD and of the fracture length show that a higher

injection rate results in faster fracture propagation and a

wider fracture mouth opening. The profile of fracture

opening at the end of the simulation further confirms that

both the length and the width of the fracture increase with

the injection rate. However, the increase rate is not linear,

since the difference of CMOD and fracture length for the

same injection rate interval dQ ¼ 0:0001m2=s at the same

time is not the same. Due to the assumption of saturation,

water pressure profile shown in Fig. 10d show negative

value near the fracture tip area, and the magnitude of which

increases with increasing injection rate. Figure 10e plot the

effective cohesive attraction along the propagated fracture

surface at time of t ¼ 10s. For all of the injection rates, the

cohesive attraction starts at the fracture tip and increases to

cohesive strength rmax ¼ 1MPa and then gradually

decreases to zero as the displacement jump increases. It is

worth noting that the starting cohesive attraction for COD

= 0 mm varies with the injection rate, because that the

transition from continuum damage to discrete fracture is

triggered from weighted damage, not from stress.

4.2 Influence of material and stress anisotropy
on hydraulic fracturing

The following engineering problem illustrates the perfor-

mance of the proposed computational framework in mod-

eling the hydro-mechanical behavior of saturated media

subjected to both material and stress anisotropy. A square

domain 500 mm by 500 mm is considered. The solid

skeleton is transversely isotropic with horizontal layers.

We carry out three series of simulations (Fig. 11). In test 1,

all normal displacements at the boundary are fixed. An

initial fracture, 40 mm in length, oriented at an angle h
with respect to the horizontal axis, is placed at the center of

the domain (Fig. 11a). We investigate the effect of material

anisotropy on hydraulic fracturing by varying the angle h
under a constant fluid injection rate Q ¼ 10mm2=s. About

6500 linear plane strain elements were used to discretize

the domain. We set the initial pore pressure to zero, and we

run the simulation in 0.2 s with the time increment

Dt ¼ 0:005 s. In test 2, we use the same initial and

boundary conditions, but we change the fluid injection rate

from Q ¼ 10mm2=s to Q ¼ 20mm2=s. Comparing the

results of tests 1 and 2 informs on the influence of injection

rate on hydraulic fracturing in an anisotropic material. In

test 3, anisotropic in situ stress is applied at the boundary

and the injection angle h is nonzero, as shown in Fig. 11b.

The other initial and boundary conditions are the same as in

the previous two cases. The parameters used for the three

simulations are listed in Table 2.

Like in the KGD case, we calibrate by trial and error

the material parameters that control damage evolution

(�t011; �
t0
22; �

t0
12; a

t
11; a

t
22) and those that govern the cohesive

fracture behavior (G;1;G;2; rmax;1; rmax;2) in the directions

perpendicular and parallel to the layer. We use the local

coordinate system in which axis-1 is perpendicular to the

layer, and axis-2 is parallel to the layer. Note that in the

following simulations, we fix the local coordinate system

in such a way that axis-1 is always vertical. As explained

in Fig. 12, we first simulate two splitting tests with pre-

inserted cohesive segments parallel and perpendicular the

layer, for which the cohesive energy values are G;1 ¼
0:1N=mm;G;2 ¼ 0:2N=mm and the cohesive strengths are

rmax;1 ¼ 1 MPa, rmax;2 ¼ 2 MPa. Let us recall that in the

PPR cohesive model, we employ /n ¼ /t ¼ G; rmax ¼
smax;m ¼ n ¼ 4; kn ¼ kt ¼ 0:01 to account for mixed

mode fracture propagation and brittle fracture propagation

[62, 64, 65]. We extract the global force–displacement

curves (red circles for fractures parallel to the layer and

green squares for fractures perpendicular to the layer).

Then we run the same two simulations using the multi-

scale hydraulic fracturing model, in which cohesive seg-

ments are dynamically inserted when the weighted dam-

age at the fracture tip exceeds the critical value

xcrit ¼ 0:1. After a number of simulations with different

input parameters, which control meso-scale damage evo-

lution and macro-scale cohesive fracture propagation, we

find the best match for the F � u curve, as shown in

Fig. 12. The calibrated parameters are listed in Table 2.

In summary, the calibrated multi-scale fracture propaga-

tion model is globally equivalent to a model of fracture

propagation in a transversely isotropic material with

G;1 ¼ 0:1N=mm; rmax;1 ¼ 1 MPa in direction parallel to

the layer, and G;2 ¼ 0:2N=mm; rmax;2 ¼ 2 MPa in direc-

tion perpendicular to the layer.

The calibration process only provides the cohesive

parameters when the fracture propagates in the direction

parallel or perpendicular to the bedding. To determine the

cohesive parameters when the fracture propagation direc-

tion is neither parallel or perpendicular to the bedding, a

whole series of laboratory experiments would need to be

carried out. In this paper, we propose to obtain the cohesive

parameters by projection on an elliptical failure curve, as

shown in Fig. 13. The cohesive strength and the energy

release rate of a fracture that propagate at an angle h to the

layer are expressed as:

bFig. 10 Simulation results for a fluid-driven fracture in a porous

medium with different injection rates
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rmax;h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos h � rmax;1Þ2 þ ðsin h � rmax;2Þ2

q

G;h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos h � G;1Þ2 þ ðsin h � G;2Þ2

q ; ð78Þ

Fundamentally, we assume that the strength and the energy

release rate at different propagation angles form an ellipse

in plane strain condition.

Figure 14 shows the pore pressure p, the effective stress

component rx and the fracture paths at the end of the

simulation (at t ¼ 0:02 s) for test 3 with the boundary

conditions rv ¼ 4 MPa, rh ¼ 2 MPa, and Q ¼ 20mm2=s.

The increased pore pressure near the fracture in Fig. 14a, b

demonstrates that the proposed numerical tool can predict

the fluid leak-off from the macro-fracture to the porous

matrix. Compared to the case h ¼ 90	, the higher pore

Q=10 / 20 mm2/s

θ40 mm

500 mm

p=0

Direction of layer

(a) Without in situ stress (tests 1 and 2)

Q=20 mm2/s

θ40 mm

500 mm

p=0

σv=4 MPa

σ h
=

2 
M

Pa

Direction of layer

(b) With anisotropic in situ stress (test 3)

Fig. 11 Geometry and boundary conditions used to investigate the influence of material and stress anisotropy on hydraulic fracturing in

transversely isotropic materials

Table 2 Material parameters used in the simulations that investigate the influence material and stress anisotropy on hydraulic fracturing

Parameters Perpendicular to the layer Parallel to the layer

Young’s modulus E11 ¼ 10 GPa E22 ¼ 20 GPa

Poisson’s ratio m12 ¼ 0:2 m23 ¼ 0:2

In plane shear modulus G12 ¼ 6:25 GPa

Initial tensile strain threshold �t011 ¼ 8� 10�5 �t022 ¼ 9� 10�5

Initial shear strain threshold �t012 ¼ 6:8� 10�4

Damage evolution parameter at11 ¼ 3:5� 10�4 at22 ¼ 4� 10�4

Internal length lc ¼10 mm

Cohesive energy release rate G;1 ¼ 0:095 N/mm G;2 ¼ 0:19 N/mm

Cohesive traction strength rmax;1 ¼1 MPa rmax;2 ¼2 MPa

Intrinsic permeability j11 ¼ 2� 10�14 m2 j22 ¼ 4� 10�14 m2

Dynamic viscosity of water l ¼ 1� 10�3 Pa�s
Bulk modulus of solid phase Ks ¼ 36 GPa

Bulk modulus of water Kw ¼ 3 GPa

Biot’s constant a11 ¼ 0:75 a22 ¼ 0:65

Initial porosity /0 ¼ 0:19

Critical Damage Xcr ¼ 0:1
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pressure observed for h ¼ 0	 is due to the lower perme-

ability in the direction perpendicular to the layer (Table 2):

more fluid pressure builds up and less fracture space is

created (less fracture length and less width). In agreement

with physical expectations, for h ¼ 30	; 60	, compressive

effective stress is observed in the area behind the fracture

tip, and tensile effective stress only concentrates in the

areas ahead of fracture tip. For h ¼ 30	; 60	; 90	, the

fracture propagates in the direction of maximum com-

pressive in situ stress, which is exactly what is reported in

the literature. For h ¼ 0	, we expect to see two branches

emerging from the tips of the initial horizontal fracture,

that finally form vertical fractures. Instead, we obtain the

horizontal fracture shown in Fig. 14a, because of the

continuum damage to fracture transition criterion, based on

a weighted damage threshold (Sect. 3.4). Even if the con-

tinuum damage model predicts damage development in the

two vertical branch directions, the weighted damage

direction is horizontal.

Figure 15 shows the pore pressure distribution and the

fracture paths at the end of the simulations (at t ¼ 0:02s)

for the three tests, when h ¼ 30	 and when h ¼ 60	. In test

1 (no in situ stress, Q ¼ 10mm2=s), the fracture propagates

in the horizontal direction parallel to the layer, for both

h ¼ 30	 (Fig. 15a) and h ¼ 60	 (Fig. 15b). However, when

the injection rate increases to Q ¼ 20mm2=s (tests 2 and

3), the fracture path is horizontal only for h ¼ 30	 under

zero in situ stress (Fig. 15c), while a vertical fracture path

is predicted for h ¼ 60	 under the same boundary condi-

tions (Fig. 15d). This questionable result can be attributed

to: (1) The weighted damage-driven fracture propagation

criterion, which, similar to all other continuum theory

based propagation criteria, is not capable of predicting

fracture branching; (2) the rapid injection of the fluid,

which can change the fracture propagation direction if it

does not align with the weak layer. Further laboratory

experiments are needed to understand which of these two

phenomena is the primary cause of the discrepancy. In tests

3, the fracture path is parallel to maximum compressive
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displacement curve in the case of horizontal (respectively vertical) bedding; (2) simulation of the same splitting tests with the multi-scale
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stress, irrespective of the initial fracture direction (the

figure shows the case of rv ¼ 4MPa; rh ¼ 2MPa).

We further extracted the propagated fracture paths for

all the tests simulated, as illustrated in Fig. 16. When only

material anisotropy is considered, results show that a hor-

izontal fracture path parallel to the layer forms (Fig. 16a).

Typically, the fracture length and width increase with the

injection rate. Questionable results are obtained in some of

the cases with h� 60	, due to the weighted damage-driven

fracture proposition criterion. Figure 16b presents a com-

parison between the cases with material anisotropy only

(tests 1 and 2) and the cases with both material and stress

anisotropy (test 3). For all orientations h considered, the

predicted fracture length is shorter when in situ stress is

applied. This is because a part of the energy is dissipated to

overcome the compressive in situ stress. Some cases need

further experimental assessment and more advanced frac-

ture propagation criteria, especially when a horizontal

fracture path is predicted under nonzero in situ stress or

when a vertical fracture is predicted under zero in situ

stress.
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Fig. 14 Pore pressure and effective stress distributions shown on the deformed mesh (fracture opening magnified 50 times) at the end of the test 3

with rv ¼ 4 MPa, rh ¼ 2 MPa, and Q ¼ 20mm2=s
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5 Conclusions

In this paper, we formulated and implemented a numerical

tool to model multi-scale mixed mode fluid-driven fracture

propagation in transversely isotropic porous media. We

first presented the strong and weak forms of the governing

equations for the hydraulic fracturing problem, including

the equilibrium of forces for the mixture, the balance of

fluid mass within the matrix, and the balance of fluid mass

along the fracture. A nonlocal anisotropic damage model

was coupled to the PPR cohesive macro-fracture model to

simulate the transition between microscopic crack propa-

gation and macroscopic fracture localization. The

bFig. 15 Pore pressure distribution shown on the deformed mesh

(crack opening magnified 50 times) at the end of the tests simulated
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Fig. 16 Simulated fracture paths
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transition from continuum damage to cohesive fracture is

done by dynamically inserting cohesive segments once the

weighted damage exceeds a certain threshold. Diffusion

equations are used to model fluid flow inside the porous

matrix and within the macro-fracture, in which conduc-

tivity is obtained by Darcy’s law and the cubic law,

respectively. The XFEM is employed to approximate the

solution for the fully coupled u� p formulation: The

macro-fracture is modeled with Heaviside jump functions

for the displacement field and with modified distance

functions for the fluid pressure. After discretizing the sys-

tem of equations in time, the entire nonlinear system is

linearized and solved by using a Newton–Raphson iteration

scheme, in which the consistent tangent stiffness is derived

analytically, accounting for the nonlocal terms, in the plane

strain case.

We validate the formulation and implementation by

simulating the KGD mode I fracture propagation problem

in an infinite porous medium. We check that for low vol-

umes of fluid injected in a porous medium of low perme-

ability, the model provides predictions that are in

agreement with the analytical solution proposed for

impermeable media. We then examine the effect of mate-

rial and stress anisotropy on hydraulic fracturing by sim-

ulating a series of injection tests in an inclined fracture

embedded in a transversely anisotropic porous medium. As

expected, the fracture propagates along the bedding

direction in the absence of in situ stress and along the

direction of maximum compressive stress when anisotropic

stress boundary conditions are applied. The length and

width of the fracture increase with the injection rate.

The validation against the KGD analytical solution

shows that the widely used LEFM model might over-pre-

dict the propagation length. The proposed computational

framework, the first of its kind, allows simulating multi-

scale hydraulic fracturing. Improvements are still needed.

For example, some discrepancies are noted, especially

when both material and stress anisotropy are accounted for,

because of the choice of the damage-to-fracture transition

criterion, which cannot account for fracture branching (but

works perfectly well for unidirectional fractures). On the

one hand, a more detailed algorithm is needed to process

the evolution of damage at the tip and predict branching

paths; on the other hand, the level set method used to

identify fracture paths in the XFEM has inherent limita-

tions to account for multiple fracture branches and inter-

sections, especially in 3D. To overcome these limitations,

other numerical methods will be explored in future work,

such as techniques based on the dynamic insertion of

cohesive interface elements, peridynamics and the phase

field method.
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70. Roth SN, Léger P, Soulaı̈mani A (2015) A combined xfem-

damage mechanics approach for concrete crack propagation.

Comput Methods Appl Mech Eng 283:923–955

71. Salimzadeh S, Khalili N (2015) A three-phase xfem model for

hydraulic fracturing with cohesive crack propagation. Comput

Geotech 69:82–92

72. Savitski A, Detournay E (2002) Propagation of a penny-shaped

fluid-driven fracture in an impermeable rock: asymptotic solu-

tions. Int J Solids Struct 39(26):6311–6337

73. Semnani SJ, White JA, Borja RI (2016) Thermoplasticity and

strain localization in transversely isotropic materials based on

anisotropic critical state plasticity. Int J Numer Anal Methods

Geomech 40(18):2423–2449

74. Settari A, Cleary MP et al (1986) Development and testing of a

pseudo-three-dimensional model of hydraulic fracture geometry.

SPE Prod Eng 1(06):449–466

75. Siebrits E, Peirce AP (2002) An efficient multi-layer planar 3d

fracture growth algorithm using a fixed mesh approach. Int J

Numer Methods Eng 53(3):691–717

76. Simone A, Askes H, Sluys LJ (2004) Incorrect initiation and

propagation of failure in non-local and gradient-enhanced media.

Int J Solids Struct 41(2):351–363

77. Simone A, Wells GN, Sluys LJ (2003) From continuous to dis-

continuous failure in a gradient-enhanced continuum damage

model. Comput Methods Appl Mech Eng 192(41):4581–4607

78. Sneddon IN (1946) The distribution of stress in the neighbour-

hood of a crack in an elastic solid. Proc R Soc Lond A

187(1009):229–260

79. Song SH, Paulino GH, Buttlar WG (2006) A bilinear cohesive

zone model tailored for fracture of asphalt concrete considering

viscoelastic bulk material. Eng Fract Mech 73(18):2829–2848

80. Spence DA, Sharp P (1985) Self-similar solutions for elastohy-

drodynamic cavity flow. Proc R Soc Lond A 400(1819):289–313

81. Tien YM, Kuo MC (2001) A failure criterion for transversely

isotropic rocks. Int J Rock Mech Mining Sci 38(3):399–412

82. Turon A, Davila CG, Camanho PP, Costa J (2007) An engi-

neering solution for mesh size effects in the simulation of

delamination using cohesive zone models. Eng Fract Mech

74(10):1665–1682

83. Vahab M, Khalili N (2018) X-fem modeling of multizone

hydraulic fracturing treatments within saturated porous media.

Rock Mech Rock Eng 51:3219–3239

84. Vandamme L, Curran JH (1989) A three-dimensional hydraulic

fracturing simulator. Int J Numer Methods Eng 28(4):909–927

85. Wang Y, Waisman H (2016) From diffuse damage to sharp

cohesive cracks: a coupled xfem framework for failure analysis of

quasi-brittle materials. Comput Methods Appl Mech Eng

299:57–89

86. Wells G, Sluys L, De Borst R (2002) Simulating the propagation

of displacement discontinuities in a regularized strain-softening

medium. Int J Numer Methods Eng 53(5):1235–1256

87. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch

recovery and a posteriori error estimates. Part 1: the recovery

technique. Int J Numer Methods Eng 33(7):1331–1364

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

144 Acta Geotechnica (2020) 15:113–144

123


	Fluid-driven transition from damage to fracture in anisotropic porous media: a multi-scale XFEM approach
	Abstract
	Introduction
	Coupled hydro-mechanical governing equations for saturated porous media with intrinsic transverse isotropy
	Strong formulation
	Mixture governing equations
	Fluid governing equations in the saturated porous matrix
	Fluid governing equations along the fracture

	Weak formulation
	Nonlocal continuum damage model for transversely isotropic materials
	Macro cohesive zone model: PPR

	Discretization and resolution procedure
	XFEM spatial discretization for displacement and pressure
	Finite difference temporal discretization and resolution procedure
	Analytical expression of the mechanical tangent stiffness matrix
	Damage-driven cohesive fracture propagation

	Engineering applications
	Model verification: KGD Injection Problem
	Influence of material and stress anisotropy on hydraulic fracturing

	Conclusions
	Acknowledgements
	References




