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Abstract—This paper considers the optimal control for hybrid
systems whose trajectories transition between distinct subsystems
when state-dependent constraints are satisfied. Though this class
of systems is useful while modeling a variety of physical systems
undergoing contact, the construction of a numerical method
for their optimal control has proven challenging due to the
combinatorial nature of the state-dependent switching and the
potential discontinuities that arise during switches. This paper
constructs a convex relaxation-based approach to solve this
optimal control problem by formulating the problem in the space
of relaxed controls, which gives rise to a linear program whose
solution is proven to compute the globally optimal controller. This
conceptual program is solved using a sequence of semidefinite
programs whose solutions are proven to converge from below to
the true solution of the original optimal control problem. Finally,
a method to synthesize the optimal controller is developed. Using
an array of examples, the performance of the proposed method is
validated on problems with known solutions and also compared
to a commercial solver.

I. INTRODUCTION

Controlled hybrid dynamical systems can describe the dy-
namics of a variety of physical systems in which the evolution
of the system undergoes sudden changes due to the satis-
faction of state-dependent constraints such as in bipeds [1],
automotive sub-systems [2], aircraft control [3], and biological
systems [4]. Given the practical applications of such systems,
the development of algorithms to perform optimal control
of hybrid systems has drawn considerable interest among
theoreticians and practitioners. The theoretical development
of both necessary and sufficient conditions for the optimal
control of hybrid controlled systems has been considered using
extensions of the Pontryagin Maximum Principle [5]-[7] and
Dynamic Programming [8]-[10], respectively. Recent work
has even linked these approaches [11]. Typically, these meth-
ods have assumed that the sequence of transitions between
the systems was known a priori. Practitioners, as a result,
have fixed the sequence of transitions and used gradient-based
methods to locally optimize over the time spent and control
applied within each subsystem [12]-[15].

Recent work has focused on the development of numerical
optimal control techniques for mechanical systems undergoing
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contact without specifying the ordering of visited subsystems.
One approach to address the optimal control problem has fo-
cused on the construction of a novel notion of derivative [16].
Though this method still requires fixing the total number of
visited subsystems, assuming a priori knowledge of the visited
subsystems, and performs optimization only over the initial
condition, this gradient-based approach is able to find the
locally optimal ordering of subsystems under certain regularity
conditions on the nature of the state-dependent switching.
Other approaches have relaxed satisfaction of the unilateral
constraint directly and instead focused on treating constraint
satisfaction as a continuous decision variable that can be
optimized using traditional numerical methods to find local
minima [17]-[19].

This paper develops a numerical approach to find the global
optimum to the hybrid optimal control problem when the
vector field of each hybrid “mode” is a polynomial function.
It relies on treating the optimal control problem in the relaxed
sense wherein the original problem is lifted to the space of
measures [20], [21]. In the instance of classical dynamical
systems, this lifting renders the optimal control problem linear
in the space of relaxed controls [22]; however, there are few
numerical methods to tackle this relaxed problem directly.

Recent developments in semidefinite programming have
made it possible to solve this lifted optimal control prob-
lem for classical dynamical systems by relying on moment-
based relaxations [23]. By solving the problem over truncated
moment sequences, it is possible to transform the optimal
control problem into either a finite-dimensional linear or finite-
dimensional semidefinite program. Either transformation of
the relaxed problem is proven to provide a lower bound
on the optimal cost. In fact, this bound converges to the
true optimal cost as the moment sequence extends to infinity
under the assumption that the incremental cost is convex in
control. Recent work has also shown how the optimal control
policy can be extracted for systems that are affine in con-
trol [24], [25]. Unfortunately this relaxed control formulation
for controlled hybrid systems, the subsequent development of
a numerically implementable convex relaxation, and optimal
control synthesis have remained unaddressed.

Note that the focus of this paper is on the development
of an optimal control approach for hybrid systems with
state-dependent rather than controlled switching. A variety of
numerical methods have been proposed to perform optimal
control for systems with controlled switching [26]-[32]. In
contrast to the controlled switching case, after state-dependent
switching, the state is allowed to change discontinuously.

The contributions of this paper are three-fold: first, Sec-



tion IV provides a conceptual infinite dimensional linear
programming-based approach for the optimal control of hybrid
systems with state-dependent switching; second, Section V
presents a semidefinite programming-based sequence of relax-
ations to this infinite dimensional linear program that is proven
to generate a sequence of convergent lower bounds to the true
optimal cost; finally Section V provides a method to generate
a sequence of controllers that converge to the true optimal
control. The remainder of this paper is organized as follows:
Section II defines the class of systems under consideration and
their executions, Section III describes how to lift executions
of the hybrid system to the space of measures, and Section VI
illustrates the efficacy of the proposed method on a variety of
systems.

II. PRELIMINARIES

This section introduces the notation used throughout the
paper, defines controlled hybrid systems, and formulates the
optimal control problem of interest.

A. Notation

Given an element y € R", let [y]; denote the i-th component
of y. We use the same convention for any multidimensional
vector space. Let card denote the cardinality of a set. Let
R[y] denote the ring of real polynomials in the variable y
and Ry [y] denote the space of real multivariate polynomials
of total degree less than or equal to k. Let {4; };cz be a family
of non-empty sets indexed by i, the disjoint union of this
family i [1,e7 A; = User(A; x {i}). Let ¢; : A; > [;ez Ay
be the canonical injection defined as ¢;(a) = (a,i) whose
inverse is m; : [[;ez Ai = A;. Note m;(¢;(a)) = @ if i # j.
For convenience, denote x; := m;(x) for all x € [I;.7 A;.
Similarly define a projection operator onto the indexing set
A I,ez A; = T such that A(¢;(a)) = i. Let conv denote the
convex hull of a set. Let a.e. denote “almost everywhere”.

Let 1 be the indicator function on a set S. We say a
function is pointwise bounded if its range is a bounded set.
Suppose Y is a measurable metric space, then let C(Y") be the
space of continuous functions on Y, let C;(Y") be the space of
bounded continuous functions on Y, let AC(I) be the space
of absolutely continuous functions on I c R, let L'(Y') be
the space of L' functions with respect to Lebesgue measure
on Y, let L'(u) be the space of L' functions with respect to
the measure y, and let M(Y) be the space of finite signed
Radon measures on Y endowed with the total variation norm
(denoted by | - [), whose positive cone M, (K) is the space
of finite unsigned Radon measures on Y. Any p e M(Y) is
an element of the dual to C(Y') via the duality pairing

(1, v) ::fyv(z)du(z), Vo eC(Y). (1)

Let the support of pe M(Y') be denoted as spt(x). A prob-
ability measure is a non-negative, unsigned measure whose
integral is one. Denote the dual to a vector space V as V.
Suppose Y; c Y is a compact set endowed with the subspace
topology, then define the zero extension of any f € L*(Y}) as

ooy fy), ifyeYy;
) = {0, ifyevV\1y @)

Define the zero extension of y € M(Y1) as i(B) = u(Bn
Y7) for all subsets B in the Borel o-algebra of Y. Let
yrly, € M(Y1) denote the conditional probability measure
of e M(Yy xY3) on Yy given ys € Y, and let p,,, € M(Y3)
denote the marginal of p on Y5.

Suppose Y c R™, define the convolution of y € M (Y and
6 € L'(R™), denoted as p * 0 € M, (R™), as

(e )B)= [ [ 1o+ dydu(a) 3
for all subsets B in the Borel o-algebra of R". If Y, Y5
are measurable spaces, ¢ € M(Yy), and f: Y] > Yy is a
Borel function, let fuu € M(Y2) denote the pushforward of
w through f, given by

(f#m)(B) = p(f(B)) @)
for any B in the Borel o-algebra of Y5. Note for every fup-
integrable function v:Ys - R

szvd(f#u):fYIUofdu. 5)

B. Controlled Hybrid Systems
Consider the following class of controlled hybrid systems:

Definition 1. A controlled hybrid system is a tuple H =
(Z,£,D,U,F,S,R), where:

o 7 is a finite set indexing the discrete states of H,

e £EcIxTis a set of edges, forming a directed graph
structure over I;

e D =1l X; is a disjoint union of domains, where each
X, is a compact subset of R™, and n; € N;

o U is a compact subset of R™ that describes the range of
control inputs, where m € N;

o F = {F,}icz is the set of vector fields, where each F; :
R x X; x U - R"™ is a Lipschitz continuous vector field
defining the dynamics of the system on X;;

o S = 1leee Se is a disjoint union of guards, where each
S(,iry € 0X; is a compact, co-dimension 1 guard defining
a state-dependent transition from X; to X;; and,

e R = {Re}ece is a set of continuous reset maps, where
each map R; j1y: S(i iry > X defines the transition from
guard S; iy 1o Xy

For convenience, we refer to these controlled hybrid systems
as just hybrid systems and refer to a vertex within the graph
associated with a hybrid system as a mode. Though the
range space of control inputs are assumed to be the same
in each mode, this is not restrictive since we can always
concatenate all the control inputs in different modes. The
compactness of each X; ensures the optimal control problem
defined below is well-posed. Since the focus of this paper is
on the optimal control of deterministic hybrid systems, we
avoid any ambiguity during the transition between modes by
making the following assumption:

Assumption 2. Guards do not intersect with themselves or
the images of reset maps. The controlled vector fields in each
mode has nonzero normal component on the guard for all
control inputs in U.

Next, we define a hybrid trajectory of a hybrid system
up to time 7" > 0 in Fig. 1. Step 1 initializes the hybrid



Require: t =0, T > 0,4 € Z, (x9,i) €D, and u : R - U
Lebesgue measurable.
1: Set v(0) = (zg,1).
2: loop
32 LetIc[t,T] and ¢ € AC(I;X;) such that:
(i) &(s) = Fy(s,¢(s),u(s)) for almost every s € I
with respect to the Lebesgue measure on I with

(¢(t),7) = ~(t) and

(i)  for any other ¢: I — X satisfying (i), Icl
4. Lett'=supl and y(s) = (¢(s),4) for each s € [t,t").
s: ift' =T, or 3(i,i") € £ such that ¢(t') € S(; ;) then
6: Stop.
7:  end if
8:  Let (i,i") € £ be such that ¢(t") € S(; ;1.
9:  Set y(t') = (Rg,in(o(t')),i'), t =t', and i = i'.

10: end loop

Fig. 1: The procedure to define a trajectory of hybrid system .

trajectory at a given point (zg,%) at time ¢ = 0. Step 3 defines
¢ to be the maximal integral curve of F; under the control
u beginning from the initial point. Step 4 defines the hybrid
trajectory on a finite interval as the curve ¢ with associated
index 7. As described in Steps 5 - 7, the hybrid trajectory
terminates when it either reaches the terminal time 7" or hits
0Xi\U(i,i")ee S(i,i) Where no transition is defined. Steps 8 and
9 define a discrete transition to a new domain using a reset
map where evolution continues again as a classical dynamical
system by returning to Step 3. Note that this definition is a
rephrasing of [33, Fig. 8] and is meant to formalize what is
meant by a solution to a hybrid system. This paper applies this
definition only to ensure the existence of solutions to hybrid
systems. A description of how to implement this definition can
be found in [33]. Denote the space of such hybrid trajectories
as X. Note that for any ¢ at which a hybrid trajectory v is
defined, ¥(t) = (Y2 (e (£ A(V(D))).

Trajectories of hybrid systems can undergo an infinite
number of discrete transitions in a finite amount of time. Since
the state of the trajectory after these Zeno behaviors occur may
not be well defined [34] and because the focus of this paper is
on optimal control for deterministic hybrid systems, we make
the following assumption:

Assumption 3. H has no Zeno trajectories.

C. Problem Formulation

This paper is interested in finding a (7, u) satisfying Al-
gorithm 1 from a given initial condition x, that reaches a
target set while minimizing a cost function. To formulate this
problem, define the target set, X1t c D, as Xr = [l;e7 X135
where X7, is a compact subset of X; for each ¢ € Z. To avoid
any ambiguity, we make the following assumption :

Assumption 4. The target set does not intersect any guards.

Given a T > 0 and an initial point (x¢,j) € D, a pair of
functions (v, u) satisfying Algorithm 1 is called an admissible
pair if v(T) € Xp. In this instance, v is called an admissible

trajectory and u is called an admissible control. The time
T at which the admissible trajectory reaches the target set
is called the ferminal time. Denote the space of admissible
trajectories and controls by X7 and U7, respectively. The
space of admissible pairs is denoted as Pr c Xp xUp. Without
loss of generality, we make the following assumption:

Assumption 5. The initial condition is not in any guard.

For any admissible pair (7, u), the associated cost is:

T
J (v, u) 1=f0 hacy(ty) (B Vi) (1), u(t)) dt+

+ Hyy(r)) (Mrer (1))
where h; @ [0,T]x X; xU - R and H; : X1, - R
are integrable. Our goal is to find an admissible pair that
minimizes (6), which we refer to as Hybrid Optimal Control
Problem (HOCP):

(6)

inf  J(v,u HOCP
it () (HOCP)

The optimal cost of (HOCP) is denoted as J*.

III. THE HYBRID LIOUVILLE EQUATION

This section constructs measures whose supports model the
evolution of families of trajectories, an equivalent form of
J, and an equivalent form of Algorithm 1 in the space of
measures. These transformations make a convex formulation
of (HOCP) feasible.

Consider the projection 7; of a hybrid trajectory v onto
mode ¢ € Z. Define the occupation measure in mode i € Z
associated with ~y, denoted by u‘(- | v) € M, ([0,T] x X;), as

‘ T
p(AxB|7y):= fo Laxp(t,7i(t))dt 7

for all subsets A x B in the Borel o-algebra of [0,7T] x X;.
Note that ~;(¢) may not be defined for all ¢ € [0,7'], but we
use the same notation and let 1 4.p5(t,v;(¢)) = 0 whenever
7;(t) is undefined. The quantity ‘(A x B|7) is equal to the
amount of time the graph of the trajectory, (¢,v;(t)), spends
in A x B. Define the initial measure, (- | v) € M, (X;), as

16 (B | 7) =1p5(7:(0)) ®)
for all subsets B in the Borel o-algebra of X;; define the
terminal measure, [ (-|v) € M4 (X71,), as

pp(B ) =1p(v(T)) ©)
for all subsets B in the Borel o-algebra of Xr,.

One can show that the occupation measure, initial measure,
and the terminal measure satisfy a linear equation whose
solution can model the evolution of a nonlinear dynamical
system [23]. This result enables one to formulate nonlinear
optimal control problems as infinite dimensional linear pro-
grams [23, Theorem 2.3]. Unfortunately the linear equation
over measures is unable to describe the transitions between
hybrid modes. However, these transitions can be described
using guard measures. Define the guard measure, us(iﬂ?’)(- |

v) € Mo ([0,T] x S(;,ir)) as
13D (Ax B | y) = card{t e A | lir?i vi(7) € B}
for all subsets A x B in the Borel o-algebra of [0,7"] x S(; i),

given any pair (4,7') € £. The guard measure counts the
number of times a given trajectory passes through the guard.

(10)



Next, define the ocqupation measure in ¢ € Z associated
with (y,u), denoted p*(-|v,u) e M, ([0,T] x X; xU), as

. T
p(AxBxClyu) = [ Lageo(t (D u(®)dt (11

for all subsets Ax BxC' in the Borel o-algebra of [0,T"]x X x
U. For convenience, it is useful to collect the initial, average,
terminal, and guard occupation measures in each mode. That
is, define /(- | v) € My(D) as pg (i | 7) = uo(- | 7)
for each 7 € Z. For convenience, we refer to ,ug as an initial
measure and write ;) when we refer to the i-th slice of uZ.
We define and refer to puZ (- | v,u) € M, ([0,T] x D x U),
JEC | 7ou) € Mo (X7), and 15 (- | 5,u) € Mo ([0,7] x S)
similarly.

Using these definitions, we can rewrite the cost function J:

Lemma 6. Let % (- | v,u) and piZ.(- | v) be the occupation
measure and terminal measure associated with the pair (v, u),
respectively. Then the cost function can be expressed as

i€l i€l

(12)

Proof: Notice that h; and H; are measurable, and the rest
follows directly from (6), (9), and (11). [ |
Despite the cost function being a nonlinear function of
the admissible pair in the space of functions, the analogous
cost function over the space of measures is linear. A similar
analogue holds true for the dynamics of the system. That is, the
occupation measure associated with an admissible pair satisfies
a linear equation over measures. To formulate this linear
equation, let £; : C* ([0,T] x X;) = C([0,T] x X; xU) be
a linear operator that acts on a test function v, defined as
ov(t,x) & dv(t,x)

st L A, Pl (03
for all ¢+ ¢ Z. Using the dual relationship between mea-
sures and functions, we define £} : C([0,T] x X; xU)" —
CH([0,T] x X;)" as the adjoint operator of L;, satisfying
(Ciu,v) = (p, L) for all p e M([0,T] x X; x U) and
ve CY[0,T] x X;).

Each of these adjoint operators can describe the evolution
of trajectories of the system within each mode [23]. However
in the instance of hybrid systems, trajectories may not just
begin evolving within a mode at ¢ = 0. Instead a trajectory
can enter a mode either by starting from inside it at ¢t = 0,
or by being reset into it. Similarly a trajectory can terminate
in a mode either by reaching the terminal time, or by hitting
a guard and transitioning. To formalize this, we first modify
reset maps to also act on time by defining R(i,i,) 1 [0,T] x
S(i,i’) g [07T:| x X1 by R(i,i')(twr) = (t,R(M/)((E)) for all
(7,i") € € and (t,x) € [0,T] x S(; ;7). To describe trajectories
of a controlled hybrid system using measures, we rely on the
following result of [35, (16)]:

(Liv)(t,z,u) =

Lemma 7. Given an admissible pair (7y,u), its initial mea-
sure, occupation measure, terminal measure, and guard mea-
sure satisfy the following linear equation over measures:
) I/ P, Seir s
80 ® pio (- [ 7) + Lip' (- | v,w) + 3 Rearayept” 0 (- )
(i",0)<E

=07 ® (-] 7) + 3 p5En (- [7),
(5,i)€E

14
Viel, 19

where (14) holds in the sense that it is true for all test functions
in C*([0,T] x X;).

Now one can ask whether the converse relationship holds:
does an arbitrary set of measures, uZ € M, (D), ur «
M. ([0, T x D U), i€ M, (Xr), and S € M. ([0,T] x
S), that satisfy (14) correspond to an initial measure, zZ (- | 7),
occupation measure, p% (- |, u), terminal measure, pZ.(- | v),
and guard measure, uS(- | ) for some admissible pair
(v,u)? To answer this question, consider a family of hybrid
trajectories modeled by a non-negative probability measure
p € M.(X), and define an average occupation measure
¢" e M,([0,T] x X;) in each mode i € Z for the family
of trajectories as

C(AxB)= [ i (AxB|ndp(y) (1)

for any ¢ € Z and A x B in the Borel o-algebra of [0,77] x
X;; Define the average initial measure §6, average terminal
measure (', and average guard measure ( Sai.in similarly.

To prove the converse of Lemma 7, we define the Hybrid
Liouville Equation whose solution can be disintegrated into a
set of measures that we eventually prove are related to p in
Theorem 12.

Lemma 8. Let put € M. (D), yr € M ([0,T] x D x U),
1k € Mo (Xr), and pS € M, ([0,T] x S) satisfy the Hybrid
Liouville Equation (HLE), which is defined as
S0 @ piy+ Lip' +y Rer iyt = 50 @ pip+y. p5ai) (16)
(i,0)e€ (4,i")€E
for each i € I. Then each measure ' can be disintegrated as
dp’ (t,x,u)=dvly, (u)dpi (t,x)=dv)y, (u)dfib,(x)dt (17)

i
where Vit

X, /Li,w is the (t,z)-marginal of ji‘, and fi
measure on X; given t € [0,T].

is a stochastic kernel on U given (t,xz) € [0,T] x
2

¥|t is a conditional
Proof: Since each measure y is finite measure defined

on a Euclidean space, using [36, Theorem 5.3.1], they can
be disintegrated as du’(t, z,u) = v, o(u) dpy . (t, ) where
l/i‘t ., is a stochastic kernel on U given (t,x) € [0,7]xX;, and
pi,m is the (¢, z)-marginal of ;. Using the same argument, we
disintegrate s , into.duiyx(t,x) = d,u;‘t(;v) d,ui‘(t) where 1
is the t-marginal of p; ... To show the measure 1 is absolutely
continuous with respect to the Lebesgue measure, notice:

(i) = bropp+ Y pien -8 @ ph+
(i.i')<E
- 2 Reraunco, ),
(i 0)e€
for any ¢ C([0,77). The desired result then follows
[37, Exercise 5.8.78]. Since pu' is finite and therefore its ¢-
marginal measure is also finite, using the Radon-Nikodym
Theorem, 3 [ € L'([0,T7]) such that duf(t) = I(t) dt. Letting
dfiy,, = I(t) dpiy, fqr all ¢ € [0,T], then duglt(a:)dui(t) =
1(t) duilt(x) dt = dﬂmlt(z) dt'and (17) follows. [ |
For convenience, denote ,&;‘ , by uil , and define:
oli=bo @y 3 Reaypn®,
' ()<
n' =01 ® pi + Z TR
(i,i)eE

(18)

19)



Using (17), HLE can also be written as a non-homogeneous
PDE that holds in the sense of distributions:

Ot o+ Dy (Fyph ) = 0" =17, (20)

where
Fy(t,z) = fU Fi(t,a,u) dviy, , () € conv Fy(t,2,U). (21)

Note that even when Fj is Lipschitz continuous, F; may not
be Lipschitz continuous. By applying integration by parts, we
can write

S (et + (e, B didy o) e
* ) do'(to) = [ oltia)dn' ()

for any test function v € C*([0,T] x X;). We later show in
Corollary 10 that 0% and 1’ capture the trajectories that enter
and leave domain ¢, respectively.

Next, we prove the converse of Lemma 7 using Theorems 9
and 12. These converse theorems prove that a solution to the
Hybrid Liouville Equation can be identified with a solution
to the hybrid system under certain regularity conditions on
the vector fields in each mode. This result enables us to
formulate (HOCP) as an optimization problem over measures,
as described in Section IV. We start by showing “wl , is related
to the solution of the ODE F;. As shown in the Appendix A,
(Theorem 25), when F; satisfies certain regularity conditions
(e.g. Lipschitz continuity), the relationship between ' 2t and
F; is clear, but to deal with solutions to a non-smooth ODE, we
construct the notion of evaluation maps that act on the space
of absolutely continuous functions. Let I'; := AC([0,T]; R™)
be the space of absolutely continuous functions from [0,7] to
R"™ endowed with the norm |- | : v~ [y(0)] + [, [5(t)| dt.
Define an evaluation map e; : [0,t] x [¢,T] xT; - R™
as ei(s,7,7) = y(t) on s <t < 7 for each ¢t € [0,T].
The evaluation map allows us to establish the following
relationship:

(22)

Theorem 9. Let Mr\t’ o', ' satisfy the PDE (22) for some

i€ I, where Fy is defined as in (21). Assume E; is pointwise

bounded. Then there exists a measure p* € M, ([0,T]x[0,T]x

T;) such that

(a) p' is concentrated on the triplets (s, T,7), where s < 7,
and v € T'; are solutions of the ODE #(t) = F;(t,v(t))
for ae te[s,T].

(b) iy, = (er)# p* for a.e. t€[0,T].

Proof: See Appendix B. [ |
Theorem 9 establishes a connection between the measure
u;‘ , that solves the PDE (22) and trajectories that satisfy the
dynamics in mode ¢. We next show those trajectories start and
terminate in the support of o and 7’, respectively.

Corollary 10. Let 1’ ol o', and n' satisfy the PDE (22) for
some i and let F; which is defined in (21) be pointwise
bounded Let p' be defined as in Theorem 9. Deﬁne maps
rlr?e[0,T] % [O7T]><I‘i—>[0 T]xR™ byr (s, T'y)
(s,v(s)) and 12 : (s,7,7) v (1,7(7)). Then r#p =o' and
7"?2# pt=n"

Proof: Recall in the proof of Theorem 9 we mollified o
and 7’ using a family of smooth mollifiers to obtain smooth
measures o, and 7¢. We also defined a right family of measures
{pi}c c /\/l ([0,T] x [0,T] x T';) that converges to p'
the narrow sense. The connection between each p! in that
family and the mollified measures ¢ and 7¢ was established
via measures p* and p'~

For all ¢ € Cp([0,T] x R™), it follows from (55),
(43), and (42) that fOT (0.T]xT; (s, ’y(s))dpe(s T,y) =
Jio.77mns 205, r)oi(s, ). Smce the families {c’}. and {p!}.
are tight as was shown in the proof of Theorem 9, we may
let € | 0 to obtain [ig 110, 71xr, £(7'(5,7,7)) dp*(s,7,7) =
[[O’T]XR,” ©(s,x)o"(s,x). This is also true for all measurable
functions ¢ because Cp,(R™*!) is dense in L'(c*) [37,
Corollary 4.2.2], as a result 7},p" = o*. The result for 5’ can
be proved in a similar manner. [ ]

Theorem 9 illustrates that measures satisfying HLE in mode
1 € Z correspond to trajectories y € I'; of the convexified
inclusion, 4(t) € conv F;(t,v(t),U), rather than the original
specified dynamics within each mode of the system. To ensure
that the there is no gap between the original dynamics and its
convexified inclusion, we make the following assumption:

Assumption 11. The set F;(t,x,U) is compact and convex
forall t, x, and i € L.

The above condition is sufficient to ensure that measures
satisfying HLE correspond exactly to trajectories described
according to Algorithm 1 [38, p. 529]. Assumption 11 is
satisfied if, for example, F; is control affine and U is compact
and convex.

As a consequence of Corollary 10 and Assumption 11,
any triplet (s,7,7) € spt(p’) can be viewed as a trajectory
~ in mode 4 that is well defined on [s,7] and satisfies
(s,7(8)) € spt(a®), (7,7(7)) € spt(n'). Such trajectories in
different modes are related by reset maps and can be combined
together to be admissible trajectories for the hybrid system.
To illustrate this, define an evaluation map that acts on the
trajectories of the hybrid system e’ : X — X; as ei(7) = v;(t)
if A(y(¢)) =i and €i(y) = & otherwise for each i € Z. We
can establish a relationship between admissible trajectories and
measures that satisfy (22) for each ¢:

Theorem 12. Let '“igt’ o', and ' satisfy the PDE (22)
for some i and let F; which is defined in (21) be point-
wise bounded. Then there exists a non-negative measure
p e M (X) such that

(a) For any hybrid trajectory ~y € spt(p) ~ is defined on
[0,T] and satisfies 'y(O) e spt(pd), v(T) e spt(u).

(b) For a.e. te [0,T], pyy, = = (eb)p.

c e Ho(Xi) = 1, then p is a probability measure.

() If Yiez 16(Xs) =1, th i bability

(d) If Tiex pb(Xi) = 1, then i , (resp. p, pn, p5¢) is the
average occupation measure (resp. average initial mea-
sure, average terminal measure, average guard measure)
generated by the family of admissible trajectories in the
support of p for each mode i € 1 and e € E. Moreover,
Yier i 2([0,T] x Xi) = T, Tiegpr(Xr,) = 1, and
Yees uéﬁ([O,T] x S.) < C for some constant C < +00.



Proof: See Appendix C. ]
Notice in Theorem 12 if we define 1, to be Dirac measure
supported at xq if ¢ € X; or zero otherwise, then spt(p) c
Xp. Finally, we establish a relationship between the solution
measures and the underlying control input when the dynamics
are control-affine, which enables control synthesis:

Corollary 13. Let U be convex. For each i € I, suppose there
exists pointwise bounded functions f; : R x X; — R™ and
gi : Rx X; —» R™"™ such that F;(t,z,u) = fl(t x)+g:(t, x)u
for all t,x,u € [0,T] x X; x U. Let v, be defined
as in (17) and let p be defined as in Theorem 12. Then
te (y(t), [yudy Alv(t) (w)) is an admissible pair for all

Yult o
~ € spt(p), where

' Jolulidvy, ,(w)
fU wdvy, ,(u) = P (23)
Jolulm dvy, o (w)
is an m x 1 real vector for each t, x, and 1 € L.

Procf: For any 7 € spilp), 5u(t) = fitu() +
gi(t, v (1)) - [Uuduu‘t,y (t)(u) for a.e. t € [0,7]. Since v, ,

is a stochastic kernel and U is convex, [ uduu‘t %(t)(u) eU

for all i € Z. Thus t — (y(t), [ udv ;\‘(37(2)( ))( u)) is an

admissible pair. ]

IV. INFINITE DIMENSIONAL LINEAR PROGRAM

This section formulates (HOCP) as an infinite-
dimensional linear program over the space of measures,
proves it computes the solution to (HOCP), and illustrates
how its solution can be used for control synthesis. To
formulate the cost function for these hybrid trajectories
in measure-theoretic form and to make control synthesis
feasible, we make the following assumption:

Assumption 14. U is convex and for each i € I, there exists
pointwise bounded functions f; : R x X; - R™ and ¢g; : R x
X; = R™ ™ such that F;(t,xz,u) = f;(t,x)+g;(t,x)u for all
t,x,uel0,T]xX; xU.

First define p to be Dirac measure supported at zq if g €
X; or zero otherwise and the optimization problem (P) as:

nf S b+ Yl ) (P)

€L €L

St Oo®UEHLLUHY  Rir iyt 0 =0p@pulety 56 Vi€ T,
(i i) (i,i')eE

1 uiT >0 Viel,

p5e >0 Vee&,
where the infimum is taken over a tuple of measures I' =
(1, 15) € M ([0, T]x DxU) x My (X1) x M ([0, T] ¢
8) and for each mode ¢ € Z, where pf, is a Dirac measure if
2o € X; or zero otherwise. The dual to (P) is given as:

sup y (po (@), vi(0,)) (D)

v 4L

s.t. L (t,x)+hi(t, z,u)>0 V(t, (z,4),u) € [0,
v (T, x)<H;(x) V(z,i) € Xr,
vi(t, ) <vg (t, R iy (2)) Y (t, (, (4,1"))) € [0,

T xDxU,

T] xS,

where the supremum is taken over the function v € C*([0, 7] x
D) and for each mode 7 € Z. For convenience, denote the i € 7
slice of v using subscript . We have the following result from
[39, Theorem 3.10]:

Theorem 15. If either (P) or (D) is feasible, then there is
no duality gap between (P) and (D).

Next, we illustrate (P) is well-posed:

Lemma 16. If (P) is feasible, then the minimum to (P), p*,
is attained.

Proof: Let (uf,u%, uS) be a feasible solution to (P),
and therefore they satisfy HLE (16). Using Theorem 12 we
know the tuple of measures (747, 1%, 1) belongs to the
unit ball By of M([0,T]xDxU)x M(X7)x M([0,T]xS)
for some C < +oo. By the Banach-Alaoglu Theorem, Bj is
weak-* sequentially compact. Since the operators Re# and L]
are bounded (because £; is bounded) and therefore continuous,
the set of (% uF, uk, % 1) satisfying HLE is a closed subset
of Bin M, ([0, T]xDxU) x My (X1) x M ([0,T] xS),
and therefore is also weak-* sequentially compact. Since the
cost function is continuous, p* is attained. |

Now we prove that (P) solves (HOCP):

Theorem 17. Let (P) be feasible and suppose h;(t,x,-) is
convex for all i € T and (t,z) € [0,T] x X;. Then p* = J*.

Proof: Suppose (v*,u*) is an optimal admissible pair to
(OCP). By Lemma 7, its initial measures, occupation mea-
sures, terminal measures and guard measures are supported on
proper domains and satisfy (16). Furthermore, &) = 11 for any
i € Z. Therefore these measures are a feasible solution to (P)
with cost J*, and p* < J* follows.

We next prove p* > J*. Suppose (uZ*,pux*,uS*) is an
optimal solution to (P) which exists according to Lemma
16. The optimal tuple satisfies (16). By Theorem 12, there
exists a probability measure p € M., (Xr) such that ui*x
coincides with the occupation measures of a family of ad-
missible trajectories in the support of p, when restricted to
mode i. We abuse notation in the remainder of this proof
and define [a;(t,z)]; = [, [u] (u) for any i € 7 and

u|ta:
je{l,--,m}. Notice
q" = (f hi(t, o, u)dvly,  (w)dpl, (t,z)+
) e
v [ Hi@d @)
Xr
> (o, st st )i (1 )
ieL T]xX; ’ (25)
¢ [ H@) @)
SN AR ACEAORACRAONE
X7 7
+HZ-<%<T>))dp<v>
= /XT J (7 @y () ey () do(v) = T, 27
where in (24) we disintegrate the measure x** into *7, and

; u|t x
Wi, according to Lemma 8; (25) is obtained from the convex-

ity of h;(¢,x,-) and the fact that V“ft is a probability measure;

in (26) we apply Theorem 12 and then interchange the order



of summation and integration; (27) follows because we let
h; = 0 where ;(t) is undefined and (v,x, () (;7a, () (+))) is
an admissible pair (according to Corollary 13) and since p is
a probability measure. [ |

The previous result provides an extension of the weak
formulation in [23] to hybrid systems, and ensures (P) can
be solved to find a solution to (HOCP) in a convex manner.
Next we describe how to perform control synthesis with the
solution of (P).

Theorem 18. Let (P) be feasible and suppose h;(t,z,-)

is convex for all i € T and (t,x) € [0,T] x X;, and

suppose the optimal trajectory " is unique dt-a.e. Let T'* =

(,uz*,u%«*,us*) be a vector of measures that achieves the

infimum of (P), then

(a) One can disintegrate p** in each mode i € T as
dp"™(t,xu) = dV;TtI(u)duz’;(t,x) dui’l‘m(u)duxlt(m)dt
Moreover, ,um(t x) coincides with the occupation mea-
sures of v* in each mode i €T a.e.

(b) For each i € Z and j € {1,--,m}, let [u,;(t,x)];
[lul;d Ve (0) for all (t,z) € spt(ut "), where qu|t .
is defined as in (a). If u(t,z,1) := ul(t x) forall i €T
and (t,x) € [0,T] x X;, then J (v*,a(-,v*(:))) = J".

Proof: To prove (a) note that the decomposition of pZ*
exists as a result of Lemma 8. Using the proof of Theorem
17, J (%, @a(y() (s () () = J* for any 7 € spt(p), and
therefore every admissible pair (7(-), @ (y()) (5 Vacv() ()
must be optimal. Since the optimal trajectory v* is assumed
to be unique dt-a.e., y(t) = v*(¢) for a.e. t € [0,T], Vv €
spt(p). According to Theorem 12, y¥, coincides with the
occupation measure of v* in each mode ¢ € 7 a.e. Part (b)
follows by noticing J(v,a(-,v(:))) = J* and v(t) = v*(¢)
a.e. for all + € spt(p). [ |

Theorem 18 illustrates how one can construct a feed-

back controller usmg the conditional measure v’ |t . Notice
[4;(t,x)]; = [ [u] dV;Tt (1) can be equivalently written as
[ast.a)); [ dn™ (b = [ [uldu® (tou). 28)

Therefore w; can also be constructed by computing the Radon-
Nikodym derivative using the optimal measures from the
solution to (P). In the next section, this result is used to
construct a sequence of controllers that converge to the optimal
control. Finally notice that in the hypothesis of Theorem 18
we do not assume the uniqueness of the optimal control law,
i.e., there may exist different control laws u; and w9, such that
J* = J(v*,u1) = J(v*,uz). Instead we only assume that the
optimal trajectory is unique almost everywhere.

V. NUMERICAL IMPLEMENTATION

This sections describes a solution to the infinite-dimensional
problem (P) via a sequence of finite-dimensional approxima-
tions formulated as semidefinite programs (SDP)s. These SDPs
are generated by representing the measures in (P) using a
truncated sequence of moments and restricting the functions
in (D) to polynomials of finite degree. The solutions to any
of the SDPs in this sequence can be used to synthesize an
approximation to the optimal controllers. To formulate this

SDP relaxation, we restrict our interest to polynomial hybrid
optimal control problems:

Assumption 19. The functions f;, g;, h;, and H; are poly-
nomials. that is, [f;];,[9i]x € R[t,z], h; € R[t,z,u], and
H;eR[z] forallieZ, je{l,-~,n;}, and ke {1,---,m}.

Note that in the notation R[¢,z,u], we refer to = as
an indeterminate in X; with dimension n;. In addition, for
convenience, the dimension n; of x is omitted when it is clear
in context. We also make the following assumption:

Assumption 20. For each i € T and (i,1') € &, there exists
polynomials hX eR[z] for all je {1, ,nx,}, hT e R[x]
forall je{1,- nT b by, € Rlu] for all j e {1,-- nU} and
hiiny, € R[w ]for all j € {1 “N(iiry ) such that the following

holds:
X; ={z eR™ hx, (2)20,Vj e {1, nx,}} (29)
Xp,={zx e R"™| hr, (2)>0,V] € {1, ,n7,}} (30)
U={ueR™|hy,(u)>0,Yje{l,ny}} (31)

S(’i,i’) ={x € (9XZ | h(i,i’)J (ZC) > O, vj € {1, 77’1(2711)}} (32)

Since X; and X7, are also compact, note that Putinar’s
condition is satisfied by adding the redundant constraint M —
|z|3 for some large enough M [40, Theorem 2.14].

To derive the SDP relaxation, we begin with a few pre-
liminaries. Any polynomial p € Ri[x] can be expressed in
the monomial basis as p(z) = ¥|4ck PaT” = Yjajck Pa
(z{*---x2™) where « ranges over vectors of non-negative
integers such that || = X7, a; < k, and we denote vec(p) =
(pa)wsk as the vector of coefficients of p. Given a vector of
real numbers y = (y,) indexed by «, we define the linear
functional L, : Ri[z] - R as L,(p) = Y,PalYa Note
that, when the entries of y are moments of a measure u
defined as y, = [ 2*du(z), then (u,p) = [ (X4 par®) du =
L,(p) If |a| < 2k, the moment matrix, My(y), defined as
[Mi(y)]ap = Y(a+p)- Given any polynomial h € R;[x]
with | < k, the localizing matrix, My (h,y), is defined as
[Mk(h,y)]a[j = Z\'ylsl h’yy('y+a+ﬁ)~

A. LMI Relaxations and SOS Approximations

A sequence of SDPs approximating (P) can be obtained
by replacing constraints on measures with constraints on
moments. Since h; and H; are polynomials, the objective
function of (P) can be written using linear functionals as
iz Ly, (hi) + Xier Ly < (H) where y,,; and y,; are the

sequence of moments of u and pif., respectively. The equal-
ity constraints in (P) can be approximated by an infinite-
dimensional linear system, which is obtained by restricting
to polynomial test functions: v;(t,z) € R[t,z], for any
i € Z. The positivity constraints in (P) can be replaced with
semidefinite constraints on moment and localizing matrices,
which guarantees the existence of Borel measures defined on
proper domains [40, Theorem 3.8].

A finite-dimensional SDP is then obtained by truncating
the degree of moments and polynom1a1 test functions to 2k.
Ez = Hzelﬂ , Zg = Heegu , Br = ]—[ZEI/“LT’ and
= =Z27UZg UZr. Let (yi,e) be the sequence of moments



truncated to degree 2k for each (£,7) € =, and let y; be a
vector of all the sequences (yi¢). The equality contraints
in (P) can then be approximated by a finite-dimensional
linear system Ay(yx) = byp. Define the k-th relaxed SDP
representation of (P), denoted (Py), as

inf > Ly . (hi)+ Ly, . (Hi) (Pr)
Yk jeT ieT T
s.t. Ax(yx) = br,
Mk(yk,ﬁ) >0 V(€7’L) GEa
kai_(hXijvyk,p.i)zo V(],Z)EH{I,J’L}Q},
J ieT

V(j,i) {1, ,ny} xZ,
V(j,e) e Ll{l,---,ne},
V(J’Z) € ]_[{17"'7”T-;}7

Mkuij (hUj,yk,m) >0
Mksej (hejvyk,ﬂse) >0

MkTi_ (hTijayk,,ugﬂ) =0
! i€l

M1 (b, yre) =0 V(&) e ErUEe,
where the infimum is taken over y; h, = t(T - t), k?Xij =
k- [deg(hx, )/2]. ku, = k - [deg(hu, )/2]. ks, = k -
[deg(he,)/2], kr,, = k:—[deg(h;rij )/2], and > denotes positive
semidefiniteness of matrices.

The dual of (Py) is a Sums-of-Squares (SOS) program
denoted by (Dy) for each k € N, which is obtained by first
restricting the optimization space in (D) to the polynomial
functions with degree truncated to 2k and by then replacing
the non-negativity constraints in (D) with SOS constraints.
For notational convenience, we let x; be the indeterminate that
corresponds to X;. Define QZk(hTi17"'7hTinT,) c Rog[z;]
to be the set of polynomials [ € Rog[x;] éxpressible as
l=s0+ Z;L:Tl s;jhr,, for some polynomials {sj )i © Rog[;]
that are sums of squares of other polynomials. Every such
polynomial is non-negative on Xg,. Similarly, we define
ng(h-,—, hXil P hXinX_ ,hUl st hU”U ) C ng [t, Ti, U], and
QQk(hT’h(i,i’)la"'7h(i,i:)n(i 7‘,)) c ng[t,l‘i] for each 1 € 7
and (i,i') € £. Therefore k-th relaxed SDP representation of
(D), denoted (Dy) is given as

sup Y- (g, 0i(0,-)) (Dx)

Vi el

S.t. £ivi+hi€Q2k(h7—a th'l’ sy hXinX7 hUl RN hUnU ) Viel,
—vi(T,-) + H; € Qo (hr, - hr, ) Viel,

nr;
Ui’OR(i,i’)_’U’iEQQk'(th h’(i,i’)p Y h(i’i,)"(i,i’)) V(Z7 Z,) € 5a

where the supremum is taken over v; € Rog[¢,x] for all 4 € Z.
Using Slater’s condition [41, Chapter 5.3.2] and noting that
(Dy,) is bounded from below, we can prove that the pair of
problems are well-posed:

Theorem 21. For each k € N, if (Py) is feasible, then there
is no duality gap between (Py) and (Dy,).

Next, we describe how to extract a polynomial control law
from the solution of (P ). Given moment sequences truncated
to 2k, we want to find an appropriate feedback control law uj, ;
in each mode i € Z with components [uj ;]; € R[¢,x], such
that the analogue of (28) is satisfied, i.e.,

taoa' *-t, »fdi*t77
][‘07T]XXi v [uk’z( x)]J U :u’k:( ZT,u)

) 33)
= \/[07T]XXi Y0 \/U[U]J d,u}c (t,xvu)

forall i e Z, j e {1,---,m}, and (o, ) € N x N satisfying
Yoo < k, ag > 0. Here /ﬁj is any measure whose
truncated moments match y; . In fact, when constructing
a polynomial control law from the solution of (Pj), these
linear equations written with respect to the coefficients of
[uf;]; are expressible in terms of the optimal solution y; ..
To see this, define the (¢,x)-moment matrix of y; . as
[Mlgt7x)(y]:vﬂi):I((yo,a)(,ﬁo,,ﬁ) = Ly;,“i (ta0+,30xa+[3u0) for all
i€Z,0¢ {0}™ and (g, ), (Bo,B) € N x N™ satisfying
Yo <k, >0, Xy B <k, 5 >0. Also define a vector
b as [bi(ygu)] = Lyzy“i(to‘f’xa[u]j) for all j € {1,---,m},
and (g, ) € N x N™ satisfying Y;' oy < k, oy > 0. Direct
calculation shows (33) is equivalent as the following linear
system of equations:

t,x * * j *
M (i) vee([uf  5) = (Y5 ) (34)
To extract the coefficients of the controller, one needs only to
com i (B2)
pute the pseudoinverse of M, (y ).

B. Convergence of Relaxed Problems

Next, we prove the convergence of the approximations:

Theorem 22. Let p;, and dj, denote the infimum of (Py) and
supremum of (Dy,), respectively. Then {p;}re, and {d;}72,
converge monotonically from below to the optimal value of

(P) and (D).

Proof: This can be proved using a technique adopted in
the proof of [42, Theorem 4.2]. We first establish a lower
bound of dj by finding a feasible solution to (D) for some
k, and then show that there exists a convergent subsequence of
{d; }52,, by arguing the lower bound can be arbitrarily close
to d* for large enough k. Using Theorem 21, we only need
to prove {d; } s>, converges monotonically from below to d*.
Note that the higher the relaxation order k, the looser the
constraint set of the optimization problem (Dy), so {d} } 52,
is non-decreasing.

Suppose v € C1([0,T] x D) is feasible in (D). For every
e>0andieZ, let v;(t,x) := v;(t,x) +et—(1+T)e. Therefore,
Liv; = Lyv; + ¢, 0;(T,x) = v;(T,z) — ¢, and it follows that
ez 0; is strictly feasible in (D) with a margin at least e.
Since [0,7'] x X; and X; are compact for every i € Z, and
by an extension to the Stone-Weierstrass Theorem that allows
for the simultaneous uniform approximation of a function and
its derivatives by a polynomial [43], we are guaranteed the
existence of polynomials ©;, such that |9; — ¥;]e < € and
[ Li0;—L;0;| 0 < € forany i € Z. By Putinar’s Positivstellensatz
[40, Theorem 2.14], those polynomials are strictly feasible for
(Dy,) for a sufficiently large relaxation order k, therefore dj, >
Yier 0:(0,20) 2 ¥ier 0:(0,20) — |Z|e, where |Z] is the number
of elements in Z. Also, since 9;(0,z¢) = v;(0,20) — (1 +T)e,
we have df > ;.7 0;(0,20) = (L+T+|Z])e = d* = (1+T +|Z])e,
where 1+ 7T +|Z| < oo is a constant. Using the fact that d* is
non-decreasing and bounded above by d, we know {d}}5>,
converges to d from below. [ ]

Then, by applying [42, Theorem 4.5], one can prove:

Theorem 23. Let {y; . }(c.i)e= be an optimizer of (Py), and
let {u?}igz be a set of measures such that the truncated



moments of ,uf: match y;;m for each i € ZI. For each
k e N, let uj ,; denote the controller constructed by (34),
and u; be the optimal control law in mode © € T from
Theorem 18, then there exists a subsequence {k;};ey ¢ N
such that for all i € I, v; € CY([0,T] x X;), and j €
{1,---;m}, f[oyT]XXivi(t7x)[u;l7i]j(t,x)dugfx;kl(t,x) con-
verges to f[O,T]xXi vi(t,z) [4i(t, )] dpy (t, ) as 1 — oo.

VI. EXAMPLES

This section illustrates the performance of our approach
using several examples. Our algorithm is implemented using
MOSEK [44]. The trajectory is obtained by plugging the
computed, saturated control law back into the system dynamics
in each mode and simulating forward using a standard ODE
solver with event detection. To provide a thorough comparison,
all examples are also solved with the method proposed in
[23], [25] by fixing the sequence of transitions and optimizing
over each mode. Since the optimal sequence is not known a
priori, this method is then applied over all feasible sequences
of bounded total length. In addition, all examples are solved
either analytically or using GPOPS-II [45] by iterating through
a finite set of possible transitions. Notice that in this latter in-
stance we fix the sequence of transition in each GPOPS-II call
and provide an initial guess. All experiments are performed on
an Intel Xeon, 144 core, 2.40 GHz, 1056 GB RAM machine.
Our code and detailed description of the examples are available
online at https://github.com/pczhao/hybridOCP.git.

A. Hybridized Double Integrator

We first consider a double integrator with states = =
(z1,72) € R? and input u € [-1,1]. We hybridize this system
by dividing the domain into two parts X; = [0.5,2] x [-1,1]
and X5 = [-1,0.5] x [-1,1] and with transitions only from
mode 1 to mode 2 with an identity reset map between them.
The guard is defined as {0.5} x {[-1,-1072]u[1073,1]}. We
solve a Linear Quadratic Regulator (LQR) problem, where the
goal is to drive the system towards (0,0) while minimizing
the control action. The problem is setup according to Table
I. Note that Assumptions 2-5 are satisfied. Our results, which
are summarized in Table II, are compared to those generated
by [25] with degree of relaxation be 2k = 12 when applied to
finite mode sequences of total length 2. Table II also describes
the results generated by a standard LQR solver which does
not treat the problem as hybrid. This latter result is treated as
ground truth. The proposed method is able to generate tight
lower bounds and the optimal sequence of transitions even
when degree of relaxation is low (2k = 6).

B. Dubins Car Model with Shortcut Path

The next example illustrates our algorithm can work with
different dimensions in each mode. Consider a planar Dubins
Car model with the states = = (z1,22,23) € [-1,1] x [-1,1]x
[-7/2,7/2] representing the 2D position and heading angle,
and the inputs u = (v,w) € [1073,1] x [-3, 3] representing
the linear and angular velocity. We hybridize this system by
dividing the domain into two parts along the line zo = 0 and

defining an identity reset map. Note that only transitions from
the mode where x9 is greater than or equal to zero to the mode
where xo is less than or equal to zero are permitted. We also
add to the system another 1-dimensional mode with dynamics
@ = —v, where x € [-1,1] and v € [1073,2]. We connect this
mode with the other two modes by defining S(; 3y = [-1,1] x
(1) x ([-/2,-10] 0 [10%,7/2]). Reuy(x) = L, Sz2) =
{-1}, and R(3 ) = (0.6,-0.8,0). We are interested in solving
an optimal control problem where the goal is to get to the
target position as quickly as possible. To solve this free final
time problem, we modify HLE by substituting d7® i with g,
whose support is in [0,T]x X, for all i € Z. (P) and (D) can
be modified accordingly. Notice that by treating the measure
associated with the time-varying target set as a guard measure
without any associated reset map, we can extend Theorems 9
and 12 to show that (P) can solve the free final time problem
[23, Remark 2.1]. The optimal control problem is defined in
Table I so that Assumptions 2-5 are satisfied.

Notice the transition sequences “1-2” and “1-3-2” are both
feasible in this instance according to our guard definition, but
direct calculation shows that we arrive at the target point in less
time by taking the “shortcut path” in mode 3. This problem
is solved using our algorithm with degrees of relaxation 2k =
6, 2k = 8, and 2k = 10. As comparison, we also solve the
problem using the method presented in [25] with degree of
relaxation 2k = 10 by applying it to each possible feasible
mode sequence that has a maximum length 3, and treat the
analytically computed optimal control as ground truth. The
results are compared in Table II. Our algorithm is able to
pick the transition sequence “1-3-2” and approximate the true
optimal solution even when 2k = 6.

C. SLIP Model

stance phase

flight phase

_1RQ
touchdown

mode 2 ' mode 3 '
'(a,a,b,0) '(a,a,b,b)"

mode 1
: (l7 l.7 976.7 a)

(a) SLIP model (b) SLIP locomotion phases and hybrid modes

Fig. 2: An illustration of the SLIP model (left) and its hybrid modes (right)

The Spring-Loaded Inverted Pendulum (SLIP) is a model
that describes the center-of-mass dynamics of animals and
has been used to perform control synthesis for legged robots
[46]. We may simulate the system numerically, but the optimal
control problem is still difficult to solve if the sequence of tran-
sition is not known beforehand. We focus on the active SLIP
model (Fig. 2a), which is an actuated mass-spring physical
system, modeled as a point mass, M, a mass-less spring leg
with stiffness k& and length [, and a mass-less actuator u. The
behavior of such a system can be fully characterized using 8
variables: leg length [, leg angle #, horizontal displacement a,


https://github.com/pczhao/hybridOCP.git

\_/er.tical disp]acement b, and their time derivatives (denoted as
l, 8, a, and b, respectively). The system states in each of the 3
hybrid modes are defined as shown in Fig. 2b. The github repo
describes the physical parameters, dynamics, guards, and reset
maps. To ensure that we satisfy Assumptions 2-5, the guard
at touch-down is satisﬁed when b < —=1073, and the guard at
lift-off is satisfied when [ > 1073

We fix the initial condition, and consider the following two
hybrid optimal control problems for the active SLIP: In the first
problem, we maximize the vertical displacement b up to time
T = 2.5. In stance phase, the 1st-order Taylor approximation
b = lcos(f) ~ [ is used; In the second problem, we define
a constant-speed reference trajectory a(t) = vt — 0.5 in the
horizontal coordinate, then try to follow this trajectory with
active SLIP up to time 7' = 3. The optimal control problems
are defined according to Table I. Note that these problems are
defined such that the optimal transition sequences are different
in each instance, and some modes are visited multiple times.

The optimization problems are solved by our algorithm
with degrees of relaxation 2k = 4, 2k = 6, and 2k = 8. For
the sake of comparison, the same problems are also solved
using the method presented in [25] and GPOPS-II for all
possible, feasible mode sequences of maximum total length
12. The results are compared in Fig. TABLE 3 and Table II.
The proposed method is able to generate the optimal sequence
of transitions even at low relaxation degrees (e.g. 2k = 6) while
other methods have to search through all possible sequences.
In particular, the proposed method takes an order of magnitude
less time to find the optimal sequence of transitions on both
examples when compared to GPOPS-II.

TABLE I: The setup for each example problem.

TABLE II: Numerical results for the proposed algorithm on each example.

Computation Cost from | Cost from
time optimization | simulation
2k =6 3.2004(s] 24.9496 24.9908
?Ouble 2k =8 9.4318]s] 24.9496 24.9908
féel‘g’ra“’r 2% = 12 252.8047[s] 24.9496 24.9914
T-5 [25], 2k =12 | 326.1610[s] 24.9496 24.9905
Ground truth N/A 24.9503 N/A
2k =6 3.1583s] 26.1993 26.3557
?Ouble 2k =8 9.8637[s] 26.1993 26.3644
L“glfr"‘“’r 2% = 12 219.8932[s] 26.1994 | 263710
T-15 [25], 2k =12 | 295.1562[s] 26.1993 26.3694
Ground truth N/A 26.2033 N/A
2k =6 67.6682[s] 1.5640 1.5748
2k =8 956.6177[s] 1.5646 15718
Dubin’s 1
Car 2k =10 1.0654x10%[s] 1.5648 1.5708
[25], 2k =10 | 2.6259x10%[s] 1.5648 1.5708
Ground truth N/A 1.5651 N/A
2k =4 45.1598[s] -0.6962 -0.5525
SLIP 2k =6 584.8139[s] -0.5815 -0.5474
Max 2k=8 7.7398x10°[s] -0.5776 -0.5545
Jump [25], 2k =8 | 2.1225x10°[s] -0.5737 -0.5728
GPOPS-II 792.9885[s] -0.5735 N/A
2k =4 40.7036[s] 0.0534 0.2250
SLIP 2k =6 565.7164[s] 0.1417 0.1813
Track 2k =8 1.0263x10%[s] 0.1523 0.1825
Speed [25], 2k =8 | 2.2373x10%[s] |  0.1592 0.1718
GPOPS-II 673.5100[s] 0.1626 N/A
oo o
Y A
0 0
-0.5 0 0.t -0.5 0 0.5
a
= W < W
0 0
-0.5 0 0.t -0.5 0 0.5
a a
A A
0 0
-0.5 0 0.t -0.5 0 0.5
a a
0 0
-0.5 0 0.t -0.5 0 0.5
a a

(a) Maximizing vertical

displacement

v=0.1

(b) Tracking constant speed

Mode =1 =2 =3
hi x% + x% +20u? x% + r% +20u?
Double Hi 0 0
Integrator | zq (1,1) N/A N/A
LQR X7, | [0.5+1073,2]x X
[_la 1]
T Sorls
h; 1 1 1
H; 0 0 0
Dubins ) (-0.8,0.8,0) N/A N/A
Car X, N/A {0.8}x{-0.8}x N/A
[-7/2,7/2]
T 3
h; - —-x3 —-x3
SLIP H; 0 0 0
Max Zo N/A N/A (-0.5,0.3,0.2,0)
Jump Xr, | {zeXi|z< | {zeXo @2 | {zeX3|az2
lo-1073} 1073} lp cos(a) +
1073}
T 2.5
hi | (vt-05-z5)2 | (vt-0.5-21)2 | (vt-0.5-x1)2
SLIP Hi 0 0 0
Track o N/A N/A (-0.5,0.3,0.2,0)
speed XTi {I€X1|x1£ {IGX2|I4Z {xEXg‘xsZ
lo-1073} 1073} lo cos(a) +
1073}
T 3

Fig. 3: An illustration of the performance of our algorithm on the active SLIP
model. The blue lines are the optimal control computed by GPOPS-II by
iterating through all the possible transition sequences, and the red lines of
various saturation are controls generated by our method. As the saturation
increases the corresponding degree of relaxation increases between 2k = 4
to 2k = 6 to 2k = 8. Fig. 3a shows trajectories that maximize vertical
displacement, where the optimal solution goes through 3 transitions; Fig. 3b
shows trajectories that track v = 0.1, where the optimal solution goes through
6 transitions.



VII. DISCUSSION

This paper proposes a convex approach for solving hybrid
optimal control problems by relating the trajectories of hybrid
systems to the solutions of a system of linear equations
over measures. The hybrid optimal control problem is then
formulated as an infinite-dimensional LP that does not require
pre-specifying the sequence of possible transitions. A sequence
of provably convergent SDPs to this LP are constructed to
approximate the optimal cost from below and synthesize
the optimal control law. Though it does not require pre-
specifying the sequence of transitions of the hybrid system, the
proposed method can be difficult to apply when the state space
dimension is high, since the number of decision variables in
the SDP grows exponentially with the state space dimension.

APPENDIX A

Let F': [0,T] x R™ - R™ be a pointwise bounded vector
field, such that F'(¢,-) is Lipschitz for all ¢ € [0,7]. Consider
a non-homogeneous PDE 0,4ty o = 0 =1 — Dy - (Fut ), where
bz, 0,m € M([0,T]xR™). Applying integration by parts and
Lemma 8, this PDE becomes:

pv(t, x)dpi, dt:/ t,z) d(n(t,
/[-O’T]XR#;( z)dp \t(I) [O,T]Xﬂgrg x) (77( x)+

—o(t, f Lot 2) - Fdp () dt
o)+ [ Gerlt) (o)

for any v € C*([0,7] x R™). To establish a relationship
between F and this PDE, let ® satisfy (42) with F replaced
by F. Since F' is pointwise bounded and F'(¢,-) is Lipschitz
for all ¢ € [0, 7], the solutions of the ODE are unique [47, The-
orem 5.3]. By differentiating the identity ®;(¢, s, ®;(s,7,2)) =
®,(t,7,2) with respect to s, we can show that ®(¢t,-,-) is a
solution to %@i(t,s,x) + V. ®;(t,s,x) - F(s,z) = 0. This
leads to:

(35)

Corollary 24. Let F : [0,T] x R® > R™ be pointwise
bounded and suppose F(t,-) is Lipschitz for all t € [0,T].
Let o and n satisfy (35), and let ® be the a.e. solution to
the ODE with vector field F, then for any w e L'(R"),

f[o,T]an w(®(T,s,2))d(c(s,z) —n(s,x)) =0.

Proof: The result for w € C} (R™) follows by substituting
v(s,x) = w(®(T,s,x)) and %(I)i(t,s,x) + V. Di(t,s8,2) -
F(s,z) =0 into (35). Since C} (R™) is dense in L*(R™) [37,
Corollary 4.2.2], the statement is true for all w e L'(R™). m

We can now establish a relationship between pi,; and ®:

Theorem 25. Let F: [0, T]xR™ - R™ be pointwise bounded
and suppose F(t,-) is Lipschitz for all t € [0,T]. Given
o,n € M,([0,T] x R™), the solution to (35) is given by
Pafe = (¢, )4 (0 =n) for almost every t € [0,T], where
O(t,-,-): [0,t] xR,, = R™ is defined in (42) with Ff replaced
by F.

Proof: We first verify i, = ®(t,-,-)4 (0 —n) satisfies
(35). We need to check the equality only on test functions of
the form ¢ (t)w(x). We substitute p,, = ®(t,-,-)% (0 -n)

into the left-hand side of (35) and show it is equal to the
right-hand side of (35):

T.
[0 [ w@) () at
T, . .
:f (_[s w(t)w(q)i(t,s,x))dt)d(az(s,x)—nz(s,x)) (36)

[0,T]xR"

- [ (A w(@(T5,2)) - ()w(@(s,5,2))+

[0,T]xR"
rood
_/SL/J(t)aw(q)(t,s,a:))dt)d(o(g,x)_n(s’z))
:A}%%f&?(x)d(n(s,x) —o(s,z))+

“J, Zu)f[oﬁfﬁi@i@ 52))-F(tO(ts,z)) O3
d(o(s,z)-n(s,z)) dt
= [ @ ds.o) - o(s.r) ¢

T

- Aw(t)(ﬂw\ta Vew - F) dt
where (36) follows from Fubini’s Theorem; (37) follows from
integration by parts; (38) follows from Corollary 24 and
Fubini’s Theorem; (39) follows from pi,; = ®(t,-,-)% (0 —n).
As a result, piz); = ®(t,-,-)4 (0 —n) is a solution to (35). To
show the solution is unique dt-almost everywhere, suppose
there exists measures fiyj; 1, fgft,2 € M4 (R™) defined for t €
[0,T] that satisfy (35). Let jiy)s3 = fyje1 — fafr,2 € M(R™),
then [OT S (Oev(t, ) + Vou(t,z) - F) dpigpy 3 dt = 0, which
has the zero measure as a solution. Using the proof of [48,
Lemma 3], such ji,), 3 is defined uniquely dt-a.e. Therefore
Halt,3 is zero for a.e. ¢ € [0,T], which proves the result.

(37

(39)

APPENDIX B

In this section we prove Theorem 9.

Proof: This proof consists of several steps: in Step 1,
we use a family of mollifiers parameterized by € to smooth
the vector field and all relevant measures and establish a
relationship between the smooth measures using the solution
to the smooth vector field via Theorem 25; in Step 2, we
prove that all trajectories that satisfy this smooth vector field
and enter the domain, eventually leave the domain, and vice
versa; in Steps 3 and 4, we prove a connection between the
time at which each trajectory enters and leaves; since Steps 2-
4 are all proven for the “smoothed” versions of the vector field
and measures, in Step 5 we prove that there exists a limiting
measure as the parameter controlling smoothness, €, goes to
zero; in Step 6, we prove that this limit satisfies (b); in Step 7,
we prove (a) when the vector field is continuous; in Step 8, we
approximate the discontinuous vector field with a sequence of
smooth functions and bound the approximation error; in Step
9, we prove (a) for arbitrary bounded vector fields.

Step 1 (Regularization). We first mollify ,u;‘t, o', and 7’
with respect to the space variable using a family of strictly pos-
itive mollifiers {6} ¢ C*(R™) with unit mass, zero mean,
and uniformly bounded second moment, obtaining smooth
measures ,u;‘t;e = ,ui‘t #0c, ol =0 %0, and ! =" * .. We
also define a smooth vector field Fy by



Fi(t gy *0c
F.E(t,') = Hopee '
0, if [y =0

if |ul,. | > 0;
it i | w0

Notice the smooth vector field Ff is pointwise bounded: Let
M < +oco be a pointwise bound for Fj, then
% "

_ My, %6
[Ef (1) s — = < M
Mr\t*oe 'uz|t>b9e

/‘i:|t L

=M (41)

for all (¢,z) €[0,T] x

inequality, one can prove (2

Il < Il o
Such H»th . 1s a solution of (22) with respect to Fy, o, and

nt. Since Ff is pointwise bounded and F(t,-) is Lipschitz,

Theorem 25 implies that Mr\t = ®5(t,-, )4 (ol —n?) for ae.
€ [0,T], where ®5(t,s,z) satisfies:

xR"™. By applying Young’s convolution
ol < |o*|, and

t _
@g(t,s,z):mf Fe(r,®(r,8,2))dr, 0<s<t<T (42)

The function ®§(-, s, z) can be extended to [0,7'] (as opposed
o [5,T]) due to the regularity of Ff. Denote the extended
version as ®¢(-,s,2) € I'; for any (s,z) € [0,T] x R™. The
space of all such functions is denoted as T := {®S(-,s,z) |
(s,z) € [0,T] x R™} c T'; endowed with the subspace
topology. It follows by the existence and uniqueness theorem
for ODE that the evaluation map e;(0,7,-) restricted to I'§
is an isomorphism for any ¢ € [0,7']. Define V€ : (t,z) ~
®¢(-,t,x) from [0,T] x R™ to I'¢, and also a projection map
7l (s,z) ~ s from [0,T] x R™ to [0,T]. Define

pzﬁ',+ = (ﬂ.1 X \IIE)# 0—2 e M, ([0,T] xT%),

pi’_ = (7‘(‘1 x \116)#772 e M, ([0,T] xT%).

Step 2 (Marginals of pi* and p®~). This step shows that all
trajectories that enter the domain via o¢ leave through 7! by
proving that the «-marginals of p2* and p®~ are equal. Since
pi* and pi~ are finite measures and R x I'¢ is Radon separable
metric space, using [36, Theorem 5.3.1], the measures p?”’
and p’~ can be disintegrated as

dp?* (s,7) = dpii’ (s) dpli(v),
dp?™(1,7) = dpy (7) dpli(7),
where pi’lJr .. and pi’lf

(43)

(44)

are probability measures for all v €

spt(pw *) and 7 € spt(p,y ), respectively. We next show the
~y-marginals are equal. Let w € L*(R™) be arbitrary. Notice

0= [Oyﬁgg@(ﬂs,x))d(as(s,x)—ne(s,x)) (45)
= J mer T ) =0t () @6)
= [ wler(0.1:9) d (3 = () @7

where (45) follows from Corollary 24; (46) follows from
definition of W€ and (43); (47) follows from (44). Since
eT(O T,-) is an isomorphism and w € L'(R™) is arbitrary,
,oV , pV .- For convenience, we denote them both by p7 .
Step 3 (Construct p6 s)- We now want to combine p;* and
pb~ to generate a measure p! € M, ([0,T] x[0,T] xT) that
describes the trajectories that evolve in the domain as well as
their entering and exiting time. Such a measure can be defined

by pushing forward p>* through a map that associates entering
and exiting times. However, such a map may not be well
defined; for example, two trajectories can enter the domain
at the same time but leave at different times. To address such
issues, we mollify the t-component and define a sequence of
measures p. 5 first, and then define p! as the limit of this
sequence as ¢ | 0 which is done in Step 4. Let {05} ¢ C*(R)
be a family of smooth molhﬁers with unit mass and zero mean,
and define p@l s T pgh €>H95 and pTh 5= Th *05 We fur-

MR dpi7i(5,7) =

dp’. 5(s) dpli(v) and dpe s(Ty) =dpy 5(T)dpi ()
For a.e. t € [0,7] and any non-negative w € LI(R” ):

ther deﬁne measures pE 5P

0 < {pl e w) (48)
- [ w(@i(ts,2) d(0l(s,2) = nis0)  @9)
[0,¢] xR
= [l w07, (5 (0-)+
, (50)
-0l (0,4]) dph (),
where (48) follows from the fact that N;n-e is an un-
signed measure; (49) follows by substituting in :“i|t;e
®E(t,-, )4 (0l = nt); (50) follows from (43) and (44).
Equivalently, given any Borel set Ep c I,
7,+ 7
| (e 0.0 - & ([0.]) ded (1) 2 0. (5D)

Since the functions  ~ p"" ([0,t]) and ¢ - pTh ([0,1]) are
absolutely continuous, psh;e([O,t]‘) > TWS([O t]) is satisfied
for all ¢ € [0, 7] for all v € spt(p; ). Using the definition of
convolution and Fubini’s theorem, one can prove a similar

result for the mollified measures p°) and p" i.e.

s|e

9|’Y )0 Gl'v )67
A0l 5((=00,11) 2 0l s ((=o0,]) for all 7 € ().

Since p" | 5 and p ’lf are smooth non- negative measures,
the functrons t > ph |765(( 00,t]) and t — pT‘ 65((—oo,t])
are »contrnuous and non-decreasing. Also, 0 SpTWE’ s((=00,1])
Spi";g s((=00 t]) <p7w s(R) =1, where the last equality
follows because pTh;E, isa probability measure; by the Mean
Value Theorem, for any 7 € spt(p’..) there exists a function
: R - R such that r,(¢) > t and psheg((—ooj]) =
Th _5((=o0,my(t)]) for every v € spt(pl..). Moreover,
the function r. is strictly increasing and therefore invert-

ible, i.e., there exists a function r71 R — R such that
rﬂ,(r '(t)) = 5" (ry(t)) = t. Using Step 2, ps|"/65((_oo’t]) =

T‘,ﬂs s((=00,7(t)]) can be written as

S ()l = [ L o1 (PR3 () (52)

for any t € R and any Borel subset Er c I'5.

We now abuse notation and define a map 7 : R x spt( p7 )~
R by letting r(s, 7) = r,(s) for all v € spt(pw), and also
projection maps 7! : (5,7) e Rx ¢ s e R, 72 : (5,7) €
RxI'S = v e I';. We can then define a measure pe’(; e M, (Rx

R x T§) as pivé, = (7! x7rx 7r2)# ng Notice for any triplet
(s,7,7) €spt(p; 5) we know s < 7 since 7, (t) > t.
We now establish the relationship between the marginals



of ,0‘ s and the measures pig and pig We use variables
(s, 7 'y) € R xR xTI¥ to denote any point in spt(p ) Since

7t x 7% is identity map, the (s,7)- marglnal of p¢ 5 is equal to

pz; To show the (7,7)-marginal of Pe, s is equal to pUy, it
is then sufficient to show fp . 1(—eo11(T)dpl 5(5,7,7) =
Jesg, L(-o0,t1(7)dpy 5(7,7) holds for all ¢ € R and all Borel

subsets Er c I'S. The equation is true because

‘/]R;XRXEF ]l(_‘x’vt] (T) dpe,&(sv T, ")’)
) [RE (oot (1(8) dp?5(5,7)
) [RxEF Lcoo,1(7) dp. 5 (7,7),

where (53) follows by the definition of pg s and because 7. is
strictly monotonic and therefore 7. (s) € (-oo,t] if and only
if s € (—oco,r7'(t)]; (54) follows by substituting in (52) and
from the fact that 7. 1is invertible;

Step 4 (Properties of the limiting measure of {Pes}s) We
now show that the limit of p; ; exists as § | 0 and that for
this limiting measure Ma:|t .= (e,g)#p6 for a.e. t € [0,T]. We
also show that specific marginals of this limiting measure are
equal to p>* and p®~ and that for any (s,7,7) in the support
of this limiting measure, s < 7. To prove this condition, we
use the notion of tightness of measures [49, pp. 605-606]:
Integral Condition for Tightness: Let X be a separable
metric space. A family I ¢ M, (X) is tight if and only if
there exists a function © : X — [0, +co] whose sublevel sets
are compact in X such that sup . [ ©(z) du(x) is finite.
Tightness Criterion: Let X, X;, X5 be separable metric
spaces and let * : X — X;, i = 1,2 be continuous maps
such that the product map r : r! xr? : X - X; x Xy is
proper. Let K ¢ M, (X) be such that IC; := T;E(IC) is tight in
M (X;) for i =1,2. Then also K is tight in M, (X). Notice
the statement also holds for finitely many maps by induction.

Choosing maps 7!, r? defined on R x R x T'¢ as »! :
(5,7,9) = (5,7) € RxT¢ and r? : (s,7,9) » 7 € R.
Notice that r = r! x r? is an isomorphism and therefore
proper. The family {r},p! 5}5 is given by {p”{}s which are
tight by definition, and the family {ri&pi’é}g is given by

(53)

(54)

the first marginal of {pi:g}g which are also tight. Apply-
ing the tightness criterion, the family {pi ste is tight, and
therefore narrowly sequentially relatively compact according
to Prokhorov Compactness Theorem. Let p! be any limit of
the family {pz s+ as 0 | 0. Since the (s,~)-marginal of piﬁ is
equal to ng and the (7,7)-marginal of p’ 6 1s equal to pi 5
we let 6 | 0 and therefore the (s,v)-marginal of p6 is equal
to p>* and the (7,7)-marginal of p! is equal to p®

f[ ;p(,smgdpi(mﬁ) =f0
fOTx gdpe(STfY) f

for all @ € Ll(R xT).

Let (s,7,7) € spt(p’) be arbitrary. To show s < 7, let
©'e Cb(R2) be such that spt(¢’) c {(s,7) e R?| s > T} Since
Jesmsr, @' (8,7) dpl 5(s,7,7) = 0 for all 4, it follows from
narrow convergence that f07T <[0.T]xT; P "(5,7)dpl(s,T,7) =

(s el (s,7)
b _ (55)
() dpe(7,7)

0. Since Ly(s,7)e[0,T12s57+A} is a limit point of such functions
@' with respect to Li(p;;R) for any A > 0 [37, Corol-
lary 4.2.2], p% is supported on (s,7,7) such that s < 7.

For a.e. t € [0,T] and any w € L' (R™),
[ w@) i (@)

fOtx

(gt]g 7’7))dpe(s T, 7)+

, (56)

= Joutesr T dol (s 77)

[0,¢]x [ t
(see(s T27)) = w(ee(m 7)) dpy(s,m7)+

[0,¢]x[0,¢]x (57)

* Jp e T ol (5,7 7)

0+ [ w(ey(s,m.9)) dpk(s,m )

[[O, t]x[t,T]xT¢ (58)

- f w(e(0,7,7)) dp (s, 7,7),

Ix{tpxT§
where (56) follows from sl = = ®5(t,-,-)# (ol -nt), 43),
and (55); (57) follows by splitting the domain of integration;
Since e4(t1,7,-) = €:(0,T,-) and e4(t1,T,) = e4(t1,t2,-) for
all 0 <t <t <ty <T, the first term of (57) is zero because
the integrand is zero, (58) follows by adding and subtracting
[0,¢] x {t} x'$ to the domain of integration. Since p([0,t] x
{t}=T%) is non-zero for at most countably many ¢’s (otherwise
pt would not be bounded), p¢ . = (e;)ypt for ae. t€[0,7T].

z|t;e
Step 5 (Tightness of the family {pi}c). We show that the
limit of p! exists as € | 0. To begln choose maps 7!, r2, r3
defined in [0,7] x [0,T] xI'; as r! : (s,7,7) = s € [0,T],
2. (s,1,y) = 7 € [0,T], and 7° : (s,7,7) = v € I';.
Observe that r = 71 x 72 x 73 is the identity map and therefore
proper. The family {7’71‘7£ pi}e and {ri pl}. are given by the first
marginals of ¢ and 7., respectively, which are tight and are
independent of e. To establish a similar result for 73,p!, let
O :T; > RU{+o0} as O(y) = || if [¥(t)] £ M ae., and
O(7) = +oo otherwise. We next show this function © satisfies
the requirement of the integral condition for tightness. Let
= {v eT; | ©(y) < C}. Since any sequence {v,} c S

is uniformly bounded and equicontinuous, S is precompact
according to Arzela-Ascoli Theorem. To show S is closed,
let {~,} be a convergent sequence in .S, and by definition
Y — 4 in L*([0,T]). There is a subsequence of %, that
converges pointwise a.e. to v [50, Proposition 2.29], therefore
|¥(¢)| < M a.e., which implies that the set S is closed. Notice

Jematimm=f  emdi 69

:[[0 T]XR”_(’@);(O,S,;EH-F/ ‘éi(t,s,x)‘dt) do’i(s,x) (60)
\/[‘OT (|<I> (s,8,7)] f |F€(<I> (t,s :p))|dt+

o | ©61)
; fo |[FE(i(t,5,2))] dt) do' (s, )

<f[0T Jeldoi(s,2) + 2MT o] (62)

<f[OT (al? + 1) doi(s,2) + 2MT o] (63)



2 i 1 i
S[[O,T]xxi[ﬂalg:w' Oc(y)dydo (s, x)+(1+2MT)|o"| (64)

:v/[-O’TJXxﬁdai(SJJ) + (,/]1-% |Z/|295(y) dy) ”Uz’”+
+f f 227y0(y)dydo' (s, 2)+(1+2MT) 0",
[O,T]XXi R™;

where (59) follows from (55); (60) follows from (43) and (42);
(61) follows from triangle inequality; (62) follows from (41);
(63) is true because |z|*+1 > |z| for all z € R™, and o is non-
negative; (64) follows from the definition of convolution and
|lo?] < |lo*[; Since o is bounded and X; is compact therefore
|z[? is bounded for all = € X;, the first and last term in (65)
are bounded. Because 6. is assumed to have zero mean and
bounded second moment, the second term in (65) is bounded
and the third term in (65) is zero. As a result, the left hand side
of (59) is bounded. Using the integral condition for tightness,
{r% pi}. is tight, and {p’}. is tight via the tightness criterion.

(65)

Step 6 (Part (b)). We prove the limit of p! as e goes to zero
satisfies Part (b). Using the Prokhorov Compactness Theorem,
the family p! is narrowly sequentially relatively compact.
Choose a narrowly convergent sequence in {p‘}. and define
its limit by p* € M, ([0,T] x [0,T] xT;). For ae. t € [0,T]
and all w € Cy(R™), it follows from pf,, - = (e;)4pe that

fnw(m) d,uz‘te( x) = wEetgs T 7))d,06(s 7,7). (66)

[0,T]x[0,T
Since e; is continuous, w o e; € Cy([0,T] x [0,T] x ;). We

then pass to the limit € | 0 on both sides of (66) to obtain
in, w(z) dl‘ut (z) = foT 1x[0,T]xT; w(ey(s,7,7)) dp'(s,7,7)
for a.e. ¢ € [0,T]. Since Cy(R™) is dense in L'(R™) [37,
Corollary 4.2.2], 'u’;c|t (er)up* for ae. te[0,T].

Step 7 (Part (a) with continuous vector field). Using a
similar argument in Step 4, we may show s < 7 for any triplet
(5,7.7) € spt(p"). Moreover, it follows from pf,, = (e¢)pp'
that y(t) € spt((e;)xp’) ¢ X; for ae. t € [s,7]. Since v is
absolutely continuous and X; is compact, y(t) stays in X; for
all t € [s,7]. To prove the rest of (a), we only need to show

t_
[ b= B yar
[0,¢]x[t,T]xT; )

for all ¢ € [0,T]. Let v € Cy([0,T] x X;; R™), then

/ (D=1(5)- [ vzt () ol (s, 7,7)

[0,6]x[t,T]xT;

dp'(s,7,7) =0 (67)

< [ [IFeGiaG) —o Gl drasi(sm) - 68)
[0, ][, T]xT;
ff |[FE (72 (7)) = oy (7)) dpe(s, 7, y)dr” (69)
[0,7"]x[7",T]xT;
:fofRnJFie(ﬂx)—u(T,xﬂ duglm(gg)dr (70)
Sf|Fi(r,x)—v(r,x)|dui,x(T,xﬁ
[0,T]xR™i
(71

+ (sup [v°(7,z) - v(7, 2)|)
7€[0,T]
zeR™
for any ¢ € [0,7] where (68) follows by substituting in
fst Ef(r',v(r"))dr" = ~v(t) — v(s) and applying the triangle
inequality for integrals; (69) follows by first applying Fubini’s

theorem to change the order of integration, and then relaxing
the domain of integration (since p: is nonnegative); (70)
follows from Um|t . = (e¢)p¢ and a change of variables 7’ = 7;

5(7_ ) _ (U(T’)th) e

in (71) we add and subtract v , and then

apply the triangle inequality and [49, Lemma 3. 9]. Since the
family {p}. is tight and the integrand is a bounded continuous
function, and v is uniformly continuous v¢ converges to v
uniformly as € | 0, and the second term of (71) converges to
0, therefore for a.e. ¢t € [0,7T],

[ b=~ [oeaear] asits o)

[0,t]x[t,T]xT;
< [ |Ei(r,z) —v(r,@)|du (1,2).
Sl = o)l dut o (7.)

If F; is uniformly continuous, let v := F;, and (67) follows.

Step 8 (Error bound of vector field approximation). When
there is no regularity in F; other than boundedness, we
choose a sequence of continuous functions converging to F;
in L'(pj ,;R™), and prove an error bound of the approx-
imation: Let {vk}ren © C([0,T] x X;;R™) be a sequence
of continuous functions converging to F; in L'(uf ,;R™),
whose existence is guaranteed by [37, Corollary 4.2. 2] Given
any t € [0,7], we compute the following error between vy
and Fj:

[ [ I A - Fi e

[0,4]x[t,T]xT;

ff |Uk " A(T) = Fi(r A ()| dp' (s,7,7) dr' (73)

T ,T]xI;
:/[0 e, |vk(7,x) - Fi(T7.T)| dumc (1,2),

where (73) follows by first applying Fubini’s Theorem to
change the order of integrations, and then relaxing the domain
of integration (since p' is nonnegative); (74) follows by
substituting in uilt = (e4)4p". Observe that as k — oo this
error goes to zero.

Step 9 (Condition (a) with bounded vector field). We may
now combine Step 7 and Step 8 together and prove Part (a) in
a more general setting. Using the results in Step 7 and Step
8, we obtain for any ¢ € [0,T],

(72)

‘dep(STy)

(74)

[ b® - [ B i s, m7)
[0,¢]x[t,T]xT;
<2 0.1 |F (1,2) = vp (T, x)| d,u”C(T x), (75)

where (75) follows by adding and subtracting the term
fst vp (7', y(7"))dr’, applying the triangle inequality, and us-
ing the results in Step 7 and Step 8. When we let k — oo, (75)
goes to zero, therefore Part (a) holds. |

APPENDIX C

In this section we prove Theorem 12.

Proof: This proof consists of several steps: in Step 1 we
show that trajectories defined in support of p’ and p’ satisfy
the reset map for all (é,5) € £; in Step 2 we show trajectories
in each mode can be connected to obtain hybrid trajectories
that are defined on [0,7']; in Step 3 we prove that those



hybrid trajectories are admissible by showing they all start
from spt(y$) and end in spt(u}) thus proving (a); in Step 4
we define a measure p and prove that it satisfies (b) and (c);
in Step 5 we prove (d) using (b) and (c).

Step 1 (Reset maps are satzsﬁed) According to Corollary
10, it suffices to show o7 = &y ®u0 + X (i,))eE R(l H#n's Ve
7. This _can be proved by us1ng (19) and Assumption 2 to
obtain R(”)#n = R(”)#,u .35, As a result, all trajectories
in the support of p' are reinitialized to another trajectory in
the support of p’ after it reaches the guard S(i,5)> On the other
hand, a trajectory can only start in mode ¢ either from the given
initial condition x¢ at time O, or by transitioning from another
mode j if (j,i) € £. We can therefore connect trajectories in
each mode together to obtain hybrid trajectories.

Step 2 (Hybrid trajectories are defined on [0,T]). This step
shows that all hybrid trajectories are defined on [0,T]. To
prove this, we first show that there is a At > 0 such that 7—s >
At for any i € T and (s,7,7) € spt(p®), 7+ T. Let (s,7,7) €
spt(p) for some i € Z, and let 0 < s < 7 < T. According to
Corollary 10, v(s) € {zo} Ui i)ee R(ir,iy (Seir,i)) and (7)€
U(i,inee S(iiry- According to Definition 1 and Assumptions 2
and 5, v(s) and ~(7) belong to disjoint compact sets (since the
image of a compact set under a continuous map is compact)
and therefore there exists a d; > 0 such that |y(7) —~(s)| > d;.
Let M; > 0 be a bound for F;(¢,z) over [0,T]xX;, and define
At := min;ez(d;/M;). Then it follows from the Fundamental
Theorem of Calculus that (7 - s) > At.

We can apply proof by contradiction to show all hybrid
trajectories are defined on [0,7']. Let a hybrid trajectory be
defined on a strict subinterval of [0,7'], then according to
Corollary 10 its endpoints must belong to either S. or Rex e
for some e € £. It then follows from Step 1 that its domain can
always be extended by at least At due to transitioning from or
to another point Notice it follows from the above discussion
that for any i € Z and (0,7,7v) € spt(p®), 7 > At. As a result,
spt(p®e) c [At, T]x S, for all e € £. Then, as a result of Step
1, for all e € &, spt(ReygpS) c [At, T] x Ro(S.).

Step 3 (Part (a)). For any triplet (0,7,7) € spt(p),
(0,7(0)) € spt(a ) according to Corollary 10. It then follows
from spt(Rexp) ¢ [At,T] x R.(S.) that v(0) € spt(uf).
Now suppose (s,T,7) € spt(p*) but v(T) ¢ spt(p%). Accord-
ing to Corollary 10 and Step 1 « is reinitialized to another
trajectory v’ in some mode ¢’ € Z. As a result of Corollary
10, (T,~'(T)) € spt(c? ) Uspt(n’), therefore as a result of
Assumptions 2 and 4, '(T') € spt(u%).

Step 4 (Part (b) and (c)). As a result of Step 3,
there exists a measure p € M, (X) such that (el)yp =
(er)yp' for all t e [0,T]. Therefore, Part (b) follows
from Theorem 9. To prove Part (c), notice p(X) =
ZieI((ea)#p) (Xz) = ZiEIPZ({O} X [OvT] X FZ) Accord-
ing to Corollary 10, f[O,T]x[}O,T]xl",v, ]1{0}(5)dp1(5,j,7)
f[O,T]xXi 1{0}(5) dO‘z(%x) = Ul({o} X Xz) va YieT N%)(Xi) =
1, then p(X) = Xiez 0" ({0} x Xi) = Ejez po(Xi) = 1.

Step 5 (Part (d)). Let A x B be in the Borel o-algebra of
[0,T] x X;, then

. T
pia(AxB) = [ [T 1an(ta®)dtdp(),  T6)

which follows by substituting in (ej)xp = uj;, and ap-
plying Fubini’s Theorem. Since p is a probability measure,
YieT M}t,w([O’T] X Xl) =T.

For all B in the Borel o-algebra of X,

ph(B) = [ Aqpp(s,@)do'(s,2) ()
- [ 12((0) dp(3), 7%)

where (77) follows from definition of Jy, from (19) and
spt(Rey i) € [At, T]x Re(S.); (78) follows from Corollary
10 and because (ei)yp = (et)#p Similarly, for all B in
the Borel o-algebra of Xr., % (B) = S, 1(7i(T)) dp(7).
Since p is a probability measure, ¥,y (X71,) = 1.

Finally, for all (i,i") € S and A x B in the Borel o-algebra
of [0, T] X S(Z‘ﬂ‘l),

MS('i,i’>(A x B) = _[ ]IAXB(T,QT) dni(Tvx) (79)
- [ Laen(mA(0) dp(s,7) 50
[0,T]x [0 TIxI;
f[o#{ Les,my) e Ax BYdp'(s,7,7) @)
- fX #{t € A| lim 7,(7) € B} dp(7), (82)

where (79) follows from (19), Assumption 4, and the fact
that B c S(; ;+y; (80) follows from Corollary 10; 81) follows
from Assumption 2; (82) follows because (€})xp = (er)up’
and because all v; € I'; are absolutely continuous. From Step
2, each ~ € spt(p) undergoes at most At transitions, where
At is defined as in Step 2. Therefore Y (; i1yee #{t € [0, T] |
lim; ¢~ (7)€ S(,im)} < A for all ~ € spt(p) Since p is a

probability measure, Y .¢ p”°([0,T] x S,) < At [ |
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