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Abstract—This paper considers the optimal control for hybrid
systems whose trajectories transition between distinct subsystems
when state-dependent constraints are satisfied. Though this class
of systems is useful while modeling a variety of physical systems
undergoing contact, the construction of a numerical method
for their optimal control has proven challenging due to the
combinatorial nature of the state-dependent switching and the
potential discontinuities that arise during switches. This paper
constructs a convex relaxation-based approach to solve this
optimal control problem by formulating the problem in the space
of relaxed controls, which gives rise to a linear program whose
solution is proven to compute the globally optimal controller. This
conceptual program is solved using a sequence of semidefinite
programs whose solutions are proven to converge from below to
the true solution of the original optimal control problem. Finally,
a method to synthesize the optimal controller is developed. Using
an array of examples, the performance of the proposed method is
validated on problems with known solutions and also compared
to a commercial solver.

I. INTRODUCTION

Controlled hybrid dynamical systems can describe the dy-
namics of a variety of physical systems in which the evolution
of the system undergoes sudden changes due to the satis-
faction of state-dependent constraints such as in bipeds [1],
automotive sub-systems [2], aircraft control [3], and biological
systems [4]. Given the practical applications of such systems,
the development of algorithms to perform optimal control
of hybrid systems has drawn considerable interest among
theoreticians and practitioners. The theoretical development
of both necessary and sufficient conditions for the optimal
control of hybrid controlled systems has been considered using
extensions of the Pontryagin Maximum Principle [5]–[7] and
Dynamic Programming [8]–[10], respectively. Recent work
has even linked these approaches [11]. Typically, these meth-
ods have assumed that the sequence of transitions between
the systems was known a priori. Practitioners, as a result,
have fixed the sequence of transitions and used gradient-based
methods to locally optimize over the time spent and control
applied within each subsystem [12]–[15].

Recent work has focused on the development of numerical
optimal control techniques for mechanical systems undergoing
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contact without specifying the ordering of visited subsystems.
One approach to address the optimal control problem has fo-
cused on the construction of a novel notion of derivative [16].
Though this method still requires fixing the total number of
visited subsystems, assuming a priori knowledge of the visited
subsystems, and performs optimization only over the initial
condition, this gradient-based approach is able to find the
locally optimal ordering of subsystems under certain regularity
conditions on the nature of the state-dependent switching.
Other approaches have relaxed satisfaction of the unilateral
constraint directly and instead focused on treating constraint
satisfaction as a continuous decision variable that can be
optimized using traditional numerical methods to find local
minima [17]–[19].

This paper develops a numerical approach to find the global
optimum to the hybrid optimal control problem when the
vector field of each hybrid “mode” is a polynomial function.
It relies on treating the optimal control problem in the relaxed
sense wherein the original problem is lifted to the space of
measures [20], [21]. In the instance of classical dynamical
systems, this lifting renders the optimal control problem linear
in the space of relaxed controls [22]; however, there are few
numerical methods to tackle this relaxed problem directly.

Recent developments in semidefinite programming have
made it possible to solve this lifted optimal control prob-
lem for classical dynamical systems by relying on moment-
based relaxations [23]. By solving the problem over truncated
moment sequences, it is possible to transform the optimal
control problem into either a finite-dimensional linear or finite-
dimensional semidefinite program. Either transformation of
the relaxed problem is proven to provide a lower bound
on the optimal cost. In fact, this bound converges to the
true optimal cost as the moment sequence extends to infinity
under the assumption that the incremental cost is convex in
control. Recent work has also shown how the optimal control
policy can be extracted for systems that are affine in con-
trol [24], [25]. Unfortunately this relaxed control formulation
for controlled hybrid systems, the subsequent development of
a numerically implementable convex relaxation, and optimal
control synthesis have remained unaddressed.

Note that the focus of this paper is on the development
of an optimal control approach for hybrid systems with
state-dependent rather than controlled switching. A variety of
numerical methods have been proposed to perform optimal
control for systems with controlled switching [26]–[32]. In
contrast to the controlled switching case, after state-dependent
switching, the state is allowed to change discontinuously.

The contributions of this paper are three-fold: first, Sec-
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tion IV provides a conceptual infinite dimensional linear
programming-based approach for the optimal control of hybrid
systems with state-dependent switching; second, Section V
presents a semidefinite programming-based sequence of relax-
ations to this infinite dimensional linear program that is proven
to generate a sequence of convergent lower bounds to the true
optimal cost; finally Section V provides a method to generate
a sequence of controllers that converge to the true optimal
control. The remainder of this paper is organized as follows:
Section II defines the class of systems under consideration and
their executions, Section III describes how to lift executions
of the hybrid system to the space of measures, and Section VI
illustrates the efficacy of the proposed method on a variety of
systems.

II. PRELIMINARIES

This section introduces the notation used throughout the
paper, defines controlled hybrid systems, and formulates the
optimal control problem of interest.

A. Notation

Given an element y ∈ Rn, let [y]i denote the i-th component
of y. We use the same convention for any multidimensional
vector space. Let card denote the cardinality of a set. Let
R[y] denote the ring of real polynomials in the variable y
and Rk[y] denote the space of real multivariate polynomials
of total degree less than or equal to k. Let {Ai}i∈I be a family
of non-empty sets indexed by i, the disjoint union of this
family is ∐i∈I Ai = ⋃i∈I(Ai × {i}). Let ιi ∶ Ai → ∐i∈I Ai
be the canonical injection defined as ιi(a) = (a, i) whose
inverse is πi ∶ ∐i∈I Ai → Ai. Note πi(ιj(a)) = ∅ if i ≠ j.
For convenience, denote xi ∶= πi(x) for all x ∈ ∐i∈I Ai.
Similarly define a projection operator onto the indexing set
λ ∶ ∐i∈I Ai → I such that λ(ιi(a)) = i. Let conv denote the
convex hull of a set. Let a.e. denote “almost everywhere”.

Let 1S be the indicator function on a set S. We say a
function is pointwise bounded if its range is a bounded set.
Suppose Y is a measurable metric space, then let C(Y ) be the
space of continuous functions on Y , let Cb(Y ) be the space of
bounded continuous functions on Y , let AC(I) be the space
of absolutely continuous functions on I ⊂ R, let L1(Y ) be
the space of L1 functions with respect to Lebesgue measure
on Y , let L1(µ) be the space of L1 functions with respect to
the measure µ, and let M(Y ) be the space of finite signed
Radon measures on Y endowed with the total variation norm
(denoted by ∥ ⋅ ∥), whose positive cone M+(K) is the space
of finite unsigned Radon measures on Y . Any µ ∈M(Y ) is
an element of the dual to C(Y ) via the duality pairing

⟨µ, v⟩ ∶= ∫
Y
v(z)dµ(z), ∀v ∈ C(Y ). (1)

Let the support of µ ∈M(Y ) be denoted as spt(µ). A prob-
ability measure is a non-negative, unsigned measure whose
integral is one. Denote the dual to a vector space V as V ′.

Suppose Y1 ⊂ Y is a compact set endowed with the subspace
topology, then define the zero extension of any f ∈ L1(Y1) as

f̂(y) =
⎧⎪⎪⎨⎪⎪⎩

f(y), if y ∈ Y1

0, if y ∈ Y /Y1

(2)

Define the zero extension of µ ∈ M(Y1) as µ̂(B) = µ(B ∩
Y1) for all subsets B in the Borel σ-algebra of Y . Let
µy1∣y2

∈ M(Y1) denote the conditional probability measure
of µ ∈M(Y1 ×Y2) on Y1 given y2 ∈ Y2, and let µy2 ∈M(Y2)
denote the marginal of µ on Y2.

Suppose Y ⊂ Rn, define the convolution of µ ∈M+(Y ) and
θ ∈ L1(Rn), denoted as µ ∗ θ ∈M+(Rn), as

(µ ∗ θ)(B) = ∫
Y
∫
Rn

1B(x + y)θ(y)dy dµ(x) (3)

for all subsets B in the Borel σ-algebra of Rn. If Y1, Y2

are measurable spaces, µ ∈ M(Y1), and f ∶ Y1 → Y2 is a
Borel function, let f#µ ∈M(Y2) denote the pushforward of
µ through f , given by

(f#µ)(B) ∶= µ(f−1(B)) (4)
for any B in the Borel σ-algebra of Y2. Note for every f#µ-
integrable function v ∶ Y2 → R

∫
Y2

v d(f#µ) = ∫
Y1

v ○ f dµ. (5)

B. Controlled Hybrid Systems
Consider the following class of controlled hybrid systems:

Definition 1. A controlled hybrid system is a tuple H =
(I,E ,D, U,F ,S,R), where:
● I is a finite set indexing the discrete states of H;
● E ⊂ I × I is a set of edges, forming a directed graph

structure over I;
● D =∐i∈IXi is a disjoint union of domains, where each
Xi is a compact subset of Rni , and ni ∈ N;

● U is a compact subset of Rm that describes the range of
control inputs, where m ∈ N;

● F = {Fi}i∈I is the set of vector fields, where each Fi ∶
R ×Xi ×U → Rni is a Lipschitz continuous vector field
defining the dynamics of the system on Xi;

● S = ∐e∈E Se is a disjoint union of guards, where each
S(i,i′) ⊂ BXi is a compact, co-dimension 1 guard defining
a state-dependent transition from Xi to Xi′; and,

● R = {Re}e∈E is a set of continuous reset maps, where
each map R(i,i′)∶S(i,i′) →Xi′ defines the transition from
guard S(i,i′) to Xi′ .

For convenience, we refer to these controlled hybrid systems
as just hybrid systems and refer to a vertex within the graph
associated with a hybrid system as a mode. Though the
range space of control inputs are assumed to be the same
in each mode, this is not restrictive since we can always
concatenate all the control inputs in different modes. The
compactness of each Xi ensures the optimal control problem
defined below is well-posed. Since the focus of this paper is
on the optimal control of deterministic hybrid systems, we
avoid any ambiguity during the transition between modes by
making the following assumption:

Assumption 2. Guards do not intersect with themselves or
the images of reset maps. The controlled vector fields in each
mode has nonzero normal component on the guard for all
control inputs in U .

Next, we define a hybrid trajectory of a hybrid system
up to time T > 0 in Fig. 1. Step 1 initializes the hybrid
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Require: t = 0, T > 0, i ∈ I , (x0, i) ∈ D, and u ∶ R → U
Lebesgue measurable.

1: Set γ(0) = (x0, i).
2: loop
3: Let I ⊂ [t, T ] and φ ∈ AC(I;Xi) such that:

(i) 9φ(s) = Fi(s, φ(s), u(s)) for almost every s ∈ I
with respect to the Lebesgue measure on I with
(φ(t), i) = γ(t) and

(ii) for any other φ̂∶ Î →Xi satisfying (i), Î ⊂ I .
4: Let t′ = sup I and γ(s) = (φ(s), i) for each s ∈ [t, t′).
5: if t′ = T , or ∄(i, i′) ∈ E such that φ(t′) ∈ S(i,i′) then
6: Stop.
7: end if
8: Let (i, i′) ∈ E be such that φ(t′) ∈ S(i,i′).
9: Set γ(t′) = (R(i,i′)(φ(t′)), i′), t = t′, and i = i′.

10: end loop

Fig. 1: The procedure to define a trajectory of hybrid system H.

trajectory at a given point (x0, i) at time t = 0. Step 3 defines
φ to be the maximal integral curve of Fi under the control
u beginning from the initial point. Step 4 defines the hybrid
trajectory on a finite interval as the curve φ with associated
index i. As described in Steps 5 - 7, the hybrid trajectory
terminates when it either reaches the terminal time T or hits
BXi/⋃(i,i′)∈E S(i,i′) where no transition is defined. Steps 8 and
9 define a discrete transition to a new domain using a reset
map where evolution continues again as a classical dynamical
system by returning to Step 3. Note that this definition is a
rephrasing of [33, Fig. 8] and is meant to formalize what is
meant by a solution to a hybrid system. This paper applies this
definition only to ensure the existence of solutions to hybrid
systems. A description of how to implement this definition can
be found in [33]. Denote the space of such hybrid trajectories
as X . Note that for any t at which a hybrid trajectory γ is
defined, γ(t) = (γλ(γ(t))(t), λ(γ(t))).

Trajectories of hybrid systems can undergo an infinite
number of discrete transitions in a finite amount of time. Since
the state of the trajectory after these Zeno behaviors occur may
not be well defined [34] and because the focus of this paper is
on optimal control for deterministic hybrid systems, we make
the following assumption:

Assumption 3. H has no Zeno trajectories.

C. Problem Formulation

This paper is interested in finding a (γ, u) satisfying Al-
gorithm 1 from a given initial condition x0, that reaches a
target set while minimizing a cost function. To formulate this
problem, define the target set, XT ⊂ D, as XT = ∐i∈IXTi ,
where XTi is a compact subset of Xi for each i ∈ I . To avoid
any ambiguity, we make the following assumption :

Assumption 4. The target set does not intersect any guards.

Given a T > 0 and an initial point (x0, j) ∈ D, a pair of
functions (γ, u) satisfying Algorithm 1 is called an admissible
pair if γ(T ) ∈XT . In this instance, γ is called an admissible

trajectory and u is called an admissible control. The time
T at which the admissible trajectory reaches the target set
is called the terminal time. Denote the space of admissible
trajectories and controls by XT and UT , respectively. The
space of admissible pairs is denoted as PT ⊂ XT ×UT . Without
loss of generality, we make the following assumption:

Assumption 5. The initial condition is not in any guard.

For any admissible pair (γ, u), the associated cost is:

J(γ, u) ∶=∫
T

0
hλ(γ(t)) (t, γλ(γ(t))(t), u(t)) dt+

+Hλ(γ(T )) (γλ(γ(T ))(T ))
(6)

where hi ∶ [0, T ] × Xi × U → R and Hi ∶ XTi → R
are integrable. Our goal is to find an admissible pair that
minimizes (6), which we refer to as Hybrid Optimal Control
Problem (HOCP):

inf
(γ,u)∈PT

J(γ, u) (HOCP )

The optimal cost of (HOCP ) is denoted as J∗.

III. THE HYBRID LIOUVILLE EQUATION

This section constructs measures whose supports model the
evolution of families of trajectories, an equivalent form of
J , and an equivalent form of Algorithm 1 in the space of
measures. These transformations make a convex formulation
of (HOCP ) feasible.

Consider the projection γi of a hybrid trajectory γ onto
mode i ∈ I . Define the occupation measure in mode i ∈ I
associated with γ, denoted by µi(⋅ ∣ γ) ∈M+([0, T ]×Xi), as

µi(A ×B ∣ γ) ∶= ∫
T

0
1A×B(t, γi(t))dt (7)

for all subsets A × B in the Borel σ-algebra of [0, T ] ×Xi.
Note that γi(t) may not be defined for all t ∈ [0, T ], but we
use the same notation and let 1A×B(t, γi(t)) = 0 whenever
γi(t) is undefined. The quantity µi(A×B ∣ γ) is equal to the
amount of time the graph of the trajectory, (t, γi(t)), spends
in A ×B. Define the initial measure, µi0(⋅ ∣ γ) ∈M+(Xi), as

µi0(B ∣ γ) ∶= 1B(γi(0)) (8)
for all subsets B in the Borel σ-algebra of Xi; define the
terminal measure, µiT (⋅ ∣ γ) ∈M+(XTi), as

µiT (B ∣ γ) ∶= 1B(γi(T )) (9)
for all subsets B in the Borel σ-algebra of XTi .

One can show that the occupation measure, initial measure,
and the terminal measure satisfy a linear equation whose
solution can model the evolution of a nonlinear dynamical
system [23]. This result enables one to formulate nonlinear
optimal control problems as infinite dimensional linear pro-
grams [23, Theorem 2.3]. Unfortunately the linear equation
over measures is unable to describe the transitions between
hybrid modes. However, these transitions can be described
using guard measures. Define the guard measure, µS(i,i′)(⋅ ∣
γ) ∈M+([0, T ] × S(i,i′)), as

µS(i,i′)(A ×B ∣ γ) ∶= card{t ∈ A ∣ lim
τ→t−

γi(τ) ∈ B} (10)

for all subsets A×B in the Borel σ-algebra of [0, T ]×S(i,i′),
given any pair (i, i′) ∈ E . The guard measure counts the
number of times a given trajectory passes through the guard.
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Next, define the occupation measure in i ∈ I associated
with (γ, u), denoted µi(⋅ ∣ γ, u) ∈M+([0, T ] ×Xi ×U), as

µi(A ×B ×C ∣ γ, u) ∶= ∫
T

0
1A×B×C(t, γi(t), u(t))dt (11)

for all subsets A×B×C in the Borel σ-algebra of [0, T ]×Xi×
U . For convenience, it is useful to collect the initial, average,
terminal, and guard occupation measures in each mode. That
is, define µI0 (⋅ ∣ γ) ∈ M+(D) as µI0 (⋅, i ∣ γ) ∶= µi0(⋅ ∣ γ)
for each i ∈ I . For convenience, we refer to µI0 as an initial
measure and write µi0 when we refer to the i-th slice of µI0 .
We define and refer to µI(⋅ ∣ γ, u) ∈ M+([0, T ] × D × U),
µIT (⋅ ∣ γ, u) ∈M+(XT ), and µS(⋅ ∣ γ, u) ∈M+([0, T ] × S)
similarly.

Using these definitions, we can rewrite the cost function J :

Lemma 6. Let µI(⋅ ∣ γ, u) and µIT (⋅ ∣ γ) be the occupation
measure and terminal measure associated with the pair (γ, u),
respectively. Then the cost function can be expressed as

J(γ, u) =∑
i∈I

⟨µi(⋅ ∣ γ, u), hi⟩ +∑
i∈I

⟨µiT (⋅ ∣ γ),Hi⟩. (12)

Proof: Notice that hi and Hi are measurable, and the rest
follows directly from (6), (9), and (11).

Despite the cost function being a nonlinear function of
the admissible pair in the space of functions, the analogous
cost function over the space of measures is linear. A similar
analogue holds true for the dynamics of the system. That is, the
occupation measure associated with an admissible pair satisfies
a linear equation over measures. To formulate this linear
equation, let Li ∶ C1 ([0, T ] ×Xi) → C ([0, T ] ×Xi ×U) be
a linear operator that acts on a test function v, defined as

(Liv)(t, x, u) ∶=
Bv(t, x)

Bt
+
ni

∑
k=1

Bv(t, x)
B[x]k

[Fi(t, x, u)]k (13)

for all i ∈ I . Using the dual relationship between mea-
sures and functions, we define L′i ∶ C([0, T ] × Xi × U)′ →
C1([0, T ] × Xi)′ as the adjoint operator of Li, satisfying
⟨L′iµ, v⟩ = ⟨µ,Liv⟩ for all µ ∈ M([0, T ] × Xi × U) and
v ∈ C1([0, T ] ×Xi).

Each of these adjoint operators can describe the evolution
of trajectories of the system within each mode [23]. However
in the instance of hybrid systems, trajectories may not just
begin evolving within a mode at t = 0. Instead a trajectory
can enter a mode either by starting from inside it at t = 0,
or by being reset into it. Similarly a trajectory can terminate
in a mode either by reaching the terminal time, or by hitting
a guard and transitioning. To formalize this, we first modify
reset maps to also act on time by defining R̃(i,i′) ∶ [0, T ] ×
S(i,i′) → [0, T ] ×Xi′ by R̃(i,i′)(t, x) = (t,R(i,i′)(x)) for all
(i, i′) ∈ E and (t, x) ∈ [0, T ] × S(i,i′). To describe trajectories
of a controlled hybrid system using measures, we rely on the
following result of [35, (16)]:

Lemma 7. Given an admissible pair (γ, u), its initial mea-
sure, occupation measure, terminal measure, and guard mea-
sure satisfy the following linear equation over measures:
δ0 ⊗ µi0(⋅ ∣ γ) +L′iµi(⋅ ∣ γ, u) +∑

(i′,i)∈E
R̃(i′,i)#µ

S(i′,i)(⋅ ∣ γ)

= δT ⊗ µiT (⋅ ∣ γ) +∑
(i,i′)∈E

µS(i,i′)(⋅ ∣ γ), ∀i ∈ I,
(14)

where (14) holds in the sense that it is true for all test functions
in C1([0, T ] ×Xi).

Now one can ask whether the converse relationship holds:
does an arbitrary set of measures, µI0 ∈ M+(D), µI ∈
M+([0, T ] ×D ×U), µIT ∈M+(XT ), and µS ∈M+([0, T ] ×
S), that satisfy (14) correspond to an initial measure, µI0 (⋅ ∣ γ),
occupation measure, µI(⋅ ∣ γ, u), terminal measure, µIT (⋅ ∣ γ),
and guard measure, µS(⋅ ∣ γ) for some admissible pair
(γ, u)? To answer this question, consider a family of hybrid
trajectories modeled by a non-negative probability measure
ρ ∈ M+(X ), and define an average occupation measure
ζi ∈ M+([0, T ] × Xi) in each mode i ∈ I for the family
of trajectories as

ζi(A ×B) ∶= ∫
X
µi(A ×B ∣ γ)dρ(γ) (15)

for any i ∈ I and A × B in the Borel σ-algebra of [0, T ] ×
Xi; Define the average initial measure ζi0, average terminal
measure ζiT , and average guard measure ζS(i,i′) similarly.

To prove the converse of Lemma 7, we define the Hybrid
Liouville Equation whose solution can be disintegrated into a
set of measures that we eventually prove are related to ρ in
Theorem 12.

Lemma 8. Let µI0 ∈ M+(D), µI ∈ M+([0, T ] × D × U),
µIT ∈M+(XT ), and µS ∈M+([0, T ] × S) satisfy the Hybrid
Liouville Equation (HLE), which is defined as

δ0⊗µi0+L′iµi+∑
(i′,i)∈E

R̃(i′,i)#µ
S(i′,i) = δT ⊗µiT +∑

(i,i′)∈E
µS(i,i′) (16)

for each i ∈ I . Then each measure µi can be disintegrated as

dµi(t, x, u)=dνiu∣t,x(u)dµ
i
t,x(t, x)=dνiu∣t,x(u)dµ̃

i
x∣t(x)dt (17)

where νiu∣t,x is a stochastic kernel on U given (t, x) ∈ [0, T ]×
Xi, µit,x is the (t, x)-marginal of µi, and µ̃ix∣t is a conditional
measure on Xi given t ∈ [0, T ].

Proof: Since each measure µi is finite measure defined
on a Euclidean space, using [36, Theorem 5.3.1], they can
be disintegrated as dµi(t, x, u) = dνiu∣t,x(u)dµ

i
t,x(t, x) where

νiu∣t,x is a stochastic kernel on U given (t, x) ∈ [0, T ]×Xi, and
µit,x is the (t, x)-marginal of µi. Using the same argument, we
disintegrate µit,x into dµit,x(t, x) = dµix∣t(x)dµ

i
t(t) where µit

is the t-marginal of µit,x. To show the measure µit is absolutely
continuous with respect to the Lebesgue measure, notice:

⟨µit, 9ψ⟩ = ⟨δT ⊗ µiT + ∑
(i,i′)∈E

µS(i,i′) − δ0 ⊗ µi0+

− ∑
(i′,i)∈E

R̃(i′,i)#µ
S(i′,i) , ψ⟩,

(18)

for any ψ ∈ C1([0, T ]). The desired result then follows
[37, Exercise 5.8.78]. Since µi is finite and therefore its t-
marginal measure is also finite, using the Radon-Nikodym
Theorem, ∃ l ∈ L1([0, T ]) such that dµit(t) = l(t)dt. Letting
dµ̃ix∣t ∶= l(t)dµ

i
x∣t for all t ∈ [0, T ], then dµix∣t(x)dµ

i
t(t) =

l(t)dµix∣t(x)dt = dµ̃
i
x∣t(x)dt and (17) follows.

For convenience, denote µ̃ix∣t by µix∣t and define:

σi ∶=δ0 ⊗ µi0 + ∑
(i′,i)∈E

R̃(i′,i)#µ
S(i′,i) ,

ηi ∶=δT ⊗ µiT + ∑
(i,i′)∈E

µS(i,i′)
(19)
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Using (17), HLE can also be written as a non-homogeneous
PDE that holds in the sense of distributions:

Btµ
i
t,x +Dx ⋅ (F̄iµit,x) = σi − ηi, (20)

where
F̄i(t, x) ∶= ∫

U
Fi(t, x, u)dνiu∣t,x(u) ∈ conv Fi(t, x,U). (21)

Note that even when Fi is Lipschitz continuous, F̄i may not
be Lipschitz continuous. By applying integration by parts, we
can write

∫
T

0
∫
Xi
(Btv(t, x) +∇xv(t, x) ⋅ F̄i) dµix∣t(x)dt

+ ∫
[0,T ]×Xi
v(t, x)dσi(t, x) = ∫

[0,T ]×Xi
v(t, x)dηi(t, x)

(22)

for any test function v ∈ C1([0, T ] ×Xi). We later show in
Corollary 10 that σi and ηi capture the trajectories that enter
and leave domain i, respectively.

Next, we prove the converse of Lemma 7 using Theorems 9
and 12. These converse theorems prove that a solution to the
Hybrid Liouville Equation can be identified with a solution
to the hybrid system under certain regularity conditions on
the vector fields in each mode. This result enables us to
formulate (HOCP) as an optimization problem over measures,
as described in Section IV. We start by showing µix∣t is related
to the solution of the ODE F̄i. As shown in the Appendix A,
(Theorem 25), when F̄i satisfies certain regularity conditions
(e.g. Lipschitz continuity), the relationship between µix∣t and
F̄i is clear, but to deal with solutions to a non-smooth ODE, we
construct the notion of evaluation maps that act on the space
of absolutely continuous functions. Let Γi ∶= AC([0, T ];Rni)
be the space of absolutely continuous functions from [0, T ] to
Rni endowed with the norm ∥ ⋅ ∥ ∶ γ ↦ ∣γ(0)∣ + ∫

T
0 ∣ 9γ(t)∣dt.

Define an evaluation map et ∶ [0, t] × [t, T ] × Γi → Rni
as et(s, τ, γ) = γ(t) on s ≤ t ≤ τ for each t ∈ [0, T ].
The evaluation map allows us to establish the following
relationship:

Theorem 9. Let µix∣t, σ
i, ηi satisfy the PDE (22) for some

i ∈ I , where F̄i is defined as in (21). Assume F̄i is pointwise
bounded. Then there exists a measure ρi ∈M+([0, T ]×[0, T ]×
Γi) such that
(a) ρi is concentrated on the triplets (s, τ, γ), where s ≤ τ ,

and γ ∈ Γi are solutions of the ODE 9γ(t) = F̄i(t, γ(t))
for a.e. t ∈ [s, τ].

(b) µix∣t = (et)# ρ
i for a.e. t ∈ [0, T ].

Proof: See Appendix B.
Theorem 9 establishes a connection between the measure

µix∣t that solves the PDE (22) and trajectories that satisfy the
dynamics in mode i. We next show those trajectories start and
terminate in the support of σi and ηi, respectively.

Corollary 10. Let µix∣t, σ
i, and ηi satisfy the PDE (22) for

some i and let F̄i which is defined in (21) be pointwise
bounded. Let ρi be defined as in Theorem 9. Define maps
r1, r2 ∈ [0, T ] × [0, T ] × Γi → [0, T ] ×Rni by r1 ∶ (s, τ, γ) ↦
(s, γ(s)) and r2 ∶ (s, τ, γ) ↦ (τ, γ(τ)). Then r1

#ρ
i = σi and

r2
#ρ

i = ηi.

Proof: Recall in the proof of Theorem 9 we mollified σi

and ηi using a family of smooth mollifiers to obtain smooth
measures σiε and ηiε. We also defined a tight family of measures
{ρiε}ε ⊂ M+([0, T ] × [0, T ] × Γi) that converges to ρi in
the narrow sense. The connection between each ρiε in that
family and the mollified measures σiε and ηiε was established
via measures ρi,+ε and ρi,−ε .

For all ϕ ∈ Cb([0, T ] × Rni), it follows from (55),
(43), and (42) that ∫[0,T ]×[0,T ]×Γi

ϕ(s, γ(s))dρiε(s, τ, γ) =
∫[0,T ]×Rni ϕ(s, x)σ

i
ε(s, x). Since the families {σiε}ε and {ρiε}ε

are tight as was shown in the proof of Theorem 9, we may
let ε ↓ 0 to obtain ∫[0,T ]×[0,T ]×Γi

ϕ(r1(s, τ, γ))dρi(s, τ, γ) =
∫[0,T ]×Rni ϕ(s, x)σ

i(s, x). This is also true for all measurable
functions ϕ because Cb(Rni+1) is dense in L1(σi) [37,
Corollary 4.2.2], as a result r1

#ρ
i = σi. The result for ηi can

be proved in a similar manner.
Theorem 9 illustrates that measures satisfying HLE in mode

i ∈ I correspond to trajectories γ ∈ Γi of the convexified
inclusion, 9γ(t) ∈ conv Fi(t, γ(t), U), rather than the original
specified dynamics within each mode of the system. To ensure
that the there is no gap between the original dynamics and its
convexified inclusion, we make the following assumption:

Assumption 11. The set Fi(t, x,U) is compact and convex
for all t, x, and i ∈ I .

The above condition is sufficient to ensure that measures
satisfying HLE correspond exactly to trajectories described
according to Algorithm 1 [38, p. 529]. Assumption 11 is
satisfied if, for example, Fi is control affine and U is compact
and convex.

As a consequence of Corollary 10 and Assumption 11,
any triplet (s, τ, γ) ∈ spt(ρi) can be viewed as a trajectory
γ in mode i that is well defined on [s, τ] and satisfies
(s, γ(s)) ∈ spt(σi), (τ, γ(τ)) ∈ spt(ηi). Such trajectories in
different modes are related by reset maps and can be combined
together to be admissible trajectories for the hybrid system.
To illustrate this, define an evaluation map that acts on the
trajectories of the hybrid system eit ∶ X →Xi as eit(γ) = γi(t)
if λ(γ(t)) = i and eit(γ) = ∅ otherwise for each i ∈ I . We
can establish a relationship between admissible trajectories and
measures that satisfy (22) for each i:

Theorem 12. Let µix∣t, σ
i, and ηi satisfy the PDE (22)

for some i and let F̄i which is defined in (21) be point-
wise bounded. Then there exists a non-negative measure
ρ ∈M+(X ) such that

(a) For any hybrid trajectory γ ∈ spt(ρ), γ is defined on
[0, T ] and satisfies γ(0) ∈ spt(µI0 ), γ(T ) ∈ spt(µIT ).

(b) For a.e. t ∈ [0, T ], µix∣t = (e
i
t)#ρ.

(c) If ∑i∈I µi0(Xi) = 1, then ρ is a probability measure.
(d) If ∑i∈I µi0(Xi) = 1, then µit,x (resp. µi0, µiT , µSe ) is the

average occupation measure (resp. average initial mea-
sure, average terminal measure, average guard measure)
generated by the family of admissible trajectories in the
support of ρ for each mode i ∈ I and e ∈ E . Moreover,
∑i∈I µit,x([0, T ] × Xi) = T , ∑i∈I µiT (XTi) = 1, and
∑e∈E µSe([0, T ] × Se) ≤ C for some constant C < +∞.
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Proof: See Appendix C.
Notice in Theorem 12 if we define µi0 to be Dirac measure

supported at x0 if x0 ∈ Xi or zero otherwise, then spt(ρ) ⊂
XT . Finally, we establish a relationship between the solution
measures and the underlying control input when the dynamics
are control-affine, which enables control synthesis:

Corollary 13. Let U be convex. For each i ∈ I , suppose there
exists pointwise bounded functions fi ∶ R × Xi → Rni and
gi ∶ R×Xi → Rni×m such that Fi(t, x, u) = fi(t, x)+gi(t, x)u
for all t, x, u ∈ [0, T ] × Xi × U . Let νiu∣t,x be defined
as in (17) and let ρ be defined as in Theorem 12. Then
t ↦ (γ(t), ∫U udν

λ(γ(t))

u∣t,γλ(γ(t))
(u)) is an admissible pair for all

γ ∈ spt(ρ), where

∫
U
udνiu∣t,x(u) ∶=

⎡⎢⎢⎢⎢⎢⎣

∫U [u]1 dν
i
u∣t,x(u)
⋮

∫U [u]m dν
i
u∣t,x(u)

⎤⎥⎥⎥⎥⎥⎦
(23)

is an m × 1 real vector for each t, x, and i ∈ I .

Proof: For any γ ∈ spt(ρ), 9γi(t) = fi(t, γi(t)) +
gi(t, γi(t)) ⋅ ∫U udν

i
u∣t,γi(t)

(u) for a.e. t ∈ [0, T ]. Since νiu∣t,x
is a stochastic kernel and U is convex, ∫U udν

i
u∣t,γi(t)

(u) ∈ U
for all i ∈ I . Thus t ↦ (γ(t), ∫U udν

λ(γ(t))

u∣t,γλ(γ(t))
(u)) is an

admissible pair.

IV. INFINITE DIMENSIONAL LINEAR PROGRAM

This section formulates (HOCP ) as an infinite-
dimensional linear program over the space of measures,
proves it computes the solution to (HOCP ), and illustrates
how its solution can be used for control synthesis. To
formulate the cost function for these hybrid trajectories
in measure-theoretic form and to make control synthesis
feasible, we make the following assumption:

Assumption 14. U is convex and for each i ∈ I , there exists
pointwise bounded functions fi ∶ R ×Xi → Rni and gi ∶ R ×
Xi → Rni×m such that Fi(t, x, u) = fi(t, x)+gi(t, x)u for all
t, x, u ∈ [0, T ] ×Xi ×U .

First define µi0 to be Dirac measure supported at x0 if x0 ∈
Xi or zero otherwise and the optimization problem (P ) as:
inf
Γ
∑
i∈I

⟨µi, hi⟩ +∑
i∈I

⟨µiT ,Hi⟩ (P )

s.t. δ0⊗µi0+L′iµi+∑
(i′,i)∈E

R̃(i′,i)#µ
S(i′,i)=δT⊗µiT+∑

(i,i′)∈E
µS(i,i′) ∀i ∈ I,

µi, µiT ≥ 0 ∀i ∈ I,
µSe ≥ 0 ∀e ∈ E ,

where the infimum is taken over a tuple of measures Γ =
(µI , µIT , µS) ∈M+([0, T ]×D×U)×M+(XT )×M+([0, T ]×
S) and for each mode i ∈ I , where µi0 is a Dirac measure if
x0 ∈Xi or zero otherwise. The dual to (P ) is given as:
sup
v
∑
i∈I

⟨µi0(x), vi(0, x)⟩ (D)

s.t. Livi(t, x)+hi(t, x, u)≥0 ∀(t, (x, i), u) ∈ [0, T ] ×D ×U,
vi(T,x)≤Hi(x) ∀(x, i) ∈XT ,

vi(t, x)≤vi′(t,R(i,i′)(x))∀(t, (x, (i, i′))) ∈ [0, T ] × S,

where the supremum is taken over the function v ∈ C1([0, T ]×
D) and for each mode i ∈ I . For convenience, denote the i ∈ I
slice of v using subscript i. We have the following result from
[39, Theorem 3.10]:

Theorem 15. If either (P ) or (D) is feasible, then there is
no duality gap between (P ) and (D).

Next, we illustrate (P ) is well-posed:

Lemma 16. If (P ) is feasible, then the minimum to (P ), p∗,
is attained.

Proof: Let (µI , µIT , µS) be a feasible solution to (P ),
and therefore they satisfy HLE (16). Using Theorem 12 we
know the tuple of measures ( 1

T
µI , µIT ,

1
C
µS) belongs to the

unit ball B1 ofM([0, T ]×D×U)×M(XT )×M([0, T ]×S)
for some C < +∞. By the Banach-Alaoglu Theorem, B1 is
weak-* sequentially compact. Since the operators R̃e# and L′i
are bounded (because Li is bounded) and therefore continuous,
the set of ( 1

T
µI , µIT ,

1
C
µS) satisfying HLE is a closed subset

of B1 ∩M+([0, T ] ×D × U) ×M+(XT ) ×M+([0, T ] × S),
and therefore is also weak-* sequentially compact. Since the
cost function is continuous, p∗ is attained.

Now we prove that (P ) solves (HOCP ):

Theorem 17. Let (P ) be feasible and suppose hi(t, x, ⋅) is
convex for all i ∈ I and (t, x) ∈ [0, T ] ×Xi. Then p∗ = J∗.

Proof: Suppose (γ∗, u∗) is an optimal admissible pair to
(OCP ). By Lemma 7, its initial measures, occupation mea-
sures, terminal measures and guard measures are supported on
proper domains and satisfy (16). Furthermore, ξi0 = µi0 for any
i ∈ I . Therefore these measures are a feasible solution to (P )
with cost J∗, and p∗ ≤ J∗ follows.

We next prove p∗ ≥ J∗. Suppose (µI∗, µI∗T , µS∗) is an
optimal solution to (P ) which exists according to Lemma
16. The optimal tuple satisfies (16). By Theorem 12, there
exists a probability measure ρ ∈ M+(XT ) such that µi∗t,x
coincides with the occupation measures of a family of ad-
missible trajectories in the support of ρ, when restricted to
mode i. We abuse notation in the remainder of this proof
and define [ũi(t, x)]j ∶= ∫U [u]j dν

i∗
u∣t,x(u) for any i ∈ I and

j ∈ {1,⋯,m}. Notice

q∗ =∑
i∈I

(∫
[0,T ]×Xi×U

hi(t, x, u)dνi∗u∣t,x(u)dµ
i∗
t,x(t, x)+

+ ∫
XT

Hi(x)dµi∗T (x))
(24)

≥∑
i∈I

(∫
[0,T ]×Xi

hi(t, x, ũi(t, x))dµi∗t,x(t, x)+

+ ∫
XT

Hi(x)dµi∗T (x))
(25)

=∫
XT
∑
i∈I

(∫
[0,T ]

hi (t, γi(t), ũi (t, γi(t)))dt+

+Hi(γi(T )))dρ(γ)
(26)

=∫
XT

J (γ, ũλ(γ(⋅))(⋅, γλ(γ(⋅))(⋅))) dρ(γ) ≥ J∗, (27)

where in (24) we disintegrate the measure µi∗ into νi∗u∣t,x and
µit,x according to Lemma 8; (25) is obtained from the convex-
ity of hi(t, x, ⋅) and the fact that νi∗u∣t,x is a probability measure;
in (26) we apply Theorem 12 and then interchange the order
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of summation and integration; (27) follows because we let
hi = 0 where γi(t) is undefined and (γ, ũλγ(⋅)(⋅, γλγ(⋅)(⋅))) is
an admissible pair (according to Corollary 13) and since ρ is
a probability measure.

The previous result provides an extension of the weak
formulation in [23] to hybrid systems, and ensures (P ) can
be solved to find a solution to (HOCP ) in a convex manner.
Next we describe how to perform control synthesis with the
solution of (P ).

Theorem 18. Let (P ) be feasible and suppose hi(t, x, ⋅)
is convex for all i ∈ I and (t, x) ∈ [0, T ] × Xi, and
suppose the optimal trajectory γ∗ is unique dt-a.e. Let Γ∗ =
(µI∗, µI∗T , µS∗) be a vector of measures that achieves the
infimum of (P ), then
(a) One can disintegrate µI∗ in each mode i ∈ I as

dµi∗(t,x,u) = dνi∗u∣t,x(u)dµ
i∗
t,x(t, x) = dνi∗u∣t,x(u)dµ

i∗
x∣t(x)dt.

Moreover, µi∗t,x(t, x) coincides with the occupation mea-
sures of γ∗ in each mode i ∈ I a.e.

(b) For each i ∈ I and j ∈ {1,⋯,m}, let [ũi(t, x)]j ∶=
∫U [u]j dν

i∗
u∣t,x(u) for all (t, x) ∈ spt(µi∗t,x), where dνi∗u∣t,x

is defined as in (a). If ũ(t, x, i) ∶= ũi(t, x) for all i ∈ I
and (t, x) ∈ [0, T ] ×Xi, then J (γ∗, ũ(⋅, γ∗(⋅))) = J∗.

Proof: To prove (a) note that the decomposition of µI∗

exists as a result of Lemma 8. Using the proof of Theorem
17, J (γ, ũλ(γ(⋅))(⋅, γλ(γ(⋅))(⋅))) = J∗ for any γ ∈ spt(ρ), and
therefore every admissible pair (γ(⋅), ũλ(γ(⋅))(⋅, γλ(γ(⋅))(⋅)))
must be optimal. Since the optimal trajectory γ∗ is assumed
to be unique dt-a.e., γ(t) = γ∗(t) for a.e. t ∈ [0, T ], ∀γ ∈
spt(ρ). According to Theorem 12, µi∗t,x coincides with the
occupation measure of γ∗ in each mode i ∈ I a.e. Part (b)
follows by noticing J(γ, ũ(⋅, γ(⋅))) = J∗ and γ(t) = γ∗(t)
a.e. for all γ ∈ spt(ρ).

Theorem 18 illustrates how one can construct a feed-
back controller using the conditional measure νi∗u∣t,x. Notice
[ũi(t, x)]j ∶= ∫U [u]j dν

i∗
u∣t,x(u) can be equivalently written as

[ũi(t, x)]j ∫
U
dµi∗(t, x, u) = ∫

U
[u]j dµi∗(t, x, u). (28)

Therefore ũi can also be constructed by computing the Radon-
Nikodym derivative using the optimal measures from the
solution to (P ). In the next section, this result is used to
construct a sequence of controllers that converge to the optimal
control. Finally notice that in the hypothesis of Theorem 18
we do not assume the uniqueness of the optimal control law,
i.e., there may exist different control laws u1 and u2, such that
J∗ = J(γ∗, u1) = J(γ∗, u2). Instead we only assume that the
optimal trajectory is unique almost everywhere.

V. NUMERICAL IMPLEMENTATION

This sections describes a solution to the infinite-dimensional
problem (P ) via a sequence of finite-dimensional approxima-
tions formulated as semidefinite programs (SDP)s. These SDPs
are generated by representing the measures in (P ) using a
truncated sequence of moments and restricting the functions
in (D) to polynomials of finite degree. The solutions to any
of the SDPs in this sequence can be used to synthesize an
approximation to the optimal controllers. To formulate this

SDP relaxation, we restrict our interest to polynomial hybrid
optimal control problems:

Assumption 19. The functions fi, gi, hi, and Hi are poly-
nomials. that is, [fi]j , [gi]jk ∈ R[t, x], hi ∈ R[t, x, u], and
Hi ∈ R[x] for all i ∈ I , j ∈ {1,⋯, ni}, and k ∈ {1,⋯,m}.

Note that in the notation R[t, x, u], we refer to x as
an indeterminate in Xi with dimension ni. In addition, for
convenience, the dimension ni of x is omitted when it is clear
in context. We also make the following assumption:

Assumption 20. For each i ∈ I and (i, i′) ∈ E , there exists
polynomials hXij ∈ R[x] for all j ∈ {1,⋯, nXi}, hTij ∈ R[x]
for all j ∈ {1,⋯, nTi}, hUj ∈ R[u] for all j ∈ {1,⋯, nU}, and
h(i,i′)j ∈ R[x] for all j ∈ {1,⋯, n(i,i′)} such that the following
holds:

Xi ={x ∈ Rni ∣ hXij (x) ≥ 0,∀j ∈ {1,⋯, nXi}} (29)

XTi={x ∈ Rni ∣ hTij (x) ≥ 0,∀j ∈ {1,⋯, nTi}} (30)

U ={u ∈ Rm ∣ hUj(u) ≥ 0,∀j ∈ {1,⋯, nU}} (31)

S(i,i′) ={x ∈ BXi ∣ h(i,i′)j(x) ≥ 0,∀j ∈ {1,⋯, n(i,i′)}}. (32)

Since Xi and XTi are also compact, note that Putinar’s
condition is satisfied by adding the redundant constraint M −
∥x∥22 for some large enough M [40, Theorem 2.14].

To derive the SDP relaxation, we begin with a few pre-
liminaries. Any polynomial p ∈ Rk[x] can be expressed in
the monomial basis as p(x) = ∑∣α∣≤k pαxα = ∑∣α∣≤k pα ⋅
(xα1

1 ⋯xαnn ) where α ranges over vectors of non-negative
integers such that ∣α∣ = ∑ni=1 αi ≤ k, and we denote vec(p) =
(pα)∣α∣≤k as the vector of coefficients of p. Given a vector of
real numbers y = (yα) indexed by α, we define the linear
functional Ly ∶ Rk[x] → R as Ly(p) ∶= ∑α pαyα Note
that, when the entries of y are moments of a measure µ
defined as yα = ∫ xα dµ(x), then ⟨µ, p⟩ = ∫ (∑α pαxα) dµ =
Ly(p) If ∣α∣ ≤ 2k, the moment matrix, Mk(y), defined as
[Mk(y)]αβ = y(α+β). Given any polynomial h ∈ Rl[x]
with l < k, the localizing matrix, Mk(h, y), is defined as
[Mk(h, y)]αβ = ∑∣γ∣≤l hγy(γ+α+β).

A. LMI Relaxations and SOS Approximations

A sequence of SDPs approximating (P ) can be obtained
by replacing constraints on measures with constraints on
moments. Since hi and Hi are polynomials, the objective
function of (P ) can be written using linear functionals as
∑i∈I Lyµi (hi) +∑i∈I Lyµi

T

(Hi), where yµi and yµi
T

are the

sequence of moments of µi and µiT , respectively. The equal-
ity constraints in (P ) can be approximated by an infinite-
dimensional linear system, which is obtained by restricting
to polynomial test functions: vi(t, x) ∈ R[t, x], for any
i ∈ I . The positivity constraints in (P ) can be replaced with
semidefinite constraints on moment and localizing matrices,
which guarantees the existence of Borel measures defined on
proper domains [40, Theorem 3.8].

A finite-dimensional SDP is then obtained by truncating
the degree of moments and polynomial test functions to 2k.
Let ΞI = ∐i∈I µi, ΞE = ∐e∈E µSe , ΞT = ∐i∈I µiT , and
Ξ = ΞI ⋃ΞE ⋃ΞT . Let (yk,ξ) be the sequence of moments
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truncated to degree 2k for each (ξ, i) ∈ Ξ, and let yk be a
vector of all the sequences (yk,ξ). The equality contraints
in (P ) can then be approximated by a finite-dimensional
linear system Ak(yk) = bk. Define the k-th relaxed SDP
representation of (P ), denoted (Pk), as
inf
yk
∑
i∈I

Lyk,µi (hi) +∑
i∈I

Ly
k,µi

T

(Hi) (Pk)

s.t. Ak(yk) = bk,
Mk(yk,ξ) ⪰ 0 ∀(ξ, i) ∈ Ξ,
MkXij

(hXij , yk,µi) ⪰ 0 ∀(j, i) ∈∐
i∈I

{1,⋯, nXi},

MkUij
(hUj , yk,µi) ⪰ 0 ∀(j, i) ∈ {1,⋯, nU} × I,

MkSej
(hej , yk,µSe ) ⪰ 0 ∀(j, e) ∈∐

e∈E

{1,⋯, ne},

MkTij
(hTij , yk,µiT ) ⪰ 0 ∀(j, i) ∈∐

i∈I

{1,⋯, nTi},

Mk−1(hτ , yk,ξ) ⪰ 0 ∀(ξ, i) ∈ ΞI⋃ΞE ,

where the infimum is taken over yk; hτ = t(T − t), kXij =
k − ⌈deg(hXij )/2⌉, kUij = k − ⌈deg(hUij )/2⌉, kSej = k −
⌈deg(hej)/2⌉, kTij = k−⌈deg(hTij )/2⌉, and ⪰ denotes positive
semidefiniteness of matrices.

The dual of (Pk) is a Sums-of-Squares (SOS) program
denoted by (Dk) for each k ∈ N, which is obtained by first
restricting the optimization space in (D) to the polynomial
functions with degree truncated to 2k and by then replacing
the non-negativity constraints in (D) with SOS constraints.
For notational convenience, we let xi be the indeterminate that
corresponds to Xi. Define Q2k(hTi1 ,⋯, hTinTi ) ⊂ R2k[xi]
to be the set of polynomials l ∈ R2k[xi] expressible as
l = s0 +∑

nTi
j=1 sjhTij for some polynomials {sj}

nTi
i=0 ⊂ R2k[xi]

that are sums of squares of other polynomials. Every such
polynomial is non-negative on XTi . Similarly, we define
Q2k(hτ , hXi1 ,⋯, hXinXi , hU1 ,⋯, hUnU ) ⊂ R2k[t, xi, u], and
Q2k(hτ , h(i,i′)1 ,⋯, h(i,i′)n(i,i′) ) ⊂ R2k[t, xi] for each i ∈ I
and (i, i′) ∈ E . Therefore k-th relaxed SDP representation of
(D), denoted (Dk) is given as
sup
vi
∑
i∈I

⟨µi0, vi(0, ⋅)⟩ (Dk)

s.t. Livi+hi∈Q2k(hτ , hXi1,⋯, hXinXi, hU1 ,⋯, hUnU ) ∀i ∈ I,
− vi(T, ⋅) +Hi ∈ Q2k(hTi1 ,⋯, hTinTi ) ∀i ∈ I,
vi′○R̃(i,i′)−vi∈Q2k(hτ , h(i,i′)1,⋯, h(i,i′)n(i,i′))∀(i, i

′) ∈ E ,

where the supremum is taken over vi ∈ R2k[t, x] for all i ∈ I .
Using Slater’s condition [41, Chapter 5.3.2] and noting that
(Dk) is bounded from below, we can prove that the pair of
problems are well-posed:

Theorem 21. For each k ∈ N, if (Pk) is feasible, then there
is no duality gap between (Pk) and (Dk).

Next, we describe how to extract a polynomial control law
from the solution of (Pk). Given moment sequences truncated
to 2k, we want to find an appropriate feedback control law u∗k,i
in each mode i ∈ I with components [u∗k,i]j ∈ R[t, x], such
that the analogue of (28) is satisfied, i.e.,

∫
[0,T ]×Xi

tα0xα ⋅ [u∗k,i(t, x)]j ∫
U
dµi∗k (t, x, u)

= ∫
[0,T ]×Xi

tα0xα ⋅ ∫
U
[u]j dµi∗k (t, x, u)

(33)

for all i ∈ I , j ∈ {1,⋯,m}, and (α0, α) ∈ N ×Nni satisfying
∑nl=0 αl ≤ k, αl ≥ 0. Here µi∗k is any measure whose
truncated moments match y∗µi . In fact, when constructing
a polynomial control law from the solution of (Pk), these
linear equations written with respect to the coefficients of
[u∗k,i]j are expressible in terms of the optimal solution y∗k,µi .
To see this, define the (t, x)-moment matrix of y∗k,µi as

[M (t,x)
k (y∗k,µi)](α0,α)(β0,β)

= Ly∗
k,µi
(tα0+β0xα+βu0) for all

i ∈ I , 0 ∈ {0}m and (α0, α), (β0, β) ∈ N × Nni satisfying
∑nl=0 αl ≤ k, αl ≥ 0, ∑nl=0 βl ≤ k, βl ≥ 0. Also define a vector
bjk as [bjk(y

∗
k,µi)]α = Ly

∗
k,µi
(tα0xα[u]j) for all j ∈ {1,⋯,m},

and (α0, α) ∈ N × Nni satisfying ∑nl=0 αl ≤ k, αl ≥ 0. Direct
calculation shows (33) is equivalent as the following linear
system of equations:

M
(t,x)
k (y∗k,µi)vec([u∗k,i]j) = b

j
k(y

∗
k,µi) (34)

To extract the coefficients of the controller, one needs only to
compute the pseudoinverse of M (t,x)

k (y∗k,µi).

B. Convergence of Relaxed Problems
Next, we prove the convergence of the approximations:

Theorem 22. Let p∗k and d∗k denote the infimum of (Pk) and
supremum of (Dk), respectively. Then {p∗k}∞k=1 and {d∗k}∞k=1

converge monotonically from below to the optimal value of
(P ) and (D).

Proof: This can be proved using a technique adopted in
the proof of [42, Theorem 4.2]. We first establish a lower
bound of d∗k by finding a feasible solution to (Dk) for some
k, and then show that there exists a convergent subsequence of
{d∗k}∞k=1, by arguing the lower bound can be arbitrarily close
to d∗ for large enough k. Using Theorem 21, we only need
to prove {d∗k}∞k=1 converges monotonically from below to d∗.
Note that the higher the relaxation order k, the looser the
constraint set of the optimization problem (Dk), so {d∗k}∞k=1

is non-decreasing.
Suppose v ∈ C1([0, T ] ×D) is feasible in (D). For every

ε > 0 and i ∈ I , let ṽi(t, x) ∶= vi(t, x)+εt−(1+T )ε. Therefore,
Liṽi = Livi + ε, ṽi(T,x) = vi(T,x) − ε, and it follows that
∐i∈I ṽi is strictly feasible in (D) with a margin at least ε.
Since [0, T ] × Xi and Xi are compact for every i ∈ I , and
by an extension to the Stone-Weierstrass Theorem that allows
for the simultaneous uniform approximation of a function and
its derivatives by a polynomial [43], we are guaranteed the
existence of polynomials v̂i, such that ∥v̂i − ṽi∥∞ < ε, and
∥Liv̂i−Liṽi∥∞ < ε for any i ∈ I . By Putinar’s Positivstellensatz
[40, Theorem 2.14], those polynomials are strictly feasible for
(Dk) for a sufficiently large relaxation order k, therefore d∗k ≥
∑i∈I v̂i(0, x0) ≥ ∑i∈I ṽi(0, x0)− ∣I ∣ε, where ∣I ∣ is the number
of elements in I . Also, since ṽi(0, x0) = vi(0, x0)− (1+T )ε,
we have d∗k > ∑i∈I vi(0, x0)−(1+T +∣I ∣)ε = d∗−(1+T +∣I ∣)ε,
where 1 + T + ∣I ∣ <∞ is a constant. Using the fact that d∗ is
non-decreasing and bounded above by d, we know {d∗k}∞k=1

converges to d from below.
Then, by applying [42, Theorem 4.5], one can prove:

Theorem 23. Let {y∗k,ξ}(ξ,i)∈Ξ be an optimizer of (Pk), and
let {µi∗k }i∈I be a set of measures such that the truncated



9

moments of µi∗k match y∗k,µi for each i ∈ I . For each
k ∈ N, let u∗k,i denote the controller constructed by (34),
and ũi be the optimal control law in mode i ∈ I from
Theorem 18, then there exists a subsequence {kl}l∈N ⊂ N
such that for all i ∈ I , vi ∈ C1([0, T ] × Xi), and j ∈
{1,⋯,m}, ∫[0,T ]×Xi vi(t, x)[u

∗
kl,i
]j(t, x)dµi∗t,x;kl

(t, x) con-
verges to ∫[0,T ]×Xi vi(t, x) [ũi(t, x)]j dµ

i∗
t,x(t, x) as l →∞.

VI. EXAMPLES

This section illustrates the performance of our approach
using several examples. Our algorithm is implemented using
MOSEK [44]. The trajectory is obtained by plugging the
computed, saturated control law back into the system dynamics
in each mode and simulating forward using a standard ODE
solver with event detection. To provide a thorough comparison,
all examples are also solved with the method proposed in
[23], [25] by fixing the sequence of transitions and optimizing
over each mode. Since the optimal sequence is not known a
priori, this method is then applied over all feasible sequences
of bounded total length. In addition, all examples are solved
either analytically or using GPOPS-II [45] by iterating through
a finite set of possible transitions. Notice that in this latter in-
stance we fix the sequence of transition in each GPOPS-II call
and provide an initial guess. All experiments are performed on
an Intel Xeon, 144 core, 2.40 GHz, 1056 GB RAM machine.
Our code and detailed description of the examples are available
online at https://github.com/pczhao/hybridOCP.git.

A. Hybridized Double Integrator

We first consider a double integrator with states x =
(x1, x2) ∈ R2 and input u ∈ [−1, 1]. We hybridize this system
by dividing the domain into two parts X1 = [0.5, 2] × [−1, 1]
and X2 = [−1, 0.5] × [−1, 1] and with transitions only from
mode 1 to mode 2 with an identity reset map between them.
The guard is defined as {0.5}×{[−1,−10−3]∪ [10−3,1]}. We
solve a Linear Quadratic Regulator (LQR) problem, where the
goal is to drive the system towards (0,0) while minimizing
the control action. The problem is setup according to Table
I. Note that Assumptions 2-5 are satisfied. Our results, which
are summarized in Table II, are compared to those generated
by [25] with degree of relaxation be 2k = 12 when applied to
finite mode sequences of total length 2. Table II also describes
the results generated by a standard LQR solver which does
not treat the problem as hybrid. This latter result is treated as
ground truth. The proposed method is able to generate tight
lower bounds and the optimal sequence of transitions even
when degree of relaxation is low (2k = 6).

B. Dubins Car Model with Shortcut Path

The next example illustrates our algorithm can work with
different dimensions in each mode. Consider a planar Dubins
Car model with the states x = (x1, x2, x3) ∈ [−1, 1]× [−1, 1]×
[−π/2, π/2] representing the 2D position and heading angle,
and the inputs u = (v,ω) ∈ [10−3,1] × [−3, 3] representing
the linear and angular velocity. We hybridize this system by
dividing the domain into two parts along the line x2 = 0 and

defining an identity reset map. Note that only transitions from
the mode where x2 is greater than or equal to zero to the mode
where x2 is less than or equal to zero are permitted. We also
add to the system another 1-dimensional mode with dynamics
9x = −v, where x ∈ [−1, 1] and v ∈ [10−3,2]. We connect this
mode with the other two modes by defining S(1,3) = [−1, 1]×
{1} × ([−π/2,−10−3] ∪ [10−3, π/2]), R(1,3)(x) = 1, S(3,2) =
{−1}, and R(3,2) = (0.6,−0.8, 0). We are interested in solving
an optimal control problem where the goal is to get to the
target position as quickly as possible. To solve this free final
time problem, we modify HLE by substituting δT⊗µiT with µiT
whose support is in [0, T ]×XT , for all i ∈ I . (P ) and (D) can
be modified accordingly. Notice that by treating the measure
associated with the time-varying target set as a guard measure
without any associated reset map, we can extend Theorems 9
and 12 to show that (P ) can solve the free final time problem
[23, Remark 2.1]. The optimal control problem is defined in
Table I so that Assumptions 2-5 are satisfied.

Notice the transition sequences “1-2” and “1-3-2” are both
feasible in this instance according to our guard definition, but
direct calculation shows that we arrive at the target point in less
time by taking the “shortcut path” in mode 3. This problem
is solved using our algorithm with degrees of relaxation 2k =
6, 2k = 8, and 2k = 10. As comparison, we also solve the
problem using the method presented in [25] with degree of
relaxation 2k = 10 by applying it to each possible feasible
mode sequence that has a maximum length 3, and treat the
analytically computed optimal control as ground truth. The
results are compared in Table II. Our algorithm is able to
pick the transition sequence “1-3-2” and approximate the true
optimal solution even when 2k = 6.

C. SLIP Model

o

b

a

l
θ

u

(a) SLIP model

stance phase flight phase

mode 1

(l, 9l, θ, 9θ, a)

mode 2

(a, 9a, b, 9b)

mode 3

(a, 9a, b, 9b)

α
α

to
uc

hd
ow

n

lif
to

ff

ap
ex

to
uc

hd
ow

n

(b) SLIP locomotion phases and hybrid modes

Fig. 2: An illustration of the SLIP model (left) and its hybrid modes (right)

The Spring-Loaded Inverted Pendulum (SLIP) is a model
that describes the center-of-mass dynamics of animals and
has been used to perform control synthesis for legged robots
[46]. We may simulate the system numerically, but the optimal
control problem is still difficult to solve if the sequence of tran-
sition is not known beforehand. We focus on the active SLIP
model (Fig. 2a), which is an actuated mass-spring physical
system, modeled as a point mass, M , a mass-less spring leg
with stiffness k and length l, and a mass-less actuator u. The
behavior of such a system can be fully characterized using 8
variables: leg length l, leg angle θ, horizontal displacement a,

https://github.com/pczhao/hybridOCP.git
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vertical displacement b, and their time derivatives (denoted as
9l, 9θ, 9a, and 9b, respectively). The system states in each of the 3
hybrid modes are defined as shown in Fig. 2b. The github repo
describes the physical parameters, dynamics, guards, and reset
maps. To ensure that we satisfy Assumptions 2-5, the guard
at touch-down is satisfied when 9b ≤ −10−3, and the guard at
lift-off is satisfied when 9l ≥ 10−3.

We fix the initial condition, and consider the following two
hybrid optimal control problems for the active SLIP: In the first
problem, we maximize the vertical displacement b up to time
T = 2.5. In stance phase, the 1st-order Taylor approximation
b = l cos(θ) ≈ l is used; In the second problem, we define
a constant-speed reference trajectory a(t) = vt − 0.5 in the
horizontal coordinate, then try to follow this trajectory with
active SLIP up to time T = 3. The optimal control problems
are defined according to Table I. Note that these problems are
defined such that the optimal transition sequences are different
in each instance, and some modes are visited multiple times.

The optimization problems are solved by our algorithm
with degrees of relaxation 2k = 4, 2k = 6, and 2k = 8. For
the sake of comparison, the same problems are also solved
using the method presented in [25] and GPOPS-II for all
possible, feasible mode sequences of maximum total length
12. The results are compared in Fig.TABLE 3 and Table II.
The proposed method is able to generate the optimal sequence
of transitions even at low relaxation degrees (e.g. 2k = 6) while
other methods have to search through all possible sequences.
In particular, the proposed method takes an order of magnitude
less time to find the optimal sequence of transitions on both
examples when compared to GPOPS-II.

TABLE I: The setup for each example problem.

Mode i = 1 i = 2 i = 3

Double
Integrator
LQR

hi x21 + x
2
2 + 20u

2 x21 + x
2
2 + 20u

2

N/A
Hi 0 0
x0 (1,1) N/A
XTi [0.5+10−3,2]×

[−1,1]
X2

T 5 or 15

Dubins
Car

hi 1 1 1
Hi 0 0 0
x0 (-0.8,0.8,0) N/A N/A
XTi N/A {0.8}×{−0.8}×

[−π/2, π/2]
N/A

T 3

SLIP
Max
jump

hi −x1 −x3 −x3

Hi 0 0 0
x0 N/A N/A (-0.5,0.3,0.2,0)
XTi {x ∈X1 ∣ x1 ≤

l0 − 10
−3
}

{x ∈X2 ∣ x4 ≥
10−3}

{x ∈X3 ∣ x3 ≥
l0 cos(α) +

10−3}

T 2.5

SLIP
Track
speed

hi (vt−0.5−x5)
2
(vt−0.5−x1)

2
(vt−0.5−x1)

2

Hi 0 0 0
x0 N/A N/A (-0.5,0.3,0.2,0)
XTi {x ∈X1 ∣ x1 ≤

l0 − 10
−3
}

{x ∈X2 ∣ x4 ≥
10−3}

{x ∈X3 ∣ x3 ≥
l0 cos(α) +

10−3}

T 3

TABLE II: Numerical results for the proposed algorithm on each example.

Computation
time

Cost from
optimization

Cost from
simulation

Double
Integrator
LQR
T = 5

2k = 6 3.2004[s] 24.9496 24.9908
2k = 8 9.4318[s] 24.9496 24.9908
2k = 12 252.8047[s] 24.9496 24.9914

[25], 2k = 12 326.1610[s] 24.9496 24.9905
Ground truth N/A 24.9503 N/A

Double
Integrator
LQR
T = 15

2k = 6 3.1583[s] 26.1993 26.3557
2k = 8 9.8637[s] 26.1993 26.3644
2k = 12 219.8932[s] 26.1994 26.3710

[25], 2k = 12 295.1562[s] 26.1993 26.3694
Ground truth N/A 26.2033 N/A

Dubin’s
Car

2k = 6 67.6682[s] 1.5640 1.5748
2k = 8 956.6177[s] 1.5646 1.5718
2k = 10 1.0654×104[s] 1.5648 1.5708

[25], 2k = 10 2.6259×104[s] 1.5648 1.5708
Ground truth N/A 1.5651 N/A

SLIP
Max
Jump

2k = 4 45.1598[s] -0.6962 -0.5525
2k = 6 584.8139[s] -0.5815 -0.5474
2k = 8 7.7398×103[s] -0.5776 -0.5545

[25], 2k = 8 2.1225×105[s] -0.5737 -0.5728
GPOPS-II 792.9885[s] -0.5735 N/A

SLIP
Track
Speed

2k = 4 40.7036[s] 0.0534 0.2250
2k = 6 565.7164[s] 0.1417 0.1813
2k = 8 1.0263×104[s] 0.1523 0.1825

[25], 2k = 8 2.2373×105[s] 0.1592 0.1718
GPOPS-II 673.5100[s] 0.1626 N/A

-0.5 0 0.5
0

-0.5 0 0.5
0

-0.5 0 0.5
0

-0.5 0 0.5
0

(a) Maximizing vertical
displacement

-0.5 0 0.5
0

-0.5 0 0.5
0

-0.5 0 0.5
0

-0.5 0 0.5
0

(b) Tracking constant speed
v = 0.1

Fig. 3: An illustration of the performance of our algorithm on the active SLIP
model. The blue lines are the optimal control computed by GPOPS-II by
iterating through all the possible transition sequences, and the red lines of
various saturation are controls generated by our method. As the saturation
increases the corresponding degree of relaxation increases between 2k = 4
to 2k = 6 to 2k = 8. Fig. 3a shows trajectories that maximize vertical
displacement, where the optimal solution goes through 3 transitions; Fig. 3b
shows trajectories that track v = 0.1, where the optimal solution goes through
6 transitions.
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VII. DISCUSSION

This paper proposes a convex approach for solving hybrid
optimal control problems by relating the trajectories of hybrid
systems to the solutions of a system of linear equations
over measures. The hybrid optimal control problem is then
formulated as an infinite-dimensional LP that does not require
pre-specifying the sequence of possible transitions. A sequence
of provably convergent SDPs to this LP are constructed to
approximate the optimal cost from below and synthesize
the optimal control law. Though it does not require pre-
specifying the sequence of transitions of the hybrid system, the
proposed method can be difficult to apply when the state space
dimension is high, since the number of decision variables in
the SDP grows exponentially with the state space dimension.

APPENDIX A

Let F ∶ [0, T ] × Rn → Rn be a pointwise bounded vector
field, such that F (t, ⋅) is Lipschitz for all t ∈ [0, T ]. Consider
a non-homogeneous PDE Btµt,x = σ−η−Dx ⋅ (Fµt,x), where
µt,x, σ, η ∈M([0, T ]×Rn). Applying integration by parts and
Lemma 8, this PDE becomes:

∫
[0,T ]×Rn

Btv(t, x)dµx∣t(x)dt = ∫
[0,T ]×Rn

v(t, x)d(η(t, x)+

− σ(t, x)) + ∫
[0,T ]×Rn

∇xv(t, x) ⋅ Fdµx∣t(x)dt
(35)

for any v ∈ C1([0, T ] × Rn). To establish a relationship
between F and this PDE, let Φ satisfy (42) with F̄ εi replaced
by F . Since F is pointwise bounded and F (t, ⋅) is Lipschitz
for all t ∈ [0, T ], the solutions of the ODE are unique [47, The-
orem 5.3]. By differentiating the identity Φi(t, s,Φi(s, τ, z)) =
Φi(t, τ, z) with respect to s, we can show that Φ(t, ⋅, ⋅) is a
solution to d

ds
Φi(t, s, x) + ∇xΦi(t, s, x) ⋅ F (s, x) = 0. This

leads to:

Corollary 24. Let F ∶ [0, T ] × Rn → Rn be pointwise
bounded and suppose F (t, ⋅) is Lipschitz for all t ∈ [0, T ].
Let σ and η satisfy (35), and let Φ be the a.e. solution to
the ODE with vector field F , then for any w ∈ L1(Rn),
∫[0,T ]×Rn w(Φ(T, s, x))d (σ(s, x) − η(s, x)) = 0.

Proof: The result for w ∈ C1
b (Rn) follows by substituting

v(s, x) ∶= w(Φ(T, s, x)) and d
ds

Φi(t, s, x) + ∇xΦi(t, s, x) ⋅
F (s, x) = 0 into (35). Since C1

b (Rn) is dense in L1(Rn) [37,
Corollary 4.2.2], the statement is true for all w ∈ L1(Rn).

We can now establish a relationship between µx∣t and Φ:

Theorem 25. Let F ∶ [0, T ]×Rn → Rn be pointwise bounded
and suppose F (t, ⋅) is Lipschitz for all t ∈ [0, T ]. Given
σ, η ∈ M+([0, T ] × Rn), the solution to (35) is given by
µx∣t = Φ(t, ⋅, ⋅)# (σ − η) for almost every t ∈ [0, T ], where
Φ(t, ⋅, ⋅) ∶ [0, t]×Rn → Rn is defined in (42) with F̄ εi replaced
by F .

Proof: We first verify µx∣t = Φ(t, ⋅, ⋅)# (σ − η) satisfies
(35). We need to check the equality only on test functions of
the form ψ(t)w(x). We substitute µx∣t = Φ(t, ⋅, ⋅)# (σ − η)

into the left-hand side of (35) and show it is equal to the
right-hand side of (35):

∫
T

0

9ψ(t)∫
Rn
w(x)dµx∣t(x)dt

= ∫
[0,T ]×Rn
(∫

T

s

9ψ(t)w(Φi(t, s, x))dt)d (σi(s, x) − ηi(s, x)) (36)

= ∫
[0,T ]×Rn
(ψ(T )w(Φ(T, s, x)) − ψ(s)w(Φ(s, s, x))+

− ∫
T

s
ψ(t) d

dt
w(Φ(t, s, x))dt)d(σ(s, x)−η(s, x))

(37)

=∫
[0,T ]×Rn
ψ(s)w(x)d (η(s, x) − σ(s, x))+

− ∫
T

0
ψ(t)∫

[0,t]×Rn
∇xw(Φi(t, s, x)) ⋅ F (t,Φ(t, s, x))

d (σ(s, x) − η(s, x)) dt

(38)

=∫
[0,T ]×Rn
ψ(s)w(x)d (η(s, x) − σ(s, x))+

− ∫
T

0
ψ(t)⟨µx∣t,∇xw ⋅ F ⟩dt

(39)

where (36) follows from Fubini’s Theorem; (37) follows from
integration by parts; (38) follows from Corollary 24 and
Fubini’s Theorem; (39) follows from µx∣t = Φ(t, ⋅, ⋅)# (σ − η).
As a result, µx∣t = Φ(t, ⋅, ⋅)# (σ − η) is a solution to (35). To
show the solution is unique dt-almost everywhere, suppose
there exists measures µx∣t,1, µx∣t,2 ∈M+(Rn) defined for t ∈
[0, T ] that satisfy (35). Let µx∣t,3 ∶= µx∣t,1 − µx∣t,2 ∈M(Rn),
then ∫

T
0 ∫Rn (Btv(t, x) +∇xv(t, x) ⋅ F ) dµx∣t,3 dt = 0, which

has the zero measure as a solution. Using the proof of [48,
Lemma 3], such µx∣t,3 is defined uniquely dt-a.e. Therefore
µx∣t,3 is zero for a.e. t ∈ [0, T ], which proves the result.

APPENDIX B
In this section we prove Theorem 9.

Proof: This proof consists of several steps: in Step 1,
we use a family of mollifiers parameterized by ε to smooth
the vector field and all relevant measures and establish a
relationship between the smooth measures using the solution
to the smooth vector field via Theorem 25; in Step 2, we
prove that all trajectories that satisfy this smooth vector field
and enter the domain, eventually leave the domain, and vice
versa; in Steps 3 and 4, we prove a connection between the
time at which each trajectory enters and leaves; since Steps 2-
4 are all proven for the “smoothed” versions of the vector field
and measures, in Step 5 we prove that there exists a limiting
measure as the parameter controlling smoothness, ε, goes to
zero; in Step 6, we prove that this limit satisfies (b); in Step 7,
we prove (a) when the vector field is continuous; in Step 8, we
approximate the discontinuous vector field with a sequence of
smooth functions and bound the approximation error; in Step
9, we prove (a) for arbitrary bounded vector fields.

Step 1 (Regularization). We first mollify µix∣t, σ
i, and ηi

with respect to the space variable using a family of strictly pos-
itive mollifiers {θε} ⊂ C∞(Rni) with unit mass, zero mean,
and uniformly bounded second moment, obtaining smooth
measures µix∣t;ε ∶= µ

i
x∣t ∗ θε, σ

i
ε ∶= σi ∗ θε, and ηiε ∶= ηi ∗ θε. We

also define a smooth vector field F̄ εi by
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F̄ εi (t, ⋅) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

F̄i(t,⋅)µ
i
x∣t∗θε

µi
x∣t∗θε

, if ∥µix∣t∥ > 0;

0, if ∥µix∣t∥ = 0.
(40)

Notice the smooth vector field F̄ εi is pointwise bounded: Let
M < +∞ be a pointwise bound for F̄i, then

∣F̄ εi (t, x)∣ ≤
Mµix∣t ∗ θε
µi
x∣t
∗ θε

≤M
µix∣t ∗ θε
µi
x∣t
∗ θε
=M (41)

for all (t, x) ∈ [0, T ]×Rni . By applying Young’s convolution
inequality, one can prove ∥µix∣t;ε∥ ≤ ∥µ

i
x∣t∥, ∥σ

i
ε∥ ≤ ∥σi∥, and

∥ηiε∥ ≤ ∥ηi∥.
Such µix∣t;ε is a solution of (22) with respect to F̄ εi , σiε, and

ηiε. Since F̄ εi is pointwise bounded and F̄ εi (t, ⋅) is Lipschitz,
Theorem 25 implies that µix∣t;ε = Φεi(t, ⋅, ⋅)# (σiε − ηiε) for a.e.
t ∈ [0, T ], where Φεi(t, s, x) satisfies:

Φεi(t, s, x) = x+∫
t

s
F̄ εi (τ,Φεi(τ, s, x))dτ, 0 ≤ s ≤ t ≤ T (42)

The function Φεi(⋅, s, x) can be extended to [0, T ] (as opposed
to [s, T ]) due to the regularity of F̄ εi . Denote the extended
version as Φ̂εi(⋅, s, x) ∈ Γi for any (s, x) ∈ [0, T ] × Rni . The
space of all such functions is denoted as Γεi ∶= {Φ̂εi(⋅, s, x) ∣
(s, x) ∈ [0, T ] × Rni} ⊂ Γi endowed with the subspace
topology. It follows by the existence and uniqueness theorem
for ODE that the evaluation map et(0, T, ⋅) restricted to Γεi
is an isomorphism for any t ∈ [0, T ]. Define Ψε ∶ (t, x) ↦
Φ̂ε(⋅, t, x) from [0, T ]×Rni to Γεi , and also a projection map
π1 ∶ (s, x)↦ s from [0, T ] ×Rni to [0, T ]. Define

ρi,+ε ∶= (π1 ×Ψε)
#
σiε ∈M+([0, T ] × Γεi),

ρi,−ε ∶= (π1 ×Ψε)
#
ηiε ∈M+([0, T ] × Γεi).

(43)

Step 2 (Marginals of ρi,+ε and ρi,−ε ). This step shows that all
trajectories that enter the domain via σiε leave through ηiε by
proving that the γ-marginals of ρi,+ε and ρi,−ε are equal. Since
ρi+ε and ρi−ε are finite measures and R×Γεi is Radon separable
metric space, using [36, Theorem 5.3.1], the measures ρi,+ε
and ρi,−ε can be disintegrated as

dρi,+ε (s, γ) = dρ
i,+
s∣γ;ε
(s)dρi,+γ;ε(γ),

dρi,−ε (τ, γ) = dρ
i,−
τ ∣γ;ε
(τ)dρi,−γ;ε(γ),

(44)

where ρi,+
s∣γ;ε

and ρi,−
τ ∣γ;ε

are probability measures for all γ ∈
spt(ρi,+γ;ε) and γ ∈ spt(ρi,−γ;ε), respectively. We next show the
γ-marginals are equal. Let w ∈ L1(Rni) be arbitrary. Notice

0 =∫
[0,T ]×Rni
w(Φεi(T, s, x))d (σiε(s, x) − ηiε(s, x)) (45)

=∫
[0,T ]×Γεi

w(eT (0, T, γ))d (ρi,+ε (s, γ) − ρi,−ε (s, γ)) (46)

=∫
Γεi

w(eT (0, T, γ))d (ρi,+γ;ε(γ) − ρi,−γ;ε(γ)) (47)

where (45) follows from Corollary 24; (46) follows from
definition of Ψε and (43); (47) follows from (44). Since
eT (0, T, ⋅) is an isomorphism and w ∈ L1(Rni) is arbitrary,
ρi,+γ;ε = ρi,−γ;ε. For convenience, we denote them both by ρiγ;ε.

Step 3 (Construct ρiε,δ). We now want to combine ρi,+ε and
ρi,−ε to generate a measure ρiε ∈M+([0, T ]× [0, T ]×Γεi) that
describes the trajectories that evolve in the domain as well as
their entering and exiting time. Such a measure can be defined

by pushing forward ρi,+ε through a map that associates entering
and exiting times. However, such a map may not be well
defined; for example, two trajectories can enter the domain
at the same time but leave at different times. To address such
issues, we mollify the t-component and define a sequence of
measures ρiε,δ first, and then define ρiε as the limit of this
sequence as δ ↓ 0 which is done in Step 4. Let {θδ} ⊂ C∞(R)
be a family of smooth mollifiers with unit mass and zero mean,
and define ρi,+

s∣γ;ε,δ
∶= ρi,+

s∣γ;ε
∗θδ and ρi,−

τ ∣γ;ε,δ
= ρi,−

τ ∣γ;ε
∗θδ . We fur-

ther define measures ρi,+ε,δ , ρ
i,−
ε,δ ∈M+(R×Γεi) as dρi,+ε,δ(s, γ) ∶=

dρi,+
s∣γ;ε,δ

(s)dρi,+γ;ε(γ) and dρi,−ε,δ(τ, γ) ∶= dρ
i,−
τ ∣γ;ε,δ

(τ)dρi,−γ;ε(γ).
For a.e. t ∈ [0, T ] and any non-negative w ∈ L1(Rni):

0 ≤ ⟨µix∣t;ε,w⟩ (48)

=∫
[0,t]×Rni
w(Φεi(t, s, x))d (σiε(s, x) − ηiε(s, x)) (49)

=∫
Γεi

w(et(0, T, γ)) (ρi,+s∣γ;ε
([0, t])+

− ρi,−
τ ∣γ;ε
([0, t])) dρiγ;ε(γ),

(50)

where (48) follows from the fact that µix∣t;ε is an un-
signed measure; (49) follows by substituting in µix∣t;ε =
Φεi(t, ⋅, ⋅)# (σiε − ηiε); (50) follows from (43) and (44).

Equivalently, given any Borel set EΓ ⊂ Γεi ,

∫
EΓ

(ρi,+
s∣γ;ε
([0, t]) − ρi,−

τ ∣γ;ε
([0, t])) dρiγ;ε(γ) ≥ 0. (51)

Since the functions t↦ ρi,+
s∣γ;ε
([0, t]) and t↦ ρi,−

τ ∣γ;ε
([0, t]) are

absolutely continuous, ρi,+
s∣γ;ε
([0, t]) ≥ ρi,−

τ ∣γ;ε
([0, t]) is satisfied

for all t ∈ [0, T ] for all γ ∈ spt(ρiε,Γ). Using the definition of
convolution and Fubini’s theorem, one can prove a similar
result for the mollified measures ρi,+

s∣γ;ε,δ
and ρi,−

s∣γ;ε,δ
, i.e.

dρi,+
s∣γ;ε,δ

((−∞, t]) ≥ ρi,−
τ ∣γ;ε,δ

((−∞, t]) for all γ ∈ spt(ρiγ;ε).
Since ρi,+

s∣γ;ε,δ
and ρi,−

τ ∣γ;ε,δ
are smooth non-negative measures,

the functions t ↦ ρi,+
s∣γ;ε,δ

((−∞, t]) and t ↦ ρi,−
τ ∣γ;ε,δ

((−∞, t])
are continuous and non-decreasing. Also, 0 ≤ρi,−

τ ∣γ;ε,δ
((−∞, t])

≤ ρi,+
s∣γ;ε,δ

((−∞, t]) ≤ ρi,−
τ ∣γ;ε,δ

(R) = 1, where the last equality
follows because ρi,−

τ ∣γ;ε,δ
is a probability measure; by the Mean

Value Theorem, for any γ ∈ spt(ρiγ;ε) there exists a function
rγ ∶ R → R such that rγ(t) ≥ t and ρi,+

s∣γ;ε,δ
((−∞, t]) =

ρi,−
τ ∣γ;ε,δ

((−∞, rγ(t)]) for every γ ∈ spt(ρiγ;ε). Moreover,
the function rγ is strictly increasing and therefore invert-
ible, i.e., there exists a function r−1

γ ∶ R → R such that
rγ(r−1

γ (t)) = r−1
γ (rγ(t)) = t. Using Step 2, ρi,+

s∣γ;ε,δ
((−∞, t]) =

ρi,−
τ ∣γ;ε,δ

((−∞, rγ(t)]) can be written as

∫
R×EΓ

1(−∞,t](s)dρi,+ε,δ(s, γ) =∫R×EΓ

1(−∞,rγ(t)](τ)dρ
i,−
ε,δ(τ, γ) (52)

for any t ∈ R and any Borel subset EΓ ⊂ Γεi .
We now abuse notation and define a map r ∶ R×spt(ρiγ;ε)→

R by letting r(s, γ) ∶= rγ(s) for all γ ∈ spt(ρiγ;ε), and also
projection maps π1 ∶ (s, γ) ∈ R × Γεi ↦ s ∈ R, π2 ∶ (s, γ) ∈
R×Γεi ↦ γ ∈ Γεi . We can then define a measure ρiε,δ ∈M+(R×
R × Γεi) as ρiε,δ = (π1 × r × π2)

#
ρi,+ε,δ . Notice for any triplet

(s, τ, γ) ∈ spt(ρiε,δ) we know s ≤ τ since rγ(t) ≥ t.
We now establish the relationship between the marginals
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of ρiε,δ and the measures ρi,+ε,δ and ρi,−ε,δ . We use variables
(s, τ, γ) ∈ R ×R × Γεi to denote any point in spt(ρiε,δ). Since
π1 ×π2 is identity map, the (s, γ)-marginal of ρiε,δ is equal to
ρi,+ε,δ . To show the (τ, γ)-marginal of ρiε,δ is equal to ρi,−ε,δ , it
is then sufficient to show ∫R×R×EΓ

1(−∞,t](τ)dρiε,δ(s, τ, γ) =
∫R×EΓ

1(−∞,t](τ)dρi,−ε,δ(τ, γ) holds for all t ∈ R and all Borel
subsets EΓ ⊂ Γεi . The equation is true because

∫
R×R×EΓ

1(−∞,t](τ)dρiε,δ(s, τ, γ)

=∫
R×EΓ

1(−∞,r−1γ (t)](s)dρ
i,+
ε,δ(s, γ) (53)

=∫
R×EΓ

1(−∞,t](τ)dρi,−ε,δ(τ, γ), (54)

where (53) follows by the definition of ρiε,δ and because rγ is
strictly monotonic and therefore rγ(s) ∈ (−∞, t] if and only
if s ∈ (−∞, r−1

γ (t)]; (54) follows by substituting in (52) and
from the fact that rγ is invertible;

Step 4 (Properties of the limiting measure of {ρiε,δ}δ). We
now show that the limit of ρiε,δ exists as δ ↓ 0 and that for
this limiting measure µix∣t;ε = (et)#ρ

i
ε for a.e. t ∈ [0, T ]. We

also show that specific marginals of this limiting measure are
equal to ρi,+ε and ρi,−ε and that for any (s, τ, γ) in the support
of this limiting measure, s ≤ τ . To prove this condition, we
use the notion of tightness of measures [49, pp. 605-606]:
Integral Condition for Tightness: Let X be a separable
metric space. A family K ⊂ M+(X) is tight if and only if
there exists a function Θ ∶ X → [0,+∞] whose sublevel sets
are compact in X such that supµ∈K ∫X Θ(x)dµ(x) is finite.
Tightness Criterion: Let X , X1, X2 be separable metric
spaces and let ri ∶ X → Xi, i = 1,2 be continuous maps
such that the product map r ∶ r1 × r2 ∶ X → X1 × X2 is
proper. Let K ⊂M+(X) be such that Ki ∶= ri#(K) is tight in
M+(Xi) for i = 1,2. Then also K is tight inM+(X). Notice
the statement also holds for finitely many maps by induction.

Choosing maps r1, r2 defined on R × R × Γεi as r1 ∶
(s, τ, γ) ↦ (s, γ) ∈ R × Γεi and r2 ∶ (s, τ, γ) ↦ τ ∈ R.
Notice that r = r1 × r2 is an isomorphism and therefore
proper. The family {r1

#ρ
i
ε,δ}δ is given by {ρi,+ε,δ}δ which are

tight by definition, and the family {r2
#ρ

i
ε,δ}δ is given by

the first marginal of {ρi,−ε,δ}δ which are also tight. Apply-
ing the tightness criterion, the family {ρiε,δ}δ is tight, and
therefore narrowly sequentially relatively compact according
to Prokhorov Compactness Theorem. Let ρiε be any limit of
the family {ρiε,δ} as δ ↓ 0. Since the (s, γ)-marginal of ρiε,δ is
equal to ρi,+ε,δ and the (τ, γ)-marginal of ρiε,δ is equal to ρi,−ε,δ ,
we let δ ↓ 0 and therefore the (s, γ)-marginal of ρiε is equal
to ρi,+ε and the (τ, γ)-marginal of ρiε is equal to ρi,−ε , i.e.,

∫
[0,T ]×[0,T ]×Γεi

ϕ(s, γ)dρiε(s, τ, γ) =∫
[0,T ]×Γεi

ϕ(s, γ)dρi,+ε (s, γ)

∫
[0,T ]×[0,T ]×Γεi

ϕ(τ, γ)dρiε(s, τ, γ) =∫
[0,T ]×Γεi

ϕ(τ, γ)dρi,−ε (τ, γ)
(55)

for all ϕ ∈ L1(R × Γi).
Let (s, τ, γ) ∈ spt(ρiε) be arbitrary. To show s ≤ τ , let

ϕ′ ∈ Cb(R2) be such that spt(ϕ′) ⊂ {(s, τ) ∈ R2 ∣ s > τ}. Since
∫R×R×Γi

ϕ′(s, τ)dρiε,δ(s, τ, γ) = 0 for all δ, it follows from
narrow convergence that ∫[0,T ]×[0,T ]×Γi

ϕ′(s, τ)dρiε(s, τ, γ) =

0. Since 1{(s,τ)∈[0,T ]2∣s>τ+∆} is a limit point of such functions
ϕ′ with respect to L1(ρiε;R) for any ∆ > 0 [37, Corol-
lary 4.2.2], ρiε is supported on (s, τ, γ) such that s ≤ τ .

For a.e. t ∈ [0, T ] and any w ∈ L1(Rni),

∫
Rni

w(x)dµix∣t;ε(x)

=∫
[0,t]×[0,T ]×Γεi

w(et(s, T, γ))dρiε(s, τ, γ)+

− ∫
[0,t]×[0,t]×Γεi

w(et(τ, T, γ))dρiε(s, τ, γ)
(56)

=∫
[0,t]×[0,t]×Γεi

(w(et(s, T, γ)) −w(et(τ, T, γ))) dρiε(s, τ, γ)+

+ ∫
[0,t]×(t,T ]×Γεi

w(et(s, T, γ))dρiε(s, τ, γ)
(57)

=0 + ∫
[0,t]×[t,T ]×Γεi

w(et(s, τ, γ))dρiε(s, τ, γ)+

− ∫
[0,t]×{t}×Γεi

w(et(0, T, γ))dρiε(s, τ, γ),
(58)

where (56) follows from µix∣t;ε = Φεi(t, ⋅, ⋅)# (σiε − ηiε), (43),
and (55); (57) follows by splitting the domain of integration;
Since et(t1, T, ⋅) = et(0, T, ⋅) and et(t1, T, ⋅) = et(t1, t2, ⋅) for
all 0 ≤ t1 ≤ t ≤ t2 ≤ T , the first term of (57) is zero because
the integrand is zero, (58) follows by adding and subtracting
[0, t]×{t}×Γεi to the domain of integration. Since ρiε([0, t]×
{t}×Γεi) is non-zero for at most countably many t’s (otherwise
ρiε would not be bounded), µix∣t;ε = (et)#ρ

i
ε for a.e. t ∈ [0, T ].

Step 5 (Tightness of the family {ρiε}ε). We show that the
limit of ρiε exists as ε ↓ 0. To begin, choose maps r1, r2, r3

defined in [0, T ] × [0, T ] × Γi as r1 ∶ (s, τ, γ) ↦ s ∈ [0, T ],
r2 ∶ (s, τ, γ) ↦ τ ∈ [0, T ], and r3 ∶ (s, τ, γ) ↦ γ ∈ Γi.
Observe that r = r1 × r2 × r3 is the identity map and therefore
proper. The family {r1

#ρ
i
ε}ε and {r2

#ρ
i
ε}ε are given by the first

marginals of σiε and ηiε, respectively, which are tight and are
independent of ε. To establish a similar result for r3

#ρ
i
ε, let

Θ ∶ Γi → R⋃{+∞} as Θ(γ) = ∥γ∥ if ∣ 9γ(t)∣ ≤ M a.e., and
Θ(γ) = +∞ otherwise. We next show this function Θ satisfies
the requirement of the integral condition for tightness. Let
S ∶= {γ ∈ Γi ∣ Θ(γ) ≤ C}. Since any sequence {γn} ⊂ S
is uniformly bounded and equicontinuous, S is precompact
according to Arzela-Ascoli Theorem. To show S is closed,
let {γn} be a convergent sequence in S, and by definition
9γn → 9γ in L1([0, T ]). There is a subsequence of 9γn that
converges pointwise a.e. to 9γ [50, Proposition 2.29], therefore
∣ 9γ(t)∣ ≤M a.e., which implies that the set S is closed. Notice

∫
Γi

Θ(γ)d (r3
#ρ

i
ε) (γ) =∫

[0,T ]×Γiε

Θ(γ)dρi,+ε (s, γ) (59)

=∫
[0,T ]×Rni

(∣Φ̂εi(0, s, x)∣ +∫
T

0
∣ 9̂Φiε(t, s, x)∣dt)dσiε(s, x) (60)

≤∫
[0,T ]×Rni

(∣Φ̂εi(s, s, x)∣ +∫
s

0
∣F̄ εi (Φ̂iε(t, s, x))∣dt+

+ ∫
T

0
∣F̄ εi (Φ̂iε(t, s, x))∣ dt) dσiε(s, x)

(61)

≤∫
[0,T ]×Rni

∣x∣dσiε(s, x) + 2MT ∥σiε∥ (62)

≤∫
[0,T ]×Rni

(∣x∣2 + 1)dσiε(s, x) + 2MT ∥σiε∥ (63)
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≤∫
[0,T ]×Xi

∫
Rni
∣x + y∣2θε(y)dydσiε(s, x)+(1+2MT )∥σi∥ (64)

=∫
[0,T ]×Xi
∣x∣2 dσi(s, x) + (∫

Rni
∣y∣2θε(y)dy) ∥σi∥+

+∫
[0,T ]×Xi

∫
Rni

2xTyθε(y)dydσi(s, x)+(1+2MT )∥σi∥,
(65)

where (59) follows from (55); (60) follows from (43) and (42);
(61) follows from triangle inequality; (62) follows from (41);
(63) is true because ∣x∣2+1 ≥ ∣x∣ for all x ∈ Rni , and σiε is non-
negative; (64) follows from the definition of convolution and
∥σiε∥ ≤ ∥σi∥; Since σi is bounded and Xi is compact therefore
∣x∣2 is bounded for all x ∈ Xi, the first and last term in (65)
are bounded. Because θε is assumed to have zero mean and
bounded second moment, the second term in (65) is bounded
and the third term in (65) is zero. As a result, the left hand side
of (59) is bounded. Using the integral condition for tightness,
{r3

#ρ
i
ε}ε is tight, and {ρiε}ε is tight via the tightness criterion.

Step 6 (Part (b)). We prove the limit of ρiε as ε goes to zero
satisfies Part (b). Using the Prokhorov Compactness Theorem,
the family ρiε is narrowly sequentially relatively compact.
Choose a narrowly convergent sequence in {ρiε}ε and define
its limit by ρi ∈M+([0, T ] × [0, T ] × Γi). For a.e. t ∈ [0, T ]
and all w ∈ Cb(Rni), it follows from µix∣t;ε = (et)#ρ

i
ε that

∫
Rni
w(x)dµix∣t;ε(x) = ∫

[0,T ]×[0,T ]×Γi
w(et(s, τ, γ))dρiε(s, τ, γ). (66)

Since et is continuous, w ○ et ∈ Cb([0, T ] × [0, T ] × Γi). We
then pass to the limit ε ↓ 0 on both sides of (66) to obtain
∫Xi w(x)dµ

i
x∣t(x) = ∫[0,T ]×[0,T ]×Γi

w(et(s, τ, γ))dρi(s, τ, γ)
for a.e. t ∈ [0, T ]. Since Cb(Rni) is dense in L1(Rni) [37,
Corollary 4.2.2], µix∣t = (et)#ρ

i for a.e. t ∈ [0, T ].
Step 7 (Part (a) with continuous vector field). Using a

similar argument in Step 4, we may show s ≤ τ for any triplet
(s, τ, γ) ∈ spt(ρi). Moreover, it follows from µix∣t = (et)#ρ

i

that γ(t) ∈ spt((et)#ρi) ⊂ Xi for a.e. t ∈ [s, τ]. Since γ is
absolutely continuous and Xi is compact, γ(t) stays in Xi for
all t ∈ [s, τ]. To prove the rest of (a), we only need to show

∫
[0,t]×[t,T ]×Γi

∣γ(t)−γ(s)−∫
t

s
F̄i(τ ′, γ(τ ′))dτ ′∣dρi(s, τ, γ) = 0 (67)

for all t ∈ [0, T ]. Let v ∈ Cb([0, T ] ×Xi;Rni), then

∫
[0,t]×[t,T ]×Γi

∣γ(t)−γ(s)−∫
t

s
v(τ ′, γ(τ ′))dτ ′∣dρiε(s, τ, γ)

≤ ∫
[0,t]×[t,T ]×Γi

∫
t

s
∣F̄ εi (τ ′, γ(τ ′)) − v(τ ′, γ(τ ′))∣dτ ′dρiε(s, τ, γ) (68)

≤∫
t

0
∫
[0,τ ′]×[τ ′,T ]×Γi

∣F̄ εi (τ ′, γ(τ ′)) − v(τ ′, γ(τ ′))∣dρiε(s, τ, γ)dτ ′ (69)

=∫
t

0
∫
Rni
∣F̄ εi (τ, x) − v(τ, x)∣ dµix∣τ ;ε(x)dτ (70)

≤∫
[0,T ]×Rni
∣F̄i(τ, x)−v(τ, x)∣dµiτ,x(τ, x)+

+ ( sup
τ∈[0,T ]
x∈Rni

∣vε(τ, x) − v(τ, x)∣) ∥µiτ,x∥
(71)

for any t ∈ [0, T ] where (68) follows by substituting in
∫
t
s F̄

ε
i (τ ′, γ(τ ′))dτ ′ = γ(t) − γ(s) and applying the triangle

inequality for integrals; (69) follows by first applying Fubini’s

theorem to change the order of integration, and then relaxing
the domain of integration (since ρiε is nonnegative); (70)
follows from µix∣t;ε = (et)#ρ

i
ε and a change of variables τ ′ = τ ;

in (71) we add and subtract vε(τ, ⋅) ∶= (v(τ,⋅)µ
i
x∣τ )∗θε

µi
x∣τ;ε

, and then
apply the triangle inequality and [49, Lemma 3.9]. Since the
family {ρiε}ε is tight and the integrand is a bounded continuous
function, and v is uniformly continuous vε converges to v
uniformly as ε ↓ 0, and the second term of (71) converges to
0, therefore for a.e. t ∈ [0, T ],

∫
[0,t]×[t,T ]×Γi

∣γ(t)−γ(s)−∫
t

s
v(τ ′, γ(τ ′))dτ ′∣dρi(s, τ, γ)

≤ ∫
[0,T ]×Xi
∣F̄i(τ, x) − v(τ, x)∣dµiτ,x(τ, x).

(72)

If F̄i is uniformly continuous, let v ∶= F̄i, and (67) follows.
Step 8 (Error bound of vector field approximation). When

there is no regularity in F̄i other than boundedness, we
choose a sequence of continuous functions converging to F̄i
in L1(µit,x;Rni), and prove an error bound of the approx-
imation: Let {vk}k∈N ⊂ C([0, T ] × Xi;Rni) be a sequence
of continuous functions converging to F̄i in L1(µit,x;Rni),
whose existence is guaranteed by [37, Corollary 4.2.2]. Given
any t ∈ [0, T ], we compute the following error between vk
and F̄i:

∫
[0,t]×[t,T ]×Γi

∫
t

s
∣vk(τ ′, γ(τ ′)) − F̄i(τ ′, γ(τ ′))∣ dτ ′ dρi(s, τ, γ)

≤∫
t

0
∫
[0,τ ′]×[τ ′,T ]×Γi

∣vk(τ ′, γ(τ ′)) − F̄i(τ ′, γ(τ ′))∣ dρi(s, τ, γ)dτ ′ (73)

=∫
[0,T ]×Xi

∣vk(τ, x) − F̄i(τ, x)∣ dµiτ,x(τ, x), (74)

where (73) follows by first applying Fubini’s Theorem to
change the order of integrations, and then relaxing the domain
of integration (since ρi is nonnegative); (74) follows by
substituting in µix∣t = (et)#ρ

i. Observe that as k → ∞ this
error goes to zero.

Step 9 (Condition (a) with bounded vector field). We may
now combine Step 7 and Step 8 together and prove Part (a) in
a more general setting. Using the results in Step 7 and Step
8, we obtain for any t ∈ [0, T ],

∫
[0,t]×[t,T ]×Γi

∣γ(t) − γ(s) −∫
t

s
F̄i(τ ′, γ(τ ′))dτ ′∣dρi(s, τ, γ)

≤2∫
[0,T ]×Xi

∣F̄i(τ, x) − vk(τ, x)∣ dµiτ,x(τ, x), (75)

where (75) follows by adding and subtracting the term
∫
t
s vk(τ

′, γ(τ ′))dτ ′, applying the triangle inequality, and us-
ing the results in Step 7 and Step 8. When we let k →∞, (75)
goes to zero, therefore Part (a) holds.

APPENDIX C

In this section we prove Theorem 12.
Proof: This proof consists of several steps: in Step 1 we

show that trajectories defined in support of ρi and ρj satisfy
the reset map for all (i, j) ∈ E ; in Step 2 we show trajectories
in each mode can be connected to obtain hybrid trajectories
that are defined on [0, T ]; in Step 3 we prove that those
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hybrid trajectories are admissible by showing they all start
from spt(µi0) and end in spt(µiT ) thus proving (a); in Step 4
we define a measure ρ and prove that it satisfies (b) and (c);
in Step 5 we prove (d) using (b) and (c).

Step 1 (Reset maps are satisfied). According to Corollary
10, it suffices to show σj = δ0 ⊗ µj0 +∑(i,j)∈E R̃(i,j)#ηi, ∀j ∈
I . This can be proved by using (19) and Assumption 2 to
obtain R̃(i,j)#η

i = R̃(i,j)#µS(i,j) . As a result, all trajectories
in the support of ρi are reinitialized to another trajectory in
the support of ρj after it reaches the guard S(i,j); On the other
hand, a trajectory can only start in mode i either from the given
initial condition x0 at time 0, or by transitioning from another
mode j if (j, i) ∈ E . We can therefore connect trajectories in
each mode together to obtain hybrid trajectories.

Step 2 (Hybrid trajectories are defined on [0, T ]). This step
shows that all hybrid trajectories are defined on [0, T ]. To
prove this, we first show that there is a ∆t > 0 such that τ−s ≥
∆t for any i ∈ I and (s, τ, γ) ∈ spt(ρi), τ ≠ T . Let (s, τ, γ) ∈
spt(ρi) for some i ∈ I , and let 0 ≤ s ≤ τ < T . According to
Corollary 10, γ(s) ∈ {x0}⋃(i′,i)∈E R(i′,i)(S(i′,i)) and γ(τ) ∈
⋃(i,i′)∈E S(i,i′). According to Definition 1 and Assumptions 2
and 5, γ(s) and γ(τ) belong to disjoint compact sets (since the
image of a compact set under a continuous map is compact)
and therefore there exists a di > 0 such that ∣γ(τ)−γ(s)∣ ≥ di.
Let Mi > 0 be a bound for F̄i(t, x) over [0, T ]×Xi, and define
∆t ∶= mini∈I(di/Mi). Then it follows from the Fundamental
Theorem of Calculus that (τ − s) ≥∆t.

We can apply proof by contradiction to show all hybrid
trajectories are defined on [0, T ]. Let a hybrid trajectory be
defined on a strict subinterval of [0, T ], then according to
Corollary 10 its endpoints must belong to either Se or Re#µSe
for some e ∈ E . It then follows from Step 1 that its domain can
always be extended by at least ∆t due to transitioning from or
to another point Notice it follows from the above discussion
that for any i ∈ I and (0, τ, γ) ∈ spt(ρi), τ ≥ ∆t. As a result,
spt(µSe) ⊂ [∆t, T ]×Se for all e ∈ E . Then, as a result of Step
1, for all e ∈ E , spt(R̃e#µSe) ⊂ [∆t, T ] ×Re(Se).

Step 3 (Part (a)). For any triplet (0, τ, γ) ∈ spt(ρi),
(0, γ(0)) ∈ spt(σi) according to Corollary 10. It then follows
from spt(R̃e#µSe) ⊂ [∆t, T ] × Re(Se) that γ(0) ∈ spt(µi0).
Now suppose (s, T, γ) ∈ spt(ρi) but γ(T ) /∈ spt(µiT ). Accord-
ing to Corollary 10 and Step 1 γ is reinitialized to another
trajectory γ′ in some mode i′ ∈ I . As a result of Corollary
10, (T, γ′(T )) ∈ spt(σi

′
)⋃ spt(ηi

′
), therefore as a result of

Assumptions 2 and 4, γ′(T ) ∈ spt(µi
′
T ).

Step 4 (Part (b) and (c)). As a result of Step 3,
there exists a measure ρ ∈ M+(X ) such that (eit)#ρ =
(et)#ρi for all t ∈ [0, T ]. Therefore, Part (b) follows
from Theorem 9. To prove Part (c), notice ρ(X ) =
∑i∈I ((ei0)#ρ) (Xi) = ∑i∈I ρi({0} × [0, T ] × Γi). Accord-
ing to Corollary 10, ∫[0,T ]×[0,T ]×Γi

1{0}(s)dρi(s, τ, γ) =
∫[0,T ]×Xi 1{0}(s)dσ

i(s, x) = σi({0} ×Xi). If ∑i∈I µi0(Xi) =
1, then ρ(X ) = ∑i∈I σi({0} ×Xi) = ∑i∈I µi0(Xi) = 1.

Step 5 (Part (d)). Let A ×B be in the Borel σ-algebra of
[0, T ] ×Xi, then

µit,x(A ×B) =∫
XT
∫

T

0
1A×B(t, γi(t))dt dρ(γ), (76)

which follows by substituting in (eit)#ρ = µix∣t and ap-
plying Fubini’s Theorem. Since ρ is a probability measure,
∑i∈I µit,x([0, T ] ×Xi) = T .

For all B in the Borel σ-algebra of Xi,

µi0(B) =∫
[0,T ]×Xi

1{0}×B(s, x)dσi(s, x) (77)

=∫
X
1B(γi(0))dρ(γ), (78)

where (77) follows from definition of δ0, from (19) and
spt(R̃e#µSe) ⊂ [∆t, T ]×Re(Se); (78) follows from Corollary
10 and because (eit)#ρ = (et)#ρi. Similarly, for all B in
the Borel σ-algebra of XTi , µ

i
T (B) = ∫XT 1B(γi(T ))dρ(γ).

Since ρ is a probability measure, ∑i∈I µiT (XTi) = 1.
Finally, for all (i, i′) ∈ S and A×B in the Borel σ-algebra

of [0, T ] × S(i,i′),

µS(i,i′)(A ×B) = ∫
[0,T ]×Xi

1A×B(τ, x)dηi(τ, x) (79)

=∫
[0,T ]×[0,T ]×Γi

1A×B(τ, γ(τ))dρi(s, τ, γ) (80)

=∫
[0,T ]×[0,T ]×Γi

#{(t, et(s, τ, γ)) ∈ A ×B}dρi(s, τ, γ) (81)

=∫
X

#{t ∈ A ∣ lim
τ→t−

γi(τ) ∈ B}dρ(γ), (82)

where (79) follows from (19), Assumption 4, and the fact
that B ⊂ S(i,i′); (80) follows from Corollary 10; (81) follows
from Assumption 2; (82) follows because (eit)#ρ = (et)#ρi
and because all γi ∈ Γi are absolutely continuous. From Step
2, each γ ∈ spt(ρ) undergoes at most T

∆t
transitions, where

∆t is defined as in Step 2. Therefore ∑(i,i′)∈E #{t ∈ [0, T ] ∣
limτ→t− γi(τ) ∈ S(i,i′)} ≤ T

∆t
for all γ ∈ spt(ρ). Since ρ is a

probability measure, ∑e∈E µSe([0, T ] × Se) ≤ T
∆t

.
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