
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 8, AUGUST 2021 1

Detecting Generalized Replay Attacks
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Abstract—Cyber-physical systems (CPS) often rely on external
communication for supervisory control or sensing. Unfortunately,
these communications render the system vulnerable to cyber-
attacks. Attacks that alter messages, such as replay attacks that
record measurement signals and then play them back to the
system, can cause devastating effects. Dynamic Watermarking
methods, which inject a private excitation into control inputs to
secure resulting measurement signals, have begun addressing the
challenges of detecting these attacks, but have been restricted
to linear time invariant (LTI) systems. Though LTI models are
sufficient for some applications, other CPS, such as autonomous
vehicles, require more complex models. This paper develops
a linear time-varying (LTV) extension to previous Dynamic
Watermarking methods by designing a matrix normalization
factor to accommodate the temporal changes in the system.
Implementable tests are provided with considerations for real-
world systems. The proposed method is then shown to be able to
detect generalized replay attacks both in theory and in simulation
using a LTV vehicle model.

Index Terms—Dynamic watermarking, cyber-physical systems
(CPS), networked control systems, linear time varying (LTV),
secure control.

I. INTRODUCTION

Cyber-physical systems (CPS) combine both networked
computing and sensing resources with physical control sys-
tems in an effort to increase efficiency, manage complexity,
or provide convenience. Whether it is industrial control ap-
plications or smart devices, CPS require secure networked
communications to operate safely and correctly. Malicious
attacks on such systems can cause devastating results [1]–
[4]. CPS are often protected by traditional cyber security
tools, but these methods are insufficient due to the addition
of networked physical infrastructure. [5], [6]. A growing body
of work has started to address these challenges by developing
new detection algorithms, analyzing potentially stealthy attack
models, and finding ways of reducing the effect of attacks. One
particular detection method, Dynamic Watermarking, has been
shown to detect various attack models while making few as-
sumptions about system structure. Despite these developments,
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detection algorithms, including Dynamic Watermarking, have
only focused on CPS that can be modeled as linear time
invariant (LTI) systems. While LTI models can be sufficient for
steady state or slow moving applications, many emerging CPS
such as autonomous vehicles require models that change over
time. This paper develops methods to accommodate such CPS
by extending Dynamic Watermarking to linear time-varying
(LTV) systems.

A. Attack Models

Attacks are divided into three categories: denial of service
(DOS) attacks, where the control or measurement signal is
stopped, direct attacks, where the plant, actuators or sensors
are physically attacked, and deception attacks, where the
control or measurement signal are altered. [7]. DOS attacks
can be detrimental, but are trivial to detect if they stop
all communication. Furthermore, when only a portion of
communication is stopped, their effects can be minimized
using graceful degradation [8]. The result of direct attacks
often causes anomalies in the measurement signal and can
therefore be detected by methods used to detect deception
attacks. Consequentially, this work focuses on the detection
of deception attacks.

A variety of deception attacks have been proposed. The
simplest deception attacks add noise using arbitrary or random
strategies [9]. On the other hand, bias injection attacks, the
attacker injects a constant bias into the system [10], while
routing attacks send measurement signals through a linear
transform [11]. Other deception attacks attempt to decouple
the system such that the measurements are unaltered while
certain states of the system are attacked [12]. For instance,
zero-dynamics attacks take advantage of un-observable states
or remove the effects of their attacks in the measurement signal
[10], and replay attacks involve an attacker replaying recorded
measurements while possibly altering control as well [10].

The amount of knowledge of the system dynamics and
detection scheme along with the capability of the attacker to
alter certain signals necessary to carry out these attacks varies
greatly. While random, bias injection, routing, and replay
attacks do not require any knowledge of the underlying system
dynamics, decoupling and zero-dynamics attack require almost
full knowledge. This knowledge can be difficult to obtain
for non-insider attackers but it is not impossible [13], [14].
Nonetheless, this work focuses on a generalization of a replay
attack due to the simplicity of implementation and because it
has already been applied during real-world attacks [1]. Further-
more, we consider attacks that only alter measurement signals,
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since many of the systems we care about use local controllers
while operating using externally received measurements.

B. Attack Detection Algorithms

The measurement residual, defined as the difference be-
tween the measurement and the expected measurement, is used
by most detection schemes. For each detector, a metric based
on the measurement residual is generated. If at any time the
metric exceeds a user-defined threshold, the detector raises
an alarm. Generally, these metrics can be separated into two
categories: those that only observe the system, called passive
methods, and those that alter the system while observing,
called active methods. While passive methods do not degrade
control performance, active methods accept a small amount of
performance degradation in exchange for the ability to detect
more complex attacks [15]–[17]. These categories can be
further subdivided into stateless metrics, which only consider
the current measurement residual, and stateful metrics, which
rely on previous measurement residuals as well.

1) Passive Methods: The χ2 detector’s metric is the inner
product of the normalized measurement residual, which fol-
lows a χ2 distribution. Due to its simplicity, the χ2 detector
has been studied in several works [18]–[21]. Though the χ2 is
widely used, it is a stateless detector. Two stateful alternatives
are the cumulative sum (CUSUM) detector and the multi-
variate exponentially weighted moving average (MEWMA)
detector. When comparing these stateful detectors to the χ2

detector, it has been shown that the stateful detectors can
often provide stronger guarantees on detection while the χ2

detector boasts both simpler implementation and generally
takes less time to detect attacks [22], [23]. While passive
detectors can detect random attacks, they are unable to detect
more sophisticated attacks such as replay attacks. In addition,
they have only been developed for LTI systems.

2) Active Methods: Most active methods fall into one of
two categories: moving target defense, which change system
parameters to keep attackers from obtaining the current con-
figuration, and watermarking-based methods, which encrypt
measurement signals with a watermark that is added to the
control input.

The concept of moving target defenses is a topic of con-
tinued interest for the field of cyber security and includes
randomizing the order of code execution and physical memory
storage locations [24]. In CPS, moving target defense can
take the form of switching between redundant measurements
[25]–[29], altering control strategy [25], [29], or by changing
plant dynamics [25]–[27], [30]–[33]. Switching measurement
signals works well when an attacker is only hacking a
few measurements, but otherwise performs similar to passive
methods. Altering the control strategy is arguably similar to
watermarking-based methods and can allow for detection of
most attack models except zero-dynamics attacks. While some
methods alter the physical plant dynamics directly [25]–[27],
others append the plant dynamics with an auxiliary system
with possibly more complex dynamics [30]–[33]. Despite the
consideration of more complex dynamics for the auxiliary
systems, moving target defense has only been applied to

systems that have LTI dynamics. Although complex dynamics
cause the behavior of the test metric to change in time,
methods for selecting a time-varying threshold involve hand
tuning. Moving target defenses can allow for detection of
all attack models, but the method makes certain assumptions
about the system. Note, the auxiliary system must take the
form of an additional physical system that is coupled with
the underlying system, or a simulated system that requires
secure knowledge of the underlying system’s state. Also, when
an auxiliary system is not used, it is assumed that the plant
dynamics are changeable.

The introduction of a watermark was first proposed as a way
of making the χ2 detector robust to replay attacks [34] and
other more advanced attacks [35]. Here, the watermark takes
the form of independent identically distributed (IID) Gaussian
noise that is added to the control input. Robustness to replay
attacks is then achieved by properly selecting the watermark
covariance, while the χ2 detector itself remains unchanged.
Dynamic Watermarking uses a metric that relies on both the
covariance of the residuals and the correlation between the
residuals and the watermark. The covariance of the watermark
is allowed to be an arbitrary symmetric full rank matrix [36]–
[40]. In these works, the metric uses the measurement residuals
contained in a temporally sliding window. Guarantees of
detection are then made as the window size tends to infinity.
Extensions to a limited subset of nonlinear systems have been
implemented [38], [41], but otherwise Dynamic Watermarking
has been limited to LTI systems. Though the addition of the
watermark causes a degradation in system performance, the
degradation can be minimized [42], [43]. Other work has
considered allowing the watermark signal to be auto-correlated
[44] or to have distributions that are not Gaussian [45], [46].
Furthermore, other forms of watermarks include intentional
package drops [47], [48], using parameterized transforms
on measurements [11], [49], [50], and B-splines added to
feed forward inputs [51]. Though Dynamic Watermarking is
unable to detect zero-dynamics attacks, it does not require the
assumption of changeable plant dynamics, the ability to add
physical auxiliary systems that are coupled with vulnerable
states, or locally secure knowledge of plant state. This paper
focuses on Dynamic Watermarking as described in Hespanhol
et al. [37] due to its ability to be applied to a wide range
of LTI systems including both fully and partially observable
systems.

C. Contributions

The contributions of this paper are threefold. First, the
tests used in Hespanhol et al. [37] are extended to LTV
systems. To the best of our knowledge, the proposed method
is the first detection scheme to focus on systems with time-
varying characteristics. This is done using a carefully designed
matrix normalization factor to accommodate the temporal
changes in the system. These tests are then proven to detect
generalized replay attacks. Second, a model is developed for
time-varying generalized replay attacks. Third, LTV Dynamic
Watermarking is applied to a simulated system to provide
proof of concept.
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The remainder of this paper is organized as follows. Section
I-D introduces notation. Section II reviews the methods in Hes-
panhol et al. [37] to motivate the need for LTV Dynamic Wa-
termarking. Asymptotic guarantees and implementable tests
for LTV Dynamic Watermarking are provided in Sections III
and IV respectively. Simulated results are presented in Section
V. The appendix covers statistical background for the proofs in
this paper in addition to several proofs of intermediate results.

D. Notation

This section briefly introduces the notation used in this
paper. The 2-norm of a vector x is denoted ‖x‖. Similarly,
the 2-norm of a matrix X is denoted ‖X‖. The trace of a
matrix X is denoted tr(X). Zero matrices of dimension i× j
are denoted 0i×j , and in the case that i = j, the notation is
simplified to 0i. Identity matrices of dimension i are denoted
Ii. Block diagonal matrices using blocks X1, X2, . . . are
denoted blkdiag(X1, X2, . . .).

The Wishart distribution with scale matrix Σ and i degrees
of freedom is denoted W(Σ, i) [52, Section 7.2]. The mul-
tivariate Gaussian distribution with mean µ and covariance
Σ is denoted N (µ,Σ). The chi-squared distribution with i
degrees of freedom is denoted χ2(i). The expectation of a
random variable a is denoted E[a]. The probability of an event
E is denoted P(E). Given a sequence of random variables
{ai}∞i=1, convergence in probability is denoted p-limi→∞ai
and almost sure convergence is denoted as-limi→∞ai [53,
Definition 7.2.1].

II. INSPIRATION FOR LTV WATERMARKING

This section describes the inspiration for LTV dynamic wa-
termarking by summarizing the method described in Hespan-
hol et al. [37] for LTI systems. Consider an LTI system with
state xn, measurement yn, process noise wn, measurement
noise zn, watermark en, additive attack vn, and stabilizing
feedback that uses the observed state x̂

xn+1 = Axn +BKx̂n +Ben + wn (1)
x̂n+1 = (A+BK + LC)x̂n +Ben − Lyn (2)
yn = Cxn + zn + vn (3)

where xn, x̂n, wn ∈ Rp, en ∈ Rq , yn, zn, vn ∈ Rr, and
x0 = 0p×1. The process noise wn, measurement noise zn,
and watermark en are mutually independent and take the
form wn ∼ N (0p×1,Σw), zn ∼ N (0r×1,Σz), and en ∼
N (0q×1,Σe). While the process and measurement noise are
unknown to the controller, the watermark signal is generated
by the controller and is known. The following assumption is
made on the controller, observer, and watermark design.

Assumption II.1. Assume ‖A + BK‖ < 1, ‖A + LC‖ < 1,
and Σe is full rank.

The measurement residual for this system takes the form
Cx̂n − yn. When an attack is not present, the distribution of
the measurement residuals converge to a zero mean Gaussian
distribution with covariance Σ where

Σ = lim
n→∞

E[(Cx̂n − yn)(Cx̂n − yn)ᵀ]. (4)

Note, for a LTV system, the limit in (4) may not exist.
Next, consider a generalization of a replay attack satisfying

vn = α(Cxn + zn) + Cξn + ζn (5)
ξn+1 = (A+BK)ξn + ωn (6)

where α ∈ R is called the attack scaling factor, the false
state ξn ∈ Rp has process noise ωn ∈ Rp and measurement
noise ζn ∈ Rr that take the form ωn ∼ N (0p×1,Σω) and
ζn ∼ N (0r×1,Σζ), and are mutually independent with each
other and with wn and zn. Though this attack structure does
not include all forms of deception attacks, it does allow an
attacker to carry out a variety of documented attacks. For
example, selecting Σω = 0p and an attack scaling factor α
of 0 results in independent identically distributed noise being
added to the measurement. Moreover, when Σω and Σζ are
selected such that the covariance of the measurement residual
is unaltered and the attack scaling parameter is −1, this model
can approximate a replay attack. While attackers may have the
ability to start and stop attacks at will, attacks that are only
present for finite time are not guaranteed to be detected. There-
fore, when considering asymptotic guarantees of detection, the
assumption of persistence is made. To formally describe these
persistent attacks, consider the following definition.

Definition II.2. The asymptotic attack power is defined as

as-lim
i→∞

1
i

∑i−1
n=0 v

ᵀ
nvn. (7)

Under this definition, an attack with non-zero asymptotic
power is deemed to be persistent.

The asymptotic claims of LTI dynamic watermarking take
the form of the following theorem.

Theorem II.3. [37, Theorem 1] Consider an attacked LTI
system satisfying (1)-(3), an attack model satisfying (5)-(6),
and Σ satisfying (4). Let k′ = min{k ≥ 0 | C(A+BK)kB 6=
0r×q} be finite. Then the asymptotic attack power is 0 if

as-lim
i→∞

1
i

∑i−1
n=0(Cx̂n − yn)(Cx̂n − yn)ᵀ = Σ, (8)

as-lim
i→∞

1
i

∑i−1
n=0(Cx̂n − yn)eᵀn−k′−1 = 0r×q. (9)

Here, the first test checks for changes in the covariance of
the residual while the second test ensures that the attack
is uncorrelated with the true measurement and cannot avoid
changing this covariance. The delay of the watermark by k′ in
(9) ensures that the effect of the watermark is present in the
measurement signal. Note, the contrapositive of Theorem II.3
states that for attacks with non-zero asymptotic power, (8) and
(9) cannot both be satisfied. Therefore, considering the LHS of
(8) and (9), generalized replay attacks of non-zero asymptotic
power are guaranteed to be detected in infinite time.

To make these tests implementable in real time, a statistical
test is derived using a sliding window of fixed size. At each
step, the combined partial sums in (8)-(9) take the form

Sn =
∑n+`
i=n+1

[
(Cx̂i − yi)
ei−k′−1

] [
(Cx̂i − yi)ᵀ eᵀi−k′−1

]
. (10)

Under the assumption of no attack, Sn converges asymp-
totically to the Wishart distribution with scale matrix S =
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blkdiag(Σ,Σe) and ` degrees of freedom as `→∞. Further-
more, for a generalized replay attack of non-zero asymptotic
power, Theorem II.3 gives us that the scale matrix for Sn is
no longer S, since either (8) or (9) is not satisfied. Given
the sampled matrix Sn, the test then uses the negative log
likelihood of the scale matrix

L(Sn) = (m+ q + 1− `) log(|Sn|) + tr
(
S−1Sn

)
. (11)

Negative log likelihood values that exceed a user-defined
threshold signal an attack.s

For LTV systems, the limits in (8)-(9) may not exist.
Furthermore, the sampled matrices Sn may no longer be
approximated as a Wishart distribution since the vectors used
to create it in (10) are not necessarily identically distributed.
To accommodate these changes in distribution, it is necessary
to develop a new method.

III. LTV DYNAMIC WATERMARKING

This section derives the limit-based formulation of Dynamic
Watermarking for a discrete-time LTV system. In Section
III-A, the LTV dynamics and necessary assumptions are given.
In Section III-B, the limit based tests and corresponding claims
are defined. Subsequently, Section III-C provides intermediate
results to prove these claims.

A. LTV System

Consider an LTV system with state xn, measurement yn,
process noise wn, measurement noise zn, watermark en,
additive attack vn, and stabilizing feedback that uses the
observed state x̂ and control gain Kn

xn+1 = Anxn +BnKnx̂n +Bnen + wn (12)
yn = Cnxn + zn + vn (13)

where xn, x̂n, wn ∈ Rp, en ∈ Rq , yn, zn, vn ∈ Rr, and
x0 = 0p×1. The process noise wn, measurement noise zn,
and watermark en are mutually independent and take the
form wn ∼ N (0p×1,Σw,n), zn ∼ N (0r×1,Σz,n), and
en ∼ N (0q×1,Σe). While the process and measurement
noise are unknown to the controller, the watermark signal is
generated by the controller and is known. For simplicity, define
Ān = (An+BnKn) and Ā(n,m) = Ān · · · Ām for n ≥ m and
Ā(n,n+1) = Ip. We make the following assumption.

Assumption III.1. The covariances Σe, Σw,n, and Σz,n, of
the random variables used in (12)-(13), are full rank. Further-
more, there exists positive constants ηw, ηz, ηĀ, ηB , ηC ∈ R
such that ‖Σw,n‖ < ηw, ‖Σz,n‖ < ηz , ‖Ān‖ < ηĀ < 1,
‖Bn‖ < ηB , and ‖Cn‖ < ηC , for all n ∈ N.

The assumption of bounded full rank covariances for the
process and measurement noise are satisfied for most systems
by modeling error and sensor noise. Furthermore, the input and
output matrices are often constrained to be finite by sensor
and actuator limits. Note to satisfy the assumption on Ān,
one could for instance assume that the controllabilty matrix
constructed from An and Bn for all n ≥ 0 was full rank.
Under that assumption one could design Kn using eigenvalue

assignment and selecting real distinct eigenvalues that are less
than 1 [54, Section 4.4.1]. Since the watermark is user-defined,
the remaining assumption can be satisfied by proper selection
of Σe. We make the following assumption.

Assumption III.2.

lim
i→∞

1
i

∑i−1
n=0 CnBn−1 6= 0r×q. (14)

Here, (14) guarantees an asymptotic correlation between the
measurement signal yn and the watermark signal en−1, which
has been delayed by a single time step. This ensures that
the watermark has a persistent measurable effect on the
measurement signal, which can then be used for validation
purposes. This is similar to assuming k′ is equal to 0 for the
LTI case.

The observer and the corresponding observer error, defined
as δn = x̂n − xn, satisfy

x̂n+1 = (Ān + LnCn)x̂n +Bnen − Lnyn (15)
δn+1 = (An + LnCn)δn − wn − Ln(zn + vn), (16)

where x̂0 = δ0 = 0p×1 and Ln is the observer gain. For sim-
plicity, define An = (An + LnCn) and A(n,m) = An · · ·Am
for n ≥ m and A(n,n+1) = Ip. Furthermore, let

δ̄n+1 = Anδ̄n − wn − Lnzn (17)

δ̂n+1 = Anδ̂n − Lnvn (18)

where δ̄0 = δ̂0 = 0p×1. Note that δn = δ̄n+ δ̂n and that when
vn = 0r×1, ∀n we have that δ̂n = 0p×1, ∀n. Here δ̄n can be
thought of as the portion of the observer error that results from
the original noise of the system, while δ̂n is the contribution
of the attack to the observer error.

Next, consider the expected value Σδ,n = E[δ̄nδ̄
ᵀ
n] =

E[δnδ
ᵀ
n | vn = 0r×1, ∀n], which can be written as

Σδ,n =
∑n
i=0A(n−1,n−i+1)(Σw,n−i+

+ Ln−iΣz,n−iL
ᵀ
n−i)A

ᵀ
(n−1,n−i+1). (19)

The matrix normalization factor is then defined as

Vn = (CnΣδ,nC
ᵀ
n + Σz,n)−1/2, (20)

which exists since Σz,n is full rank. For an LTI system, the
matrix Vn = Σ−1/2 where Σ is as defined in (4). For the LTV
system, the matrix normalization factor can be thought of as
a time-varying normalization for the measurement residual.
To generate Vn using (19)-(20), one would need to know the
covariance of the noise variables. However, in Section IV we
cover a pragmatic approach to estimating Vn more directly.
Next, we make the following assumption about the observer.

Assumption III.3. There exists positive constants ηA, ηL, ηδ,
ηV ∈ R such that ‖An‖ < ηA < 1, ‖Ln‖ < ηL, ‖Σδ,n‖ < ηδ ,
and ‖Vn‖ < ηV , for all n ∈ N.

Note to satisfy the assumption on An, one could for instance
assume that the observability matrix constructed from An and
Cn for all n ≥ 0 was full rank. Under that assumption one
could design Ln using eigenvalue assignment and selecting
real distinct eigenvalues that are less than 1 [54, Section 4.8.1].
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Previous assumptions imply the assumptions on Ln, Σδ,n, and
Vn are satisfied, but the bounds here simplify notation.

Next, we alter the attack defined in (5)-(6) to create a time-
varying equivalent. Consider an attack vn that satisfies

vn = α(Cnxn + zn) + Cnξn + ζn (21)
ξn+1 = Ānξn + ωn, (22)

where α ∈ R is called the attack scaling factor, the false
state ξn ∈ Rp has process noise ωn ∈ Rp and measurement
noise ζn ∈ Rr that take the form ωn ∼ N (0p×1,Σω,n) and
ζn ∼ N (0r×1,Σζ,n) and are mutually independent with each
other and with wn and zn. Similar to the LTI case, when
Σω,n and Σζ,n are selected properly and the attack scaling
parameter is −1, this model can approximate a replay attack.
The results of such an attack can have devastating results as
shown in Figure 1. While an attacker could choose to allow
the noise to have unbounded covariance, the resulting attack
would be trivial to detect. Therefore, we make the following
assumption about the attack model.

Assumption III.4. When there is an attack, vn follows the
dynamics (21)-(22) with the attack scaling factor remaining
constant. Furthermore, there exists positive constants ηω, ηη ∈
R such that ‖Σω,n‖ < ηω, ‖Σζ,n‖ < ηζ , for all n ∈ N.

To make asymptotic guarantees of detection, we also assume
the persistence of attacks using the following definition.

Definition III.5. The asymptotic attack power is defined as

p-lim
i→∞

1
i

∑i−1
n=0 v

ᵀ
nvn. (23)

B. Asymptotic Tests

Similar to prior research in Dynamic Watermarking, we first
define the asymptotic tests.

Theorem III.6. Consider an attacked LTV system satisfying
the dynamics in (12)-(18). Let Vn be as defined in (20). If
vn = 0r×1, for all n ∈ N, then

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnx̂n − yn)eᵀn−1 = 0r×q, (C1)

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnx̂n − yn)(Cnx̂n − yn)ᵀV ᵀ

n = Ir. (C2)

Furthermore, if the attack follows the dynamics in (21)-(22)
and has non-zero asymptotic power as defined in Definition
III.5, then (C1) and (C2) cannot both be satisfied.

From Theorem III.6, the LHS of (C1) and (C2) can be used
to guarantee detection of generalized replay attacks with non-
zero asymptotic power in infinite time. Note, (C1), (C2), and
(23) use limits in probability as opposed to the almost sure
limits used in their LTI counterparts. This change removes
the guarantee of detection via the asymptotic tests for certain
pathological examples of attacks. Given an arbitrary real
number ε, almost sure convergence states that with probability
1 the sequence will remain a distance of less than ε from
the limit after a finite number of steps while convergence in
probability states that the probability that an element of the
sequence is within a distance of ε from the limit converges to

1 as you continue along the sequence. These asymptotic tests
provide infinite time guarantees, but as formulated require the
entire history of measurements. However, these tests motivate
the finite-time statistical tests that are implemented in Section
IV which consider a finite sample window. As the window size
grows the sequence of sample averages is more likely to be
closer to the limit when no attack is present. This is reflected
in the distribution used to generate the test metric. As a result,
the test becomes more sensitive.

C. Intermediate Results

To prove Theorem III.6, several intermediate results must
first be provided. The proofs of these results are available in
the appendix. First, we consider the asymptotic limit (C1) and
show that it implies that the attack scaling factor α is equal
to 0. This allows us to assume that α is equal to 0 for the
remainder of the intermediate results.

Lemma III.7. Consider an attacked LTV system satisfying
(12)-(18) and the attack model satisfying (21)-(22). Let Vn be
as defined in (20). (C1) holds if and only if the attack scaling
factor α is equal to 0.

In a sense, (C1) checks that the attack vn is uncorrelated with
the true measurement, which is true only when the attack
scaling factor α is zero.

Assuming α is equal to 0, we show that (C2) is equivalent
to another condition that is only dependent on the attack vn
and its contribution to the observer error δ̂n. Note, δ̂n is not
computable given the available knowledge of the system, but
the provided condition is an amenable surrogate to (C2).

Lemma III.8. Consider an attacked LTV system satisfying
(12)-(18) and an attack model satisfying (21)-(22). Let Vn be
as defined in (20). Assume the attack scaling factor α is equal
to 0. (C2) holds if and only if

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδ̂n − vn)(Cnδ̂n − vn)ᵀV ᵀ

n = 0r. (24)

Here (24) can be thought of as that contribution of the attack
to the value of the LHS of (C2).

For an attack scaling factor α of 0, the attack vn is only
dependent on the random vectors ξn and ζn. Similar to Lemma
III.8, these vectors are not computable by the controller, but
can be used to connect (C2) to the asymptotic attack power.

Lemma III.9. Consider an attacked LTV system satisfying
(12)-(18) and an attack model satisfying (21)-(22). Assume
that the attack scaling factor α is equal to 0. The asymptotic
attack power as defined in (23) is 0 if and only if

p-lim
i→∞

1
i

∑i−1
n=0 ζnζ

ᵀ
n = 0r, (25)

p-lim
i→∞

1
i

∑i−1
n=0 Cnξnξ

ᵀ
nC

ᵀ
n = 0r. (26)

Each of the prior equations can be thought of as the contribu-
tion of each random vector to the asymptotic attack power.

Next, we start to complete the connection between (C2) and
zero asymptotic attack power by proving (24) implies (25).
Furthermore, we prove a related result that makes it simpler
to prove that (24) implies (26).
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Fig. 1. Desired and attacked trajectory of an LTV car model showing attack start and detection (Left); Corresponding LTV Dynamic Watermarking test metric
showing attack start and detection (right)

Lemma III.10. Consider an attacked LTV system satisfying
(12)-(18) and an attack model satisfying (21)-(22). Let Vn be
as defined in (20). Assume the attack scaling factor α is equal
to 0. If (24) holds, then (25) holds as well and

p-lim
i→∞

1
i

∑i−1
n=0(Cnδ̂n − Cnξn)(Cnδ̂n − Cnξn)ᵀ = 0r. (27)

Since ζn adds additional noise to the measurement signal,
the link between (24) and (25) is clear. In particular, (27) is
constructed by removing ζn’s effect from (24).

Next we claim that (24) implies (26) to complete the relation
between (C2) and the asymptotic attack power.

Lemma III.11. Consider an attacked LTV system satisfying
(12)-(18) and an attack model satisfying (21)-(22). Let Vn be
as defined in (20). Assume the attack scaling factor α is equal
to 0. If (24) holds then (26) holds as well.

The proof of Lemma III.11 makes use of Lemma III.10 and
instead shows that (27) implies (26). Despite the removal of
ζn in (27), the correlation between δ̂n and ξn introduces a
potential complication. To address this challenge, we prove the
contrapositive statement. Assuming that (26) does not hold, we
make the following assertion.

Lemma III.12. Consider an attacked LTV system satisfying
(12)-(18) and an attack model satisfying (21)-(22). Let Vn be
as defined in (20). Assume the attack scaling factor α is equal
to 0. If (26) does not hold then there exists m ∈ N for which

p-lim
i→∞

1
i

∑i−1
n=0

(
Cn
∑mn
j=1 Ā(n−1,n−j+1)ωn−j

)
×

×
(
Cn
∑mn
j=1 Ā(n−1,n−j+1)ωn−j

)ᵀ
6= 0r. (28)

where mn = min{n,m}. Furthermore, there exists an m′ ∈ N
such that m′ ≤ m and

p-lim
i→∞

1
i

∑i−1
n=0 CnĀ(n−1,n−j+1)ωn−j×

× ωᵀ
n−jĀ

ᵀ
(n−1,n−j+1)C

ᵀ
n 6= 0r (29)

for j = m′ but not for j < m′.

Here (26) is expanded into a summation over a triangular array.
Splitting ξn in (27), allows us to modify the cross terms and
complete the proof.

Having proven several intermediate results, we are now able
to formally prove Theorem III.6.

Proof. (Theorem III.6) When no attack is present, (C1) holds
using Lemma III.7 since the attack scaling factor α is equal
to 0. Furthermore, (C2) holds since the observer error δ = δ.

Now assume that an attack of non-zero asymptotic power
is present and consider the following cases.
Case 1 (α 6= 0): Using Lemma III.7, (C1) does not hold.
Case 2 (α = 0): Note, (C2) implies zero asymptotic attack
power as follows.

(C2) ⇐⇒
Lm. III.8

(24)
=⇒

Lm. III.10
(25)

=⇒
Lm. III.11

(26)
⇐⇒

Lm. III.9

(
zero asymptotic

attack power

)
Under our assumption of non-zero asymptotic power, the
contrapositive implies that (C2) does not hold. �

IV. IMPLEMENTABLE STATISTICAL TESTS

While Section III provides a necessary background for LTV
Dynamic Watermarking, infinite limits are not well suited for
real time attack detection. This section derives a statistical test
using a sliding window approach. Let

ψn =

[
Vn(Cnx̂n − yn)

en−1

]
(30)

Qn = [ψn−` . . . ψn][ψn−` . . . ψn]ᵀ. (31)

where `+1 is the window size, ` ∈ N, and ` ≥ q+r−1. Note,
ψn is asymptotically uncorrelated and identically distributed
such that ψn ∼ N (0q+r×1, S), for n = 1, 2, 3, · · · where
S = blkdiag(Ir,Σe). Therefore, under the assumption of no
attack, the distribution of Qn approaches a Wishart distribution
with ` + 1 degrees of freedom and scale matrix S as ` goes
to infinity. Furthermore, for a generalized replay attack with
non-zero asymptotic power, Theorem III.6 proves that the scale
matrix for Qn is no longer S since either (C1) or (C2) is not
satisfied. The Wishart distribution can then be used to define
a statistical test using the negative log likelihood of the scale
matrix S given the sampled matrix Qn:

L(Qn) = (q + r − `) log(|Qn|) + tr(S−1Qn). (32)

A negative log likelihood that exceeds a user-defined threshold
signals an attack. Generally, the threshold is picked to mini-
mize the frequency of false alarms while maintaining a desired
level of sensitivity for the detection scheme. This tradeoff is
dependent on the system under evaluation and can be studied
through empirical or analytical means [15].
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In theory, if the process and measurement noise covariances
Σw,n and Σz,n are known, Vn can be calculated using (19)-
(20). In practice, these covariances are difficult to estimate
which can lead to error in the estimate of Vn. To reduce this
error, Vn can be directly estimated using an ensemble average
of i realizations such that

Vn ≈
(

1
i

∑i
j=1(Cnx̂

(j)
n − y(j)

n )(Cnx̂
(j)
n − y(j)

n )ᵀ
)−1/2

(33)

where the superscript (j) is the index of the realization. This
approximation is appropriate since by the weak law of large
numbers we have that when no attack is present

p-lim
i→∞

1
i

∑i
j=1(Cnx̂

(j)
n − y(j)

n )(Cnx̂
(j)
n − y(j)

n )ᵀ =

= CnΣδ,nC
ᵀ
n + Σz,n (34)

and Vn is defined as in (20).

V. SIMULATED RESULTS

To provide proof of concept, we use a simplified car model[
ẋ ẏ φ̇ ṡ φ̇

]ᵀ
=
[
s cos(φ) s sin(φ) φ̇ a φ̈

]ᵀ
,

(35)

where the car has ground plane coordinates (x, y), heading φ,
forward velocity s, and angular velocity φ̇. Using the desired
trajectory shown in Figure 1, (35) is linearized and discretized
using a step size of 0.05 and zero order hold on the current
state and input. Note, for the discretized system, Assumption
III.2 holds. The controller and observer for the resulting LTV
system are found using a linear quadratic regulator (LQR)
to stabilize the system, by enforcing a bound on Ā and A
as stated in Assumptions III.1 and III.3. While linearizing
non-linear stochastic systems often results in noise that is not
independent zero mean Gaussian distributed, for this example
we approximate it as such where wn ∼ N (05×1, 10−5I5),
zn ∼ N (05×1, diag(4I2 × 10−3, 3.6× 10−5, s2

n × 10−3, 1.6×
10−7)). Note that the vehicle maintain a speed of 1.5 m/s to
3 m/s. As a result, this measurement noise over-approximates
that of a vehicle relying upon RTK GNSS (within 20 km of a
base station and using multiple antenna spaced 1 m apart) for
measuring the ground plane positioning, heading, and velocity
and an IMU for measuring angular velocity. Table I shows both
the expected and over-approximated standard deviations of the
measurement noise.

To compare LTI and LTV Dynamic Watermarking, a time
invariant matrix normalization factor is calculated using the

Measurement Expected Std Dev Over-approx. Std Dev

(x, y) ≤ 3 cm [55] 2
√
10 ≈ 6.3 cm

ψ < 3× 10−3 rad [56] 6× 10−3 rad
s 0.2 cm/s to 5 cm/s [57]

√
10sn ≈ 3.2sn cm/s

ψ̇ 2× 10−4 rad/s [58] 4× 10−4 rad/s
TABLE I

THE STANDARD DEVIATION OF MEASUREMENT NOISE FROM A
REAL-WORLD RTK GNSS AND AN IMU SYSTEM AND THE STANDARD

DEVIATION OF MEASUREMENT NOISE USED IN THE EXPERIMENT. NOTE
THAT THE MEASUREMENT NOISE USED IN THE EXPERIMENT

OVER-APPROXIMATES THE NOISE ONE WOULD EXPECT TO SEE IN THE
REAL-WORLD.

Fig. 2. Simulated LTI and LTV Dynamic Watermarking test metrics for LTV
car model under no attack

average of the residual covariance, while the time-varying
matrix normalization factor is calculated using (33) with 100
realizations. For both cases, we run 100 simulations with a
window size of 20 and calculate the test metric and the average
test metric as shown in Figure 2. Note, while the LTV Dynamic
Watermarking metric remains consistent over the simulation,
the LTI counterpart has a repeatable time-varying pattern.

Using the un-attacked data, a threshold for the LTV case is
found such that the rate at which false alarms occur does not
exceed once per every 50 seconds of run time. Next consider
an attack model satisfying (12)-(18), with α equal to −1 and
the measurement and process noise matching that of the true
system. The results of this attack on the system, and the ability
of LTV Dynamic Watermarking to quickly detect it, are shown
in Figure 1.

VI. CONCLUSION

This paper derives Dynamic Watermarking for LTV sys-
tems, and provides asymptotic guarantees in addition to imple-
mentable tests. A LTV generalized replay attack is defined and
shown to be detectable by the Dynamic Watermarking method
developed in this work. Furthermore, a vehicle model with
LTV Dynamic Watermarking is simulated to provide proof of
concept of the implementable tests. Using these simulations,
the LTV Dynamic Watermarking is compared to its LTI
counterpart and is shown to provide a more consistent test
metric. Potential future work includes analysis of robustness
under approximation error in the matrix normalizing factor
Vn, consideration for other potential test characteristics such as
average time to detection and attack capability, and extensions
to LTV systems under even less stringent assumptions.
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APPENDIX

This section outlines the relevant background in statistics
used in the paper and provides several of the proofs from the
intermediate results.

A. Statistical Background

First, we provide inequalities for functions of random vari-
ables using the following three theorems.

Theorem A.1. Let (ai)
s
i=1 be a finite set of random variables

then

P (
∑s
i=1 ai > ε) ≤

∑s
i=1 P

(
ai >

ε
s

)
. (36)

Proof. Assume ai < ε
s ∀i. This would imply that∑s
i=1 ai <

∑s
i=1

ε
s = ε, (37)

{
∑s
i=1 ai > ε} ⊆

⋃s
i=1

{
ai >

ε
s

}
. (38)

Furthermore,

P (
∑s
i=1 ai > ε) ≤ P

(⋃s
i=1

{
ai >

ε
s

})
≤

≤
∑s
i=1 P

(
ai >

ε
s

)
. (39)

where the first inequality comes from the inclusion of the
events and the final inequality comes from Boole’s Inequality.

�

Theorem A.2. Let (ai)
s
i=1 be a finite set of random variables

then

P (
∏s
i=1 |ai| > ε) ≤

∑s
i=1 P

(
|ai| > ε

1
s

)
. (40)

Proof. Assume |ai| < ε
1
s ∀i. This would imply that∏s

i=1 |ai| <
∏s
i=1 ε

1
s = ε. (41)

The remainder of the proof follows closely to Theorem A.1. �

Theorem A.3. Let a and b be random variables then for ε, γ >
0 we have

P (|ab| < ε) ≥ P (|a| < γ) + P
(
|b| < ε

γ

)
− 1. (42)

Proof. Note that

P(|ab| < ε) ≥ P
(
{|a| < γ} ∩

{
|b| < ε

γ

})
(43)

since |a| < γ and |b| < ε/γ implies |ab| < ε. By expanding
the RHS of (43) using inclusion exclusion and bounding the
union term by 1, we get

P(|ab| < ε) ≥ P(|a| < γ) + P
(
|b| < ε

γ

)
− 1. (44)

�

It is often helpful to split a probabilistic limit into com-
ponents of the underlying random variable. While this is not
possible for all cases, we provide sufficient conditions here.

Theorem A.4. Given sequences of random variables ai and
bi, and constants a and b, suppose that p-lim

i→∞
ai + bi = a+ b

and p-lim
i→∞

ai = a then p-lim
i→∞

bi = b.

Proof. Assume p-lim
i→∞

ai + bi = a+ b and p-lim
i→∞

ai = a hold.

Given an ε > 0, we have that

P (‖bi − b‖ > ε) ≤ P
(
‖ai − a+ bi − b‖ > ε

2

)
+

+ P
(
‖ai − a‖ > ε

2

)
(45)

where the inequality comes from triangle inequality and
Theorem A.1. Since both terms in this upper bound converge
to zero, their sum must as well. �

Similarly we can combine probabilistic limits as follows.

Corollary A.5. Consider sequences of random variables ai
and bi and constants a and b. If p-lim

i→∞
bi = b and p-lim

i→∞
ai = a

then p-lim
i→∞

ai + bi = a+ b.

Proof. Let a′i = −ai, a′ = −a, b′i = ai + bi and b′ = a + b.
Using Theorem A.4 on the new random variables gives us

p-lim
i→∞

(ai + bi) = p-lim
i→∞

b′i = b′ = a+ b. (46)

�

Since many of the limits in this paper deal with the average
outer product of random vectors, it is important to know
how and when these limits converge. The following theorem
provides sufficient conditions for convergence.

Theorem A.6. Consider the sequences of vectors (fi)
∞
i=1 and

(gi)
∞
i=1 where fi ∼ N (0s×1,Σf,i) and gi ∼ N (0t×1,Σg,i).

Let η and ε be scalar values such that 0 < η <∞ and ε > 1.
If

‖E[fjf
ᵀ
i ]‖, ‖E[gjg

ᵀ
i ]‖, ‖E[fjg

ᵀ
i ]‖ < η

ε|i−j|
, (47)

∀ i, j ∈ N, then

p-lim
i→∞

1
i

∑i
j=1 fjg

ᵀ
j − E[fjg

ᵀ
j ] = 0s×t. (48)

Proof. For (48) to hold, each of the element must also
converge to 0 with probability 1. Therefore we will consider
an arbitrary element and show it converges using an inequality
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derived from Chebyshev’s inequality. Selecting the element in
an arbitrary row m and column n such that 0 ≤ m ≤ s and
0 ≤ n ≤ t, let

hᵀm =
[
01×(m−1) 1 01×(s−m)

]
, (49)

hᵀn =
[
01×(n−1) 1 01×(t−n)

]
, (50)

then the sum for this single element can be written as

ρi = 1
i

∑i
j=1 h

ᵀ
mfig

ᵀ
i hn − hᵀmE[fjg

ᵀ
j ]hn. (51)

In order to use Chebyshev’s inequality we must first bound the
second moment of ρi. We start by expanding ρ2

i using (51)
and canceling like terms to get∣∣E[ρ2

i ]
∣∣ =

∣∣ 1
i2

∑i
j=1

∑i
k=1 E[hᵀmfjg

ᵀ
j hnh

ᵀ
mfkg

ᵀ
khn]+

− hᵀmE[fjg
ᵀ
j ]hnh

ᵀ
mE[fkg

ᵀ
k ]hn

∣∣. (52)

Expanding the expectation in the first term using [59, Equation
2.3.8] and once again canceling like terms results in∣∣E[ρ2

i ]
∣∣ =

∣∣ 1
i2

∑i
j=1

∑i
k=1 h

ᵀ
mE[fjg

ᵀ
k ]hnh

ᵀ
mE[fkg

ᵀ
j ]hn+

+ hᵀmE[fjf
ᵀ
k ]hmh

ᵀ
nE[gjg

ᵀ
k ]hn

∣∣. (53)

Distributing the norm across the addition and multiplication
using triangle inequality and the sub-multiplicative property
of the 2 norm we then get the upper bound∣∣E[ρ2

i ]
∣∣ ≤ 1

i2

∑i
j=1

∑i
k=1 ‖hm‖2‖hn‖2‖E[fjg

ᵀ
k ]‖×

× ‖E[fkg
ᵀ
j ]‖+ ‖hm‖2‖hn‖2‖E[fjf

ᵀ
k ]‖ ‖E[gjg

ᵀ
k ]‖. (54)

Applying the bounds in (47) and the fact that ‖hm‖ = ‖hn‖ =
1 we can further upper bound resulting in∣∣E[ρ2

i ]
∣∣ ≤ 1

i2

∑i
j=1

∑i
k=1

2η2

ε2|j−k|
(55)

Furthermore,∣∣E[ρ2
i ]
∣∣ ≤ 1

i2

∑i
j=1

∑∞
k=1

4η2

ε2k
= 4η2

i(1− 1
ε2

)
. (56)

where the inequality comes from the summation in (56)
containing all of the summands in (55) and the fact that all
summands are non-negative. Finally, using this bound and
applying Chebyshev’s Inequality [60, Equation 5.32] we have
that, for an arbitrary choice of β > 0,

P (|ρi| > β) ≤ E[ρ2i ]
β2 = 4η2

iβ2(1− 1
ε2

)
. (57)

Therefore, ρi converges to 0 with probability 1. Since the
matrix element was chosen arbitrarily, (48) must hold. �

Using Theorem A.6, we can make similar claims for
bounded linear transforms of Gaussian sequences.

Corollary A.7. Consider a pair of sequences of vectors
(fi)

∞
i=1 and (gi)

∞
i=1 where fi ∼ N (0s×1,Σf,i) and gi ∼

N (0t×1,Σg,i). Furthermore, consider the sequences of time
varying matrices (Ti)

∞
i=1 and (Ui)

∞
i=1, where Ti ∈ Rs′×s and

Ui ∈ Rt′×t. Assume that

‖Ti‖ ≤ ηT and ‖Ui‖ ≤ ηU . (58)

Let η, ε ∈ R such that 0 < η <∞ and ε > 1. If

‖E[fjf
ᵀ
i ]‖, ‖E[gjg

ᵀ
i ]‖, ‖E[fjg

ᵀ
i ]‖ < η

ε|i−j|
, (59)

∀ i, j ∈ N, then

p-lim
i→∞

1
i

∑i
j=1 Tjfjg

ᵀ
j U

ᵀ
j − ETj

[
fjg

ᵀ
j

]
Uᵀ
j = 0s′×t′ . (60)

Proof. We prove this result by showing that the bounded linear
transform generates new sequences that satisfy the conditions
described in Theorem A.6. Let

f ′i = Tifi ∀i and g′i = Uigi ∀i (61)

then f ′i ∼ N (0s′×1, TiΣf,iT
ᵀ
i ) and g′i ∼ N (0t′×1, UiΣg,iU

ᵀ
i ).

Furthermore, we have that

‖E[f ′jf
′ᵀ
i ]‖ ≤ ‖Tj‖‖Ti‖‖E[fjf

ᵀ
i ]‖ < η2T η

ε|i−j|
(62)

where the first inequality comes from the submultiplicative
property of the spectral norm and the second from applying
(59) and (58). Similarly,

‖E[g′jg
′ᵀ
i ]‖ < η2Uη

ε|i−j|
and ‖E[f ′jg

′ᵀ
i ]‖ < ηUηT η

ε|i−j|
. (63)

Let η′ = max{η2
Uη, η

2
T η, ηUηT η} and ε′ = ε then

‖E[f ′jf
′ᵀ
i ]‖, ‖E[g′jg

′ᵀ
i ]‖, ‖E[f ′jg

′ᵀ
i ]‖ < η′

ε′|i−j|
(64)

which satisfies the conditions for using Theorem A.6 which
implies that

p-lim
i→∞

1
i

∑i
j=1 f

′
jg
′ᵀ
j − E[f ′jg

′ᵀ
j ] = 0s′×t′ , (65)

which completes the proof since

f ′jg
′ᵀ
j − E[f ′jg

′ᵀ
j ] = Tjfjg

ᵀ
j U

ᵀ
j − TjE[fjg

ᵀ
j ]Uᵀ

j . (66)

�

To use Theorem A.6 and Corollary A.7, we provide suffi-
cient conditions for a Gaussian sequence to satisfy conditions
(47) and (59).

Theorem A.8. Consider the Gaussian process

ai+1 = Miai + bi (67)

where a0 = 0s×1 and bi are independent gaussian distributed
random vaiables such that bi ∼ N (0s×1,Σb,i). If ∃ε1, ε2 such
that ‖Mi‖ < ε1 < 1 and ‖Σb,i‖ < ε2 <∞ ∀ i then

‖E [aja
ᵀ
i ]‖ < η

ε|i−j]
, (68)

where η = ε2
1−ε21

and ε = 1
ε1

.

Proof. Consider the LHS of (68) when i = j. We can expand
aja

T
j using (67) iterativley to get

‖E[aja
ᵀ
j ]‖ =

=
∥∥∥∑j

i=1Mj−1 . . .Mj−i+1Σb,j−iM
ᵀ
j−i+1 . . .M

ᵀ
j−1

∥∥∥ .
(69)

We upper bound this norm as follows

‖E[aja
ᵀ
j ]‖ ≤

∑j
i=1 ‖Mj−1‖ . . . ‖Mj−i+1‖×
× ‖Σb,j−i‖ ‖Mᵀ

j−i+1‖ . . . ‖M
ᵀ
j−1‖

<
∑i
i=1 ε2ε

2(j−1)
1 ≤ ε2

1−ε21
, (70)
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where the first inequality comes from applying triangle in-
equality and the sub-multiplicative property of the spectral
norm and the second inequality comes from applying the
bounds on ‖Mi‖ and ‖Σb,i‖ and then bounding the resulting
geometric series.

We now focus on (68) for when i 6= j. Consider the
following which has been expanded using (67)

‖E[aj+ia
ᵀ
j ]‖ = ‖E[aja

ᵀ
j+i]‖ = ‖E[aj(Mj+i−1 . . .Mjaj+

+
∑i
k=1Mj+i−1 . . .Mj+i−k+1bj+i−k)ᵀ]‖. (71)

Since E[ajbj+i−k] = 0 ∀ k ≤ i, this simplifies to

‖E[aj+ia
ᵀ
j ]‖ = ‖E[aja

ᵀ
j+i]‖

= ‖E[aja
ᵀ
j ]Mᵀ

j . . .M
ᵀ
j+i−1‖ <

η
εi , (72)

where the inequality comes from (70) and ‖Mi‖ < ε1. �

Next, we show that, when α being equal to 0, the full system
state satisfies the conditions of Theorem A.8.

Theorem A.9. Consider an attacked LTV system satisfying
the dynamics in (12)-(18) and the attack model in (21)-(22).
Assume the attack scaling factor α is equal to 0. Then ∃ η > 0
and ε > 1 such that∥∥∥∥∥∥∥∥E



xn
δ̄n
δ̂n
ξn



xn+i

δ̄n+i

δ̂n+i

ξn+i


ᵀ
∥∥∥∥∥∥∥∥ <

η
εi . (73)

Proof. We prove this result using Theorem A.8. First note that
using (12)-(18), (21)-(22), and assuming α = 0 we can write

an+1 = Mnan + bn (74)

where an =
[
xᵀn δ̄ᵀn δ̂ᵀn ξᵀn

]ᵀ
,

Mn =


Ān BnKn BnKn 0p
0p An 0p 0p
0p 0p An −LnCn
0p 0p 0p Ān

 , (75)

and bn = Tn
[
eᵀn wᵀ

n zᵀn ζᵀn ωᵀ
n

]ᵀ
with

Tn =


Bn Ip 0p×r 0p×r 0p

0p×q −Ip −Ln 0p×r 0p
0p×q 0p 0p×r −Ln 0p
0p×q 0p 0p×r 0p×r Ip

 . (76)

Let ε1 = max{ηA1, ηA2} then ‖Mn‖ < ε1 < 1 since the
eigenvalues of upper block diagonal matrices are the set of
eigenvalues of the block elements on the diagonal and ‖Ān‖ <
ηA1 < 1 and ‖An‖ < ηA2 < 1. Furthermore, bn ∼ N (0,Σb,n)
where

Σb,n = Tn blkdiag(Σe,Σw,n,Σz,n,Σζ,n,Σω,n)T ᵀ
n . (77)

Since Bn, Ln,Σe,Σw,n,Σz,n,Σζ,n, and Σω,n are all bounded
we have that ‖Σb,n‖ < ε2 for some 0 ≤ ε2 < ∞. Using
Theorem A.8 completes the proof. �

Since the asymptotic attack power uses the inner product of
vn while most other limits use outer products, we relate these
limits in the following Lemma.

Lemma A.10. Consider a sequence of random vectors
(bn)∞n=0 such that bn ∈ Rs.

p-lim
i→∞

1
i

∑i−1
n=0 bnb

ᵀ
n = 0s ⇔ p-lim

i→∞

1
i

∑i−1
n=0 b

ᵀ
nbn = 0.

(78)

Proof. Assume that the RHS of (78) holds. Note that∥∥∥ 1
i

∑i−1
n=0 bnb

ᵀ
n

∥∥∥ ≤ 1
i

∑i−1
n=0 ‖bnb

ᵀ
n‖ = 1

i

∑i−1
n=0 b

ᵀ
nbn. (79)

where the inequality comes from the triangle inequality and
the equality comes from the matrix bnbᵀn being singular. This
implies that

P
(∣∣∣ 1i ∑i−1

n=0 b
ᵀ
nbn

∣∣∣ > ε
)
≥ P

(∥∥∥ 1
i

∑i−1
n=0 bnb

ᵀ
n

∥∥∥ > ε
)
. (80)

Since the LHS of (80) converges to zero as i→∞ as a result
of our assumption, the RHS must do so as well which directly
implies the LHS of (78) holds.

Now assume that the LHS of (78) holds. Then since

1
i

∑i−1
n=0 b

ᵀ
nbn = tr

(
1
i

∑i−1
n=0 bnb

ᵀ
n

)
, (81)

and for the matrix to converge it must also converge element-
wise, we have that the RHS of (78) also holds. �

Next, we show that if conditions such as (C2) do not hold,
linear transforms of the limit also do not converge to zero
given the conditions in the following lemma hold.

Lemma A.11. Consider a family of matrices Rn ∈ Rt×s
with full column rank. Assume there exists η ∈ R such that
0 < η ≤ λn, where λn is the smallest eigenvalue of RTnRn.
Furthermore, consider a sequence of random vectors fn ∼
N (0s×1,Σf ) such that Σf,n is positive semi-definite. If∑∞

i=1 ‖E[fnf
ᵀ
n+i]‖ <∞ ∀n (82)

p-lim
i→∞

1
i

∑i−1
n=0 fnf

ᵀ
n 6= 0s, (83)

then

p-lim
i→∞

1
i

∑i−1
n=0Rnfnf

ᵀ
nR

ᵀ
n 6= 0t. (84)

Proof. (Lemma A.11) Assume that (82)-(83) holds, but

p-lim
i→∞

1
i

∑i−1
n=0Rnfnf

ᵀ
nR

ᵀ
n = 0t. (85)

Applying Lemma A.10 we have that

p-lim
i→∞

1
i

∑i−1
n=0 f

ᵀ
nR

ᵀ
nRnfn = 0. (86)

This implies that

p-lim
i→∞

η

i

∑i−1
n=0 f

ᵀ
nfn = 0 (87)

since ηfᵀnfn ≤ λnf
ᵀ
nfn ≤ fᵀnR

ᵀ
nRnfn. Since the limit is

not affected by the constant η, and using Lemma A.10, this
contradicts (83). Therefore, (84) must hold. �
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B. Proofs

Proof. (Lemma III.7) Assume that α is equal to 0. Rearrang-
ing the LHS of (C1) using (13), (16), and (21) results in

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnx̂n − yn)eᵀn−1 =

= p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδn − zn − Cnξn − ζn)eᵀn−1. (88)

Corollary A.5 says that to show that the RHS of (88) converges
in probability to 0r×q , it is sufficient to show that each term
in the sum converges in probability to 0r×q . Note that

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδn − Cnξn)eᵀn−1 = 0r×q (89)

by Corollary A.7 since en−1 is independent identically dis-
tributed with bounded covariance, and Vn(Cnδn−Cnξn) is a
bounded linear transform of a random vector that satisfies the
necessary auto correlation bound as a result of Theorem A.9.
Similarly,

p-lim
i→∞

1
i

∑i−1
n=0 Vn(−zn − ζn)eᵀn−1 = 0r×q (90)

by Corollary A.7 since zn, ζn, and en−1 are mutually in-
dependent identically distributed with bounded covariances.
Therefore α = 0 implies (C1) holds.

Now assume that (C1) holds. Rearranging (C1) using (13),
(16), and (21) results in

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnx̂n − yn)eᵀn−1 =

= p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδn − (1 + α)zn+

− αCnxn − Cnξn − ζn)eᵀn−1. (91)

Now since (90) holds by the same argument as before, we can
use Theorem A.4 to cancel these terms resulting in

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnx̂n − yn)eᵀn−1 =

= p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδn − αCnxn)eTn−1. (92)

Expanding xn in (92) by one step using (12) then results in

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnx̂n − yn)eᵀn−1 =

= p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδn − αCn(An−1xn−1+

+Bn−1Kn−1x̂n−1 +Bn−1en−1 + wn−1))eᵀn−1. (93)

Using Corollary A.7 we have that

p-lim
i→∞

1
i

∑i−1
n=0−αVnCnBn−1(en−1e

ᵀ
n−1 − Σe) = 0q×r.

(94)

Therefore by Theorem, A.4 we have

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnx̂n − yn)eᵀn−1 =

= p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδn − αCn(An−1xn−1+

+Bn−1Kn−1x̂n−1 + wn−1))eᵀn−1 + αVnCnBn−1Σe.
(95)

Note, that all elements of

Vn(Cnδn − αCn(An−1xn−1+

+Bn−1Kn−1x̂n−1 + wn−1))eᵀn−1 (96)

are distributed symmetrically about 0 for all n ∈ N. Consider
an element of (95) for which the corresponding element in

1
i

∑i−1
n=0 VnCnBn−1Σe (97)

does not converge. For each i, the probability that the matrix
element in (95) is farther away from 0 than the corresponding
element in (97) is at least 0.5. Therefore the element cannot
converge in probability to 0 completing the proof. �

Proof. (Lemma III.8) Expanding (C2) using (13) and (16)-
(18) gives us

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnx̂n − yn)(Cnx̂n − yn)ᵀV ᵀ

n =

= p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδ̄n − zn)(Cnδ̄n − zn)ᵀV ᵀ

n +

+ Vn(Cnδ̄n − zn)(Cnδ̂n − vn)ᵀV ᵀ
n +

+ Vn(Cnδ̂n − vn)(Cnδ̄n − zn)ᵀV ᵀ
n +

+ Vn(Cnδ̂n − vn)(Cnδ̂n − vn)ᵀV ᵀ
n . (98)

By Corollary A.7 and Theorem A.9,

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδ̄n − zn)(Cnδ̄n − zn)ᵀV ᵀ

n = Ir, (99)

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδ̄n − zn)(Cnδ̂ − vn)ᵀV ᵀ

n = 0r (100)

since, by the definition of Vn in (20), the expectation for each
summand in (99) is Ir, and Vn(Cnδ̄n − zn) is uncorrelated
with Vn(Cnδ̂ − vn). First, assume that (C2) holds. By
Theorem A.4, it follows from (98)-(100) that (24) must hold.
Next, assume that (24) holds. By Corollary A.5, it follows
from (98)-(100) that (C2) holds. �

Proof. (Lemma III.9) Assume that α = 0. Using Lemma
A.10, the asymptotic attack power is 0 if and only if

p-lim
i→∞

1
i

∑i−1
n=0 vnv

ᵀ
n = 0r. (101)

Expanding the LHS of (101) using (21)-(22) we get an
equvalent condition.

p-lim
i→∞

1
i

∑i−1
n=0 Cnξnξ

ᵀ
nC

ᵀ
n+

+ Cnξnζ
ᵀ
n + (Cnξnζ

ᵀ
n)ᵀ + ζnζ

ᵀ
n = 0r (102)

Since ξn and ζn are uncorrelated, from Theorem A.9 and
Corollary A.7 we have

p-lim
i→∞

1
i

∑i−1
n=0 Cnξnζ

ᵀ
n = 0r. (103)

First, assume that (25) and (26) hold. By Corollary A.5 we
have that (102) must hold since, when separated, the limit for
each term converges to 0r. Next, assume that (102) holds. By
Theorem A.4 we can rewrite (102) as

p-lim
i→∞

1
i

∑i−1
n=0 ζnζ

ᵀ
n + Cnξnξ

ᵀ
nC

ᵀ
n = 0r, (104)
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since (103) holds. Note, both terms are positive-semidefinite
matrices. Therefore, for an arbitrary ε > 0 we have that

P
(∥∥∥ 1

i

∑i−1
n=0 ζnζ

ᵀ
n

∥∥∥ > ε
)
≤

≤ P
(∥∥∥ 1

i

∑i−1
n=0 ζnζ

ᵀ
n + Cnξnξ

ᵀ
nC

ᵀ
n

∥∥∥ > ε
)

(105)

Furthermore, (104) implies

lim
i→∞

P
(∥∥∥ 1

i

∑i−1
n=0 ζnζ

ᵀ
n + Cnξnξ

ᵀ
nC

ᵀ
n

∥∥∥ > ε
)

= 0r, ∀ε > 0

(106)

Then, by (105) and (106)

lim
i→∞

P
(∥∥∥ 1

i

∑i−1
n=0 ζnζ

ᵀ
n

∥∥∥ > ε
)

= 0r, ∀ε > 0. (107)

Therefore, (25) must hold. Applying Theorem A.4 to (104)
using (25) implies (26) must also hold. �

Proof. (Lemma III.10) Assume that (24) holds. Expanding
the LHS of (24) using (21) we get

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδ̂n − Cnξn)(Cnδ̂n − Cnξn)ᵀV ᵀ

n +

+ Vn(Cnδ̂n − Cnξn)ζᵀnV
ᵀ
n + (Vn(Cnδ̂n − Cnξn)ζᵀnV

ᵀ
n )ᵀ+

+ Vnζnζ
ᵀ
nV

ᵀ
n = 0r. (108)

Using Corollary A.7 and Theorem A.9 we have

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδ̂n − Cnξn)ζᵀnV

ᵀ
n = 0r. (109)

Therefore, by applying Theorem A.4 to (108) we have

p-lim
i→∞

1

i

∑i−1
n=0 Vn(Cnδ̂n − Cnξn)(Cnδ̂n − Cnξn)ᵀV ᵀ

n +

+ Vnζnζ
ᵀ
nV

ᵀ
n = 0r. (110)

Note, both terms are positive-semidefinite matrices. Using the
same method used on (104), we then have

p-lim
i→∞

1
i

∑i−1
n=0 Vnζnζ

ᵀ
nV

ᵀ
n = 0r, (111)

p-lim
i→∞

1
i

∑i−1
n=0 Vn(Cnδ̂n − Cnξn)(Cnδ̂n − Cnξn)ᵀV ᵀ

n = 0r.

(112)

We complete the proof using Lemma A.11 but we must first
lower bound the eigenvalues of V ᵀ

n Vn. Let λn denote the
smallest eignenvalue of V ᵀ

n Vn, then λn is lower bounded since

λn =
1

‖(V ᵀ
n Vn)−1‖

=
1

‖CnΣδ,nC
ᵀ
n + Σz,n‖

≥

≥ 1

η2
Cηδ + ηz

> 0. (113)

If we assume that (25) does not hold then applying
Lemma A.11 contradicts (111). Therefore (25) must hold.
Similarly, assuming that (27) does not hold would result
in a contradiction with (112). Therefore (27) must also hold. �

Proof. (Lemma III.12) First, we prove the existence of m.
Assume that (26) does not hold. Expanding the LHS of (26)
using (22) results in

p-lim
i→∞

1

i

∑i−1
n=0

(∑n
j=1 CnĀ(n−1,n−j+1)ωn−j

)
×

×
(∑n

j=1 CnĀ(n−1,n−j+1)ωn−j

)ᵀ
6= 0r. (114)

Then, using Lemma A.10 we have that

p-lim
i→∞

1
i

∑i−1
n=0

∥∥∥∑n
j=1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

6= 0. (115)

Since (26) does not hold there exists ε, τ > 0 such that

P

(
1
i

∑i−1
n=0

∥∥∥∑n
j=1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε

)
> τ

(116)

for infinitely many i. We prove that there exists an m such
that for each i that (116) holds we have

P

(
1
i

∑i−1
n=0

∥∥∥∑mn
j=1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε
6

)
>
τ

4
(117)

which is equivalent to (28) as a result of Lemma A.10. To
make statements on the truncated sum, we start by finding the
relationship between the probability in the LHS of (116) and
the probability in the LHS of (117). For each i such that (116)
holds, we apply triangle inequality to get

τ < P

(
1
i

∑i−1
n=0

(∥∥∥∑mn
j=1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥+

+
∥∥∥∑n

j=mn+1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥)2

> ε

)
. (118)

Further expanding and applying Theorem A.1 result in

τ < P

(
1
i

∑i−1
n=0

∥∥∥∑mn
j=1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε
3

)
+

+ P

(
2
i

∑i−1
n=0

∥∥∥∑mn
j=1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥×
×
∥∥∥∑n

j=mn+1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥ > ε
3

)
+

+ P

(
1
i

∑i−1
n=0

∥∥∥∑n
j=mn+1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε
3

)
.

(119)

Focusing on the center term in the RHS of (119), we can write

P

(
2
i

∑i−1
n=0

∥∥∥∑mn
j=1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥×
×
∥∥∥∑n

j=mn+1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥ > ε
3

)
≤

≤ P

(√
2
i

∑i−1
n=0

∥∥∥∑mn
j=1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

×

×
√

2
i

∑i−1
n=0

∥∥∥∑n
j=mn+1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε
3

)
≤

≤ P

(
2
i

∑i−1
n=0

∥∥∥∑mn
j=1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε
3

)
+

+ P

(
2
i

∑i−1
n=0

∥∥∥∑n
j=mn+1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε
3

)
,

(120)
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where the first inequality comes from applying the Cauchy
Schwarz Inequality and the second inequality comes from
applying Theorem A.2. Then since

P

(
1
i

∑i−1
n=0

∥∥∥∑mn
j=1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε
3

)
≤

≤ P

(
2
i

∑i−1
n=0

∥∥∥∑mn
j=1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε
3

)
,

(121)

P

(
1
i

∑i−1
n=0

∥∥∥∑n
j=mn+1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε
3

)
≤

≤ P

(
2
i

∑i−1
n=0

∥∥∥∑n
j=mn+1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε
3

)
,

(122)

we can combine (119) with (120)-(122) to obtain

τ < 2P

(
1
i

∑i−1
n=0

∥∥∥∑mn
j=1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε
6

)
+

+ 2P

(
1
i

∑i−1
n=0

∥∥∥∑n
j=mn+1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε
6

)
.

(123)

If we can upper bound the second term in the RHS or (123)
by τ

2 the first term must be lower bounded by τ
2 completing

the proof. To provide this bound we make use of Markov’s
Inequality. To this end, we first bound the expectation

E

(
1
i

∑i−1
n=0

∥∥∥∑n
j=mn+1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2
)

=

= E

(
1
i

∑i−1
n=0

∑n
j=mn+1

(
CnĀ(n−1,n−j+1)ωn−j

)ᵀ×
×
(
CnĀ(n−1,n−j+1)ωn−j

))
≤

≤ E
(

1
i

∑i−1
n=0

∑∞
j=m+1

(
Cn+jĀ(n+j−1,n+1)ωn

)ᵀ×
×
(
Cn+jĀ(n+j−1,n+1)ωn

) )
≤ 1

i

∑i−1
n=0

∑∞
j=m+1 pη

2
Cη

2(j−1)
A1 η2

ω =
pη2Cη

2m
A1 η

2
ω

1−η2A1
, (124)

where the the first equality comes from expanding the norm
and ignoring uncorrelated terms, the first inequality comes
from rearranging the summation and allowing the second
summation to go to infinity, the second inequality comes from
distributing the expectation and upper bounding each element,
and the final equality comes from evaluating the summations.
Since ηA1 < 1, we can choose m sufficiently large such that

pη2Cη
2m
A1 η

2
ω

1−η2A1
< τε

24 . (125)

Using Markov’s inequality [60, Equation 5.31] we have that

P

(
1
i

∑i−1
n=0

∥∥∥∑n
j=mn+1 CnĀ(n−1,n−j+1)ωn−j

∥∥∥2

> ε
6

)
≤

≤ 6pη2Cη
2m
A1 η

2
ω

(1−η2A1)ε
< τ

4 (126)

which completes the proof for the existence of m.
Next, to prove the existence of m′ we expand (28)

p-lim
i→∞

1
i

∑i−1
n=0 Cn

∑mn
j=1

∑mn
k=1 Ā(n−1,n−j+1)ωn−j×

× ωᵀ
n−kĀ

ᵀ
(n−1,n−k+1)C

ᵀ
n 6= 0. (127)

Considering the summands where j 6= k we have that

p-lim
i→∞

1
i

∑i−1
n=0 CnĀ(n−1,n−j+1)ωn−j×

× ωᵀ
n−kĀ

ᵀ
(n−1,n−k+1)C

ᵀ
n = 0 (128)

by Theorem A.6 since ωn is independent and the dynamics
are bounded and stable. If we further assume that there does
not exist an m′ for which (29) holds then by Theorem A.1
we have that (28) does not hold which is a contradiction.
Therefore, the set of integers less than or equal to m for
which (29) holds, is a non-empty finite set. The smallest
element of this set then satisfies the conditions for m′. �

Proof. (Lemma III.11) WLOG, in this proof, we allow sum-
mations to reference variables with negative index by assuming
these values to be 0r to ease notation. Assume that (24) holds
but (26) does not. Since (26) does not hold, m′ be chosen such
that it satisfies the description in Lemma III.12. From Lemma
III.10 we have that (24) implies (27). Expanding the LHS of
(27) using (22) gives us

p-lim
i→∞

1
i

∑i−1
n=0(Cnδ̂n − Cnξn)(Cnδ̂n − Cnξn)ᵀ =

= p-lim
i→∞

1
i

∑i−1
n=0

(
Cn

(
δ̂n −

∑n
j=1 Ā(n−1,n−j+1)ωn−j

)
×

×
(
δ̂n −

∑n
k=1 Ā(n−1,n−k+1)ωn−k

)ᵀ
Cᵀ
n

)
= 0r. (129)

By separating the index m′ we can write

p-lim
i→∞

1
i

∑i−1
n=0(Cnδ̂n − Cnξn)(Cnδ̂n − Cnξn)ᵀ =

= p-lim
i→∞

1
i

∑i−1
n=0 Cn

(
δ̂n −

∑
1≤j≤n
j 6=m′

Ā(n−1,n−j+1)ωn−j

)
×

×

(
δ̂n −

∑
0≤k≤n
k 6=m′

Ā(n−1,n−k+1)ωn−k

)ᵀ

Cᵀ
n+

− Cn

(
δ̂n −

∑
1≤j≤n
j 6=m′

Ā(n−1,n−j+1)ωn−j

)
×

× ωᵀ
n−m′Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n − CnĀ(n−1,n−m′+1)ωn−m′×

×

(
δ̂n −

∑
0≤k≤n
k 6=m′

Ā(n−1,n−k+1)ωn−k

)ᵀ

Cᵀ
n+

+ CnĀ(n−1,n−m′+1)ωn−m′×
× ωᵀ

n−m′Ā
ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r. (130)

For now suppose that

p-lim
i→∞

1
i

∑i−1
n=0−Cn

(
δ̂n −

∑
1≤j≤n
j 6=m′

Ā(n−1,n−j+1)ωn−j

)
×

× ωᵀ
n−m′Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r. (131)

Then by Theorem A.4 we have that

p-lim
i→∞

1
i

∑i−1
n=0(Cnδ̂n − Cnξn)(Cnδ̂n − Cnξn)ᵀ =

= p-lim
i→∞

1
i

∑i−1
n=0 Cn

(
δ̂n −

∑
1≤j≤n
j 6=m′

Ā(n−1,n−j+1)ωn−j

)
×
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×

(
δ̂n −

∑
0≤k≤n
k 6=m′

Ā(n−1,n−k+1)ωn−k

)ᵀ

Cᵀ
n+

+ CnĀ(n−1,n−m′+1)ωn−m′×
× ωᵀ

n−m′Ā
ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r. (132)

Furthermore, by our choice of m′ we have that

p-lim
i→∞

1
i

∑i−1
n=0 CnĀ(n−1,n−m′+1)ωn−m′×

× ωᵀ
n−m′Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n 6= 0r, (133)

and since the terms are all positive-semidefinite matrices

P
(∥∥ 1

i

∑i−1
n=0 CnĀ(n−1,n−m′+1)ωn−m′×

× ωᵀ
n−kĀ

ᵀ
(n−1,n−k+1)C

ᵀ
n

∥∥ > ε
)
≤

≤ P

(∥∥∥∥∥ 1
i

∑i−1
n=0 Cn

(
δ̂n −

∑
1≤j≤n
j 6=m′

Ā(n−1,n−j+1)ωn−j

)
×

×

(
δ̂n −

∑
0≤k≤n
k 6=m′

Ā(n−1,n−k+1)ωn−k

)ᵀ

Cᵀ
n+

+ CnĀ(n−1,n−m′+1)ωn−m′×

× ωᵀ
n−m′Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n

∥∥∥∥∥ > ε

)
. (134)

This implies that (130) cannot hold which contradicts (24).
Therefore (26) must hold since otherwise there exists an m′

satisfying Lemma A.11.
To complete the proof, we now show that (131) indeed

holds. By Corollary A.5 this is equivalent to proving

p-lim
i→∞

1
i

∑i−1
n=0 Cn

∑
1≤j≤n
j 6=m′

Ā(n−1,n−j+1)ωn−j×

× ωᵀ
n−m′Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r, (135)

p-lim
i→∞

1
i

∑i−1
n=0−Cnδ̂nω

ᵀ
n−m′Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r. (136)

Note, (135) holds by Corollary A.7 since all ωn are mutually
independent, ‖CnĀ(n−1,n−m′+1)‖ ≤ ‖Cn‖ < ηC , and∥∥∥∥∥E

[(∑
1≤j≤n
j 6=m′

Ā(n−1,n−j+1)ωn−j

)
×

×

(∑
1≤k≤n+i
k 6=m′

Ā(n+i−1,n+i−k+1)ωn+i−k

)ᵀ]∥∥∥∥∥ =

=

∥∥∥∥∥∑1≤j≤n
j 6=m′

Ā(n−1,n−j+1)Σω,n−jĀ
ᵀ
(n+i−1,n−j+1)

∥∥∥∥∥ ≤
≤
∑∞
j=1 η

2j−4+i
A1 ηω =

ηi−2
A2 ηω

1−η2A1
. (137)

Here, the equality comes from evaluating the expectation, and
the inequality comes from distributing the norm using the
triangle inequality and the subadditivity of the spectral norm,
bounding the individual terms, and allowing the summation
to extend to infinity. Expanding the LHS of (136) using (18)
gives us

p-lim
i→∞

1
i

∑i−1
n=0−Cnδ̂nω

ᵀ
n−m′Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n =

= p-lim
i→∞

1
i

∑i−1
n=0 Cn

(∑n−1
j=0 A(n−1,j+1)Ljζj

+
∑n
k=1A(n−1,n−k+1)Ln−kCn−k×

×
∑n
`=k+1 Ā(n−k−1,n−`+1)ωn−`

)
×

× ωᵀ
n−m′Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r. (138)

To prove that (136) holds, we use Corollary A.5 on (138) and
show that each term converges to 0r. Note, by Theorem A.6,

p-lim
i→∞

1
i

∑i−1
n=0 Cn

(∑n−1
j=0 A(n−1,j+1)Ljζj

)
×

× ωᵀ
n−m′Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r, (139)

since ‖CnĀ(n−1,n−m′+1)‖ ≤ ηC , ζn and ωn are mutually
independent, and∥∥∥E [∑n−1

j=0

∑n+i−1
k=0 A(n−1,j+1)Ljζjζ

ᵀ
kL

ᵀ
kA

ᵀ
(n+i−1,k+1)

]∥∥∥ =

=
∥∥∥∑n−1

j=0 A(n−1,j+1)LjΣζjL
ᵀ
jA

ᵀ
(n+i−1,j+1)

∥∥∥ ≤
≤
∑n−1
j=0 η

2(n−1−j)
A2 ηiA2η

2
Lηζ ≤

ηiA2η
2
Lηζ

1−η2A2
. (140)

Furthermore, considering the portion of δ̂n not dependent on
ωn−m′ , by Theorem A.6,

p-lim
i→∞

1
i

∑i−1
n=0 Cn

∑n
j=1A(n−1,n−j+1)Ln−jCn−j×

×
∑n
k=j+1
k 6=m′

Ā(n−j−1,n−k+1)ωn−k×

× ωᵀ
n−m′Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n = 0r, (141)

since ωn are independent, ‖CnĀ(n−1,n−m′+1)‖ ≤ ηC , and∥∥∥∥∥E
[(

Cn
∑n
j=1A(n−1,n−j+1)Ln−jCn−j×

×
∑n
k=j+1
k 6=m′

Ā(n−j−1,n−k+1)ωn−k

)
×

×

(
Cn+i

∑n+i
j=1 A(n+i−1,n+i−j+1)Ln+i−jCn+i−j×

×
∑n+i
k=j+1
k 6=m′

Ā(n+i−j−1,n+i−k+1)ωn+i−k

)ᵀ]∥∥∥∥∥ =

=

∥∥∥∥∥∑n
j=1

∑n+i
`=1 CnA(n−1,n−j+1)Ln−jCn−j×

×
∑n
k=max{j+1,`+1}

k 6=m′
Ā(n−j−1,n−k+1)Σω,n−k×

× Āᵀ
(n+i−`−1,n−k+1)C

ᵀ
n+i−`L

ᵀ
n+i−`×

×Aᵀ
(n+i−1,n+i−`+1)C

ᵀ
n+i

∥∥∥∥∥ ≤
≤
∑n
j=1

∑n
`=1 η

4
Cη

2
Lη

`+j−2
A ×

×
∑n
k=max{j+1,`+1}

k 6=m′
η2k−j−`−2+i
A ηω ≤

≤ ηi−4
A η4

Cη
2
Lηω2

∑∞
j=1

∑∞
`=j

∑∞
k=`+1 η

2k =
2ηiAη

4
Cη

2
Lηω

(1−η2A)3
,

(142)

where the first equality comes from evaluating the expectation,
the first inequality comes from distributing the norm using the
triangle inequality and the submultiplicative property of the
spectral norm and then using the individual upper bounds,
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the second inequality comes from rearranging the sum and
allowing the index to go to infinity, and the final equality
comes from evaluating the geometric series. Now if

p-lim
i→∞

1
i

∑i−1
n=0 Cn

∑m′−1
j=1 A(n−1,n−j+1)Ln−jCn−j×

× Ā(n−j−1,n−m′+1)ωn−m′ω
ᵀ
n−m′Ā

ᵀ
n−1,n−k+1C

ᵀ
n = 0r,

(143)

we have completed the proof. To show this, we show that the
trace of the matrix converges to 0 for each value of j.

p-lim
i→∞

1
i

∑i−1
n=0

(
ωᵀ
n−m′Ā

ᵀ
(n−1,n−m′+1)C

ᵀ
n×

× CnA(n−1,n−j+1)Ln−jCn−j×
× Ā(n−j−1,n−m′+1)ωn−m′

)
≤

≤ p-lim
i→∞

(
1
i

∑i−1
n=0

∥∥CnĀ(n−1,n−m′+1)ωn−m′
∥∥2 )1/2×

×
(

1
i

∑i−1
n=0

∥∥CnA(n−1,n−j+1)Ln−j×

× Cn−jĀ(n−j−1,n−m′+1)ωn−m′
∥∥2)1/2

(144)

where the inequality follow from the Cauchy Schwarz Inequal-
ity. Let ε, τ > 0 be chosen arbitrarily. By Markov’s Inequality,

P
(

1
i

∑i−1
n=0

∥∥CnĀ(n−1,n−m′+1)ωn−m′
∥∥2 ≥

≥ 2η2Cη
2(m′−1)
A1 ηω
1−τ

)
≤

≤
(1−τ)E

[
1
i

∑i−1
n=0‖CnĀ(n−1,n−m′+1)ωn−m′‖2

]
2η2Cη

2(m′−1)
A1 ηω

≤

≤ (1−τ)η2Cη
2(m′−1)
A1 ηω

2η2Cη
2(m′−1)
A1 ηω

= 1−τ
2 . (145)

Furthermore by our choice of m′, we have that there exists an
N such that i > N implies

P
(

1
i

∑i−1
n=0

∥∥Cn−jĀ(n−j−1,n−m′+1)ωn−m′
∥∥2 ≤

≤ ε2

2η4Cη
2(m′−1)
A1 η

2(j−1)
A2 η2Lηω

)
≥ τ+1

2 . (146)

Finally, applying Theorem A.3

P

((
1
i

∑i−1
n=0

∥∥CnĀ(n−1,n−m′+1)ωn−m′
∥∥2
)1/2

×

×
(

1
i

∑i−1
n=0

∥∥CnA(n−1,n−j+1)Ln−j×

× Cn−jĀ(n−j−1,n−m′+1)ωn−m′
∥∥2
)1/2

≤ ε
)
≥

≥ P

(
1
i

∑i−1
n=0

∥∥Cn−jĀ(n−j−1,n−m′+1)ωn−m′
∥∥2

≤ ε2

2η4Cη
2(m′−1)
A1 η

2(j−1)
A2 η2Lηω

)
+

+

(
1− P

(
1
i

∑i−1
n=0

∥∥CnĀ(n−1,n−m′+1)×

× ωn−m′
∥∥2 ≥ 2η2

Cη
2
A1ηω

))
− 1 ≥ (147)

≥ τ + 1

2
+ 1− 1− τ

2
− 1 = τ. (148)

Therefore (143) must hold. �
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