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Abstract
Salt rock is a polycrystalline material of interest for geostorage because of its low permeability and potential to self-heal by 
pressure solution at favorable stress and temperature conditions. It is often assumed that microcrack propagation and healing 
lead to isotropic stiffness changes. The goal of this study is to check this assumption and to gain a fundamental understand-
ing of the mechanisms that control the accumulation of damage and irreversible deformation. Cyclic axial loading tests are 
performed under a confining pressure of 1 MPa on synthetic salt rock generated by thermal consolidation. The stress–strain 
curves and the microstructure images taken at key stages of the cycles reveal the formation of a complex system of sliding 
and wing microcracks, the orientation of which is loading dependent. We interpret the mechanisms that control the coupled 
evolution of crack families by a discrete wing crack elastoplastic damage (DWCPD) model. Crack propagation is controlled 
by Mode I and Mode II fracture mechanics criteria. Sliding “main” cracks grow if a cohesive frictional criterion is met, 
while the wing cracks propagate in tension. Displacement jumps at crack faces are related to the deformation of the rock 
representative elementary volume (REV). The DWCPD model can capture the nonlinear stress–strain relationship and the 
degradation of stiffness during the loading cycles. Simulations show that microcracks occur following two stages: (1) wing 
cracks initiate and main cracks do not propagate; (2) wing cracks and main cracks then propagate simultaneously. Higher 
friction at the crack faces leads to higher strength. With a larger cohesion, salt rock strength increases, damage development 
is delayed and exhibits a stick-slip evolution. At higher confinement, the initiation of wing cracks is delayed, which results 
in an increase of strength. The damage rate is higher in specimens that are damaged prior to compression than in the ones 
that are not. The proposed DWCPD model can be extended to any polycrystalline semi-brittle material, and can be applied 
to understand the formation of crack patterns in geostorage facilities.
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�E, �p	� Elastic strain and plastic strain of the REV
tm	� Traction on a main crack plane
�, c	� friction coefficient and cohesion of main cracks
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cracks
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fp	� Plastic yield surface function
g	� Plastic potential function
q, p, �	� Deviatoric stress, mean stress, and Lode’s angle
J2, J3	� The second and third stress invariants
e	� Cohesion constant of the rock
�p	� Plastic hardening function
m�	� The parameter controlling the effect of Lode’s 
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R	� The parameter controlling plastic hardening 

rate
�,�	� Plastic multiplier and the plastic hardening 
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p
, �m

p
	� The plastic yielding threshold and the maxi-

mum of the hardening function

1  Introduction

Salt rock is an attractive host material for geological storage 
(e.g., CO2 sequestration, waste isolation, and compressed air 
energy storage), due to its favorable creep properties, low 
gas permeability, and low porosity (Cosenza et al. 1999; 
Kwon and Wilson 1999; Chan et al. 2001; Zhu and Arson 
2015). Under typical geotechnical stress conditions, rock 
energy is dissipated predominantly by the nucleation and 
propagation of microscopic cracks. At the macroscopic 
scale of a typical salt rock specimen, the occurrence of 
these microscopic defects leads to a nonlinear stress–strain 
relationship, a degradation of stiffness, and a decrease of 

strength. Continuum damage mechanics (CDM) provides a 
solid theoretical framework to model the effects microstruc-
ture on the mechanical behavior of a representative elemen-
tary volume (REV) (Yuan and Harrison 2006; Krajcinovic 
and Fanella 1986).

In phenomenological CDM, damage is a macroscopic 
internal state variable that is introduced in the expression 
of the free energy and thus influences the energy dissipa-
tion function at the REV scale.The expression of the free 
energy of the REV is postulated in such a way that the stress/
strain relationship that derives from it is representative of 
the behavior of the damaged material, and also to ensure 
the symmetry and positivity of the damaged stiffness tensor. 
When damage increases, it is expected that both stiffness 
and strength decrease (Lemaitre and Desmorat 2005; Chab-
oche 1981; Simo and Ju 1987). The evolution of damage 
is controlled by phenomenological driving forces derived 
from the thermodynamic potential, often expressed in terms 
of stresses and strains, e.g., Mises-equivalent stresses and 
strains or tensile stresses and strains (Cicekli et al. 2007; 
Arson and Gatmiri 2011). When coupled to an elastoplastic 
framework, CDM can be used to predict the behavior of 
semi-brittle materials, including rocks that exhibit a tran-
sition from brittle to ductile behavior (crystal-plastic in 
the case of salt rock) (Chiarelli et al. 2003; Hayakawa and 
Murakami 1997; Salari et al. 2004). Damage can be a scalar 
equivalent to a crack volume fraction, a second-order ten-
sor equivalent to a crack density tensor, or a higher-order 
tensor for more complex fabrics. If cracks do not interact, 
it is sufficient to formulate the model with the second-order 
crack density tensor to capture stress-induced anisotropy 
(Kachanov 1992; Zhu and Arson 2015; Halm and Dragon 
1996).

In micromechanical CDM, the displacement jumps 
(opening and sliding) at crack faces are internal variables 
that each affect the loss of elastic potential energy of the 
REV. Stiffness is obtained by deriving the damaged elastic 
energy potential, which yields a direct relationship between 
microcrack distributions, the stiffness tensor and inelastic 
deformation. Crack closure is automatically accounted for, 
which allows one to predict the unilateral effects of damage 
on stiffness (Budiansky and O’connell 1976; Pensée et al. 
2002). The effect of microscopic cracks that propagate in 
Mode I or Mode II in a homogeneous medium was stud-
ied by Gambarotta and Lagomarsino (1993). The develop-
ment of microcracks in mixed-mode (e.g., wing cracks) was 
discussed based on fracture mechanics principles (Ger-
manovich et al. 1994; Jin and Arson 2017b).

The effects of pre-existing small cracks on the propaga-
tion of a brittle fracture in a solid under compression was 
first discussed by Griffith (1924), who indicated that the 
magnitude of tensile stress increases and opening mode 
cracks initiate at the edges of pre-existing small cracks under 
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axial compression. Following Griffith’s work, wing cracks 
were then defined as the tensile cracks that initiate at the tips 
of defects present in the rock matrix (Bobet and Einstein 
1998; Lehner and Kachanov 1996). The evolution of wing 
cracks in solids under compression was studied theoretically 
(Dyskin and Salganik 1987), experimentally (Bobet 1998; 
Germanovich et al. 1994), and numerically (Scholtès and 
Donzé 2012).

In this paper, we couple a micromechanical CDM model 
and an elastoplastic model to explain the formation of com-
plex patterns of pre-existing cracks and wing cracks that 
develop in salt upon confined cyclic axial loading, and to 
understand the implication of anisotropic damage on stiff-
ness, strength, and deformation. In the following, damage 
is defined as a crack density tensor, i.e., as a tensor that 
represents the volume fraction of cracks in each direction of 
space in the REV. Pre-existing cracks are referred to as main 
cracks. Main cracks are assumed to be penny shaped and to 
propagate in Mode I and Mode II. Wing cracks are tensile 
cracks that initiate at the tips of the main cracks. Typical 
crack patterns observed in the experiments discussed below 
are shown in Fig. 1.

In Sect. 2, we summarize the main observations made 
during an extensive experimental campaign that consisted in 
subjecting synthetic salt rock specimens obtained by thermal 
consolidation to confined cyclic axial loading, and in acquir-
ing microstructure images at key stages of the stress path. 
In Sect. 3, we formulate a new model, called discrete wing 
crack elastoplastic damage (DWCPD) model, to explain the 
crack patterns observed. A micromechanical approach is 
proposed to capture the inelastic deformation induced by 
microscopic cracks. We explain the expression of the Gibbs 
free energy, damage criteria and flow rules, for both the main 
cracks and the wing cracks. Then, a plastic damage model is 
introduced to capture the accumulation of irreversible defor-
mation. In Sect. 4, the cyclic loading tests are simulated with 
the DWCPD model, and the model is calibrated against the 
experimental results. The evolution of damage calculated by 
the model is commented on in detail. In Sect. 5, we discuss 
the influence of the friction and cohesion parameters, the 
confinement pressure, and the initial damage on the accu-
mulation of damage and on the stress–strain relationship of 
salt rock.

2 � Confined Axial Loading Tests 
and Microstructure Observations

A complete description of the materials, methods, results 
and interpretations of the tests conducted on salt rock is pro-
vided in Ding et al. (2016, 2017). Here, we summarize the 
main results of the experimental campaign to present what 
we aim to explain by the model presented in the following.

2.1 � Materials and Methods

The synthetic salt rock specimens used in this study were 
fabricated through uniaxial consolidation of reagent-grade 
granular halite at the following conditions: grain size ranges 
between 0.3 and 0.355 mm; consolidation temperature of 
150 °C; maximum axial stress of 75 MPa; displacement 
rate of 0.034 mm/s. After consolidation, the specimen was 
a right-circular cylinder with a diameter of 19.75 mm and a 
length of 42.67 mm, and the bulk porosity of the specimen 
was 5.6%. The specimen was kept dry throughout all stages 
of this study.

The synthetic salt rock specimens were deformed at room 
temperature, at a confining pressure of 1 MPa, and strain rate 
of 3 × 10−6 s−1 (Fig. 2). Axial and radial strains were meas-
ured by two rosette strain gauges of 6.35 mm gauge length 
and 350 � resistance. Strain gauges were glued at opposing 
sides of the specimen, and the two strain measurements were 
averaged to account for specimen tilting during deformation 
tests. Differential force was measured through an internal 
force gauge that was in direct contact with specimen assem-
bly and unaffected by the friction between the loading piston 
and the sealing stack. A total of eight unloading–reload-
ing cycles were employed, in addition to initial loading and 
final unloading. One unloading–reloading cycle was applied 
in the elastic deformation regime. In the subsequent load 
cycles, the plastic yielding threshold was reached.

Using repeat experiments, synthetic salt rock specimens 
before, during, and at the end of cyclic loading were epoxy-
saturated, cut, and polished to make petrographic sections. 
In Fig. 3a , the red triangles indicate each of the loading 
stages at which a specimen was taken out for analysis. A 
small sample of each specimen was then cut out for micro-
structure observation. These samples were chemically etched 
to allow observation of grain-scale features, including grain 
boundaries and microcracks. The sectioning and etching pro-
cedures followed the techniques developed by Spiers et al. 
(1986) with only minor modifications. Thin section images 
were taken from the center portion of the specimen using 
20 × magnification, and stitched together to allow obser-
vation of more than 100 grains (Fig. 2). On the stitched 
image, salt grain boundaries were traced and opening-mode 
microcracks were interpreted based on the following two 
criteria: (1) there is clear separation between two salt grain 
boundaries; (2) the opposing sides of these two salt grain 
boundaries match well geometrically, which indicates that 
they were previously in contact.

2.2 � Summary of the Results

At room temperature and 1 MPa confining pressure, syn-
thetic salt rock exhibits a ductile mechanical response. The 
first unloading–reloading cycle nearly fully overlies the initial 
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loading curve, which indicates dominant elastic behavior, as 
shown in Fig. 3b. After yielding, the specimen deforms plas-
tically with slight work hardening. Each unloading cycle is 
taken to zero differential stress; subsequent reloading does not 
produce significant hysteresis. The specimen behavior first 
shows slight compaction (positive volumetric strain), followed 
by continuous dilation (negative volumetric strain). At the end 
of the test, the specimen increases in volume by about 0.6%.

The synthetic salt rock produced from uniaxial consolida-
tion at elevated temperature shows minor intragranular micro-
cracking. Almost all of these intragranular microcracks are 
associated with fluid inclusions present in salt grains. These 
fluid inclusions are thought to act as stress concentrators and 
to promote microcracking. There is no evidence for separation 
at grain contacts, as all of them are tight, which results from 
crystal-plastic deformation of salt grains (Ding et al. 2016). 
As shown in Fig. 4, after cyclic triaxial loading to an axial 
strain of 7.3%, grain-boundary cracking becomes the dominant 
brittle deformation mechanism. These microcracks exhibit a 
preferred orientation that is sub-parallel to the axial loading 
direction. With further cyclic loading, dilatant grain-boundary 
microcracks increase in density as well as in separation. These 
grain-boundary microcracks, represented in red in Fig. 4, also 
display a clear tendency to link with neighboring cracks in 
the axial (loading) direction, as can be seen from the red lines 
oriented vertically that follow the boundaries of several neigh-
boring grains.

2.3 � Interpretation of the Results

Below, we propose a model to explain the following observed 
phenomena: 

(1)	 At room temperature and low confining pressure, grain-
boundary microcracking is the dominant brittle defor-
mation mechanism.

(2)	 Wing cracks linked to main cracks propagate along 
grain boundaries.

(3)	 Grain-boundary microcracks initiate preferably in 
the loading direction and tend to link with increasing 
deformation.

(4)	 Cyclic loading leads to progressive lengthening of 
linked crack arrays.

(5)	 Stiffness degradation is related to microscropic inter-
granular cracks and grain re-arrangement.

3 � Theoretical Formulation of the Discrete 
Wing Crack Elastoplastic Damage 
(DWCPD) Model

3.1 � The Evolution of Main Cracks

We consider a representative elementary volume (REV) of 
salt rock made of a homogeneous solid matrix that contains 
a dilute distribution of penny-shaped cracks, at the tips of 
which wing cracks propagate. These penny-shaped cracks, 
called main cracks in the following, can propagate in Mode 
I and Mode II. In Mode II, we postulate that the slipping of 
a main crack can trigger the Mode I initiation of wing cracks 
at its tips, perpendicular to the slipping main crack. By defi-
nition of a dilute distribution, main cracks do not interact 
mechanically with each other, i.e., the stress at the faces of 
a main crack only depends on the macroscopic stress applied 
at the boundaries of the REV—not on the stress at the faces 
of other main cracks.

We restrict our study to static conditions. Under the 
assumption that main cracks do not interact, the traction tm 
on the faces of the main cracks is induced by the macro-
scopic stress (noted � ) applied to the REV (Kachanov 1982). 
Hence, for each main crack (m), we get:

where �⃗n is the direction normal to the main crack plane, �m
n

 
is the normal stress that is applied on the faces of the main 
crack (compression stress), and �m

t
 is the tensor of tangential 

stresses that is applied on the faces of the main crack (shear 
stresses), as illustrated in Fig. 5.

Here, we introduce a linear frictional crack model (with 
friction coefficient � and cohesion c), in which the main 
cracks can be subjected to five deformation mechanisms, 
listed in Table 1. Nm and Bm are the normal and frictional 
indices, respectively. They are introduced in the expressions 
of the crack displacements to distinguish the crack propaga-
tion micromechanisms, as explained in the following.

In mechanism 1, the main crack opens in pure Mode I, 
without slipping. In mechanism 2, the main crack does not 
propagate: it remains closed and does not slip. In mechanism 
3, the main crack propagates both in Mode I (tensile opening) 
and Mode II (slipping). In mechanisms 4 and 5, the main crack 
is under compressive stress and does not propagate in Mode 
I. In mechanism 4, past loading history or current large shear 
stress led to inter-crystal bond breakage, and the main crack 
propagates in Mode II, producing frictional shear strain. In 

(1)t
m = �⃗n ⋅ �,

(2)𝜎m
n
=� ∶

(
�⃗n⊗ �⃗n

)

(3)�m
t
=� ⋅ �⃗n −

(
�⃗n ⋅ � ⋅ �⃗n

)
�⃗n,
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mechanism 5, although inter-crystal bonds are broken, slip-
ping does not occur, due to the friction induced by the large 
normal stress on the crack face. The main crack propagation 
mechanisms are summarized in Fig. 6, in which main cracks 
do not slip in the gray region, while slipping of main cracks 
occurs in the blue region.

The deformation induced by main crack development is due 
to the occurrence of displacement discontinuities (so-called 
jumps) in directions that are either normal or tangential to the 
main crack planes. The main cracks of the same orientation are 
gathered in families. Since the main cracks are assumed to not 
interact, the mechanical behavior of the main cracks is that of 
cracks that are embedded in an infinite elastic medium. In the 
ith family, it is assumed that all main cracks have the same nor-
mal direction ��⃗ni . Main cracks are assumed to be penny shaped 
with radius am

i
 . The volume fraction of the normal displace-

ment jumps �m
i

 and the volume fraction of shear displacement 
jumps �m

i
 of the main cracks family i are expressed as follows 

(Kachanov 1992; Jin and Arson 2017b):

where Nm
i

 is an index parameter used in the model to control 
the crack propagation mechanism in the normal direction; 
Bm
i
 is an index parameter that controls the frictional mecha-

nism in the tangential direction. Nm
i

 (respectively, Bm
i
 ) is zero 

when the main cracks do not propagate in Mode I (respec-
tively, do not propagate in Mode II), as explained in Table 1. 
The main crack density �m

i
 is calculated as:

where VREV is the actual volume of the REV and Mi is the 
number of cracks in family i. The expressions of elastic com-
pliances so and s1 were established by Kachanov (1992), as 
follows:

(4)�m
i
=�m

i
soN

m
i
�m
ni
,

(5)�m
i
=�m

i
s1B

m
i
�m
ti
,

(6)�m
i
=

Mi

(
am
i

)3
VREV

,

(7)s0 =
16

(
1 − �2

o

)
3Eo

,

where Eo and �o are the Young’s modulus and Poisson’s ratio 
of the infinite elastic medium. The average strain induced by 
the displacement jumps of the main cracks in family i can 
be then calculated as:

3.2 � The Development of Wing Cracks

Based on the literature review presented in the introduction 
and the observations reported in the previous section, we 
assume that tensile wing cracks initiate at the tips of the 
main cracks that slip. The shear force that acts on the faces 
of the main cracks is viewed as the force that drives the 
propagation of wing cracks. Since salt rock is a polycrystal-
line material, and salt crystals are typically rhomboids, wing 
cracks are assumed to initiate in the direction perpendicular 
to the main crack plane, as shown in Fig. 5. The net tangen-
tial stress that is applied on the faces of the main crack in the 
direction l⃗ drives the tensile opening of wing crack planes 
perpendicular to l⃗.

The propagation of a wing crack is triggered by a tensile 
force, equal to the shear force �⃗Ti that is applied at the faces 
of the main crack. The norm of the latter is calculated as:

where am
i

 is the radius of the main cracks of the ith family 
and �m

ti
 is tangential stress at the faces of the main cracks 

of the ith family. Note that if Bm
i
 is equal to zero, the main 

crack does not slip, therefore Ti = 0 . As illustrated in Fig. 7, 
the normal stress that is applied on the faces of a wing crack 
of family i is the sum of the projection of the macroscopic 
stress on the direction normal to the wing crack ( �⃗li ) and of 
the tensile stress induced by the main crack shear force:

(8)s1 =
32

(
1 − �2

o

)

3
(
1 − 2�o

)
Eo

,

(9)�m
i
= 𝛽m

i
�⃗ni ⊗ �⃗ni +

1

2

(
�m
i
⊗ �⃗ni + �⃗ni ⊗ �m

i

)
.

(10)Ti = (am
i
)2�Bm

i
∥ �m

ti
∥,

Table 1   Deformation modes of main cracks

Mechanism �m

n
∥ �m

t
∥ N

m
B
m

1 ≥ 0 < c and has never exceeded c during the loading history 1 0
2 < 0 < c and has never exceeded c during the loading history 0 0
3 ≥ 0 ≥ c or has exceeded c during the loading history 1 1
4 < 0 ≥ c or has exceeded c during the loading history; ∥ �m

t
∥ +𝜇𝜎m

n
> 0 0 1 + ��m

n
∕ ∥ �m

ti
∥

5 < 0 ≥ c or has exceeded c during the loading history; ∥ �m

t
∥ +𝜇𝜎m

n
< 0 0 0



3190	 X. Shen et al.

1 3

Substituting Eqs. (10) into (11), we have:

Similar to main cracks, the volume fraction of the normal 
displacement jumps of a wing crack is obtained as follows:

The strain of the wing cracks in family i is calculated as:

3.3 � Micromechanics‑Based Gibbs Free Energy

The Helmholtz free energy of the REV (noted � ∗
s
 ) is the sum 

of the elastic deformation energy stored in the matrix and 
of the elastic deformation energy stored in the displacement 
jumps of the main cracks and wing cracks. � ∗

s
 is expressed as 

follows:

where �e is the elastic strain of the matrix; Co is the elastic 
stiffness of the matrix; �m and �w are the stress fields that 
are applied at the main crack faces and wing crack faces, 
respectively. Since the main cracks do not interact and the 
traction stress on the faces of the main crack is induced by 
the macroscopic stress applied on the REV, we have:

The Legendre transformation allows expressing the free 
energy in terms of stress instead of elastic strain. Based on 
that transformation, the Gibbs free energy (free enthalpy, 
G∗ ) is expressed as:

where �E = �e + �w + �m i s the REV total elastic strain. 
Substituting Eqs. (9), (15), and (16) into (17), we have (Jin 
and Arson 2017a):

Distributions of crack orientations appear in the expression 
of the free energy by substituting Eqs. (9) and (14) into (18). 
The Gibbs energy for Q main microcrack families of Q dif-
ferent orientations is obtained as follows:

(11)𝜎w
ni
=

Ti

aw
i

2𝜋
+ � ∶

(
�⃗li ⊗ �⃗li

)
.

(12)𝜎w
ni
=

(
am
i

aw
i

)2

Bm
i
∥ �m

ti
∥ +� ∶

(
�⃗li ⊗ �⃗li

)
.

(13)�w
i
= �w

i
so�

w
ni
.

(14)�w
i
= 𝛽w

i
l⃗i ⊗ l⃗i.

(15)� ∗
s
=

1

2
�e ∶ Co ∶ �e +

1

2
�m ∶ �m +

1

2
�w ∶ �w,

(16)�m
⋅ �⃗n = � ⋅ �⃗n.

(17)G∗ = � ∶ �E − � ∗
s
,

(18)G∗ =
1

2
� ∶ So ∶ � +

1

2
� ∶ �m + � ∶ �w −

1

2
�w ∶ �w.

in which we used Bazănt’s discrete integration scheme, with 
a discrete set of Q = 74 micro-crack families of 74 distinct 
crack orientations distributed on the unit sphere (Bažant and 
Oh 1986). The parameters wi are the weight coefficients for 
that integration scheme. The total strain of the REV (noted 
� ) can be decomposed into the elastic strain �E and the 
plastic strain �p induced by the propagation of microscopic 
cracks, as follows:

where the elastic strain �E is the partial derivative of Gibbs 
energy with respect to the macroscopic stress applied on 
the REV:

where �e is the elastic strain of the matrix (which would 
exist in the absence of cracks under the given stress), and is 
determined by the elastic modulus Eo and Poisson ratio �o:

where �ed is the additional recoverable strain induced by the 
loss of stiffness upon the development of the microcracks. 
Based on Eqs. (18), (20) and (21), �ed is expressed as:

In the equation above, the first term represents the recover-
able strain induced by the propagation of main cracks, while 
the second term represents the recoverable strain induced by 
the propagation of wing cracks. The fourth-order operators 
ℕijkl and �ijkl are defined as:

where ℕijkl can be thought of as a normal projection opera-
tor, and �ijkl as a tangential projection operator. According 

(19)

G∗ =
1

2
� ∶ So ∶ � +

1

2

Q∑
i=1

wi{s0𝜌
m
i
Nm
i

(
�⃗ni ⋅ � ⋅ �⃗ni

)(
�⃗ni ⋅ � ⋅ �⃗ni

)

+ s1𝜌
m
i
Bm
i
[(� ⋅ �) ∶ �⃗ni ⊗ �⃗ni −

(
�⃗ni ⋅ � ⋅ �⃗ni

)(
�⃗ni ⋅ � ⋅ �⃗ni

)
]

+ 2s0𝜌
w
i
� ∶ 𝜎w

ni
l⃗i ⊗ l⃗i − 𝜌w

i
s0𝜎

w
ni

2},
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to Fig. 6, when main cracks deform under mechanism 4 
(pure Mode II), �Bm

i
∕�� in Eq. (23) is calculated by Eq. 

(26) (below); otherwise, �Bm
i
∕�� is equal to 0. We have:

in which the effect of friction is accounted for in the first 
term, and the effect of cohesion is accounted for in the sec-
ond term.

3.4 � Damage Criterion and Flow Rule

The main cracks propagate if the following criteria are 
satisfied:

for Mode I and II, respectively. Kc represents the harden-
ing of crack toughness (Jin and Arson 2017a), as shown in 
Fig. 8; it is expressed as a hyperbolic function, as follows:

in which a is the crack radius (we omitted the indices i and 
m for clarity). Ko and �c are constitutive parameters that 
respectively control the yield point and the peak stress. The 
values of Ko and �c in Mode I differ from those in Mode II.

Wing cracks are assumed to propagate in Mode I only, 
according to the following criterion:

According to the consistency rule, when the damage cri-
terion is reached, the damage function f is equal to zero 
and remains equal to zero, i.e., f = 0 , df = 0 . The equa-
tion df = 0 is solved for the radius of cracks of family i, as 
follows:

in which f is the damage function of the ith crack family. 
Several damage mechanisms can be active at the same time 
for a single crack family, so that f can denote any of the 
following criteria: f m

I i
 (main cracks opening in Mode I), 

f m
II i

 (main cracks propagating in Mode II), f w
I i

 (wing cracks 
propagating in Mode I). Each crack family comprises one 
main crack and two wing cracks. The radius of the main 

(26)
�Bm

i

��
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�

∥ �m
ti
∥

��m
ni

��
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��m
ni

∥ �m
ti
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ti
∥

��
,

(27)f m
I i
=�m

ni

√
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i
− KIc,

(28)f m
II i

=Bm
i
∥ �m

ti
∥
√

�am
i
− KIIc,

(29)Kc =
a3∕2

1

Ko

+
a

�c

,

(30)f w
I i
= �w

ni

√
�aw

i
− KIc.

(31)dai =

�f

�
d�

�f

�ai

,

cracks ( am
i
 ) is calculated from Eq. (31), in which f = f m

I i
 if 

the main cracks of the ith family propagate in Mode I and 
f = f m

II i
 if they propagate in Mode II. The radius of the wing 

cracks ( aw
i
 ) is also obtained from Eq. (31), in which f = f w

I i
 . 

For each crack family, we calculate the main crack density 
and the wing crack density by using the following equation:

in which ai = am
i
 for the main crack density and ai = aw

i
 for 

the wing crack density. The initial radius of the main cracks 
( amo ) is set equal to 0.022 mm, which is about one-tenth of 
the mean grain size. Note that for each crack family i, we 
calculate a main crack density ( �m

i
 ) and a wing crack density 

( �w
i
 ). The macroscopic damage variable of the REV ( � ) is 

defined as the sum of the crack density tensors of all crack 
families, as follows:

3.5 � Inelastic Deformation

The plastic deformation in Eq. (20) (noted �p ) is intro-
duced to account for the inelastic strain that results from 
the rearrangement of crystals. A non-associated plastic 
flow rule is adopted. The plastic yield surface is a quad-
ratic function, adopted in former rock mechanics models 
(Shao et al. 2006):

where q is the deviatoric stress; p is the mean stress; e is a 
constant describing the cohesion of the rock; �p is the plastic 
hardening function; h(�) is a function of Lode’s angle � . The 
yield surface is shown in Fig. 9. A simplified expression of 
h(�) can be given as (Van Eekelen 1980):

where J2 and J3 are the second and third stress invariants, 
respectively, and m� is a material parameter, controlling 
the effect of Lode’s angle. The plastic function �p couples 
damage and plasticity, and depends both on the volumetric 
part of the damage tensor (d = tr(�) ) and on the plastic 
hardening variable (noted �p ). The expression of �p is the 
following:

(32)d�i =
3Mia

2
i

VREV

dai,

(33)� =

Q∑
i=1

𝜌m
i
�⃗ni ⊗ �⃗ni +

Q∑
i=1

𝜌w
i
l⃗i ⊗ l⃗i.

(34)fp(�, d, �
p) = q2h2(�) + �p(p − e)

(35)h(�) =1 − m�sin(�)

(36)sin(�) = −
J3

2

(
3

J2

) 3

2

,



3192	 X. Shen et al.

1 3

in which � is a scaling parameter which can take any value 
between 0 and 1: if � = 0, there is no influence of damage 

(37)�p = (1 − �d)

[
�o
p
+
(
�m
p
− �o

p

) �p

R + �p

]
,

on inelastic hardening; if � is strictly positive, inelastic hard-
ening decreases as damage increases, which means that the 
rate of inelastic deformation increases with the amount of 
damage accumulated. �o

p
 is the plastic yielding threshold; �m

p
 

is the maximum value of the hardening function; R deter-
mines the plastic hardening rate.

The plastic hardening variable �p is defined as the gen-
eralized shear strain:

A damage coupled plastic potential is adopted, as follows 
(Shao et al. 2006):

where � is a material parameter, controlling the boundary 
of the compressive dilation zone. The increment of plastic 
strain is calculated as follows:

in which 𝜆̇ is the plastic multiplier. According to the 
plasticity consistency rule, 𝜆̇ is a positive scalar, and 
𝜆̇fp(�, d, �

p) = 0 . Substituting Eq. (41) into Eqs. (38, 39), 
we have:

(38)𝜔̇p =

√
2

3
ė
p ∶ ė

p

(39)e
p =�p −

1

3
(�p ∶ �) �

(40)g(�, d) = qh(�) − (1 − �d)�(p − e),

(41)�̇p = 𝜆̇
𝜕g

𝜕�
,

Table 2   DWCPD model 
parameters, calibrated against 
the cyclic triaxial test

Elasticity Plasticity

Eo �o e � R �o

p
�m

p
m� �

GPa − MPa − − MPa MPa − −
21 0.32 4 0.5 3.07 × 10−3 20.25 490 0 −0.79

Friction Damage
c � KIc KIIc �Ic �IIc

MPa − MPa/mm MPa/mm MPa MPa
4 0.15 80 344 100 319

Fig. 1   Simplified crack patterns 
for the main cracks and wing 
cracks

Fig. 2   Schematic diagram of the cyclic loading tests (adapted after 
Ding 2019). The diameter of the cylinder specimen was 19.75 mm, 
and its length was 42.67 mm. The bulk porosity of the specimen was 
5.6%. The specimen was deformed at room temperature, at a confin-
ing pressure of 1 MPa, and was kept dry during the cyclic loading 
tests. The axial strain rate was 3 × 10−6 s−1 . Drawing not to scale
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When the plastic yield criterion is exceeded ( fp > 0 ), the 
plastic function �p is first updated by using the consistency 
rule applied to the plastic yield function fp , given in Eq. (34). 
Then, the plastic hardening variable �p is obtained from Eq. 
(37) using the updated �p . The plastic multiplier 𝜆̇ is then 
calculated from Eqs. (40) and (42), with the updated �p . 
Substituting 𝜆̇ into Eq. (41), the plastic strain �p is obtained 
for the current load step. The resolution algorithm of the 
DWCPD model is presented in Fig. 10.

(42)𝜔̇p = 𝜆̇

√
2

3

{
𝜕g

𝜕�
∶
𝜕g

𝜕�
−

1

3

[
tr

(
𝜕g

𝜕�

)]2}
.

4 � DWCPD Model Calibration

We used the stress–strain curves obtained during the con-
fined cyclic axial loading tests presented in Sect. 2 to cali-
brate the proposed discrete wing crack elastoplastic dam-
age (DWCPD) model. Reloading was done after unloading, 
when the differential stress was reduced to 0 MPa. The same 
confined cyclic loading tests were performed more than ten 
times, and the repeatability of the test was confirmed. Fig-
ure 11 shows the obtained stress–strain curves.

When the differential stress is less than 35 MPa (yielding 
point), the specimen deforms elastically. Hence, we first cali-
brated the elastic parameters Eo and �o by using the linear 
portion of the first loading cycle, for stresses lower than 35 
MPa. Using data from all the subsequent cycles, we cali-
brated the yield parameters ( KIc , KIIc , �o

p
 , e) and the friction 

Fig. 3   Stress–strain curve 
obtained during the confined 
cyclic triaxial tests. Eight cycles 
were performed in the triaxial 
tests. The microscopic images 
were acquired at the end of each 
cycle, noted as red triangles. In 
the first cycle, the loading and 
unloading curves nearly fully 
overly

(a) The confined cyclic triaxial tests.
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parameters ( � and c) so as to match the hardening portion of 
the stress–strain curve after the yield point. Then, the param-
eters controlling the ultimate state ( �Ic , �IIc , and �m

p
 ) were 

calibrated from the maximum stress in each cycle. The stiff-
ness of the specimen in each cycle was calculated from the 
damage parameters KIc , KIIc , �Ic , and �IIc , and compared to 
the stiffness measured from the unloading part of the experi-
mental curves, for verification. Lastly, we calibrated the 
plasticity parameters � and � by trial and error, to find the 
best fit with the residual strain after each cycle and with the 
ratio between axial strain and lateral strain in the experimen-
tal stress–strain curve. The calibrated model parameters are 
given in Table 2.

According to Fig. 11, the yielding, hardening, and stiff-
ness degradation of salt rock in the cyclic loading test are 
captured by the DWCPD model. Upon loading or reloading, 
cracks propagate only after the differential stress reaches 
the maximum differential stress ever reached in the loading 
history. During unloading, the magnitude of the differential 
stress decreases, and the cracks stop propagating (Eqs. (27), 
(28), (30)). Based on Eq. (23), the REV stiffness depends 
on crack density, which does not evolve upon unloading, 
leading to linear unloading paths shown in Fig. 11, i.e., the 
hysteresis is not captured by the DWCPD model.

The evolution of damage during the cyclic loading tests 
is shown in Fig. 12. The damage tensor is projected on the 
three directions of space, in which direction 3 is the loading 
axis and directions 1 and 2 are the lateral directions. The 
axial damage component is noted �3 : this is the damage that 
represents an equivalent crack plane normal to the loading 
axis. �1 and �2 are the lateral damage components, i.e., 
the equivalent crack planes that contain the loading axis, as 
shown in Fig. 13. Note that since the experiment is axisym-
metric, the evolution curves of �1 and �2 overlap. The total 
damage � presented in Fig. 12a is the sum of the main crack 
damage �m (Fig. 12b) and of the wing crack damage �w 
(Fig. 12c).

The evolutions of �1 and �3 differ, which implies that the 
specimen exhibits an anisotropic behavior after damage initia-
tion (damage-induced anisotropy). Results shown in Fig. 12 
indicate that damage propagates in two phases, as explained 
in Fig. 14. In Stage 1, under low differential stress (i.e., under 
10 MPa), the main crack damage components remain constant, 
which means that the main cracks keep their initial radius amo . 
Main cracks cannot slip, because of the cohesion and the fric-
tion at salt crystal faces. By contrast, wing cracks start propa-
gating in Mode I when the differential stress is only a few MPa. 
This means that the shear stresses that accumulate at the faces 
of the main crack lead to the accumulation of tensile stress at 
the faces of the wing cracks and trigger the initiation of wing 
cracks. Since the REV is subjected to a compression in direc-
tion 3, tensile wing crack propagation mostly leads to lateral 
damage ( �w1 and �w2 ). Note that �w3 is not zero, since it is 
calculated as the projection of the 74 wing crack density ten-
sors on direction 3. In Stage 2, with the increase of differential 
stress, shear stresses at the faces of the main cracks reach the 
Mode II crack propagation threshold. Main crack tangential 
displacement jumps are noted. Main cracks start to propagate 
in Mode II, and main crack planes with a normal vector close 
to the direction perpendicular to the loading direction tend to 
propagate faster. Main crack slipping induces additional wing 
crack tensile opening, predominantly in the loading direction. 
As a result, in Stage 2, �m3 increases faster than �m1 and �m2 
and �w3 develops faster than �w1 and �w2 (see Fig. 12b, c). 
Tensile damage is not observed in the main cracks.

Fig. 4   Microstructure of experimentally deformed, granular salt rock 
after 7.3% axial strain (adapted after Ding et al. 2017). The red color 
indicates the presence of boundary cracks

Fig. 5   Schematic of the mechanisms of the main crack and the wing 
cracks. �m

n
 is the normal stress that is applied on the faces of the main 

crack (compression stress), and �m
t

 is the tensor of tangential stresses 
that are applied on the faces of the main crack (shear stresses). �m

l
 is 

the net tangential stress that is applied on the faces of the main crack 
in the direction l . Note: the sketch gives a 2D view, but the proposed 
model is in 3D
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5 � Sensitivity Analyses

5.1 � Influence of the Friction Coefficient 
and of the Cohesion at Main Crack Faces

Main cracks only slip when the magnitude of the shear 
stress exceeds c + ��m

n
 . Here, we present a sensitivity 

Fig. 6   The mechanisms of the 
main crack propagation. Gray 
region: no slipping. Blue region: 
slipping. Mechanism 1: pure 
Mode I. Mechanism 3: modes 
I and II. Mechanism 4: pure 
Mode II. Mechanisms 2 and 5: 
no propagation. � is the friction 
coefficient and c is the cohesion 
of the main crack faces

Fig. 7   Schematic of the mechanisms at the faces of the wing cracks. 
T is the tensile force that triggers the opening of the wing crack. � is 
the macroscopic stress. The projection of the macroscopic stress on 
the direction normal to the wing crack is calculated as � ∶

(⃗
l⊗ l⃗

)

Fig. 8   The hyperbolic hardening model of crack toughness used in 
the DWCPD model

Fig. 9   Yield surface represented in p − q − �p space. In this plot, 
the cohesion is set to 4 MPa, and the material parameter m� is 0. �p 
increases with the development of plasticity
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analysis of the friction coefficient � and of the cohesion 
c, which both control the amplitude of the tangential dis-
placement jumps. Triaxial compression tests are simulated 
with the same confinement pressure as in the calibration 
simulations (1 MPa). The elastic, damage, and plastic 
parameters are those listed in Table 2. When the axial 
strain reaches 0.01, we start unloading until the differen-
tial stress reduces to 0 MPa.

For the calibrated cohesion c = 4 MPa, we perform simu-
lations with � equal to 0, 0.2, and 0.4. Figure 15 shows that 
a larger friction coefficient leads to larger specimen (REV) 
strength, because the friction on the faces of the main cracks 

restricts the propagation of the main cracks. With a smaller 
friction coefficient, the main cracks undergo larger tangential 
displacement jumps, hence larger plastic strain �p , which 
explains the larger residual strains at lower friction. In speci-
mens with non-zero friction coefficients, crack propagation 
mainly occurs on the main cracks with orientation close to 
the axial loading axis (Eqs. (3) and (28)). Figure 16 shows 
that the damage rate is larger for both the main and wing 
cracks when the friction coefficient is smaller. As in Sect. 4, 
the evolution of damage presents two stages, independently 
of the value of � . In Stage 1, wing cracks propagate in Mode 
I because of the loading applied at the external boundaries 

Fig. 10   Resolution algorithm of 
the DWCPD model
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of the specimen, and the main cracks do not slip. Therefore, 
the evolution of damage is independent of the value of the 
friction coefficient. In Stage 2, the main cracks propagate in 
Mode II and wing cracks rapidly propagate in Mode I. Stage 
2 starts at a differential stress of 8 MPa for � = 0 , 12 MPa 
for � = 0.2 and 15 MPa for � = 0.4 . Hence, a larger friction 
coefficient delays the propagation of the main cracks, which 
results in smaller total damage at the end of the unloading 
phase. For example, when the axial strain reaches 0.01, the 
total axial damage of the specimen with � = 0 is 0.71, while 
the axial damage of the specimen with � = 0.4 is only 0.48.

As shown in Fig. 16b, the difference in the final axial 
main crack damage between the case � = 0 ( �m3 = 0.43) 
and the case � = 0.2 ( �m3 = 0.38) is 0.05, and the difference 
in the final axial main crack damage between the case � = 
0.2 ( �m3 = 0.38) and the case � = 0.4 ( �m3 = 0.30) is 0.08. 
With the increase of � , the effect of � on �m3 increases. This 
is because the propagation of the main cracks is controlled 
by both cohesion and friction, and therefore slipping is pre-
dominantly hindered by the cohesion parameter when the 
friction parameter is small. As a result, the final main crack 
damage is not very sensitive to � when � is small.

For the calibrated friction parameter � = 0.15 , we per-
form simulations with c equal to 0 MPa, 8 MPa, and 16 MPa 
(Fig. 17). According to Fig. 18, the higher the cohesion, 
the later is the development of damage. This was expected, 
because a higher cohesion requires a higher stress to break 
the inter-crystalline bonds. When cohesion is 0 MPa or 8 
MPa, the evolution of damage is smooth. With the increase 
of differential stress, the resistance to the tangential displace-
ment of the main cracks is only provided by friction, and 
the damage curves start to overlay (i.e., the black line and 
the red line in Fig. 18 overlap when the differential stress 
reaches 30 MPa). For a cohesion of 16 MPa, both the main 
crack damage and wing crack damage accumulate by steps, 
suggesting a stick-slip mechanism. This is because when 
the shear stress at the crack faces exceeds cohesion, inter-
crystalline bonds are suddenly broken: a sudden increase 
of the main cracks’ length occurs, which leads to the rapid 
propagation of wing cracks and a rapid increase of strain 
(Fig. 17). With a high cohesion (c = 16 MPa), main crack 
slipping is hindered and salt rock strength is increased.

5.2 � Influence of the Confinement

We now investigate the sensitivity of deformation and dam-
age to the confining pressure. The constitutive parameters 
are those obtained after calibration, as listed in Table 2. 
Triaxial loading–unloading cycles are simulated with a 
confinement pressure equal to 0 MPa, 5 MPa, and 10 MPa 
respectively. When the axial strain of the rock reaches 0.01, 
unloading begins, until the differential stress gets to 0. 
Results are presented in Figs. 19 and 20.

According to Fig. 19, under a confining pressure of 5 
MPa, the stress of the specimen at 0.01 axial strain is 42.5 
MPa, versus 38 MPa without confinement. The residual 
strain is almost insensitive to the confinement, although we 
note that the lateral residual strains increase when the con-
finement decreases. This was expected, since the lateral con-
finement restricts the lateral strains. When the confinement 
is low, wing cracks initiate at lower differential stress, and 
both wing cracks and main cracks exhibit a greater propa-
gation rate after initiation. For instance, damage initiates at 
a differential stress of 0 MPa if the confining pressure is 0, 
3 MPa if the confining pressure is 5 MPa and 9 MPa if the 
confining pressure is 10 MPa. The final wing crack damage 
in the loading direction is 0.26 under no confinement, 0.21 
at 5 MPa confinement, and 0.19 under 10 MPa confinement. 
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Fig. 11   Stress–strain curve obtained during the confined cyclic triax-
ial tests: experimental results vs. DWCPD model predictions (calibra-
tion simulations)
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The main cracks start to propagate at a differential stress of 
10MPa if the confinement is 0 MPa. When the confinement 
is 10 MPa, main cracks start propagating at a differential 
stress of 13 MPa. At the same differential stress, the main 
crack damage in the loading direction increases with the 
confining pressure. Visually, the damage evolution curve of 
the axial damage in the absence of confinement remains on 
the left side of the other damage evolution curves. Wing 

cracks propagate in Mode I, which means that wing cracks 
propagate if tensile stress develops at their faces. In the lat-
eral direction, the second term of Eq. (11) is negative and 
increases in magnitude with the confining pressure. As a 
result, under high confinement, the lateral component of the 
forces that are applied in the direction normal to the wing 
cracks decreases. Because the tensile forces normal to the 
wing cracks decrease, fewer wing cracks propagate in Mode 

Fig. 12   Evolution of damage 
during the triaxial cyclic tests 
(calibration of the DWCPD 
model)
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Fig. 13   Visual definition of the 
damage tensor. All crack fami-
lies are projected onto the three 
orthogonal directions of space, 
direction 3 being the loading 
direction. The components of 
the damage tensor can be under-
stood as three equivalent crack 
planes orthogonal to the three 
directions of space
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I under high confinement. In other words, a high confine-
ment impedes the initiation of wing cracks. As expected, 
simulation results indicate that in Stage 1, the initiation of 
wing cracks is sensitive to the confinement, with a delayed 
occurrence of damage at high confinement. Here, the high-
est differential stress increases with the confining pressure. 
Under high confinement, the initiation of wing cracks is 
delayed. The accumulation rate of damage decreases with 
the confining pressure in the simulated tests. In Stage 2, a 
high confinement prevents the main cracks from slipping. 
Thus, under low confinement, the main cracks propagate 
earlier and faster, which accelerates the propagation of the 
connected wing cracks. A larger confinement stress induces 
more slipping and less opening of the main cracks. In all 
cases, the main crack damage exceeds the wing crack dam-
age when the axial strain reaches 0.01.

5.3 � Damage Evolution with Different Initial Crack 
Distributions

We now study the effect of the initial crack distribution in 
the specimen on the response of the specimen to the load-
ing–unloading cycles. Constitutive parameters are those 
listed in Table 2. We first simulate a triaxial extension test, 
in which the axial tensile stress is incrementally increased 
up to 3 MPa (in direction 3). Then, we simulate the unload-
ing path from a 3 MPa axial stress to a 0 MPa axial stress. 
Finally, we simulate a uniaxial compression test by incre-
mentally applying a 0.01 axial strain. The loading path is 
presented in Fig. 21 and the stress vs. strain curve is shown 
in Fig. 22 (O-A-B-C-D). During the triaxial extension (OA), 
damage accumulates in the specimen. Elastic unloading is 
represented by A-B. The response to the subsequent com-
pressive loading (B-C-D) is compared to the response of 
a specimen that is not subjected to triaxial extension prior 
to the compression (O-C’-D’). As expected, the total accu-
mulated damage obtained in the pre-damaged (deformed) 
specimen is larger than that in the undeformed specimen, 
and this difference is due to the larger main crack density 
developed in the pre-damaged specimen. The strength of the 
pre-damaged specimen is also lower than that of the unde-
formed specimen, which is consistent with observations and 
models reported in (Hoek et al. 1966; Hawkes and Mellor 
1970).

During the triaxial extension phase (O-A), the main 
cracks propagate in Mode I, predominantly in the loading 
direction (direction 3). Slight slipping is observed in the 
main cracks close to the lateral direction. During the uniax-
ial unloading phase (A-B), cracks do not propagate. During 
the uniaxial compression phase (B-C), the main cracks only 
propagate in Mode II. The main cracks are now longer than 
the initial main cracks of the undeformed specimen.

Fig. 14   Damage propagation process: (1) wing crack tensile opening; 
(2) main crack slipping, inducing additional wing crack opening. The 
blue arrows indicate the loading direction

Fig. 15   Stress–strain curves 
showing the influence of the 
friction coefficient � at main 
crack faces under a confinement 
pressure 1 MPa, for a cohesion 
of 4 MPa (calibrated value). 
A larger friction coefficient � 
enhances the strength of speci-
men
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With the increase of compressive axial stress, thw main 
cracks propagate in both the undeformed and the pre-dam-
aged specimen, and at the end of the test, the average main 
crack length is larger in the pre-damaged specimen. The dif-
ference between B-C and O-C’ in Fig. 23b is in fact due to 
the formation of Mode I main crack planes orthogonal to 

the loading axis during the triaxial extension loading phase 
(OA), applied to create “pre-damage”. In the pre-damaged 
specimen, very large compressive axial stress is needed to 
generate a tangential stress component large enough to trig-
ger the slipping of the main crack planes that are nearly 
orthogonal to the loading direction 3. This is because the 

Fig. 16   Damage evolution 
curves showing the influence of 
the friction coefficient � at main 
crack faces under a confinement 
pressure 1 MPa, for a cohesion 
of 4 MPa (calibrated value). The 
decrease of friction coefficient 
enhances the increasing rate of 
damage induced by both main 
cracks and wing cracks
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Fig. 17   Stress–strain curves 
showing the influence of the 
cohesion c at main crack faces 
under a confinement pressure 1 
MPa, for a friction coefficient of 
0.15 (calibrated value). When 
the cohesion is larger than 8 
MPa, the strength of the speci-
men is enhanced by cohesion

-0.01 -0.005 0 0.005 0.01
Lateral strain  <--->  Axial strain    

0

10

20

30

40

50

60

D
iff

er
en

tia
l s

tr
es

s 
(M

P
a)

c=0, 8 MPa (Axial)
c=16 MPa (Axial)
c=0, 8 MPa (Lateral)
c=16 MPa (Lateral)



3201Mechanisms of Anisotropy in Salt Rock Upon Microcrack Propagation﻿	

1 3

toughness of the main cracks increases with the main crack 
radius (Eq. (29)). The growth rate of the radius of the main 
cracks in the pre-damaged specimen is slower than that in 
the undeformed specimen. As a result, when compressive 
axial stress increases, O-C’ gets closer to B-C in Fig. 23b, 
but the main crack damage in the pre-damaged specimen is 
always larger than that in the undeformed specimen. Since 

the development of wing cracks is controlled by the main 
cracks, the propagation of wing cracks is delayed whenever 
main crack propagation is delayed.

During phase O-A-B, only the tensile cracks propagate. 
Wing cracks do not propagate. Stage 1 starts after point B is 
reached. During Stage 1, the main cracks do not propagate 
and wing cracks propagate. We observe that wing cracks 

Fig. 18   Damage evolution 
curves showing the influence 
of the cohesion c at the main 
crack faces under a confinement 
pressure 1 MPa, for a friction 
coefficient of 0.15 (calibrated 
value). Larger cohesion reduces 
the increasing rate of damage 
induced by the main cracks and 
postpones the initiation of wing 
cracks. When the cohesion is 
small (i.e., less than 8 MPa), the 
propagation of microcracks is 
less sensitive to cohesion
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Fig. 19   Stress–strain curves 
showing the influence of the 
confinement p, for a cohesion of 
4 MPa and a friction coefficient 
of 0.15 (calibrated value). 
Larger confinement enhances 
the strength of the specimen
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propagate faster in pre-damaged specimens (Fig. 23c). This 
is because main cracks are longer in the pre-damaged speci-
mens (Eqs. (10), (11), and (30)). In Stage 2, the propagation 
of wing cracks is dominated by the propagation of main 
cracks, and the difference of wing cracks radius between the 
pre-damaged and undeformed specimens decreases.

6 � Conclusion

Cyclic axial loading tests were performed under a confining 
pressure of 1 MPa on synthetic salt rock generated by ther-
mal consolidation. The stress–strain curves and the micro-
structure images taken at key stages of the cycles revealed 
the formation of a complex system of main and wing micro-
cracks, the orientation of which was loading dependent. 
We formulated a discrete wing crack elastoplastic damage 
(DWCPD) model to interpret the mechanisms that control 
the coupled evolution of crack families in salt rock under 
confined cyclic loading. The macroscopic stress–strain rela-
tionship is coupled to the evolution law of damage accumu-
lated by the main microcracks and associated wing cracks. 
Wing cracks propagate in Mode I due to shear stress that 
accumulates at the faces of main cracks. The expression of 
the REV Gibbs free energy is given as a function of the 

displacement jumps of the main cracks and of the wing 
cracks. A plastic potential, coupled to the damage induced 
by the microcracks, is introduced to account for the develop-
ment of irreversible strains. A frictional cohesive model is 
proposed for the main cracks, which propagate in both Mode 
I and Mode II. We calibrated the proposed model against the 
stress–strain curves of the cyclic loading–unloading cycles 
performed in the laboratory and showed that the DWCPD 
model can successfully capture the stiffness degradation, 
strength reduction and irreversible strain accumulation.

Sensitivity analyses indicate that rock strength 
decreases when the friction coefficient or the cohesion of 
the faces of the main cracks decreases, when the confin-
ing pressure decreases or when the specimen contains a 
greater volume fraction of cracks prior to loading. Larger 
inelastic deformation is observed for lower friction or 
lower confinement. With a larger cohesion, damage devel-
opment is delayed and exhibits a stick-slip evolution. In 
the example case treated in this paper, the initial cracks did 
not seem to influence the final irreversible strains accumu-
lated, because the initial cracks that had developed in tri-
axial extension had closed under the compression loading 
phase. Damage accumulated at a higher rate in specimens 
that were damaged prior to compression than in the ones 
that were not.

Fig. 20   Damage evolution 
curves showing the influence of 
the confinement p, for a cohe-
sion of 4 MPa and a friction 
coefficient of 0.15 (calibrated 
value). The increase of confine-
ment reduces the increasing rate 
of damage induced by both the 
main cracks and wing cracks. 
The propagation of wing cracks 
is more sensitive to the confine-
ment of the specimen than the 
propagation of main cracks
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Interestingly, the simulations showed that microc-
racks occur following two stages: (1) wing cracks initiate 
and main cracks do not propagate; (2) wing cracks and 
main cracks then propagate simultaneously. Higher fric-
tion at the crack faces leads to higher strength. At higher 

confinement, the initiation of wing cracks is delayed, 
which results in an increase of strength. Another important 
outcome of this research work is the demonstration that 
salt rock develops damage-induced anisotropy. This is an 
important finding, because the majority of the constitutive 

Fig. 21   Stress paths simulated to study the influence of pre-existing 
cracks. Compression stress is counted positive. The initial condition 
O is the isotropic compression (zero differential stress in the loading 
direction). OA represents the triaxial extension phase with a maxi-

mum tensile differential stress of 3 MPa. AB is the unloading phase. 
BC is the triaxial compression phase with a maximum axial strain of 
0.01. CD is the unloading phase

Fig. 22   Stress–strain curve: 
pre-damaged (deformed) vs. 
undeformed (non-pre-damaged) 
salt rock. The strength of the 
pre-damaged specimen is lower 
than that of the undeformed 
specimen
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models of salt rock used in geotechnical engineering and 
in the mining industry assume that microcrack propagation 
and healing lead to isotropic stiffness changes.
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