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ABSTRACT

Quadrotors can provide services such as infrastructure in-
spection and search-and-rescue, which require operating au-
tonomously in cluttered environments. Autonomy is typically
achieved with receding-horizon planning, where a short plan is
executed while a new one is computed, because sensors receive
limited information at any time. To ensure safety and prevent
robot loss, plans must be verified as collision free despite un-
certainty (e.g, tracking error). Existing spline-based planners
dilate obstacles uniformly to compensate for uncertainty, which
can be conservative. On the other hand, reachability-based plan-
ners can include trajectory-dependent uncertainty as a function
of the planned trajectory. This work applies Reachability-based
Trajectory Design (RTD) to plan quadrotor trajectories that are
safe despite trajectory-dependent tracking error. This is achieved
by using zonotopes in a novel way for online planning. Simula-
tions show aggressive flight up to 5 m/s with zero crashes in 500
cluttered, randomized environments.

1 Introduction

Autonomous unmanned aerial robots, such as quadrotors,
can replace humans for dangerous tasks such as infrastructure
inspection and search-and-rescue, which require navigating clut-
tered environments. These robots are maneuverable, but often
expensive and delicate. Therefore, verifying they can operate
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FIGURE 1: OVERVIEW OF THE PROPOSED METHOD.

safely (meaning, without collision) is important to enable them
to provide such services. Such verification is difficult because
state space models of aerial robots are typically nonlinear and
have at least 12 states [1]. In addition, these robots typically
perform receding-horizon planning, where they execute a short
trajectory while planning the next one, because the robot’s sen-
sor information is limited at any time. So, the robot must plan
trajectories that are verified as dynamically feasible and safe in
real time. This paper plans verified trajectories for quadrotor
by extending the existing Reachability-based Trajectory Design
(RTD) method.

In the literature, quadrotor trajectory planners typically gen-
erate time-varying polynomial splines in position [2], [3]. Such
splines have closed-form solutions for desired position, veloc-
ity, and higher derivatives, so they compute quickly [4], and one
can prove that they only lie within obstacle-free space [5]. Since
these splines are smooth, they can typically be tracked within
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0.1 m of tracking error at speeds up to 8 m/s [6]; so, spline-
based approaches typically treat tracking error implicitly, by di-
lating all obstacles by a fixed amount, which can be conservative.
These methods then rely on the quadrotor’s trajectory-tracking
low-level controller to ensure the quadrotor does not crash. Since
low-level controllers can compensate for aerodynamic and model
disturbances [6], [7], and large orientation deviations from a ref-
erence trajectory [1], [8], these approaches have been successful
at navigating unknown, cluttered environments.

However, it is unclear how these methods can be ex-
tended to incorporate trajectory-dependent uncertainty (such as
tracking error or aerodynamic disturbance) into online plan-
ning without dilating obstacles uniformly. On the other hand,
reachability-based methods address this issue by explicitly mod-
eling trajectory-dependent uncertainty. FasTrack, for example,
computes tracking error as a function of control inputs and gen-
erates a feedback controller to compensate for it, which has
been demonstrated on near-hover quadrotors [9], [10]. Zonotope
reachability can similarly compute tracking error, and has been
shown on helicopters and cars, but requires computing a reach-
able set at every planning iteration, which can be too slow for
real-time planning with high-dimensional system models [11],
[12]. Our prior work, called Reachability-based Trajectory De-
sign (RTD), uses a parameterized continuum of low-dimensional
trajectories, and computes a Forward Reachable Set (FRS) of
the trajectories plus tracking error offline with Sums-of-Squares
(SOS) programming. Online, it maps obstacles to the trajec-
tory parameter space via the FRS, then chooses a trajectory from
the remaining safe set [13]. However, RTD has been only been
shown for ground robots and low-dimensional models [14]-[16].

This work extends RTD using zonotope reachability to pro-
duce guaranteed-safe reference trajectories for a quadrotor de-
spite trajectory-dependent tracking error, as shown in Figure 1.
Points in the trajectory parameter space (on the left) correspond
to desired trajectories (the dashed blue line on the right). The
quadrotor, shown with its body-fixed coordinate frame, executes
the solid blue trajectory, which has tracking error that depends on
the desired trajectory. The FRS is intersected with obstacles (red
box on the right) to identify unsafe trajectories (red area on the
left). Then, the subset of the FRS for any safe trajectory param-
eter (blue tube on the right) will not intersect any obstacles. The
particular desired trajectory shown attempts to reach a waypoint
(gold star).

1.1 Contribution and Paper Organization

The contributions of this work are as follows. First, we ex-
tend the dynamic models used in RTD from 2D to 3D (Section
2). Second, we extend the FRS computation in RTD from SOS
programming to zonotope reachability, which lets us increase
the dimension of the FRS from 5 to 13 (Section 4). Third, we
use the zonotope FRS to plan in real time, without recomput-

ing the reachable set at every iteration, while adding trajectory-
dependent tracking error online (Section 5). We present simula-
tion results in Section 6 and concluding remarks in Section 7. A
video is available [17]. Note that, due to space constraints, some
proofs are omitted, but are available in a technical report [18].

1.2 Notation

We adopt the following notation. Variables, points, and
functions are lowercase; sets and matrices are uppercase. For
a point p, {p} denotes a set containing that point as its only
element. A multi-dimensional point or vector v with elements
vy and v is (vy,v2). Column vectors are in brackets in equa-
tions. Subscripts indicate a subspace or description; superscripts
in parentheses indicate an index. An n X n identity matrix is ,x,.
An m X p matrix of zeros is Opxp. An nXn matrix with diagonal
elements dy,d,,---d, is denoted diag(d;,ds, - - ,d,). The positive
real line is Ry = [0, +00). The power set of A is P(A). Set addi-
tionisA+B={a+b|acA,be B}. For a state x, its first (resp.
second) time derivative is x (resp. ¥). Euclidean space in n di-
mensions is R"”. The 3-dimensional special orthogonal group is
SO(3), with Lie algebra so(3).

Definition 1. A box is a set B(c,l,w,h) C R3 defined by a center
ceR3 and length, width, and height l,w,h,e R,. We write:

l]x w W]x[ h h]’ 0

Ble.bwh ={+ =33 X[=33[¥|"23

where [-,-] is an interval on each axis 0fR3. A cube is a box with
all sides of equal length |, denoted B(c,l).

2 Dynamic Models

This section first specifies timing requirements for planning,
and defines a fail-safe maneuver. Next, it introduces the high-
fidelity and trajectory-producing models used to apply RTD to a
quadrotor. Finally, it describes the robot’s body.

RTD performs receding-horizon planning. In each planning
iteration, RTD first uses a high-fidelity model to estimate the
robot’s future position while it executes the current plan. Then,
RTD attempts to generate a new, safe plan starting from the fu-
ture position estimate. Planning with the high-fidelity model
in real time is typically prohibitively computationally intensive,
so RTD instead uses a lower-dimensional trajectory-producing
model to generate a desired trajectory (also called a plan).

To guarantee real-time operation, the robot must enforce a
timeout on its online planning. If a new plan cannot be found
within this timeout, then the robot executes its previous plan. To
guarantee safe operation, RTD also requires that each desired
trajectory incorporate a fail-safe maneuver that brings the robot
to a safe state. Then, if the robot cannot plan a new trajectory
while executing the previous one, it can execute the remainder
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of its previous plan to come to a safe state. We formalize these
requirements as follows.

Definition 2. At each planning iteration, the robot has a plan-
ning time of tplan > 0 in which to find a new, safe plan. If no such
plan is found, the robot is required to execute a collision-free
fail-safe maneuver that brings it to a stationary hover.

This fail-safe maneuver is reasonable because the quadrotor can
land vertically from a hover.

2.1 High-fidelity Model

We denote the high-fidelity model as fni : T XS X U — R"™i,
The planning time horizon is T = [ty, tf]. Without loss of general-
ity (WLOG), since we use receding-horizon planning, we let ty =
0 at the beginning of each planning iteration, so each planned tra-
jectory is of duration #. The state space is S = X X VxQxSO(3)
with state s = (x,v,w,R), where x € X C R3 is position in the iner-
tial frame; ve V c R3 is velocity; w e Q C R3is angular velocity;
and R € SO(3) is attitude. The inertial frame X is spanned by unit
vectors denoted e, ep, and e3 with e3 pointing “up” relative to
the ground, so Res is the net thrust direction of the quadrotor’s
body-fixed frame. We write the dynamics as per [1]:

x=v
Vv = TRe3z —mges
u'):J_l(y—a)XJa))
R =R,

(@)

where *: R? — s0(3) is the hat map that maps a 3D vector to a
skew-symmetric matrix [1]. The constant g = 9.81 m/s” is ac-
celeration due to gravity. The quadrotor’s mass is m € R, and its
moment of inertia matrix is J € R>. We assume J is diagonal
and constant, and write J = diag(j, j»2, j3). The control input is
u=(t,u) € UCR* where 7 € R is net thrust and u € R? is the
body moment; these inputs are related to rotor speeds as:

2
kT k‘r k‘r k‘r wrot, 1

| | 0 kil O —kel||wpy, 3)
1) "kt 0 ket 0 |02 |

ky —ky k, —k, wfm, .
where k. and k,, are rotor parameters, £ is the length from quadro-
tor center of mass to each rotor center, and wy; is the speed of
the i rotor [1], [19].

Assumption 3. We assume commanded inputs can be achieved
instantaneously (i.e., the rotor dynamics are fast compared to
(2)), but that rotor speed is bounded (i.e., the inputs can saturate)
[1], [2], [4]. We also assume that the quadrotor has a maximum
speed viax > 0 in any direction.

We pick vimax = 5 m/s, since aerodynamic drag can be compen-

sated by rotor thrust up to 6 m/s [6], [20]. Note we are not
concerned with model mismatch between the high-fidelity model
and a real quadrotor. However, RTD has been shown to handle
model mismatch [14]. We implement (2) with the specifications
of an AscTec Hummingbird [21], [22] (see Table 1).

2.2 Trajectory-Producing Model

We use a trajectory-producing model that generates desired
position trajectories as polynomials in time, separately in each
coordinate of X. Our approach is based on [4], but each trajectory
has two piecewise polynomial segments, to include the fail-safe
maneuver as in Definition 2. We first present a 1D model, then
extend it to 3D. Model parameters are in Table 1.

Consider a 1D, twice-differentiable, desired position trajec-
tory pges : T — R, with dynamics fip : T X Kip — R:

c1(t,K) 3
LA
6

o (t,k
L)t2+/<at+l<v, )

Pdes(t;4) = fip(f, k) =
where the notation pges(#;«) indicates the trajectory parameter-
ized by k. We call « = (k, K4, kpk) € K1p C R3a trajectory param-
eter. In particular, x; = pges(0) is the initial desired acceleration,
Ky = Pdes(0) is the initial desired speed, and kp is a desired peak
speed to be achieved at a time #pk € [#p1an, ff]. The values of c1,c2
are given by [4, (64)] as

[cl(t, K):| 1 [ -12  6¢3(0) HAV(I, K) 5)
ea(t.6)| T (e3(0)3 |6¢3(1) —2(c3(0)? || Au(t,0) |
C3(t) _ [pk te [O,tpk) (6)

tr—tpk 1€ [fpk, Iel,

A(tk) = Kpk —Ky —Kglpk T € [0, tpk) %
—ka re [tpk’ tf]’

ke 1E10,85)
Balt:K) = {0 1 € [tk 1. ®

One can think of this as a time-switched model. These dynamics
produce a desired position trajectory that begins at the speed «,
with acceleration «, at t = 0. The trajectory accelerates to a speed
of kpk at t = tyk, at which point the desired acceleration is 0; the
trajectory then slows down to desired speed and acceleration of
0 at ¢ = tr (this is the fail-safe maneuver). Notice that c3, A,,
and A, are piecewise constant in ¢, with a jump discontinuity
at fpk. Therefore, ¢ and c¢; are piecewise constant in ¢, which
makes (4) a piecewise polynomial in time. By construction, (4)
and its derivative (acceleration) are continuous functions of time.
Note, a desired position trajectory can be translated arbitrarily,
so we assume WLOG pges(0) = 0. Then, any desired position
trajectory given by (4) is uniquely determined by « for all 7 €
T. Note that ky,k,, and pk lie in compact intervals [«; K

[«;,«}], and [K;)k,K;k], so K|p is the Cartesian product of these
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three intervals.

We now make a 3D trajectory producing model by using the
dynamics (4) for each dimension, and creating a larger parameter
space K = Kip X K1p X Kip C R?. For a trajectory xges : T — X,
we denote the dynamics as f: T x K — R3, so

Sfip(t, k1)
xdes(t;k)=xdes(0)+ff(l,k)dt, ft.k)=|fin(t.k2)|, (9
T fin(t,k3)

with trajectory parameter k = (k1,k2,k3) € K, where each «; =
(Kv,i»Ka,isKpk,i) 18 the peak speed, initial speed, and initial acceler-
ation in dimension i = 1,2,3. As in the 1D case, WLOG we let
Xdes(0) = 0. For notational purposes, let kyx = (Kpk,1,Kpk,2,Kpk,3)
and similarly for &, and k,. Then k = (k,, k4, kpk) by reordering,
and we denote K = K, X K, X Kpk.

By construction, (9) includes the fail-safe maneuver speci-
fied by Definition 2, and specifies what a plan is: at each planning
iteration, the robot attempts to pick a new k € K that specifies a
new desired trajectory xqes to begin at #,1a. We bound which k
can be chosen at each planning iteration. First, per Assumption
3, speed is bounded: ||kpk||2 < Vmax. Second, since kpy is a desired

velocity and k, is the initial velocity, the quantity i “kpk —k,,||2
p!

determines an approximate desired acceleration, leading to the

following definition.

Definition 4. The maximum desired acceleration is amgx > 0. We
enforce a constraint at runtime that % ||kpk - kVH2 < Amax-
P

Note that acceleration due to gravity is not included in the
trajectory-producing model. However, gravity is accounted for
by the low-level controller we specify in Section 3.

2.3 The Robot as a Rigid Body

The high-fidelity model (2) and trajectory-producing model
(9) only express the dynamics of the robot’s center of mass.
Howeyver, for obstacle avoidance, one must consider the robot’s
entire body [12], [14]. We do so as follows.

Assumption 5. The robot is a rigid body that lies within a cube
Bqgr = B(x(1),w) C X (centered at the robot’s center of mass
(COM) at any time with side length w). We assume the box does
not rotate, so it is large enough to contain the robot’s body at any
orientation. We call this box the body of the robot.

Though this is a conservative assumption, we find in Section
4 that it simplifies the computation of a reachable set for the
robot’s entire body, because we can first compute a reachable set
of the robot’s COM, then dilate the reachable set by Bqr. Our
quadrotor has dimensions of 0.54 x 0.54 x 0.0855 m> [21], [22],
so w = 0.54 m. Note that £ = w/2 is the distance from the COM
to the center of each rotor.

TABLE 1: IMPLEMENTATION PARAMETERS.

Robot [21], [22] Control [2] Desired Traj. [4]
Param. Value Param. Value Param. Value
m 0.547 kg G, 2.001353 folan 0.75s
jisj2 0.0033 kgm? G, 0.50/3x3 fok s
J3 0.0058 kgm? Gr 1.0053x3 f 3s
ke 1.5E-7 mﬁqz G 0.035353 KE 5m/s
Ky 3.75E-9 g‘;; Vinax 5m/s K 10 mys?
4 0.27 m Amax 3 m/s? K;k 5m/s
Wrot 1100-8600 rpm dsense 12m

3 Tracking Error

This section describes the low-level controller used to track
desired trajectories, then defines tracking error as a set-valued,
trajectory-dependent tracking error function g. The purpose of
g 1is to include tracking error explicitly in the quadrotor’s FRS
(computed in Section 4) for online planning (Section 5).

Given any k € K, the quadrotor uses a feedback controller
ur : T xS — U to track the trajectory parameterized by K. For
short, we say that uy tracks k. This feedback controller can take
any form, such as PID, LQR, or MPC; in this work, we use the
PD controller specified in [2, Section IV]. Recall that the quadro-
tor has states s = (x,v,w,R). Consider a twice-differentiable de-
sired position trajectory xges : 7 — R as in (9). Using the notation
in [2], we specify a desired yaw ¥ (¢) = 0. Then, u(¢) is uniquely
determined by the current state s(f), and the desired trajectory
Xdes(?) and its derivatives, by leveraging differential flatness of
the model (2) [2], [6]. At any time ¢, the state error used for
feedback is

ex(1) = x(1) = Xdes (1)
ey(t) = V(1) = Xges (1)

1
er(1) = 5 (Raes() RO~ RO Raes(1))

ew(t) = W(t) — Wyes(1),

(10)

where (-)V : s0(3) — R3 is the vee map that maps a skew-
symmetric matrix to a 3D vector [1]. The desired control input
ug(t, (1)) = (v(1), u(1)) is given by

() = “_Gxex(t) —Gyey(t) + mges + mxdes(t)nz
() = —Guen(t) — Gre(1)

where Rges is found as in [2, Section IV] and wges is found as
in [2, Section III]. In simulation, T and u are converted to rotor
speeds and saturated using (3). The feedback gains and rotor
speed saturation parameters are reported in Table 1.

Using the controller in (11), the quadrotor described by (2)
cannot perfectly track trajectories produced by (9). We call the

an

Copyright © 2019 ASME

120z Aenuer gz uo sasn ueBiyol Jo Ausianiun Aq ypd-y1.26-610299SP-010E6LIE00A/L5955+9/010V6 L LEOOA/Z9L6S/610200Sa/APd-sBuipeaccid/00sa/bi0 awse uonos||ooeybipawse//:diy woly papeojumoq



position error term e, from (10) the tracking error. As shown in
the literature, RTD can bound tracking error and incorporate it
into a robot’s FRS, which can then be used to plan safe trajecto-
ries [14], [15]. Doing so requires the following assumption.

Assumption 6. The sets T,S, and K are compact. The high-
fidelity model (2) is Lipschitz continuous in t, s, and u.

Also notice that the desired position trajectory produced by (9)
is Lipschitz continuous in ¢ and k because it is a piecewise poly-
nomial on a compact domain. Let projy : § — X project points
from S to X via the identity relation. Now, we treat the tracking
error as follows.

Assumption 7. Suppose sy € S is an initial condition for (2)
such that projy(so) =0. Let s : T — S be a trajectory of (2) be-
ginning from sy. Lett € T, and let k € K be arbitrary but obeying
Definition 4. Let x4es : T — X be a trajectory of (9) and recall
Xdes(0) = 0 WLOG. We assume there exists a set-valued tracking
error function g : T x K — P(R?) for which

projx(s(t; 50,k)) € {xdes(1;K)} + g(2, k). (12)

We assume every g(t,k) is compact.

Note that g(, k) being compact is reasonable since K is compact
and the dynamics (2) are continuous, so the quadrotor cannot
diverge infinitely far from any desired trajectory. By Assump-
tion 7, we can dilate any desired trajectory with g to check if the
high-fidelity model can collide with obstacles in X. Computing
g is difficult for nonlinear systems such as (2) with more than 6
dimensions [9], [14]. We approximate g via sampling [18].

4 Reachability Analysis

To produce safe trajectory plans, RTD first performs an of-
fline FRS computation, then uses the FRS for online planning.
This section explains the offline FRS computation. Given the
time horizon T, we define the exact FRS F ¢ X X K as all points
in X that are reachable by the trajectory-producing model (9) plus
tracking error:

F={xk)eXxK |reT st xe (X0} +g(t.k) 5
and X(1.k) = £(1.k)}. )

Prior work on RTD used SOS programming to compute the FRS
[13]-[16]. In this work, we instead use zonotope reachability
via the CORA toolbox [23] for FRS computation, because we
found it performs well for the 13D trajectory-producing model
(9). This section describes how to use CORA to find a com-
puted FRS F that conservatively approximates the FRS of the

trajectory-producing model (9) [24]:

Fol(nkeXxK |3reT st x(r) = (1) (14)
and X(1,k) = £(1,k)}. (15)

Then, per Assumption 7, if the tracking error function g is
added to the computed FRS F, one can conservatively over-
approximate the exact FRS F in (13). Conservatism of the com-
puted FRS is necessary to ensure safety; if no trajectories of the
computed FRS plus tracking error hit an obstacle, then no trajec-
tories of the exact FRS can hit that obstacle. Further, since the
desired trajectories are only for the center of mass of the robot,
we add the size of the robot’s body Bgr to F as well. In this
section, we compute F. We add g and Bgr in Section 5.

CORA represents sets using zonotopes. A zonotope Z is a
polytope in R” that is closed under linear maps and Minkowski
sums [23], and is parameterized by its center ¢ € R” and genera-
tors g1, ...g(” e R". A zonotope describes the set of points that
can be written as the center ¢ plus a linear combination of the
generators, where the coefficient 8 on each generator must be
between —1 and 1:

P
Z= {y eR"|y=c+y pV", —1<p7 < 1} (16)
i=1
For convenience, we concatenate the generators into an nX p gen-

erator matrix G, and the coefficients into a coefficient vector f3:

G=[g",8,...e"| and p=[g".p2,--- VI (7
We can then rewrite (16) as
Z={yeR"|y=c+GB, -1 <B<1}, (18)

where > and < are applied elementwise. From here on, for
brevity we will assume that 8 € [-1, 1], and will write the con-
straints explicitly when this is not true.

Boxes can be exactly represented as zonotopes:

B(c,l,w,h):{yeR3 [ y=c+diag(£,g,ﬁ)ﬁ} (19)
2°2°2

where c, [, w, and h refer to the center, length, width, and height

(Definition 1). From here on, boxes and their zonotope represen-

tations are used interchangeably. We define addition of a zono-

tope Z C R? x R” with a box B c R? as follows:

Z+B=Z+{yeR3><R" ly= [Oylﬂ ],yBeB}. (20)
Xn

This is useful, e.g., when a zonotope is defined over the position
and parameter spaces, but we want to add a box defined only in
position space (note, this assumes WLOG that the first three rows
of the zonotope Z’s center ¢ and generator matrix G correspond
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to the quadrotor’s position coordinates).

4.1 Implementation

Since the 3D trajectory-producing model uses the same 1D
dynamics (4) separately in each dimension, we begin by com-
puting the FRS for the 1D trajectory-producing model. Then, we
combine three 1D FRSes to create a single 3D FRS.

Recall that the 1D trajectory-producing model’s position
Pdes(t,k) depends only on time and the trajectory parameter
K = (Ky,Ka, Kpk) € K1p C R3. Therefore, we want to compute the
set of all positions that can be reached given a time interval T
and parameter set Kip.

CORA represents the FRS as a zonotope at each of a finite
collection of compact time steps that are intervals in 7. With
a minor abuse of notation, we let ¢ act as an index, so that ZYI))
denotes the zonotope describing the 1D FRS over the time step
containing ¢. Note that each Z{I)) is a subset of the 1D position

space X; (where i = 1,2,3) and parameters K|p: Zig C X;xKip.
CORA works by first linearizing the system dynamics at the be-

ginning of each time step about the center of ZYI)), and obtain-

ing the zonotope for the next time step by multiplying ZE’])) by
an over-approximation of the matrix exponential over that time
step. CORA also accounts for linearization error; since the tra-
jectory producing quadrotor model (4) does not depend on state,
this error remains small in practice. The 1D computed FRS
Fip CX;xKip, i =1,2,3, is the union of the zonotopes defined
at each time step: Fip = U,cr ZY])).

CORA requires specifying an initial set and dynamics to
compute the FRS. We treat x € K as states, and define the initial
set Zi(g as:

Zyp = {y € R* |y = 04y +diag(0,67,k5,65)8),  @1)
where the first dimension is position, so initial position pges(0)
is at the origin WLOG. The dynamics given to CORA are pges
as in (4), and Kpk» Ky Kg =0 (since parameters are constant over a
trajectory).

As described in (9), 3D trajectories of the trajectory-
producing model can be constructed by concatenating 1D tra-
jectories. A similar process is followed to construct the 3D FRS

F by concatenating 1D FRSes F|p. Specifically, given ZY])) with

(1) (t)

(GIPP
D 1n» We construct 7\ as:

center ¢, and generator matrix G

CEI)? G(ll])) O4><p 04><p
AL yER12 |y= A+ O4xp G(ltl)) O4xp B, (22)

iy

t
cipl  104xp Oaxp Gy

where p is the number of generators in the matrix G(ll])). The
3DFRS F C X x K, x K; % Ky of the quadrotor’s COM position
and control parameters is then the union of Z) through time:
F = ,er Z9. Notice that F represents a continuum of initial

conditions of (9) since it is defined over K, and K,. Next, we
discuss how to use F and the tracking error function g for online
planning.

5 Online Planning

RTD plans trajectories online by intersecting the FRS F with
obstacles to identify safe desired trajectories, then optimizes over
this set to fulfill an arbitrary cost function (e.g., minimize dis-
tance to a waypoint, desired acceleration, power usage) [13]-
[16]. Past implementations of RTD used polynomial superlevel
sets to represent the FRS, and were required to incorporate track-
ing error in the offline computation, so the intersection of the
FRS with obstacles implicitly accounted for tracking error. In
contrast, this section details how to add tracking error to the FRS
online. We also discuss obstacle representation, and the opti-
mization program solved at each receding horizon iteration.

5.1 The Online Planning Algorithm

RTD plans trajectories in a receding horizon way by running
Algorithm 1 at each planning iteration. At the beginning of each
planning iteration, at time ¢ = 0 WLOG, the parameters k, and
k, are set as the estimated velocity and acceleration of the high-
fidelity model (2):

ky, =v(0), ks =T1(0)R(0)e3 —mges. (23)

These are found by forwarding-integrating the model given the
previous plan for a duration of #pjap.

For this discussion, suppose we have g as in Assumption 7.
The tracking error associated with the initial condition is added
to F to make it a conservative approximation of the exact FRS.
RTD attempts to find a safe trajectory by optimizing over the set
of safe parameters. These safe trajectory parameters are found
by taking the complement of the intersection of the FRS F with
the sensed obstacles. A limited amount of time fpa, is speci-
fied within which RTD attempts to choose the trajectory to be
followed in the next iteration. If no trajectory is found in time,
the quadrotor continues executing its previous trajectory, which
brings it to a stationary hover as per (4). A single iteration of the
online planning algorithm is summarized in Algorithm 1. Each
step of the algorithm is explained in this section.

In this work, we represent obstacles as boxes in 3D:

Definition 8. An obstacle O C X is a box as in Definition 1, with
center ¢ € X, and length, width, and height [, w,h € R,. Obstacles
are static with respect to time.

This is not a restrictive definition, since obstacles are typically
represented as occupancy grids composed of boxes [5]. When
moving through the world, we assume that a quadrotor has a lim-
ited range over which it can sense obstacles. We refer to this as
the quadrotor’s sensor horizon dsense-
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Algorithm 1 A Single Planning Iteration (Online)

1: Require: g as in Assum. 7, F asin (15), dsense as in Assumption 9,
50 as in (2), and cost function J : K — R, previous plan xprey : T — S,
ky,kg asin (23),A <0, b« 0

: O « SenseObstacles (xg,dsense)

: F. « AddTrackingError (F" , g,kv) // error-augmented FRS

: For: Zg) € F, J/ for each zonotope in error-aug. FRS slice

For: 0@ eo

K;{’g « IntersectObsWithFRS (ZSZT, 0(1))

EANRANE -~

>

(A(”-i),b(”-f)) — GenerateConstraints(K;’léjz)

: Concatenate (A,b) — [A;A"D], [b; b))

9: End

10: End

11: Xdes < OptimizeTrajectory(J,A,b,kv,ka,tplan,xprev)
12: Return xgeg

Assumption 9. At any time t, an obstacle is considered to be
sensed if any point Xops Of the obstacle O is within the sensor
horizon from the quadrotor’s COM position x:

[12(f) = Xobsll2 < dsense ¥ Xobs € O. (24)

Note, to ensure safety, the sensor horizon dgense must be larger
than the distance traveled by the longest desired trajectory plus
Vmax times fpjan [13, Theorem 35].

Let OY c X denote the jth sensed obstacle, whose position
is given relative the quadrotor’s current position, and ns be the
number of obstacles within the quadrotor’s sensor horizon. Fi-
nally, let X,ps C X represent the union of all sensed obstacles:
Xobs = Ujen@» o).

After sensing obstacles, tracking error must be included in
the FRS to identify safe trajectories of the high fidelity model.
Recall g is as in Assumption 7. For any ¢, k, we first overapprox-
imate the tracking error g(,k) by a box. Let box(:) : P(R?) —
P(R3) overapproximate a bounded set of 3D positions with a
box. We add a tracking error box to each zonotope Z*) com-
prising the FRS F to obtain the error-augmented FRS F.. We
also add the box Bqr representing the quadrotor’s body:

7 = 70 4 box(g(t,k)) + Bor (25

Fo=| |z (26)
teT

Now, we identify unsafe trajectories. Recall that &, and k&,
are specified by the quadrotor’s state at the beginning of each
planning iteration, so online planning is performed over the peak
speeds K. We intersect obstacles O with the error-augmented
FRS F¢ to identify the unsafe set Kpxy C Kpk that could cause a
collision with an obstacle. A peak speed kpy is unsafe if the po-
sition dimensions of F¢ associated with kpy intersect an obstacle.
Here, we detail how obstacles are intersected with F

Notice that Fe € X X K, X K, X Ky is defined over a contin-
uum of positions and parameters. Recall that X, represents all
sensed obstacle positions, and k, and k, are set as the initial ve-
locity and acceleration of the quadrotor in the current planning
step. We obtain the unsafe subset F, by intersecting F. with the
obstacles and initial condition:

Fu =Fe ﬂXObsx{kv}X{ku}XKPk 27

The set of unsafe trajectory parameters Kpy , is the projection of
Fy onto the K subspace: Kpku = proj ka(Fu), where proj K -
P(X x K) — P(Kpk) projects sets via the identity relation.

The final step in online planning is trajectory optimization.
Let J: K — R be an arbitrary cost function. Recall that, by As-
sumption 3, the quadrotor has a max speed; and, by Definition
4, a maximum acceleration. These become the following con-
straints on kp:

) _
K — kS

n

(1)
<
2_amax and ”kpk

fok 2 < Vmax- (28)

Then, online, we find

k;k = argminkpk {J (k) | kpk ¢ Kpi,u and feas. to (28)}, 29)
where k = (ky, kq, kpk). Suppose that adding tracking error to the
FRS, intersecting the FRS with obstacles, and solving (29) all
complete executing within #pj,,. Then, we return a desired tra-
jectory xges as in (9) parameterized by (kv,ka,k;k). Otherwise,
we continue executing the previously-found trajectory (which in-
cludes a fail-safe maneuver).
Now, we formalize that Algorithm 1 is safe.

Theorem 10. Suppose the quadrotor is described by (2) as in
Assumption 3. Suppose g : T x K — P(R) is as in Assumption 7.
Suppose the FRS F is found as in (15). Suppose WLOG t = 0 and
that the quadrotor is initially safe in a stationary hover. Then, if
the quadrotor plans in a receding-horizon way using Algorithm
1, it is safe for all time.

Proof. This theorem follows from the conservative definitions
of F and g, and from the fact that any planned trajectory con-
tains a fail-safe maneuver. In other words, by construction, the
quadrotor always either executes a safe trajectory, or maintains a
stationary hover. ]

Theorem 10 is stated briefly to summarize how RTD either con-
structs safe plans or commands the robot to execute a fail-safe
maneuver, by relying on conservatism. For a more detailed treat-
ment, see [14, Remark 70].

5.2 Implementation
We implement Algorithm 1 as follows. Note that the proofs
of the lemmas and theorems in this section are available in the
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extended technical report [18].

Obstacles (as in Definition 8 and Assumption 9) are given
by SenseObstacles (Line 2). For our choice of viax, fpk, and
(see Table 1), we find that dgense = 12 m is sufficient [13, Theorem
35]. To add tracking error to the FRS recall that we approximate
g with sampling Section 3. We implement AddTrackingError
(Line 3) using (25) as written, with g approximated by sampling.

The intersection in (27) to obtain F, is implemented as
IntersectObsWithFRS (Line 6) by intersecting each zonotope
Zg) comprising F, with each obstacle O, We find that for the
quadrotor model and obstacle representations we have chosen,
the intersection in (27) can be computed exactly. This requires
the use of the following lemma regarding the structure of Zg).

Lemma 11. The zonotope Zg) can be written as

C(é)l G(:l O4x4 O4x4
70 =1y er?|y=|c)|+|0us G} Osa|Bp  (30)

C(Et)3 0454 Osxa Ggé
where ¢ and G take the form
€,l €,l

(1)

Cx Yxyv Yxa Vxpk €

o _|¢v o_|lyw 0 0 0
Cei T, | Y=l Ya 0 O 3D

Cpk 0 0 »mk O

where each ¢,y € R, vy,Ya,Ypk are nonzero, el.(t) €ER, and i =
1,2,3.

Proof. See the technical report [18]. |

Next, we describe how to find the unsafe set of control pa-
rameters K;tk’i given a zonotope Z\”, obstacle O, and initial
velocity and acceleration k, and k,. Let projy, : P(x) — P(X;)
project sets from X into the i position dimension via the iden-
tity relation.

Theorem 12. Given OV, let [x ,x*, ] = proj X,«(O(j)) be the in-

terval that is the projection of the obstacle onto the i position
dimension. Given time t and obstacle OV, the set of unsafe con-
trol parameters in the i dimension K[()tlélii that could cause a
collision with that obstacle at that time is given by

. [YokBmn o B2 if B < 1 and 8%, > -1
K(t’/). — { PKMpk Plepk ﬂp Bpk (32)

0, otherwise,

where
_ 1 _ Kyi—Cy Kai—C
ﬁPk = (xobs_éfr)_cx_‘yx,v = " —Yxa i a)’ (33)
Y x,pk Y a
1 Ky,i—Cy Kai—C
ﬁ;k:_(x;bs-'_ezm_cx_yx,v = : ~Yxa e a)’ (34
Y x,pk v a
and
ﬁg;jn = min(By,—1), B~ = max(By, D). (35)
The set of unsafe control parameters is then the box
(t.)) _ 7At.)) (t.J) (t.))
Koon = Kot X Kogun X Kok (36)
Proof. See the technical report [18]. [ |

The set of unsafe trajectory parameters Ky , is then given by the
union of each time and each obstacle’s unsafe parameters:

K 37)

ka,u = pku’

teT, jen o
The function GenerateConstraints (Line 7) represents
each unsafe set KI(,II;JJ as constraints for trajectory optimization.

Recall that each K}(fk"’z C Kpk as in (36) is a 3-dimensional interval,
which can therefore be ;epresented as abox. Let c = (c1,¢3,¢3) €
R3 be the center of Kéﬁ;’g, and I,w,h € R be the length, width and

height of KI()L/L)] We now discuss how to generate constraints to

check whether kpi € Kpi is contained in K;’kji

Theorem 13. Given ky € Ky, we can check if it is in K D) \pith:
pk,u

min(A“Vkpi+b"0) < 0 = ke & KD (38)

where the min is taken over the elements of its argument, and
A®D and b)) are:

/

1 00 —c1+35
-10 0 ci+4
; 010 ; —cr+ %
) — () — )
A =lo cro P ey (39
00 1 —c3+4
0 0 -1 c3+§
Proof. See the technical report [18]. [ |

Each A®) and b9 are concatenated (Concatenate, Line
8) into a single A and b, so that the constraints for all obstacles
can be efficiently checked with matrix operations.

The final step in online planning is trajectory optimization
(Line 11), wherein we solve (29). This requires optimizing over
Ky, which is 3D, so OptimizeTrajectory uses brute force
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FIGURE 2: EXAMPLE TRAJECTORY PLAN.

sampling. It generates a ball of approximately 10,000 samples
in Ky, and evaluates the constraints (38) and (28) on the sam-
ples (this takes 50—-150 ms). It eliminates all infeasible samples,
then evaluates an arbitrary cost function J : K,x — R on the re-
maining samples. The sampled point with the lowest cost is de-
noted k;k, which defines a new safe trajectory xges given by (9)
with k = (kv,ka,k;k). If no feasible k;k can be found within fpjan,
the quadrotor continues executing the previous trajectory, which
ends in a stationary hover.

6 Results

All simulations, along with the tracking error and zonotope
reachability computations, are performed in MATLAB. We sim-
ulate an AscTec Hummingbird quadrotor [21] at up to 5 m/s. The
system parameters are given in Table 1. A video is available [17].

We simulated 500 cluttered worlds with 120 random obsta-
cles each. Each world is 80 x 20 x 10 m, with a random start
location at one end and random goal at the other. Note that the
simulation environment performs collision checking of the body
of the quadrotor with obstacles separately from how we generate
and enforce constraints in Algorithm 1. At each planning itera-
tion, the quadrotor senses obstacles within a 12 m sensor horizon
as in Assumption 9, along with the world boundaries as obsta-
cles. The quadrotor is given fpjan $ to run Algorithm 1 at each
iteration, meaning we enforce real time planning.

We ran two different implementations of Algorithm 1: one
with a constant tracking error of 0.1 m, and one with trajectory-
dependent tracking error computed as in Section 3. The distance
0.1 m is the maximum tracking error found in any direction from
sampling tracking error to approximate g. The cost function used
at each planning iteration is to minimize the distance between
the quadrotor and a waypoint at the time fpk; the waypoint is
placed 5 m ahead of the quadrotor along a straight line between
the robot and the global goal. Note that this choice of waypoint
is deliberate to force the quadrotor into situations where it has to
execute a fail-safe maneuver.

An example planning iteration is shown in Figures 2 and
3 with a trajectory (dark blue) planned and executed with RTD.

Obstacles are in light red and the ground is brown. The global de-
sired goal is a green sphere. The tube of light blue boxes, which
does not intersect any obstacles, is the subset of the zonotope
FRS for the current plan plus tracking error, so the quadrotor (in
dark blue) is guaranteed to fly within the tube.

The quadrotor never crashed. With constant tracking error
of 0.1 m, it reached the goal in 84.8% of trials. With trajectory-
dependent tracking error, it reached the goal in 91.2 % of trials.
Note, we did not expect 100% of goals reached, since the trials
used randomly-generated obstacles and thus may have no feasi-
ble path from start to goal. This result confirms that including
trajectory-dependent tracking error reduces conservatism.

7 Conclusion

We propose Reachability-based Trajectory Design (RTD) as
a method for enabling autonomous quadrotors to plan aggres-
sive, safe trajectories in unforeseen, cluttered environments. This
work extends RTD to a 13D system with zonotope reachability
and introduces a novel method to use zonotopes for safe plan-
ning online. The proposed method was tested in 500 simulations
in random cluttered environments at speeds up to 5 m/s, with zero
crashes. In future work, we will implement RTD on hardware,
and explore more types of trajectory-dependent uncertainty.
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