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a b s t r a c t 

Mechanical healing is the process by which a damaged material recovers mechanical stiffness and 

strength. Pressure solution is a very effective healing mechanism, common in crystalline media. Chemi- 

cal reactions initiate at the location of microstructure defects, which would be very difficult to account 

for in a homogenization scheme that separates the solid and the pore phases, as is classically the case. 

Here, we propose a novel chemo-mechanical homogenization model in which the inclusion is not a grain, 

but rather, a space that contains a pore and discontinuities, where chemical processes take place. Mass 

and energy balance equations are rigorously established to predict the chemical eigenstrain of each in- 

clusion, which, added to the elastic deformation, provides the microstrain of each inclusion. From there, 

Hill’s inclusion-matrix interaction law is used to upscale strains and stresses at the scale of a Repre- 

sentative Elementary Volume (REV). The model was calibrated against experimental results published in 

the literature for salt rock. Subsequent sensitivity analyses show that in samples with same porosity but 

with inclusions that have different initial void sizes, inclusions with larger voids have a negligible healing 

rate and they are slowing down the overall healing rate of the REV. The highest healing rate is reached 

in samples with uniformly distributed void sizes. In addition, the healing rate increases with the initial 

porosity, but the final porosity change does not depend on the initial porosity of the sample. Principal 

stresses of higher magnitude are noted in the inclusions that are part of REVs of high initial porosity. In 

specimens with smaller inclusions (i.e., smaller grains), principal stresses are more widely distributed in 

magnitude and the healing rate is higher. The proposed homogenization method paves the way to many 

future developments for upscaling chemo-mechanical processes in heterogeneous media, and can be used 

to design self-healing materials. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Self-healing materials gained interest in recent years, due to

their long term performance ( Gardner et al., 2014; Zhu and Arson,

2015; Davies and Jefferson, 2017 ). Healing, the process by which

a damaged material recovers mechanical stiffness and strength,

can be due to different mechanisms. Voyiadjis et al. (2011) dis-

tinguished active systems, which are coupled with damage mech-

anisms ( Barbero et al., 2005; White et al., 2001 ) and passive

systems, which are triggered by external stimulations ( Li and

Uppu, 2010 ). Thermodynamics principles were applied to establish

self-healing models for crushed salt rock ( Miao et al., 1995 ), ther-

moset polymers ( Mergheim and Steinmann, 2013 ) and shape mem-

ory polymers ( Voyiadjis et al., 2012 ). A micro-damage fatigue and
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ealing model was also proposed for asphalt mixes; the formula-

ion is based on coupled nonlinear viscoelastic, viscoplastic, and

iscodamage constitutive equations ( Al-Rub et al., 2010 ). 

Pressure solution is a very effective healing mechanism, com-

on in crystalline media: dissolution occurs at the grain-to-grain

ontacts that are under high stress, ions are transported by diffu-

ion in fluid films at grain boundaries, and re-precipitate at grain-

o-grain contacts that are under low stress. Diffusion can happen

ithin the lattice of crystals, e.g. Nabarro–Herring creep, or along

he grain boundaries, e.g. Coble creep ( Wheeler, 2010; McCLAY,

977 ). The presence of inter-granular brine enhances pressure solu-

ion and accelerates creep and healing rates ( Paterson, 1973; Rutter

nd Elliott, 1976; Raj, 1982; Rutter, 1983; Lehner, 1995 ). In damp

alite (salt rock), pressure solution is the dominating creep mech-

nism for temperatures below 350 °C, as shown in Fig. 1 . Crys-

al slip plasticity and grain boundary sliding are two other im-

ortant densification mechanisms in salt, observed under uniax-

al loading ( Holcomb and Zeuch, 1990; Bourcier et al., 2013 ). The

https://doi.org/10.1016/j.ijsolstr.2018.11.010
http://www.ScienceDirect.com
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Fig. 1. Deformation map of damp halite. LT, low temperature; HT, high tempera- 

ture; N-H, Nabarro-Hering. Adapted from Urai et al. (1986) . 
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ensification rate is largely influenced by crystallographic orienta-

ions, crystal boundary orientations, density, temperature and the

oading history. In addition, when salt aggregates are saturated and

ompacted in brine, the densification rate increases rapidly. Larger

ffective stress and smaller grain size also lead to rapid creep

 Spiers and Brzesowsky, 1993 ). Under high temperature and large

tress, recrystallization can be observed in some highly strained

reas, but overall, porosity decreases. During uniaxial creep tests,

alite polycrystals become denser and mainly deform because of

rystal-to-crystal interactions. In brine-saturated halite polycrys- 

als, deformation is first driven by pressure solution, due to the

evelopment of normal stress at the grain contacts. Second, defor-

ation happens because the grain boundaries are lubricated due

o the presence of fluid. Third, grain scale cataclasis occurs due to

rystal slip plasticity and grain boundary sliding. When the com-

ressive effective stress is less than −4MPa, creep is dominated by

ressure solution. When the compressive effective stress is larger

han −4MPa (i.e., when the effective stress is less than −4MPa),

lastic related mechanisms, such as dislocation, microcracking and

ecrystallization, have a significant effect on the deformation of the

olycrystal. In this tudy, we focus on halite under low compressive

tress conditions (i.e., between −4MPa and 0MPa) and at ambi-

nt temperature, in which creep is controlled by pressure solution

 Fig. 1 ). 

A microphysical model for healing in rocksalt was proposed

t the crack scale, taking diffusive mass transfer as the control-

ing mechanism in the longer term ( Houben et al., 2013 ). De-

ormation measures were conducted at the contact between pol-

shed flat lenses immersed in saturated brine, to understand the

undamental pressure solution mechanisms at halite-halite and

alite-silica contacts ( Hickman and Evans, 1991 ). Phenomenolog-

cal creep models were formulated to account for effective dif-

usivity, and calibrated against experiments conducted on rock-

alt ( Spiers et al., 1990; Yang et al., 1999 ) and calcite ( Zhang and

piers, 2005 ). A compaction model that distinguishes dissolution,

recipitation and diffusion - dominated creep rates was also pro-

osed for anhydrite, assuming a simple cubic packing of spherical

rains ( Pluymakers and Spiers, 2015 ). 

The mechanical behavior of more diverse and realistic mi-

rostructures can be predicted by homogenization, i.e. by up-

caling crystal-, crack- or grain- scale mechanisms to the scale

f a Representative Elementary Volume (REV). Eshelby’s theory

 Eshelby, 1957 ) allows calculating the REV stress and strain fields

ased on the knowledge of the stress and strain fields of “inclu-

ions” embedded in a “matrix”. In the dilute scheme, the inclu-

ions do not interact with each other and the macroscopic stress
nd strain fields can be obtained by volumetric average. In Mori–

anaka scheme, the stiffness tensor of the REV is deduced from the

icro/macro interaction law that relates the REV stress and strain

elds to the inclusion stress and strain fields, in which the me-

hanical properties of the matrix are given. Mori-Tanaka’s scheme

llows predicting explicitly the effective properties of composite

aterials ( Mori and Tanaka, 1973 ). However, if the composite ma-

erial contains inclusions with different orientations and shapes,

he predicted stiffness tensor may violate symmetry requirements

 Benveniste, 1987; Castañeda and Willis, 1995 ). The self-consistent

ethod assumes that there is no dominating phase in the medium,

o that the matrix around each inclusion (or crystal) is made of

ll the inclusions (or crystals) that surround that inclusion. The

elf-consistent method provides an accurate but implicit solution

o the homogenization problem, particularly suitable for polycrys-

als ( Hill, 1965 ). Self-consistent homogenization models were pro-

osed for elastic-plastic materials ( Kröner, 1961 ), viscoplastic ma-

erials ( Weng, 1982 ) and polycrystals subject to anisotropic dam-

ge ( Pouya et al., 2017 ). Asymptotic expansions were introduced

n a homogenization scheme to formulate a macroscopic model

f compacted swelling clays and to correlate macroscopic param-

ters with microscopic electro-hydrodynamics ( Moyne and Mu-

ad, 2002 ). Multi-scale homogenization schemes were also em-

loyed to predict stiffness changes induced by mineral dissolution

n calcite ( Arson and Vanorio, 2015 ). However, no homogenization

cheme was proposed to date to couple chemical and mechanical

icrostructure changes in a self-consistent micro/macro model and

o predict the mechanical behavior of self-healing materials. 

We thus formulate a chemo-mechanical homogenization model

o predict time-dependent healing processes in halite, which we

onsider as a model geomaterial. In Section 2 , we present the ther-

odynamic and constitutive equations that govern pressure solu-

ion at the scale of an inclusion, made of eight grain fractions and

ontaining a pore located at the intersection of three orthogonal

rain-to-grain contact planes. We explain Hill’s self-consistent ho-

ogenization scheme in Section 3 . The model is calibrated against

ublished results of oedometer tests (i.e., tests in which salt sam-

les were subjected to a vertical compression controlled in dis-

lacement at the top boundary, with fixed displacements at the

ottom and lateral boundaries). Results are presented in Section 4 .

n Section 5 , we analyze the sensitivity of the model to inclusion

ize (i.e., grain size), initial porosity, void size distribution and in-

lusion orientation. 

. Microscopic chemo-mechanical model 

.1. Pressure solution theory 

When subjected to normal stress, salt crystals (also called

rains in the following) dissolve at contacts. Ions diffuse along fluid

lms at crystals’ boundaries and precipitate on pore walls. In the

ollowing, the plane that contains the axes x and y (respectively y

nd z, x and z) is noted XY (respectively YZ, XZ). Fig. 2 illustrates

he pressure solution phenomenon around a pore, in plane XY. In

hat plane, the pore is surrounded by four grains. Grain dissolu-

ion at the contacts results in a size reduction of the grains ( δx
nd δy in Fig. 2 ). Salt ions then diffuse along contact planes that
re normal to the dissolution planes, i.e., in plane XY. Ions finally

recipitate at the pore wall, because pore fluid pressure is lower in

he pore than at the grain contacts. 

In brine-saturated specimens, dissolution, diffusion and pre-

ipitation happen simultaneously (but at different locations). Let

s analyze the thermodynamic processes that govern pressure

olution at one grain contact. We assume that flat grain edges

hat are “in contact” are in fact separated by a thin fluid film

 Rutter, 1983; Pluymakers and Spiers, 2015 ). The assumed geom-
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Fig. 2. Mass transfer induced by pressure solution around a pore, in contact plane 

XY. 

Fig. 3. Pressure solution mechanisms at a grain-to-grain contact (plane XZ). 
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etry of the contact is shown in Fig. 2 (plane XY) and Fig. 3 (plane

XZ). 

Locally (i.e. at the grain scale), an increase of normal effective

stress in the solid skeleton changes the difference of chemical po-

tential ( � μ) of the solid constituent of the halite REV in reference

to the solute (brine in this case). We have: 

� μ ≈ (σn − P f )� (1)

where σ n is the normal stress at the grain contact (averaged on

the surface of the contact), P f is the pore fluid pressure, and � is

the molar volume. The change of chemical potential of the solute

can be expressed as a function of the mineral concentration: 

� μ ≈ R ∗T ln 
(
C 

C o 

)
(2)

where C is the concentration of minerals (ions) in the fluid, C o is

the solubility of the solid at the pore walls - assumed to be uni-

form because the fluid pressure in the pores can be assumed uni-

form under low stress. R ∗ is the gas constant and T is the Kelvin

temperature ( Spiers et al., 2003 ). Assuming a linear dissolution

law, common for halite ( Brantley et al., 2008 ), the expression of

the dissolution velocity V c at the contacts (i.e., at grain scale) is

( van Noort and Spiers, 2009 ): 

 c = αk + �
� C 

C o 
(3)

where α is a parameter describing the influence of the topology

of the grain boundary on the pressure solution rate, k + is the un-
tressed mineral dissolution rate, which is constant under the pore

uid pressure. α varies from 0 to 1, based on stress concentrations,

orosity and grain boundary. Pluymakers (2015) suggested α ≈0.9

or dissolution controlled pressure solution and α= 1 for precipi-

ation controlled pressure solution, with the assumption that the

recipitation rate is not influenced by the structure of the grain

oundary. At a given contact, dissolution, diffusion and precipi-

ation processes are serial, thus the dissolution velocity at grain

ontacts is controlled by the slowest of these processes. The ex-

ressions for dissolution controlled interface dissolution velocity

 s and precipitation controlled interface dissolution velocity V p are

btained from Eqs. (1) –(3) , as follows: 

 s = αs k + �

[
exp 

(
σ e 
n �d 2 s 
R ∗T a c 

)
− 1 

]
(4)

 p = αp k + �

[
exp 

(
σ e 
n �d 2 s 
R ∗T a c 

)
− 1 

]
f (φ∗) (5)

here σ e 
n is the effective stress on the grain boundary, d s is the di-

meter of the grain, a c is the contact area. f ( φ∗) is a function of the
orosity φ∗ and of the initial porosity φ∗

o . Based on the equation of

ass conservation, f ( φ∗) is equal to φ∗/ (φ∗
o − φ∗) ( Pluymakers and

piers, 2015 ). Note: Eqs. (4) and (5) are stated here for reference,

ut not used in the model, because the kinematics of pressure so-

ution in halite is actually governed by diffusion. In the follow-

ng, we detail the balance equations that result from a dissipa-

ion of energy due to the diffusion of dissolved ions. The interested

eader is referred to van Noort and Spiers (2009) ; Pluymakers and

piers (2015) for the full derivations of the geometrical terms in-

olved in Eqs. (4) and (5) . 

.2. Hollow sphere inclusion model 

We upscale the grain-scale pressure solution model to the lab-

ratory sample scale by homogenization. We use a self-consistent

cheme, in which inclusions are spherical composites, made of a

pherical pore that lies at the intersection between three orthog-

nal grain contact planes. Admittedly, the assumption of spherical

nclusions is a limitation of the model. During the creep process,

t is expected that inclusions change shape over time. However,

t has to be noted that the local strain of each inclusion is cal-

ulated at each time step, which allows accounting for inclusion

hape changes in the overall mechanical response predicted at the

cale of the REV. The inclusion considered here thus contains a

ore and 8 grain fractions, see Fig. 4 . Noting r g the radius of the

ollow spherical inclusion, W the thickness of the shell around the

ore (called wall thickness in the following), and assuming that

 is uniform around the pore, the spherical void’s diameter is

 r g − 2 W . Grain contact planes within an inclusion are shown in

ig. 4 (b). The REV ( Fig. 5 ) is the volume that contains a representa-

ive distribution of inclusion types, which can be defined in terms

f inclusion size, pore size, inclusion orientation (or grain contact

lane orientation). 

At the inclusion scale, under normal stress, the solid mineral is

issolved at contact planes, the solute diffuses along the contact

lanes towards the pore inside the inclusion, and precipitates at

he pore wall. Let us consider one pair of contact planes. A fluid

lm of thickness S lies between these two planes. The shape of

he interface pore/film is an annulus of area A ew , where A ew is the

roduct of S by the perimeter of the pore wall, noted P ( w ). Due to

ass conservation principles, the mass of mineral that diffuses ra-

ially from the contact plane towards the pore inside the inclusion,

hrough the annulus of area A ew , is equal to the mass of mineral

hat is dissolved at the contact plane. The corresponding equation

an be written as: 

(w ) A ew = 

2 V c A er 
(6)
�
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Fig. 4. Schematic representation of an inclusion. 

Fig. 5. Schematic representation of the halite REV. 
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here J ( w ) is the radial diffusion flux, and A er is the area of the

art of the contact plane where dissolution occurs, between the

eriphery of the contact surface and the dissolution front located

t a distance w ≤W from the periphery (where W is the pore wall

hickness). The dissolution surface has the shape of a ring. Its area

s the difference between the area of the cross section of the in-

lusion, π ( r g ) 
2 , and that of the sphere delimited by the dissolution

ront, π(r g − w ) 2 . Thus we have: A er = (2 r g w − w 
2 ) π . 

Differentiating Eq. (2) with respect to C yields ∂ μ/∂ C = R ∗T /C.
oreover, the radial diffusion flux J ( w ) is related to the chemical

otential μ according to Fick’s first law: 

(w ) = −D 

∂C 

∂w 

= −DC(w ) 

R ∗T 
∂μ

∂w 

(7)

here D is the grain boundary diffusion coefficient. The energy

issipation per unit volume, noted ˙ 	w , is equal to −J(w ) ∂ μ/∂ w
 Lehner, 1990 ). The radial energy dissipation increment is thus: 

 
˙ 	w = −J(w ) 

∂μ

∂w 

SP (w ) dw (8)

Under low stress conditions, we assume that the solute con-

entration C ( w ) along the grain boundary is equal to that in the

ore, C o ( Rutter, 1983; Schutjens and Spiers, 1999; Pluymakers and

piers, 2015 ). Integrating the radial energy dissipation increment

ver the distance that goes from a point at the periphery of the

nclusion to the pore wall, and using both Eqs. (6) and (7) , we ob-

ain the expression of the total dissipation ˙ 	XY 
t on a contact plane,

s follows: 

˙ XY 
t = 

∫ W 

0 

2 R ∗T V XY c 

2 
π(2 r g w − w 

2 ) 2 

DC o S�2 (r g − w ) 
dw (9) 

here we took the contact plane XY as an example. V XY c is the

elocity of the dissolution that occurs on plane XY and leads to
 deformation along the z-axis. Both grains in contact dissolve, so

he overall dissolution rate at the contact is 2 V XY c . During one unit

f time, the work of the compressive force that acts on plane XY

o produce a vertical displacement of 2 V XY c is the product of 2 V XY c 

y the normal effective stress on plane XY (noted σ eXY 
n ) and by

he area of the contact surface in plane XY, A er = (2 r g W −W 
2 ) π .

ssuming that the inclusion work input is entirely dissipated by

ressure solution, the total dissipation can thus be expressed as: 

˙ XY 
t = 2 σ eXY 

n V XY c (2 r g W −W 
2 ) π (10)

Substituting Eq. (9) into Eq. (10) , the dissolution velocity normal

o the contact plane XY is expressed as: 

 
XY 
c = 

DSC o �2 σ eXY 
n 

(
2 r g W −W 

2 
)

R ∗T 
∫ W 

o 
( 2 r g w −w 2 ) 

2 

r g −w 
dw 

(11) 

The rate of mineral volume dissolved, ˙ V XY , depends on the dis-

olution velocity on plane XY and on the area of the contact sur-

ace: ˙ V XY = (2 r g W −W 
2 ) πV XY c . The dissolution velocity and the

ate of volume dissolved on planes YZ and XZ can be obtained in

he same way. The chemical viscous strain rate ˙ εx , ˙ εy and ˙ εz are
btained from the dissolution velocity on planes YZ, plane XZ and

lane XY respectively, as follows: 

˙ x = V Y Z c /r g (12) 

˙ y = V XZ c /r g (13) 

˙ z = V XY c /r g (14) 

he mineral only dissolves on the contact planes. In addition, we

ssume that the mineral precipitates on the pore wall uniformly.

hus, the change of thickness δW 
i at time step t i can be calculated

rom the total volume of mineral dissolved and from the pore’s

urface area A i −1 
s at time step t i −1 . Diffusion and precipitation pro-

esses are illustrated for plane XY in Fig. 2 . We finally obtain: 

W 
i = 

˙ V i XY + 
˙ V i Y Z + 

˙ V i XZ 

A i −1 
s 

δt (15) 

here δt is the time step. 

We simulate an isotropic creep test at the inclusion scale. The

nclusion size and the chemical parameters used in the simulations

re listed in Table 1 . The inclusion is subjected to a hydrostatic

tress of −1 MPa, −2 MPa and −3 MPa, and we follow the evolu-

ion of the inclusion geometry in each case. Simulation results are

resented in Fig. 6 . 
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Fig. 6. Evolution of the inclusion geometry during an isotropic creep test. 

Table 1 

Inclusion parameters in the isotropic and uniaxial creep 

tests. 

Initial size Chemical property 

r g W o DS C �

mm mm mm 
3 / s mol / mm 

3 mm 
3 / mol 

0.15 0.05 1 × 10 −8 6 . 48 × 10 −6 2.7 ×10 4 
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Isotropic compressive stress induces dissolution at each con-

tact plane, therefore εx = εy = εz < 0 . Precipitation at the pore wall

stops when the wall thickness becomes equal to the radius of the

inclusion: the pore is then fully filled with precipitated solid min-

eral, i.e. the inclusion is fully healed. When precipitation stops, de-

formation components reach a plateau. Fig. 6 (a) reflects this pro-

cess and confirm that the healing rate increases with the mag-

nitude of the external stress imposed during the creep test. The

time to achieve full inclusion healing is 1.4431 × 10 7 s (107 days),

6.9039 × 10 6 s (80 days) and 4.5374 × 10 6 s (52 days), under

−1MPa, −2MPa and −3MPa, respectively. Since precipitation is as-
umed to be uniform on the pore wall, the geometry of the fully

ealed inclusion is determined by the initial dimensions of the in-

lusion rather than by the external stress conditions. According to

q. (11) , the relationship between the healing rate and the stress

s not linear. The results show that, as expected, the healing rate is

nfluenced by the area of the contact (term W 
2 in (11) ). The rate of

orosity change decreases over time, as expected ( Fig. 6 (c)). 

In order to study healing-induced anisotropy, we now simulate

niaxial creep tests for various inclusion orientations, defined by

hree angles ψ (coordinates x ′ y ′ z ′ ), θ (coordinates x ′ ′ y ′ ′ z ′ ′ ) and φ
coordinates x ′ ′ ′ y ′ ′ ′ z ′ ′ ′ ), as shown in Fig. 7 . Due to the symmetry

f the loading under uniaxial stress conditions, ψ has no influence

n the deformation of the inclusion. Due to the symmetries of the

pherical inclusion, we only simulate cases where θ and φ are be-

ween 0 ° to 45 °. In total, 13 cases were simulated ( Figs. 8 and 9 ). 

For non-zero values of φ and θ , the dissolution rate in planes
Z and XZ increases with θ (leading to an increase of ˙ εx and ˙ εy 
espectively). For a given non-zero value of θ , increasing φ in-

reases the dissolution rate in plane XZ (leading to an increase



X. Shen and C. Arson / International Journal of Solids and Structures 161 (2019) 96–110 101 

Fig. 7. Angular coordinates adopted to define the orientation of the inclusion rela- 

tive to the loading axis. 
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f ˙ εy ) and decreases the dissolution rate in plane YZ (leading to
 decrease of ˙ εx ). Fig. 8 (b) shows the eolution of εx . The evolu-

ion of εy , not shown here, follows the same trend. For the initial

imensions chosen in this parametric study, Fig. 8 (c) shows that

he strain rate ˙ εz is controlled by angle θ : ˙ εz reduces when θ in-

reases, which results in a larger value εz at the final stage, when

ealing is complete. The angle φ does not influence the strain rate

˙ z significantly. The evolution of the wall thickness ( Fig. 9 (a)) and

f porosity ( Fig. 9 (b)) confirm that the healing rate increases with

he sum of the stresses normal to the contact planes. The trace

f the imposed stress does not depend on the inclusion orienta-

ion, thus the healing efficiency is the same for all inclusion orien-

ations tested. Simulation results follow the trends expected from

he model formulation and are in agreement with classical physi-

al observations, which justifies the upscaling method proposed in

he following section. 

. Homogenization scheme 

.1. Averaging method 

We consider a REV made of an assembly of hollow spherical

nclusions that have the properties described in Section 2 . In or-

er to represent the microstructure of a polycrystal such as halite,

e assume that there is no dominating phase in the REV compos-

te: each hollow sphere is thought of as an inclusion embedded in

 matrix made of all the inclusions present in the REV. Thus, we

mploy a self-consistent homogenization scheme to determine the

elationship between the stress and strain fields of the REV and

hose of the inclusions. A macroscopic field can be calculated by

veraging its microscopic counterpart over the REV. We introduce

he solid angle 
, defined such that d
 = sin θd θd ψ . Noting p ( ψ ,

, φ) the probability of the occurrence of orientation ( ψ , θ , φ), the

verage of a field function f that depends on ( ψ , θ , φ) is defined

s ( Pouya et al., 2016 ): 

f̄ = 

1 


∗

∫ 
∗
f (ψ, θ, φ) p(ψ, θ, φ) sin θd ψ d θd φ



= 

1 

8 π2 

∫ 2 π
ψ=0 

∫ π

θ=0 

∫ 2 π
φ=0 

f (ψ, θ, φ) p(ψ, θ, φ) sin θd ψ d θd φ (16) 

ecause the inclusion model has three pairwise perpendicular axes

f symmetry which intersect at a center of symmetry, the domains

f variation of θ and φ reduce to the interval [0, π /2]. In trans-

erse symmetric loading conditions (like in isotropic, uniaxial, and

edometer tests), the model is symmetric about the z-axis at the

EV scale, so that the rotation by an angle ψ does not influence

he mechanical response of the REV. Thus in the following, ψ is set

qual to 0, without losing the generality of the model. Eq. (18) is

ewritten as: 

f̄ = 

2 

π

∫ π/ 2 

θ=0 

∫ π/ 2 

φ=0 

f (θ, φ) p(ψ, θ ) sin θd θd φ (17)

ore generally, the average of a field function is calculated as: 

f̄ = 

1 


∗

∫ 

∗

f (ψ, θ, φ, v 1 ) p(ψ, θ, φ) p 1 (v 1 ) 

· · · p n (v n ) sin θd ψ d θd φd v 1 · · ·d v n (18) 

here p i is the probability of occurrence of the geometric charac-

eristic v i in the REV (e.g., inclusion size or porosity). In this paper,

e assume that all probability density functions ( p , p 1 , ���p n ) are
ndependent. We derive a close formulation in which we assume

hat φ and θ are uniformly distributed in the interval [0, π /2]. The

odel can of course be used for other orientation distributions, de-

ending on available microstructure information. 

.2. Inclusion-matrix interaction model 

Hill’s self-consistent method ( Hill, 1965 ) is used to upscale the

echanical behavior of the inclusions at the scale of the REV,

hich is viewed as a polycrystal. Hill’s incremental inclusion-

atrix interaction law relates the increments of stress and strain at

he inclusion scale (noted δσα and δεα respectively for inclusion

) to the increments of stress and strain at the REV scale (noted

σ̄ and δε̄ respectively), as follows: 

σα − δσ̄ = −L ∗( δεα − δε̄) − δL ∗( εα − ε̄ ) (19) 

here L ∗ is Hill’s tensor, which depends on the shape of the in-

lusion and on the stiffness of the matrix. In the self-consistent

ethod, the matrix is made of the assembly of inclusions present

n the REV, and therefore, the stiffness of the matrix is not known

 priori . Therefore, the resolution of Eq. (19) is iterative. Note that

he stress and strain fields in each inclusion are assumed to be

niform, i.e. we assume that pressure-solution produces uniform

hanges of stress and strain in the hollow spherical inclusion. Since

e present simulations done with uniform distributions of inclu-

ion orientations, the matrix is isotropic. For spherical inclusions

mbedded in an isotropic matrix, Hill’s tensor is expressed as ( Hill,

965; Eshelby, 1957 ): 

 
∗
i jkl = 

μ∗

4 − 5 ν

[ 
( 3 − 5 ν) δi j δkl + 

7 − 5 ν

2 

(
δik δ jl + δil δ jk 

)] 
(20) 

here ν is the Poisson’s ratio of the matrix, and μ∗ is the shear

odulus of the matrix. 

In porous media, it was shown that the shear modulus in-

reases with the hydrostatic increment of stress ( Digby, 1981 ).

oreover, the shear modulus depends on porosity ( Kováčik, 2008 ).

ccordingly, we choose an inclusion constitutive model that re-

ects a linear dependence of the shear and bulk moduli of the

atrix ( μ∗ and k ∗) to the porosity of the REV ( φ∗), and we express

he shear modulus as follows: 

∗ = (1 − φ∗) μo 

(
σ̄e 

σ̄o 

)n 

(21) 
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Fig. 8. Evolution of inclusion strains during a uniaxial creep test. 

Fig. 9. Evolution of inclusion geometry during a uniaxial creep test. Numbers into brackets indicate angular coordinates ( θ , φ). 
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Fig. 10. Resolution algorithm with the proposed homogenization scheme. 
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Fig. 11. Calibration of the model against uniaxial creep tests (tests under −2.1 MPa 

are used for verification). 
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here μo is the shear modulus of the solid part of the inclusion,

nd σ̄e is the external global stress. σ̄o and n are model parame-

ers, that need to be calibrated. The decrease of REV porosity in-

uces an increase of the matrix shear modulus μ∗, which results

n a change of Hill’s tensor L ∗. We assume that the Poisson’s ratio

f the matrix ( ν) is a material constant ( Pouya et al., 2016 ). The

ncremental change of L ∗ can thus be expressed as: 

L ∗ = 

∂L ∗

∂μ∗
∂μ∗

∂φ∗ δφ∗ (22) 

.3. Multi-scale chemical creep modeling 

Following the self-consistent method, Eq. (19) is solved itera-

ively. At time step t i , what is known from the previous time step

 i −1 is: the REV stress σ̄ i −1 , the local stress of each inclusion, σ i −1 
α ,

he REV strain ε̄ i −1 , the local strain of each inclusion, ε i −1 
α , the REV

orosity φ∗i −1 
, the local porosity of each inclusion φ∗

α
i −1 

, and the

adius of the void in each inclusion, r i −1 
v . In the loading direction

z-axis), the REV axial stress at time t i is known ( ̄σ i 
zz of known

alue in an oedometer test, δσ̄ i 
zz = 0 during a creep test). In oe-

ometer tests and in uniaxial creep tests, the other boundary con-

itions imposed at time t i are ε̄
i 
xy = 0 , ε̄ i 

yz = 0 , ε̄ i 
xz = 0 , ε̄ i 

xx = 0 and

¯ i yy = 0 . The variation of a local strain increment δε i 
α is the sum

f the chemical strain increment, due to pressure solution (noted

ε i 
αc ) and of the elastic local strain increment (noted δε i 

αe ). Thus

he local stresses and strains in the inclusions can be obtained as

ollows: 

δσ i 
α − δσ̄ i + L ∗i 

(
δε i 

αc + C 
i 
α

−1 
: δσ i 

α − δε̄ i 
)

+ δL ∗i 
(
ε i −1 
α + δε i 

αc + C 
i 
α

−1 
: δσ i 

α − ε̄ i −1 − δε̄ i 
)

= 0 (23) 
s

By definition, the REV stress increment δσ̄ i (respectively the

EV strain increment δε̄ i ) is the average of the local stress incre-

ents δσ i 
α (respectively the average of the local strain increments

ε i 
α). Using the expression of the dissolution velocity on each con-

act plane, the local chemical strain increment is obtained by cal-

ulating the change of inclusion radius induced by pressure solu-

ion under local stress σ i 
α and local stress change δσ i 

α, according

o the inclusion model explained in Eqs. (11) –(14) . Now consider-

ng that the void inside the spherical inclusion remains a sphere

pon pressure solution, the void radius r αv is updated over time

y using Eq. (15) , as follows: 

r i αv = −
˙ V i XY + 

˙ V i Y Z + 
˙ V i XZ 

A i −1 
s 

δt (24) 

After updating the external radius and the pore radius in each

nclusion, the variation of local porosity δφ∗
α
i 
and the variation

f global porosity δφ∗i can be obtained, and the Hill’s tensor is
pdated: δL ∗i , L ∗i are calculated according to Eq. (20) –(22) . The
orosity damage model employed at the REV scale is also used at

he scale of the inclusion, so that the local stiffness tensor C 
i 
α is

eplaced by (1 − �α) C 
i 
α . The local elastic strain increment δε i 

αe is

hen calculated as the product of the inverse of the local stiffness

atrix C 
i 
α

−1 
by the local stress increment, δσ i 

α . The algorithm is

xplained in the flow chart given in Fig. 10 . All the unknown vari-

bles at time t i in Eq. (23) can be regarded as functions of δσ
i 
α .

hus, six components of δσ i 
α are unknown for each inclusion, and

q. (23) provides six equations. 

Noting n the number of inclusions in the REV, 6 n equations

ave to be solved for 6 n unknowns at each time step. The Broyden-

letcher-Goldfarb-Shanno (BFGS) algorithm ( Fletcher, 1987; Lewis

nd Michael, 2008 ) is employed to solve this system of 6 n im-

licit equations. We initialize stress by solving static mechanical

alance equations, valid before pressure solution starts. According

o Eq. (19) , the corresponding increment of local stress is: 

σ 0 
α = 

(
I + L ∗0 C 

0 
α

−1 
)−1 (

δσ̄ 0 + L ∗0 δε̄0 
)

(25) 

he initial local stress σα is calculated as σ 0 
α = δσ 0 

α . The ini-

ial increment of local strain δε0 
α is purely elastic, so δε0 

α equals

 
0 
α

−1 
δσ 0 

α . The initial local strain εα is initialized as ε0 
α = δε0 

α . 

. Model calibration against brine-saturated creep tests 

.1. Model calibration against salt rock creep tests 

The volumetric strain curves obtained by Spiers for wet salt

ggregates ( Spiers and Brzesowsky, 1993 ) are used to calculate

he evolution of brine-saturated halite porosity during uniaxial

reep tests. Experimental results obtained under axial stresses of

1.1MPa and −3.1MPa are used for calibration. The calibrated

odel is then compared to the results obtained under an axial

tress of −2.1MPa for verification. The REV is represented by 300

pherical inclusions. The orientations of the inclusions are uni-

ormly distributed. Due to the geometric assumptions made in the

odel, the radius of the inclusion ( r g ) increases with the radius of

 salt grain. In order to simulate realistic halite microstructures, we

onsider that r g is equal to the characteristic grain size. r g is con-

idered uniform in the REV, and equal to 0.1375 mm, according to

he experimental data reported in ( Spiers and Brzesowsky, 1993 ).

he initial porosity was 42% in the experiments. Correspondingly,

he mean void radius was found to be 0.103mm. Based on ex-

erimental observations ( Van Genuchten, 1980; Arson and Pereira,

013 ), we assumed a lognormal distribution for the void radius,

ith a variance of 0.0 0 01 mm 
2 . The calibration results are pre-

ented in Fig. 11 and Table 2 . 
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Fig. 12. Principal stresses in each inclusion, for a uniaxial creep test under −1.1 MPa. 

Table 2 

Model parameters found by calibration. 

Elastic property Chemical property 

n σ̄o DS 

– MPa mm 
3 / s 

1.035 919 3 . 75 × 10 −8 
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Fig. 13. Evolution of the void radius and of the minor compressive principal stress 

in 10 different inclusions during the creep test performed under an axial load of 

-1.1 MPa. Numbers into brackets indicate angular coordinates ( θ , φ). Dash lines refer 

to inclusions with large voids; solid lines refer to inclusion with small voids. 

4  

 

n  

m  

−  
Inclusions of different orientations or different initial void ra-

dius develop different microscopic principal stresses 
−→ σ p . We rep-

resent the 300 minor, medium and major principal stresses on the

map shown in Fig. 12 (a): 
−→ 

OT (in the upper right quadrant) rep-

resents a tensile principal stress, and 
−→ 

OC (in the lower left quad-

rant) represents a compressive principal stress. α is the angle be-

tween the stress eigenvector and the orientation of the loading

axis. The principal stresses in the 300 inclusions are shown for the

test conducted under an axial stress of −1.1 MPa, after 10 0,0 0 0

s (27h40, Fig. 12 (a)) and after 250,0 0 0 s (69h25, Fig. 12 (b)). The

dots with a lighter color represent inclusions with smaller initial

voids. 

According to Fig. 12 , the major (tensile) principal stresses are

almost perpendicular to the loading axis, while the minor (com-

pressive) principal stresses tend to align with the loading direction.

The magnitudes of the minor and major principal stresses increase

with time. The minor principal stress is nearly zero in some in-

clusions, while it reaches a value close to −1.5 MPa in some other

inclusions. Inclusions with larger initial voids tend to have smaller

principal stresses. Fig. 13 illustrates the evolution local stress as a

function of initial void radius and inclusion orientation for 10 rep-

resentative inclusions. Fig. 13 (b) confirms that before creep starts,

the initial state of stress is different in each inclusion, because

the inclusions considered have different initial void sizes. After

250,0 0 0 s, the state of stress is stable in each inclusion. Higher

the initial stress, higher the healing rate, lower the final inclusion

porosity. The compressive principal stress increases in magnitude

with time for inclusions with small voids, while it decreases for

inclusions with large voids. The final compressive principal stress

is largely influenced by θ . If θ is close to 0 ° or 90 °, small compres-

sive principal stress is observed. 
.2. Sensitivity of the micro-macro model to the number of inclusions

Sensitivity analyses are performed to determine the minimum

umber of inclusions necessary to form a REV. We calibrate our

odel against oedometer tests performed under axial stresses of

1.1 MPa and −3.1 MPa, for a REV that contains 400 inclusions.
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Fig. 14. Influence of grain size on the healing rate. 

Table 3 

Error made on the estimation of the final porosity, com- 

pared to the porosity estimated with 400 inclusions. 

Number of cells 50 100 200 300 

Error ( −1.1 MPa) 0.62% 0.96% 0.23% 0.26% 

Error ( −3.1 MPa) 1.34% 1.16% 1.00% 0.02% 
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e use the same distributions of orientations, porosity and size as

n Section 4.1 . The calibrated parameters are used to simulate the

edometer tests for REVs that contain less inclusions, and we find

he minimum number of inclusions needed to match the results

btained with 400 inclusions with an acceptable error. Results are

resented in Table 3 . The error made on the estimation of the fi-

al porosity is less than 1.00% if the number of inclusions is at

east 200. This finding validates the model calibration presented in

ection 4.1 for 300 inclusions, and indicates that a set of 200 inclu-

ions forms a REV. In the following, we present simulations done

ith REVs of 200 inclusions. 

. Influence of salt fabric on the healing rate and micro-macro 

reep behavior 

In the following, we simulate a uniaxial oedometer creep test

nder -1.1MPa for REVs that contain 200 uniformly oriented in-

lusions. We study the sensitivity of the micro-macro model of

hemo-mechanical healing to the microstructure of the polycrys-

al. The reference case is such that r g is equal to 0.15 mm, the

nitial porosity of the REV is 20%, and the coefficient of variance

COV) of the void radius distribution is 0.05. Sensitivity analyses

re performed for different values of r g (0.05 mm, 0.25 mm), ini-

ial porosities (10%, 40%) and void radius COV (0.01, 0.1). 

.1. Influence of initial inclusion size 

The rate of halite densification is known to be highly dependent

n salt grain size. There are less inter-granular contact planes in

he REV if salt crystals are larger. When salt polycrystals are satu-

ated with brine, the size of salt grains not only affects the contact

rea between grains, but also controls the length of the diffusion

ath. Fig. 14 shows the variations of porosity and void radius with

 g during the oedometer test, with the reference REV inital poros-

ty and void radius COV. 
As could be expected from Eq. (11) , a smaller inclusion radius

eads to a larger dissolution rate at the grain boundaries, hence

 faster healing rate. Results presented in Fig. 14 (a) confirm this

rend: a smaller grain size results in a faster rate of porosity de-

rease. It is interesting to note that porosity stabilizes to a non-

ero value. This is because over time, the macroscopic stress is sus-

ained by less and less inclusions: the inclusions under low stress

ndergo pressure solution at a negligible rate, and therefore, the

ull healing time cannot be reached during the simulation. Cor-

espondingly, the void size distribution departs more and more

rom the initial uniform size distribution. This phenomenon is par-

icularly visible for samples with smaller grains, see Fig. 14 (b).

hen the initial grain radius is 0.05 mm, a minimum void radius

s reached, beyond which no further healing is observed. Fig. 15

hows the microscopic principal stresses in the inclusions, for the

hree different grain sizes. All the principal stresses are initially

ompressive, because an oedometer test is simulated. Then, the

ajor principal stress increases. For small grain sizes, the major

nd minor principal stresses are widely distributed and the rota-

ion of the principal stresses is significant. Principal stresses do not

volve much once the REV porosity becomes stable. 

.2. Influence of initial porosity 

Due to its high solubility, salt is easily dissolved in water. Larger

oid volume in salt rock usually results in lower stiffness and pref-

rential fluid flow paths. Here, we study the effect of the initial

orosity on the deformation of the brine-saturated halite polycrys-

al. Fig. 16 shows the variations of porosity and void radius with

he initial REV porosity during the oedometer test, with the refer-

nce grain size and void radius COV. After 4 × 10 5 s (4 days and

5 h), the decrease in total porosity is about 5% in all cases. Under

ame initial void radius COV, void size heterogeneity increases with

he initial porosity. In heterogeneous samples, smaller voids heal

ast, and larger voids do not heal, which leads to a non-uniform

ealing rate over time. For smaller initial porosity, we observe a

niform healing rate. Fig. 17 shows the effect of initial porosity on

he distribution of principal stresses in the inclusions. For higher

nitial porosity, we observe higher major tensile stresses, lower mi-

or compressive stresses and a more significant rotation of princi-

al stress directions over time. For the specimen with the lowest

nitial porosity, the major tensile principal stress increases rapidly
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Fig. 15. Principal stresses obtained during an oedometer test, for different grain sizes. 
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Fig. 16. Effect of initial porosity on the evolution of porosity and void radius. 

Fig. 17. Evolution of principal stresses in the inclusions for different initial porosities. 
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Fig. 18. Influence of the void radius COV on the healing rate. 
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over time, in the radial direction, while the minor compressive

stress remains stable. 

5.3. Influence of the variance of the initial void radius distribution 

Fig. 18 shows the variations of porosity and void radius with

the void radius COV during the oedometer test, with the reference

grain size and initial REV porosity. 

According to Fig. 18 (a), the rate of porosity change decreases

when the void radius COV increases. This can be explained by the

fact that the stiffness of inclusions increases when the void size

decreases. As a result, inclusions with small voids undergo higher

microscopic compressive stress, and heal faster. As healing pro-

ceeds in the inclusions that contain smaller pores, the void radius

COV increases, which enhances the difference of healing rate be-

tween inclusions that contain small pores and inclusions that con-

tain larger pores ( Fig. 18 (b)). Inclusions with large voids never heal

completely, which slows down the overall healing rate of the REV.

As expected, the distribution of principal stresses is more uniform

in a sample that has a smaller void radius COV, see Fig. 19 . Larger

tensile stresses and compressive stresses are observed under small

void size COV, as shown in Fig. 19 . For larger void size COV, lower

healing rates result in less stress redistribution and smaller tensile

stresses and compressive stresses. 

6. Conclusion 

We present a chemo-mechanical self-consistent homogeniza-

tion scheme for self-healing polycrystals. The model can be used

to predict the evolution of stress, strain, porosity and stiffness at

both micro- and macro-scales. The inclusion is a hollow sphere

that contains a spherical void located at the intersection of three

orthogonal grain-to-grain contact planes. Under compressive stress

normal to any of those planes, the solid part of the inclusion

dissolves. The solute diffuses towards the pore within the inter-

granular film, and precipitates at the pore wall. The resulting

changes in the dimensions of the inclusion are used to calculate

the viscous strain rate of the inclusion. The healing rate decreases

over time. Sensitivity analyses performed at the inclusion scale un-

der isotropic compressive stress indicate that the healing rate is

higher under higher confining stress. Simulations of uniaxial creep

tests show that the healing rate increases significantly when the
omponent of compressive stress normal to the grain-to-grain con-

act plane is increased. Hill’s inclusion-matrix interaction law is

sed to upscale strains and stresses at the REV scale. Oedometer

ests were simulated for specimens containing spherical inclusions

ith uniformly distributed contact plane orientations. The REV

orosity decreased at a decreasing rate in all cases. Inclusions with

maller voids are stiffer, and under go higher com pressive stress.

s a result, it was observed that in samples containing inclusions

ith different initial void sizes, inclusions with larger voids had a

egligible healing rate, and were slowing down the overall healing

ate of the REV. In samples with uniformly distributed void sizes,

he healing rate was faster, because all inclusions contributed to

he healing of the REV. As expected, at the inclusion scale, major

ensile stresses were mostly radial, and minor compressive stresses

ere mostly axial. In specimens with smaller grain sizes, princi-

al stresses were more widely distributed in magnitude and the

ealing rate was higher. For uniform void size distributions, the

ealing rate increased with initial porosity, but the final porosity

hange did not depend on the initial porosity of the sample. Princi-

al stresses of higher magnitude were noted in the inclusions that

ere part of REVs of high initial porosity. 

Chemical reactions typically initiate at the location of mi-

rostructure defects, which would be very difficult to account for

n a homogenization scheme that separates the solid and the pore

hases, as is classically the case. The key here is that the inclusion

s not a grain, but rather, a space that contains a pore and discon-

inuities, where chemical processes take place. Mass and energy

alance equations are rigorously established to predict the chemi-

al eigenstrain of each inclusion, which, added to the elastic defor-

ation, provides the microstrain of each inclusion. From there, it

s possible to use a matrix/inclusion interaction law to predict the

echanical response of a polycrystal subject to pressure solution

nder mechanical loading. The model was calibrated against ex-

erimental results published in the literature. Self-healing predic-

ions are in agreement with physical observations. The proposed

omogenization method paves the way to many future develop-

ents for upscaling chemo-mechanical processes in heterogeneous

edia. In addition, results obtained in this paper can guide the

esign of self-healing materials. For instance, a lower grain size

romotes healing, whereas non-uniform void size distributions de-

elerate healing. Important lessons learnt in this study also con-

ern the risk of grain (or crystal) breakage. For instance, larger
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Fig. 19. Influence of void radius COV on the evolution of inclusion principal stresses. 
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icroscopic stresses are noted in samples of high porosity, and

n heterogeneous microstructures, grains that are close to smaller

oids undergo higher stress. The paper focused on the coupled

hemo-mechanical processes that occur at micro and macro scales

o explain pressure-solution driven healing. In future work, we will

tudy healing -induced anisotropy and accommodation, and we

ill extend the model to visco-plasticity under high stress condi-

ions. 
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