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Mechanical healing is the process by which a damaged material recovers mechanical stiffness and
strength. Pressure solution is a very effective healing mechanism, common in crystalline media. Chemi-
cal reactions initiate at the location of microstructure defects, which would be very difficult to account
for in a homogenization scheme that separates the solid and the pore phases, as is classically the case.
Here, we propose a novel chemo-mechanical homogenization model in which the inclusion is not a grain,
but rather, a space that contains a pore and discontinuities, where chemical processes take place. Mass
and energy balance equations are rigorously established to predict the chemical eigenstrain of each in-
clusion, which, added to the elastic deformation, provides the microstrain of each inclusion. From there,
Hill's inclusion-matrix interaction law is used to upscale strains and stresses at the scale of a Repre-
sentative Elementary Volume (REV). The model was calibrated against experimental results published in
the literature for salt rock. Subsequent sensitivity analyses show that in samples with same porosity but
with inclusions that have different initial void sizes, inclusions with larger voids have a negligible healing
rate and they are slowing down the overall healing rate of the REV. The highest healing rate is reached
in samples with uniformly distributed void sizes. In addition, the healing rate increases with the initial
porosity, but the final porosity change does not depend on the initial porosity of the sample. Principal
stresses of higher magnitude are noted in the inclusions that are part of REVs of high initial porosity. In
specimens with smaller inclusions (i.e., smaller grains), principal stresses are more widely distributed in
magnitude and the healing rate is higher. The proposed homogenization method paves the way to many
future developments for upscaling chemo-mechanical processes in heterogeneous media, and can be used
to design self-healing materials.
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1. Introduction

Self-healing materials gained interest in recent years, due to
their long term performance (Gardner et al., 2014; Zhu and Arson,
2015; Davies and Jefferson, 2017). Healing, the process by which
a damaged material recovers mechanical stiffness and strength,
can be due to different mechanisms. Voyiadjis et al. (2011) dis-
tinguished active systems, which are coupled with damage mech-
anisms (Barbero et al., 2005; White et al, 2001) and passive
systems, which are triggered by external stimulations (Li and
Uppu, 2010). Thermodynamics principles were applied to establish
self-healing models for crushed salt rock (Miao et al., 1995), ther-
moset polymers (Mergheim and Steinmann, 2013) and shape mem-
ory polymers (Voyiadjis et al., 2012). A micro-damage fatigue and
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healing model was also proposed for asphalt mixes; the formula-
tion is based on coupled nonlinear viscoelastic, viscoplastic, and
viscodamage constitutive equations (Al-Rub et al., 2010).

Pressure solution is a very effective healing mechanism, com-
mon in crystalline media: dissolution occurs at the grain-to-grain
contacts that are under high stress, ions are transported by diffu-
sion in fluid films at grain boundaries, and re-precipitate at grain-
to-grain contacts that are under low stress. Diffusion can happen
within the lattice of crystals, e.g. Nabarro-Herring creep, or along
the grain boundaries, e.g. Coble creep (Wheeler, 2010; McCLAY,
1977). The presence of inter-granular brine enhances pressure solu-
tion and accelerates creep and healing rates (Paterson, 1973; Rutter
and Elliott, 1976; Raj, 1982; Rutter, 1983; Lehner, 1995). In damp
halite (salt rock), pressure solution is the dominating creep mech-
anism for temperatures below 350°C, as shown in Fig. 1. Crys-
tal slip plasticity and grain boundary sliding are two other im-
portant densification mechanisms in salt, observed under uniax-
ial loading (Holcomb and Zeuch, 1990; Bourcier et al., 2013). The
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Fig. 1. Deformation map of damp halite. LT, low temperature; HT, high tempera-
ture; N-H, Nabarro-Hering. Adapted from Urai et al. (1986).

densification rate is largely influenced by crystallographic orienta-
tions, crystal boundary orientations, density, temperature and the
loading history. In addition, when salt aggregates are saturated and
compacted in brine, the densification rate increases rapidly. Larger
effective stress and smaller grain size also lead to rapid creep
(Spiers and Brzesowsky, 1993). Under high temperature and large
stress, recrystallization can be observed in some highly strained
areas, but overall, porosity decreases. During uniaxial creep tests,
halite polycrystals become denser and mainly deform because of
crystal-to-crystal interactions. In brine-saturated halite polycrys-
tals, deformation is first driven by pressure solution, due to the
development of normal stress at the grain contacts. Second, defor-
mation happens because the grain boundaries are lubricated due
to the presence of fluid. Third, grain scale cataclasis occurs due to
crystal slip plasticity and grain boundary sliding. When the com-
pressive effective stress is less than —4MPa, creep is dominated by
pressure solution. When the compressive effective stress is larger
than —4MPa (i.e., when the effective stress is less than —4MPa),
plastic related mechanisms, such as dislocation, microcracking and
recrystallization, have a significant effect on the deformation of the
polycrystal. In this tudy, we focus on halite under low compressive
stress conditions (i.e., between —4MPa and OMPa) and at ambi-
ent temperature, in which creep is controlled by pressure solution
(Fig. 1).

A microphysical model for healing in rocksalt was proposed
at the crack scale, taking diffusive mass transfer as the control-
ling mechanism in the longer term (Houben et al, 2013). De-
formation measures were conducted at the contact between pol-
ished flat lenses immersed in saturated brine, to understand the
fundamental pressure solution mechanisms at halite-halite and
halite-silica contacts (Hickman and Evans, 1991). Phenomenolog-
ical creep models were formulated to account for effective dif-
fusivity, and calibrated against experiments conducted on rock-
salt (Spiers et al.,, 1990; Yang et al., 1999) and calcite (Zhang and
Spiers, 2005). A compaction model that distinguishes dissolution,
precipitation and diffusion - dominated creep rates was also pro-
posed for anhydrite, assuming a simple cubic packing of spherical
grains (Pluymakers and Spiers, 2015).

The mechanical behavior of more diverse and realistic mi-
crostructures can be predicted by homogenization, i.e. by up-
scaling crystal-, crack- or grain- scale mechanisms to the scale
of a Representative Elementary Volume (REV). Eshelby’s theory
(Eshelby, 1957) allows calculating the REV stress and strain fields
based on the knowledge of the stress and strain fields of “inclu-
sions” embedded in a “matrix”. In the dilute scheme, the inclu-
sions do not interact with each other and the macroscopic stress

and strain fields can be obtained by volumetric average. In Mori-
Tanaka scheme, the stiffness tensor of the REV is deduced from the
micro/macro interaction law that relates the REV stress and strain
fields to the inclusion stress and strain fields, in which the me-
chanical properties of the matrix are given. Mori-Tanaka’s scheme
allows predicting explicitly the effective properties of composite
materials (Mori and Tanaka, 1973). However, if the composite ma-
terial contains inclusions with different orientations and shapes,
the predicted stiffness tensor may violate symmetry requirements
(Benveniste, 1987; Castafieda and Willis, 1995). The self-consistent
method assumes that there is no dominating phase in the medium,
so that the matrix around each inclusion (or crystal) is made of
all the inclusions (or crystals) that surround that inclusion. The
self-consistent method provides an accurate but implicit solution
to the homogenization problem, particularly suitable for polycrys-
tals (Hill, 1965). Self-consistent homogenization models were pro-
posed for elastic-plastic materials (Kroner, 1961), viscoplastic ma-
terials (Weng, 1982) and polycrystals subject to anisotropic dam-
age (Pouya et al., 2017). Asymptotic expansions were introduced
in a homogenization scheme to formulate a macroscopic model
of compacted swelling clays and to correlate macroscopic param-
eters with microscopic electro-hydrodynamics (Moyne and Mu-
rad, 2002). Multi-scale homogenization schemes were also em-
ployed to predict stiffness changes induced by mineral dissolution
in calcite (Arson and Vanorio, 2015). However, no homogenization
scheme was proposed to date to couple chemical and mechanical
microstructure changes in a self-consistent micro/macro model and
to predict the mechanical behavior of self-healing materials.

We thus formulate a chemo-mechanical homogenization model
to predict time-dependent healing processes in halite, which we
consider as a model geomaterial. In Section 2, we present the ther-
modynamic and constitutive equations that govern pressure solu-
tion at the scale of an inclusion, made of eight grain fractions and
containing a pore located at the intersection of three orthogonal
grain-to-grain contact planes. We explain Hill’s self-consistent ho-
mogenization scheme in Section 3. The model is calibrated against
published results of oedometer tests (i.e., tests in which salt sam-
ples were subjected to a vertical compression controlled in dis-
placement at the top boundary, with fixed displacements at the
bottom and lateral boundaries). Results are presented in Section 4.
In Section 5, we analyze the sensitivity of the model to inclusion
size (i.e., grain size), initial porosity, void size distribution and in-
clusion orientation.

2. Microscopic chemo-mechanical model
2.1. Pressure solution theory

When subjected to normal stress, salt crystals (also called
grains in the following) dissolve at contacts. lons diffuse along fluid
films at crystals’ boundaries and precipitate on pore walls. In the
following, the plane that contains the axes x and y (respectively y
and z, x and z) is noted XY (respectively YZ, XZ). Fig. 2 illustrates
the pressure solution phenomenon around a pore, in plane XY. In
that plane, the pore is surrounded by four grains. Grain dissolu-
tion at the contacts results in a size reduction of the grains (6x
and 8y in Fig. 2). Salt ions then diffuse along contact planes that
are normal to the dissolution planes, i.e., in plane XY. lons finally
precipitate at the pore wall, because pore fluid pressure is lower in
the pore than at the grain contacts.

In brine-saturated specimens, dissolution, diffusion and pre-
cipitation happen simultaneously (but at different locations). Let
us analyze the thermodynamic processes that govern pressure
solution at one grain contact. We assume that flat grain edges
that are “in contact” are in fact separated by a thin fluid film
(Rutter, 1983; Pluymakers and Spiers, 2015). The assumed geom-
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Fig. 2. Mass transfer induced by pressure solution around a pore, in contact plane
XY.
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Fig. 3. Pressure solution mechanisms at a grain-to-grain contact (plane XZ).

etry of the contact is shown in Fig. 2 (plane XY) and Fig. 3 (plane
XZ).

Locally (i.e. at the grain scale), an increase of normal effective
stress in the solid skeleton changes the difference of chemical po-
tential (Au) of the solid constituent of the halite REV in reference
to the solute (brine in this case). We have:

A~ (oq — Pp)S2 (1)

where o, is the normal stress at the grain contact (averaged on
the surface of the contact), Py is the pore fluid pressure, and €2 is
the molar volume. The change of chemical potential of the solute
can be expressed as a function of the mineral concentration:

A zR*Tln(E) )
G

where C is the concentration of minerals (ions) in the fluid, C, is
the solubility of the solid at the pore walls - assumed to be uni-
form because the fluid pressure in the pores can be assumed uni-
form under low stress. R* is the gas constant and T is the Kelvin
temperature (Spiers et al, 2003). Assuming a linear dissolution
law, common for halite (Brantley et al., 2008), the expression of
the dissolution velocity V. at the contacts (i.e., at grain scale) is
(van Noort and Spiers, 2009):

AC
=ak,Q— (3)

G
where « is a parameter describing the influence of the topology

of the grain boundary on the pressure solution rate, k. is the un-

stressed mineral dissolution rate, which is constant under the pore
fluid pressure. « varies from O to 1, based on stress concentrations,
porosity and grain boundary. Pluymakers (2015) suggested o ~0.9
for dissolution controlled pressure solution and a=1 for precipi-
tation controlled pressure solution, with the assumption that the
precipitation rate is not influenced by the structure of the grain
boundary. At a given contact, dissolution, diffusion and precipi-
tation processes are serial, thus the dissolution velocity at grain
contacts is controlled by the slowest of these processes. The ex-
pressions for dissolution controlled interface dissolution velocity
Vs and precipitation controlled interface dissolution velocity V, are
obtained from Eqgs. (1)-(3), as follows:

B 0Qd?
Vi = asquz[exp( R )~ 1 (4)
0£Qd?
Vo= oepk+§2[exp< Rn*TaCS ) - 1]f(¢*) (5)

where o is the effective stress on the grain boundary, d; is the di-
ameter of the grain, a. is the contact area. f(¢*) is a function of the
porosity ¢* and of the initial porosity ¢;. Based on the equation of
mass conservation, f{¢*) is equal to ¢*/(¢; — ¢*) (Pluymakers and
Spiers, 2015). Note: Eqgs. (4) and (5) are stated here for reference,
but not used in the model, because the kinematics of pressure so-
lution in halite is actually governed by diffusion. In the follow-
ing, we detail the balance equations that result from a dissipa-
tion of energy due to the diffusion of dissolved ions. The interested
reader is referred to van Noort and Spiers (2009); Pluymakers and
Spiers (2015) for the full derivations of the geometrical terms in-
volved in Egs. (4) and (5).

2.2. Hollow sphere inclusion model

We upscale the grain-scale pressure solution model to the lab-
oratory sample scale by homogenization. We use a self-consistent
scheme, in which inclusions are spherical composites, made of a
spherical pore that lies at the intersection between three orthog-
onal grain contact planes. Admittedly, the assumption of spherical
inclusions is a limitation of the model. During the creep process,
it is expected that inclusions change shape over time. However,
it has to be noted that the local strain of each inclusion is cal-
culated at each time step, which allows accounting for inclusion
shape changes in the overall mechanical response predicted at the
scale of the REV. The inclusion considered here thus contains a
pore and 8 grain fractions, see Fig. 4. Noting rg the radius of the
hollow spherical inclusion, W the thickness of the shell around the
pore (called wall thickness in the following), and assuming that
W is uniform around the pore, the spherical void's diameter is
2rg — 2W. Grain contact planes within an inclusion are shown in
Fig. 4(b). The REV (Fig. 5) is the volume that contains a representa-
tive distribution of inclusion types, which can be defined in terms
of inclusion size, pore size, inclusion orientation (or grain contact
plane orientation).

At the inclusion scale, under normal stress, the solid mineral is
dissolved at contact planes, the solute diffuses along the contact
planes towards the pore inside the inclusion, and precipitates at
the pore wall. Let us consider one pair of contact planes. A fluid
film of thickness S lies between these two planes. The shape of
the interface pore/film is an annulus of area A.y, where Ay is the
product of S by the perimeter of the pore wall, noted P(w). Due to
mass conservation principles, the mass of mineral that diffuses ra-
dially from the contact plane towards the pore inside the inclusion,
through the annulus of area Aew, is equal to the mass of mineral
that is dissolved at the contact plane. The corresponding equation
can be written as:

JW) Ay = 2Yeller

- (6)
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Fig. 5. Schematic representation of the halite REV.

where J(w) is the radial diffusion flux, and A, is the area of the
part of the contact plane where dissolution occurs, between the
periphery of the contact surface and the dissolution front located
at a distance w < W from the periphery (where W is the pore wall
thickness). The dissolution surface has the shape of a ring. Its area
is the difference between the area of the cross section of the in-
clusion, 7(rg)?, and that of the sphere delimited by the dissolution
front, 7 (rg — w)2. Thus we have: Aer = (2rgw — w?)m.

Differentiating Eq. (2) with respect to C yields du/9C = R*T/C.
Moreover, the radial diffusion flux Jj(w) is related to the chemical
potential p according to Fick’s first law:

aC DC(w) o

Jw) =D = ——pm o (7)
where D is the grain boundary diffusion coefficient. The energy
dissipation per unit volume, noted A, is equal to —J(w)du/ow
(Lehner, 1990). The radial energy dissipation increment is thus:

dA, = —](w)g—aSP(w)dw (8)

Under low stress conditions, we assume that the solute con-
centration C(w) along the grain boundary is equal to that in the
pore, Co (Rutter, 1983; Schutjens and Spiers, 1999; Pluymakers and
Spiers, 2015). Integrating the radial energy dissipation increment
over the distance that goes from a point at the periphery of the
inclusion to the pore wall, and using both Eqgs. (6) and (7), we ob-
tain the expression of the total dissipation Afy on a contact plane,
as follows:

AXY _ /W 2RTVXY 7t Q1w — w?)?
t 0 DC,S$22 (rg — w)

where we took the contact plane XY as an example. VXY is the
velocity of the dissolution that occurs on plane XY and leads to

dw (9)

a deformation along the z-axis. Both grains in contact dissolve, so
the overall dissolution rate at the contact is 2VXY. During one unit
of time, the work of the compressive force that acts on plane XY
to produce a vertical displacement of 2VXY is the product of 2VXY
by the normal effective stress on plane XY (noted oXY) and by
the area of the contact surface in plane XY, Aer = 2rgW — W2,
Assuming that the inclusion work input is entirely dissipated by
pressure solution, the total dissipation can thus be expressed as:

AYY = 20XV 2r,W — W) (10)

Substituting Eq. (9) into Eq. (10), the dissolution velocity normal
to the contact plane XY is expressed as:

_ DSC,Q20 2 (2rW — W?)

XY
Vc

2rgw—w2)? (11)
R 3 L) g

The rate of mineral volume dissolved, Vyy, depends on the dis-
solution velocity on plane XY and on the area of the contact sur-
face: Vxy = 2rgW —W?2)VXY, The dissolution velocity and the
rate of volume dissolved on planes YZ and XZ can be obtained in
the same way. The chemical viscous strain rate €x, €, and €, are
obtained from the dissolution velocity on planes YZ, plane XZ and
plane XY respectively, as follows:

€ =VY/rg (12)
€ = VX r, (13)
€& =V r, (14)

The mineral only dissolves on the contact planes. In addition, we
assume that the mineral precipitates on the pore wall uniformly.
Thus, the change of thickness SW' at time step t; can be calculated
from the total volume of mineral dissolved and from the pore’s
surface area Aﬁ] at time step t;_;. Diffusion and precipitation pro-
cesses are illustrated for plane XY in Fig. 2. We finally obtain:

_ +V\}Z+V)l<z(3t (15)
= A

where §t is the time step.

We simulate an isotropic creep test at the inclusion scale. The
inclusion size and the chemical parameters used in the simulations
are listed in Table 1. The inclusion is subjected to a hydrostatic
stress of —1MPa, —2MPa and —3 MPa, and we follow the evolu-
tion of the inclusion geometry in each case. Simulation results are
presented in Fig. 6.

SWi
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Fig. 6. Evolution of the inclusion geometry during an isotropic creep test.

Table 1
Inclusion parameters in the isotropic and uniaxial creep
tests.

Initial size Chemical property

I W, DS c Q

mm  mm mm3/s mol/mm3 mm?3 [mol
0.15 0.05 1x10-8 6.48 x 106 2.7 x 104

Isotropic compressive stress induces dissolution at each con-
tact plane, therefore €x = €, = €; < 0. Precipitation at the pore wall
stops when the wall thickness becomes equal to the radius of the
inclusion: the pore is then fully filled with precipitated solid min-
eral, i.e. the inclusion is fully healed. When precipitation stops, de-
formation components reach a plateau. Fig. 6(a) reflects this pro-
cess and confirm that the healing rate increases with the mag-
nitude of the external stress imposed during the creep test. The
time to achieve full inclusion healing is 1.4431 x 107 s (107 days),
6.9039 x 106 s (80 days) and 4.5374 x 106 s (52 days), under
—1MPa, —2MPa and —3MPa, respectively. Since precipitation is as-

sumed to be uniform on the pore wall, the geometry of the fully
healed inclusion is determined by the initial dimensions of the in-
clusion rather than by the external stress conditions. According to
Eq. (11), the relationship between the healing rate and the stress
is not linear. The results show that, as expected, the healing rate is
influenced by the area of the contact (term W2 in (11)). The rate of
porosity change decreases over time, as expected (Fig. 6(c)).

In order to study healing-induced anisotropy, we now simulate
uniaxial creep tests for various inclusion orientations, defined by
three angles ¥ (coordinates x’y’z’), 6 (coordinates x''y"’z'’) and ¢
(coordinates x’’y’"’z''"), as shown in Fig. 7. Due to the symmetry
of the loading under uniaxial stress conditions, ¥ has no influence
on the deformation of the inclusion. Due to the symmetries of the
spherical inclusion, we only simulate cases where 6 and ¢ are be-
tween 0° to 45°. In total, 13 cases were simulated (Figs. 8 and 9).

For non-zero values of ¢ and 6, the dissolution rate in planes
YZ and XZ increases with 6 (leading to an increase of éx and ¢,
respectively). For a given non-zero value of 6, increasing ¢ in-
creases the dissolution rate in plane XZ (leading to an increase
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Fig. 7. Angular coordinates adopted to define the orientation of the inclusion rela-
tive to the loading axis.

of €y) and decreases the dissolution rate in plane YZ (leading to
a decrease of €y). Fig. 8(b) shows the eolution of €x. The evolu-
tion of €y, not shown here, follows the same trend. For the initial
dimensions chosen in this parametric study, Fig. 8(c) shows that
the strain rate €, is controlled by angle 6: €, reduces when 6 in-
creases, which results in a larger value €, at the final stage, when
healing is complete. The angle ¢ does not influence the strain rate
€, significantly. The evolution of the wall thickness (Fig. 9(a)) and
of porosity (Fig. 9(b)) confirm that the healing rate increases with
the sum of the stresses normal to the contact planes. The trace
of the imposed stress does not depend on the inclusion orienta-
tion, thus the healing efficiency is the same for all inclusion orien-
tations tested. Simulation results follow the trends expected from
the model formulation and are in agreement with classical physi-
cal observations, which justifies the upscaling method proposed in
the following section.

3. Homogenization scheme
3.1. Averaging method

We consider a REV made of an assembly of hollow spherical
inclusions that have the properties described in Section 2. In or-
der to represent the microstructure of a polycrystal such as halite,
we assume that there is no dominating phase in the REV compos-
ite: each hollow sphere is thought of as an inclusion embedded in
a matrix made of all the inclusions present in the REV. Thus, we
employ a self-consistent homogenization scheme to determine the
relationship between the stress and strain fields of the REV and
those of the inclusions. A macroscopic field can be calculated by
averaging its microscopic counterpart over the REV. We introduce
the solid angle A, defined such that dA = sinfdfdy,. Noting p(y,
0, ¢) the probability of the occurrence of orientation (v, 6, ¢), the
average of a field function f that depends on (¥, 6, ¢) is defined
as (Pouya et al., 2016):

F= o [ 06,0000, gsinddydodg
A*

27

b4 27
~am [ T8 6w 6. gsindaydedg (16)

Because the inclusion model has three pairwise perpendicular axes
of symmetry which intersect at a center of symmetry, the domains
of variation of # and ¢ reduce to the interval [0, 7 /2]. In trans-
verse symmetric loading conditions (like in isotropic, uniaxial, and
oedometer tests), the model is symmetric about the z-axis at the
REV scale, so that the rotation by an angle i does not influence
the mechanical response of the REV. Thus in the following, ¥ is set
equal to 0, without losing the generality of the model. Eq. (18) is
rewritten as:

_ 2 T/2 pm

2
f= - f(0.9)p(¥.0)sinfdode (17)
0=0 Jo=0

More generally, the average of a field function is calculated as:

F= e [F0.0.0.00p0.0.9)p1 )
A*
-+ pn(vp)sinfdyrdédedr, - - - dvy, (18)

where p; is the probability of occurrence of the geometric charac-
teristic v; in the REV (e.g., inclusion size or porosity). In this paper,
we assume that all probability density functions (p,pi,---pn) are
independent. We derive a close formulation in which we assume
that ¢ and 6 are uniformly distributed in the interval [0, 7 /2]. The
model can of course be used for other orientation distributions, de-
pending on available microstructure information.

3.2. Inclusion-matrix interaction model

Hill's self-consistent method (Hill, 1965) is used to upscale the
mechanical behavior of the inclusions at the scale of the REV,
which is viewed as a polycrystal. Hill's incremental inclusion-
matrix interaction law relates the increments of stress and strain at
the inclusion scale (noted S0, and d¢, respectively for inclusion
«) to the increments of stress and strain at the REV scale (noted
86 and 8€ respectively), as follows:

80y — 86 = —L*(8€y — 8€) — 8L (€4 — €) (19)

where L* is Hill's tensor, which depends on the shape of the in-
clusion and on the stiffness of the matrix. In the self-consistent
method, the matrix is made of the assembly of inclusions present
in the REV, and therefore, the stiffness of the matrix is not known
a priori. Therefore, the resolution of Eq. (19) is iterative. Note that
the stress and strain fields in each inclusion are assumed to be
uniform, i.e. we assume that pressure-solution produces uniform
changes of stress and strain in the hollow spherical inclusion. Since
we present simulations done with uniform distributions of inclu-
sion orientations, the matrix is isotropic. For spherical inclusions
embedded in an isotropic matrix, Hill’s tensor is expressed as (Hill,
1965; Eshelby, 1957):

*

. 0
L= 1—5, (8udj + 5113ﬂ<)] (20)

where v is the Poisson’s ratio of the matrix, and u* is the shear
modulus of the matrix.

In porous media, it was shown that the shear modulus in-
creases with the hydrostatic increment of stress (Digby, 1981).
Moreover, the shear modulus depends on porosity (Kovacik, 2008).
Accordingly, we choose an inclusion constitutive model that re-
flects a linear dependence of the shear and bulk moduli of the
matrix (u«* and k*) to the porosity of the REV (¢*), and we express
the shear modulus as follows:

7-5v

[(3 - 5U)5ij8k1 +

o

W= —¢*)Mo<6e> (21)
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Fig. 11. Calibration of the model against uniaxial creep tests (tests under —2.1 MPa
are used for verification).

where 1, is the shear modulus of the solid part of the inclusion,
and &, is the external global stress. 6, and n are model parame-
ters, that need to be calibrated. The decrease of REV porosity in-
duces an increase of the matrix shear modulus p*, which results
in a change of Hill's tensor L*. We assume that the Poisson’s ratio
of the matrix (v) is a material constant (Pouya et al., 2016). The
incremental change of L* can thus be expressed as:

aL* op* . .,
= o 967 8¢ (22)

3.3. Multi-scale chemical creep modeling

SL*

Following the self-consistent method, Eq. (19) is solved itera-
tively. At time step t;, what is known from the previous time step
ti_y is: the REV stress 51, the local stress of each inclusion, o1,
the REV strain €1, the local strain of each inclusion, €', the REV
porosity qb*i’], the local porosity of each inclusion qb(’;i’l, and the
radius of the void in each inclusion, r{jl. In the loading direction
(z-axis), the REV axial stress at time t; is known (&5}, of known
value in an oedometer test, 85, = 0 during a creep test). In oe-
dometer tests and in uniaxial creep tests, the other boundary con-
ditions imposed at time t; are &}, =0, €, =0, €, =0, &, =0 and
é;;y = 0. The variation of a local strain increment Sel, is the sum
of the chemical strain increment, due to pressure solution (noted
Sel.) and of the elastic local strain increment (noted Sel,). Thus
the local stresses and strains in the inclusions can be obtained as
follows:

Sol — 861 + L*i<3e;;c +C 7 sol - 5@‘)

+8L*"<eg;1 4 o€l +C 8ol — el - 5@!’) ~0 (23)

By definition, the REV stress increment 86! (respectively the
REV strain increment §¢') is the average of the local stress incre-
ments 8o/, (respectively the average of the local strain increments
8el,). Using the expression of the dissolution velocity on each con-
tact plane, the local chemical strain increment is obtained by cal-
culating the change of inclusion radius induced by pressure solu-
tion under local stress o/, and local stress change 8o, according
to the inclusion model explained in Egs. (11)-(14). Now consider-
ing that the void inside the spherical inclusion remains a sphere
upon pressure solution, the void radius ryy is updated over time
by using Eq. (15), as follows:

s ViV Vo
av A,g,]

After updating the external radius and the pore radius in each
inclusion, the variation of local porosity §¢%' and the variation
of global porosity 8¢*' can be obtained, and the Hill's tensor is
updated: SL*, [*! are calculated according to Eq. (20)-(22). The
porosity damage model employed at the REV scale is also used at
the scale of the inclusion, so that the local stiffness tensor (Cfx is
replaced by (1 — ®,)CL,. The local elastic strain increment 8¢k, is
then calculated as the product of the inverse of the local stiffness

matrix Cf)f] by the local stress increment, §o/. The algorithm is
explained in the flow chart given in Fig. 10. All the unknown vari-
ables at time ¢; in Eq. (23) can be regarded as functions of do.
Thus, six components of §o/, are unknown for each inclusion, and
Eq. (23) provides six equations.

Noting n the number of inclusions in the REV, 6n equations
have to be solved for 6n unknowns at each time step. The Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm (Fletcher, 1987; Lewis
and Michael, 2008) is employed to solve this system of 6n im-
plicit equations. We initialize stress by solving static mechanical
balance equations, valid before pressure solution starts. According
to Eq. (19), the corresponding increment of local stress is:

(24)

-1
500 = <1+ L*Occg’1) (85° +1L7°8¢°) (25)

The initial local stress oy is calculated as o0 = §00. The ini-
tial increment of local strain 8¢ is purely elastic, so 8€J equals

€9'500. The initial local strain e, is initialized as €2 = §¢9.
4. Model calibration against brine-saturated creep tests
4.1. Model calibration against salt rock creep tests

The volumetric strain curves obtained by Spiers for wet salt
aggregates (Spiers and Brzesowsky, 1993) are used to calculate
the evolution of brine-saturated halite porosity during uniaxial
creep tests. Experimental results obtained under axial stresses of
—11MPa and —3.1MPa are used for calibration. The calibrated
model is then compared to the results obtained under an axial
stress of —2.1MPa for verification. The REV is represented by 300
spherical inclusions. The orientations of the inclusions are uni-
formly distributed. Due to the geometric assumptions made in the
model, the radius of the inclusion (rg) increases with the radius of
a salt grain. In order to simulate realistic halite microstructures, we
consider that rg is equal to the characteristic grain size. rg is con-
sidered uniform in the REV, and equal to 0.1375 mm, according to
the experimental data reported in (Spiers and Brzesowsky, 1993).
The initial porosity was 42% in the experiments. Correspondingly,
the mean void radius was found to be 0.103mm. Based on ex-
perimental observations (Van Genuchten, 1980; Arson and Pereira,
2013), we assumed a lognormal distribution for the void radius,
with a variance of 0.0001 mm?2. The calibration results are pre-
sented in Fig. 11 and Table 2.
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Fig. 12. Principal stresses in each inclusion, for a uniaxial creep test under —1.1 MPa.

Table 2
Model parameters found by calibration.

Elastic property ~ Chemical property

n 0o DS
- MPa mm3/s
1.035 919 3.75 x 108

Inclusions of different orientations or different initial void ra-
dius develop different microscopic principal stresses E’p. We rep-
resent the 300 minor, medium and major principal stresses on the
map shown in Fig. 12(a): or (in the upper right quadrant) rep-
resents a tensile principal stress, and oc (in the lower left quad-
rant) represents a compressive principal stress. « is the angle be-
tween the stress eigenvector and the orientation of the loading
axis. The principal stresses in the 300 inclusions are shown for the
test conducted under an axial stress of —1.1 MPa, after 100,000
s (27h40, Fig. 12(a)) and after 250,000 s (69h25, Fig. 12(b)). The
dots with a lighter color represent inclusions with smaller initial
voids.

According to Fig. 12, the major (tensile) principal stresses are
almost perpendicular to the loading axis, while the minor (com-
pressive) principal stresses tend to align with the loading direction.
The magnitudes of the minor and major principal stresses increase
with time. The minor principal stress is nearly zero in some in-
clusions, while it reaches a value close to —1.5MPa in some other
inclusions. Inclusions with larger initial voids tend to have smaller
principal stresses. Fig. 13 illustrates the evolution local stress as a
function of initial void radius and inclusion orientation for 10 rep-
resentative inclusions. Fig. 13(b) confirms that before creep starts,
the initial state of stress is different in each inclusion, because
the inclusions considered have different initial void sizes. After
250,000 s, the state of stress is stable in each inclusion. Higher
the initial stress, higher the healing rate, lower the final inclusion
porosity. The compressive principal stress increases in magnitude
with time for inclusions with small voids, while it decreases for
inclusions with large voids. The final compressive principal stress
is largely influenced by 6. If 6 is close to 0° or 90°, small compres-
sive principal stress is observed.
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Fig. 13. Evolution of the void radius and of the minor compressive principal stress
in 10 different inclusions during the creep test performed under an axial load of
-1.1 MPa. Numbers into brackets indicate angular coordinates (6, ¢). Dash lines refer
to inclusions with large voids; solid lines refer to inclusion with small voids.

4.2. Sensitivity of the micro-macro model to the number of inclusions

Sensitivity analyses are performed to determine the minimum
number of inclusions necessary to form a REV. We calibrate our
model against oedometer tests performed under axial stresses of
—1.1 MPa and —3.1 MPa, for a REV that contains 400 inclusions.
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Fig. 14. Influence of grain size on the healing rate.

Table 3
Error made on the estimation of the final porosity, com-
pared to the porosity estimated with 400 inclusions.

Number of cells 50 100 200 300

Error (—11 MPa)  0.62%  0.96% 0.23%  0.26%
Error (—3.1 MPa)  1.34% 1.16% 1.00%  0.02%

We use the same distributions of orientations, porosity and size as
in Section 4.1. The calibrated parameters are used to simulate the
oedometer tests for REVs that contain less inclusions, and we find
the minimum number of inclusions needed to match the results
obtained with 400 inclusions with an acceptable error. Results are
presented in Table 3. The error made on the estimation of the fi-
nal porosity is less than 1.00% if the number of inclusions is at
least 200. This finding validates the model calibration presented in
Section 4.1 for 300 inclusions, and indicates that a set of 200 inclu-
sions forms a REV. In the following, we present simulations done
with REVs of 200 inclusions.

5. Influence of salt fabric on the healing rate and micro-macro
creep behavior

In the following, we simulate a uniaxial oedometer creep test
under -1.1MPa for REVs that contain 200 uniformly oriented in-
clusions. We study the sensitivity of the micro-macro model of
chemo-mechanical healing to the microstructure of the polycrys-
tal. The reference case is such that ry is equal to 0.15 mm, the
initial porosity of the REV is 20%, and the coefficient of variance
(COV) of the void radius distribution is 0.05. Sensitivity analyses
are performed for different values of rg (0.05 mm, 0.25 mm), ini-
tial porosities (10%, 40%) and void radius COV (0.01, 0.1).

5.1. Influence of initial inclusion size

The rate of halite densification is known to be highly dependent
on salt grain size. There are less inter-granular contact planes in
the REV if salt crystals are larger. When salt polycrystals are satu-
rated with brine, the size of salt grains not only affects the contact
area between grains, but also controls the length of the diffusion
path. Fig. 14 shows the variations of porosity and void radius with
rg during the oedometer test, with the reference REV inital poros-
ity and void radius COV.

As could be expected from Eq. (11), a smaller inclusion radius
leads to a larger dissolution rate at the grain boundaries, hence
a faster healing rate. Results presented in Fig. 14(a) confirm this
trend: a smaller grain size results in a faster rate of porosity de-
crease. It is interesting to note that porosity stabilizes to a non-
zero value. This is because over time, the macroscopic stress is sus-
tained by less and less inclusions: the inclusions under low stress
undergo pressure solution at a negligible rate, and therefore, the
full healing time cannot be reached during the simulation. Cor-
respondingly, the void size distribution departs more and more
from the initial uniform size distribution. This phenomenon is par-
ticularly visible for samples with smaller grains, see Fig. 14(b).
When the initial grain radius is 0.05 mm, a minimum void radius
is reached, beyond which no further healing is observed. Fig. 15
shows the microscopic principal stresses in the inclusions, for the
three different grain sizes. All the principal stresses are initially
compressive, because an oedometer test is simulated. Then, the
major principal stress increases. For small grain sizes, the major
and minor principal stresses are widely distributed and the rota-
tion of the principal stresses is significant. Principal stresses do not
evolve much once the REV porosity becomes stable.

5.2. Influence of initial porosity

Due to its high solubility, salt is easily dissolved in water. Larger
void volume in salt rock usually results in lower stiffness and pref-
erential fluid flow paths. Here, we study the effect of the initial
porosity on the deformation of the brine-saturated halite polycrys-
tal. Fig. 16 shows the variations of porosity and void radius with
the initial REV porosity during the oedometer test, with the refer-
ence grain size and void radius COV. After 4 x 10° s (4 days and
15 h), the decrease in total porosity is about 5% in all cases. Under
same initial void radius COV, void size heterogeneity increases with
the initial porosity. In heterogeneous samples, smaller voids heal
fast, and larger voids do not heal, which leads to a non-uniform
healing rate over time. For smaller initial porosity, we observe a
uniform healing rate. Fig. 17 shows the effect of initial porosity on
the distribution of principal stresses in the inclusions. For higher
initial porosity, we observe higher major tensile stresses, lower mi-
nor compressive stresses and a more significant rotation of princi-
pal stress directions over time. For the specimen with the lowest
initial porosity, the major tensile principal stress increases rapidly
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Fig. 18. Influence of the void radius COV on the healing rate.

over time, in the radial direction, while the minor compressive
stress remains stable.

5.3. Influence of the variance of the initial void radius distribution

Fig. 18 shows the variations of porosity and void radius with
the void radius COV during the oedometer test, with the reference
grain size and initial REV porosity.

According to Fig. 18(a), the rate of porosity change decreases
when the void radius COV increases. This can be explained by the
fact that the stiffness of inclusions increases when the void size
decreases. As a result, inclusions with small voids undergo higher
microscopic compressive stress, and heal faster. As healing pro-
ceeds in the inclusions that contain smaller pores, the void radius
COV increases, which enhances the difference of healing rate be-
tween inclusions that contain small pores and inclusions that con-
tain larger pores (Fig. 18(b)). Inclusions with large voids never heal
completely, which slows down the overall healing rate of the REV.
As expected, the distribution of principal stresses is more uniform
in a sample that has a smaller void radius COV, see Fig. 19. Larger
tensile stresses and compressive stresses are observed under small
void size COV, as shown in Fig. 19. For larger void size COV, lower
healing rates result in less stress redistribution and smaller tensile
stresses and compressive stresses.

6. Conclusion

We present a chemo-mechanical self-consistent homogeniza-
tion scheme for self-healing polycrystals. The model can be used
to predict the evolution of stress, strain, porosity and stiffness at
both micro- and macro-scales. The inclusion is a hollow sphere
that contains a spherical void located at the intersection of three
orthogonal grain-to-grain contact planes. Under compressive stress
normal to any of those planes, the solid part of the inclusion
dissolves. The solute diffuses towards the pore within the inter-
granular film, and precipitates at the pore wall. The resulting
changes in the dimensions of the inclusion are used to calculate
the viscous strain rate of the inclusion. The healing rate decreases
over time. Sensitivity analyses performed at the inclusion scale un-
der isotropic compressive stress indicate that the healing rate is
higher under higher confining stress. Simulations of uniaxial creep
tests show that the healing rate increases significantly when the

component of compressive stress normal to the grain-to-grain con-
tact plane is increased. Hill's inclusion-matrix interaction law is
used to upscale strains and stresses at the REV scale. Oedometer
tests were simulated for specimens containing spherical inclusions
with uniformly distributed contact plane orientations. The REV
porosity decreased at a decreasing rate in all cases. Inclusions with
smaller voids are stiffer, and undergo higher compressive stress.
As a result, it was observed that in samples containing inclusions
with different initial void sizes, inclusions with larger voids had a
negligible healing rate, and were slowing down the overall healing
rate of the REV. In samples with uniformly distributed void sizes,
the healing rate was faster, because all inclusions contributed to
the healing of the REV. As expected, at the inclusion scale, major
tensile stresses were mostly radial, and minor compressive stresses
were mostly axial. In specimens with smaller grain sizes, princi-
pal stresses were more widely distributed in magnitude and the
healing rate was higher. For uniform void size distributions, the
healing rate increased with initial porosity, but the final porosity
change did not depend on the initial porosity of the sample. Princi-
pal stresses of higher magnitude were noted in the inclusions that
were part of REVs of high initial porosity.

Chemical reactions typically initiate at the location of mi-
crostructure defects, which would be very difficult to account for
in a homogenization scheme that separates the solid and the pore
phases, as is classically the case. The key here is that the inclusion
is not a grain, but rather, a space that contains a pore and discon-
tinuities, where chemical processes take place. Mass and energy
balance equations are rigorously established to predict the chemi-
cal eigenstrain of each inclusion, which, added to the elastic defor-
mation, provides the microstrain of each inclusion. From there, it
is possible to use a matrix/inclusion interaction law to predict the
mechanical response of a polycrystal subject to pressure solution
under mechanical loading. The model was calibrated against ex-
perimental results published in the literature. Self-healing predic-
tions are in agreement with physical observations. The proposed
homogenization method paves the way to many future develop-
ments for upscaling chemo-mechanical processes in heterogeneous
media. In addition, results obtained in this paper can guide the
design of self-healing materials. For instance, a lower grain size
promotes healing, whereas non-uniform void size distributions de-
celerate healing. Important lessons learnt in this study also con-
cern the risk of grain (or crystal) breakage. For instance, larger
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Fig. 19. Influence of void radius COV on the evolution of inclusion principal stresses.

microscopic stresses are noted in samples of high porosity, and
in heterogeneous microstructures, grains that are close to smaller
voids undergo higher stress. The paper focused on the coupled
chemo-mechanical processes that occur at micro and macro scales
to explain pressure-solution driven healing. In future work, we will
study healing -induced anisotropy and accommodation, and we
will extend the model to visco-plasticity under high stress condi-
tions.
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