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Abstract: The recent COVID-19 pandemic has prompted global governments to take several
measures to limit and contain the spread of the novel virus. In the United States (US), most states
have imposed a partial to complete lockdown that has led to decreased traffic volumes and reduced
vehicle emissions. In this study, we investigate the impacts of the pandemic-related lockdown on
air quality in the US using remote sensing products for nitrogen dioxide tropospheric column (NOz),
carbon monoxide atmospheric column (CO), tropospheric ozone column (Os), and aerosol optical
depth (AOD). We focus on states with distinctive anomalies and high traffic volume, New York
(NY), Illinois (IL), Florida (FL), Texas (TX), and California (CA). We evaluate the effectiveness of
reduced traffic volume to improve air quality by comparing the significant reductions during the
pandemic to the interannual variability (IAV) of a respective reference period for each pollutant.
We also investigate and address the potential factors that might have contributed to changes in air
quality during the pandemic. As a result of the lockdown and the significant reduction in traffic
volume, there have been reductions in CO and NO:. These reductions were, in many instances,
compensated by local emissions and, or affected by meteorological conditions. Ozone was reduced
by varying magnitude in all cases related to the decrease or increase of NO2 concentrations, depend-
ing on ozone photochemical sensitivity. Regarding the policy impacts of this large-scale experiment,
our results indicate that reduction of traffic volume during the pandemic was effective in improving
air quality in regions where traffic is the main pollution source, such as in New York City and FL,
while was not effective in reducing pollution events where other pollution sources dominate, such
asinIL, TX and CA. Therefore, policies to reduce other emissions sources (e.g., industrial emissions)
should also be considered, especially in places where the reduction in traffic volume was not effec-
tive in improving air quality (AQ).

Keywords: COVID-19 pandemic; US; air quality; remote sensing; atmospheric composition

1. Introduction

The COVID-19 pandemic has led to profound impacts on the global population, re-
sulting in almost a million deaths in addition to several millions of infected people, many
of whom are still suffering from various side effects despite surviving the novel virus [1].
Governments around the globe have enforced several measures to contain the spread of
the virus. In the United States (US), ~8 million people were infected, and there were ~200
k total deaths as of October 2020 [2]. The White House declared a state of emergency on
13 March 2020, and travel restrictions were applied. On 16 March 2020, the White House
advised against large gatherings, and since 19 March 2020, the State Department has ad-
vised US citizens to avoid all international travel [3].
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The impact of COVID-19 on general mobility has been staggering. A survey con-
ducted in the Netherlands found that 80% of respondents actively reduced their outdoor,
and the number of trips taken reduced by 55% [4]. Further survey results from Australia
found household trips reduced by over 50% across all modes, and the proportion of transit
trips decreased from a pre-lockdown level of 14% to just 7% [5]. A study of roadway de-
tectors in Florida (FL) found that vehicle volumes across the state had dropped by 47.5%
[6]. Recent studies have also attempted to correlate mobility habits and the proliferation
of COVID-19. In Italy, the number of daily new COVID-19 cases was related to trips per-
formed three weeks earlier [7], and another study in the United Kingdom found that mo-
bility reductions had a significant impact on reducing COVID-19 [8].

The COVID-19 related lockdown measures have resulted in a decrease in traffic vol-
ume and other economic activities and their related anthropogenic emissions. Traffic
emissions are a primary source of carbon monoxide (CO), nitrogen oxide (NO), and nitro-
gen dioxide (NOz2) [9-11]. While CO and NO are emitted directly from vehicle emissions,
NO:, ozone (Os), and secondary organic and inorganic aerosols are mainly photochemical
products, and their atmospheric concentration and lifetime depend on the non-linear
chemistry of Os, NOx (NOx=NO + NO2), and volatile organic compounds (VOCs) in ad-
dition to the oxidant’s levels, meteorology, and solar radiation [12]. Several recent studies
have reported improved air quality (AQ) due to the pandemic related lockdown [13-16].
In most studies, the change in air pollutants due to the lockdown was calculated by com-
paring the pollutant concentration during the lockdown to that of a previous base period
of time or model simulations [14,15]. However, there are large discrepancies within the
literature regarding the representativeness and the time duration of lockdown and base
periods. For instance, some studies use a lockdown period of January to May [14], while
others use much shorter periods [16]. The time duration of the base periods also varied
within the literature from few months [17] to several years [18,19], which makes the com-
parison between different studies regarding the relative impacts of COVID-19 burden-
some. For example, [18] concluded, based on data from ground-based monitoring net-
work stations, that reductions in air pollution during a five months lockdown period in
New York City (NYC) are within the interannual variability of the last five years (2015~
2019). Other studies used only a few months to one year as a reference period [20-23].

[24] investigated the ozone photochemical formation in Quito, Ecuador, using a pho-
tochemical box model based on the reduction of the NO during the rush hour time during
the pandemic compared to the levels before the pandemic. The reduction in NO revealed
a significant increase in ozone production. [25] reported several periods of heavy haze
pollution in east China during the lockdown and concluded that enhanced secondary pol-
lution might have offset reduction of primary emissions in China. [25] found that reduc-
tion of NOx emissions during the pandemic increased ozone and nighttime NOs radicals
and thus increase the nighttime atmospheric oxidation capacity, facilitating the formation
of secondary organic and inorganic particulate matter [25]. The results of [25,26] indicate
that the severe pollution episode was still happening during the pandemic despite de-
creased emissions from traffic and other economic sectors. These results show the im-
portance of accounting for the formation of secondary oxidation products as well as other
emissions sources when discussing the impacts of reduction in traffic emissions.

In FL, using ground-based measurements, [27] found a reduction in NO, CO, and Os
but an increase in SOz and PM:zs during the first two weeks of April, which they related to
increased power consumption during the lockdown period. In NYC, while [18] found no
significant differences, [14,28] found a significant reduction in NO2 and Os in both NYC
and FL.

In this study, we use actual traffic data to estimate the lockdown period, and we use
remote sensing products that have coverage of several years before the 2020 COVID-19
pandemic to evaluate the AQ changes as well as the effectiveness of the reduction in traffic
volume on AQ in several states with diverse geographic and environmental conditions.
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We investigate the impacts of the pandemic-related lockdown on AQ in the US and con-
sequently focus on regions with a distinctive anomaly, New York (NY), Illinois (IL), FL,
Texas (TX), and California (CA).

2. Methodology
2.1. Traffic Volume and COVID-19 Cases

The Federal Highway Administration (FHWA) directs state departments of transpor-
tation to provide annual traffic statistics [29]. State transportation agencies are responsible
for building, operating, and maintaining permanent traffic monitoring stations to collect
a variety of traffic statistics, including traffic count information. Continuous count stations
collect hourly traffic counts throughout the year to meet the federal requirements of the
National Highway Performance Monitoring System (HPMS). The states analyzed in this
study have made their traffic information available through their websites (NY), through
data requests (FL), or third-party vendors (IL and Massachusetts (MA)). Bidirectional
hourly traffic counts were collected, cataloged, and processed from hundreds of telemetric
monitoring stations. The data were reviewed for errors. A common error was missing data
and/or sites reporting zero values. The zero values were attributable to road closures be-
cause of incidents, scheduled maintenance work, and malfunctioning roadway sensors.
Sites with three or more consecutive observations of zero values were removed. We also
used available literature to investigate the traffic volume for California [30].

2.2. Remote Sensing Products

In this section, we describe the different satellite products used in this study. A list
of these products is shown in Table 1.

2.2.1. Nitrogen Dioxide (NOz)

NO: tropospheric column data was obtained from the OMI instrument aboard the
Aura satellite. Aura was launched into a sun-synchronous, near-polar orbit in July 2004.
It orbits at 705 km (438 miles) above the Earth with a sixteen-day repeat cycle, and it has
a 1:45 PM + 15 minute equator crossing time. With its 2600 km wide swath on the surface,
OMI measurements have a daily global coverage. Daily OMINO: L3 V4 gridded data was
obtained at 0.1° resolution from NASA Goddard Earth Sciences Data and Information Ser-
vices Center [31].

Table 1. Data products and their reference periods.

Parameter Resolution Instrument/Platform Reference Period

NO2 0.1° OMI/Aura 2015-2019
CcO 1° MOPITT/TERRA 2015-2019
AQOD 1° MODIS DB land/TERRA 2010-2019
Ozone 1° OMPS/MERRA-2 2015-2019

AOD: aerosol optical depth; DB: deep blue; OMPS: ozone mapping profiler suite; MERRA-2: mod-
ern-era retrospective analysis for research and applications-2.

2.2.2. Carbon Monoxide (CO)

CO atmospheric column gridded daily means were obtained from the MOPITT in-
strument aboard the Terra Satellite [32,33]. Terra was launched into a sun-synchronous
polar orbit in December 1999. Terra orbits at 705 km with a sixteen-day repeat cycle and
crosses the equator at approximately 10:30 am. Daily L3 V008 data was obtained at 1°
resolution from the NASA Langley Research Center Atmospheric Science Data Center
(ASDCQ).
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2.2.3. Aerosol Optical Depth (AOD)

Aerosol optical depth, AOD, is a measure of the aerosol load in the atmosphere, and
it represents the degree to which aerosols prevent the transmission of light in the atmos-
phere. AOD of less than 0.1 indicates a clear sky with maximum visibility, whereas a value
of 4 indicates a high dense aerosol load that obstructs vision. In this study, we used the
MODIS (Terra) Collection 6.1 aerosol products datasets, which were obtained at Level 3
from the Atmosphere Archive and Distribution System (LAADS) Distributed Active Ar-
chive Center (DAAC) and has been recently validated [34-36]. We used product
MODO08_D3, which is a daily 1° product. MODIS, with its 2330 km viewing swath width,
provides almost daily global coverage. We used the MODIS Deep Blue (DB) aerosol prod-
uct (Deep_Blue_Aerosol_Optical_Depth_550_Land_Mean). The DB algorithm is prefera-
ble for bright-reflecting land surfaces, such as semiarid and urban/industrial regions [35].

2.2.4. Tropospheric Ozone Column (Os)

We used the tropospheric column ozone (TCO) product derived by combining total
column ozone from the Suomi National Polar-orbiting Partnership (NPP) Ozone Mapping
Profiler Suite (OMPS) nadir-mapper (NM) v2.1 total ozone [37,38] with stratospheric col-
umn ozone from Modern-Era Retrospective analysis for Research and Applications-2
(MERRA-2) [39], both of which have been evaluated and validated, and are in the public
domain [40]. We also included extensive comparisons between OMPS/MERRA-2 TCO
and ozonesonde (Figures S1 and S2) and OMI/MLS TCO (Figures S3 and S4). Footprint
measurements of tropospheric ozone were binned to 1° latitude x 1° longitude resolution.
MERRA-2 assimilated stratosphere column ozone was found to agree within +2-3 Dobson
Units (DU) with original MLS along-track measurements from tropics to high latitudes.
Comparisons between collocated ozonesonde and OMPS/MERRA-2 TCO in the tropics
and extra-tropics indicate that mean differences varied from near zero to at most ~ +6 DU,
respectively, with standard deviations from a few DU in the tropics to at most ~6-8 DU in
mid-high latitudes (Figures S1 and S2). Similarly, mean offsets between OMI/MLS and
OMPS/MERRA-2 TCO were small, at most 2-3 DU everywhere except in mid-high lati-
tudes in the southern hemisphere (SH) where the average offset was about -5 DU, with
small difference standard deviations of only about 2-3 DU at all latitudes. These small
standard deviations show that the two TCO products were capturing very similar space-
time variability (Figure 54).

2.3. Analysis Period and Data Significance
2.3.1. Analysis Period

To estimate the anomaly in the pollutant’s levels, we compare the pollutant concen-
tration in 2020 to a base period represented by a reasonable number of previous years. For
NO, CO, and Os, we used a base period of five years (2015-2019). For AOD, we use a base
period of ten years (2010-2019) as a representative mean [41]. Furthermore, the MODIS
AOD DB algorithm [35], used in this study, has been reported to underestimate PM2sin
the AOD range of 0-0.5 by ~22% [42]. Therefore, a reduction of AOD by up to ~20% less
than the interannual variability (IAV) was considered carefully in this study and will not
be considered a significant reduction.

2.3.2. Data Significance

We evaluated the significance of the results using two approaches:

Statistical Significance: We calculated the statistical significance of the difference be-
tween the daily base and lockdown periods at each grid point using the two t-test hypoth-
eses [43] at a confidence limit of 95%. Significant relative changes (sig A), calculated as
(2020 - base)/base x 100, shown in the following sections, include only significant differ-
ences.
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Detrended Interannual Variability (IAV): This large-scale experiment presented an
unprecedented opportunity to investigate the potential of reducing traffic emissions on
AQ. To evaluate the potential of these emission reductions on AQ in comparison to the
previous years, we compared the sig A related to the pandemic to the detrended IAV of
the base period. We calculated the effectiveness of the reduction in traffic volume (ETR)
to reduce air pollutants during the pandemic, ETR= - sig A — IAV. This relation applies
only to a reduction in air pollutants (sig A should be negative) since an increase in pollu-
tant levels is not related to the lockdown but to other factors, such as pollution events, as
discussed below. An ETR value of <0 indicates that traffic reduction during the lockdown
was not effective in improving the AQ. A positive ETR implies that the reduction in traffic
emissions in these regions is effective in improving AQ. Although these significant reduc-
tions in traffic volume of up to 60% (see Section 3.1) may not be achievable in normal
circumstances, it provides decisions makers with valuable information to guide policies
regarding traffic emissions.

We calculated the IAV by removing the long-term historical trends from the non-
stationary time series. The variability for non-stationary data includes variability due to
historical trends in addition to the IAV. To differentiate the IAV from historical trends, we
(1) applied polynomial regression analyses to calculate the trend of the time series, (2)
calculated the IAV as the difference of the fitted data from the original data, and (3) cal-
culated the standard deviation of the difference, which is a measure of the IAV. Other
methods for calculating the trend, such as calculating the running mean of non-stationary
time series or the empirical mode decomposition method, were mainly used for decadal-
scale climatic trends [44—46].

3. Results and Discussion

In the following sections, we, (1) discussed the reduction in traffic volume as a result
of the pandemic related lockdown (Section 3.1), (2) investigated the large-scale impacts of
lockdown on AQ in the US (Section 3.2), and (3) consequently focused on the following
regions and states (between brackets) where the changes were significant (Section 3.3):
northeast (NY), Midwest (IL), southeast (FL), south (TX), west coast (CA) (Figure 1).

Son Francisco,

Los Angele

Figure 1. Locations of the US cities investigated in this study.

3.1. Traffic Volume and COVID-19 Cases in the US

Since the most reported pandemic-related effect on AQ was the reduction in traffic
volume during lockdown periods, we investigated the changes in traffic volume during
the pandemic and its relation to air quality. We calculated the relative change in the num-
ber of vehicles related to the same period in 2019 rather than prior to the lockdown period
since it accounts for the seasonal variability of the vehicle traffic as well. The analysis in-
vestigated differences in traffic occurring on similar days, i.e., matched days of the week.
For example, traffic from the first Monday in March of 2020 was compared to traffic on
the first Monday in March of 2019. Therefore, the comparison period was 1 March 2020-
31 May 2020 and 3 March 2019-2 June 2019 to account for this offset. Within each state,
traffic counts at unique locations from 2020 were compared to 2019 levels using a paired
t-test. Statistically significant changes in traffic (at 95% confidence limit) in 2020 were first
observed on 11 March in FL, 12 March in MA, and 13 March in NY, and IL.
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Figure 2 shows that the minimum number of vehicles occurs after several weeks of
should be con-
sidered in the calculation of the analysis period for AQ analyses. The relative maximum
2), except in IL
(only ~40%). The maximum reduction in the traffic volume did not coincide all the time
with the maximum number of cases. For example, in MA and IL, the number of cases
continued to increase despite the lockdown and the near-stagnant traffic. In contrast, in
FL and NY, the maximum reduction of traffic volume coincides with the maximum num-
mmon effective
2). Henceforth,
the effective lockdown period is referred to by the term “lockdown period”. The number
of grounded vehicles due to the lockdown measures did not return to its levels before the

imposing the lockdown in most states, which is an important aspect that

reduction in the number of vehicles in most states was about 60% (Figure

ber of cases. Based on the decrease in the traffic volume, we determine a co
lockdown period from 1 April to 1 May for all investigated states (Figure

pandemic despite increasing gradually from 1 May.

effective lockdown period

25% 600
March 8, 2020

2,591,727 Veh.
30 New Cases

May 27,2020 | 500
2,174,027 Veh
1,551 New Cases | 400

Q
Ed

April 5, 2020
886,977 Veh.
9,327 New Cases

300

200

% Change in Vehicles Count
o
]
ES

o New York
100
-75% 0
3/1 3/8 3/15  3/22  3/29 4/5 4/12  4/19 426 5/3 5/10 5/17 5/24 5/31
80% 450
£ 60% 400
Fs March, 8, 2002
‘S 40% 2.3;(7,55] Veh. May 27, 2020 350
@ 0 New Cases 4,235,847 Veh. 300
T 20% 527 New Cases
Z 250
> 0% March, 29, 2020
£ 1,852,357 Veh April 27, 2020 200
Y -20% 868 Now Caces 2,399,690 Veh. 150
S 0w 1,524 New Cases
- -40 100
(3]
® -60% 50
-80% 0
31 3/8 3/15 3/22 3/29 a5 af12 4/19 4/26 5/3 5/10 5017 5/24 5031
25% May, 34,2020 | 250
" 1,312,528 Veh.
= Match 11, 200 1,343 New Cases
3 2,157,888 Veh. 200
O 0% 13 New Cases
3
5]
= 150
2 .25%
= 100
) Winoi
c INoIS
i -50% A May 7, 2020
S pril 5, 2020 1,183,543 Veh 50
R 841,569 Veh 2,639 New Cases
902 New Cases
-75% 0

3/1 3/8 3/15 3/22 3/29 4/5 4/12 4/19 4/26 5/3 5/10 5/17 5/24 5/31

o
25% March 11, 2020 60

9,541,471 Veh
13 New Cases

50
0%
40

April 5, 2020 30
2,740,807 Veh

813 New Cases

May 30,2020 |
May 4, 2020 6,775,858 Veh.
6,217,880 Veh 927 New Cases
819 New Cases 10

Florida

% Change in Vehicles Count
& o
(=] wu
ES ®

-75% 0
3/1 3/8 3/15  3/22  3/29 4/5 4/12  4/19 426 5/3 5/10 5/17 5/24 5/31

——% Change in Vehicles Count ——COVID Cases (7-Day Avg.) Per Million

Figure 2. Seven day rolling average of new COVID-19 cases per million in population and change

in Table, 2020 vs 2019).

COVID Cases (7-Day Avg.) Per Million

COVID Cases (7-Day Avg.) Per Million

COVID Cases (7-Day Avg.) Per Million

COVID Cases (7-Day Avg.) Per Million



Remote Sens. 2021, 13, 369

7 of 23

3.2. An Overview of Air Quality Tracers in the US

The COVID-19 related lockdown led to a reduction in traffic volume by 40-60% in
most states (Section 3.1). Anthropogenic emissions are highest in the northeast (NE) and
Midwest of the US, in addition to CA and TX [47]. Emissions from the transportation sec-
tor, which includes motor vehicle fuel, motor vehicle manufacturing, air travel direct and
indirect emissions, and public transit, account for ~28% of the total emissions, with light-
and heavy-duty vehicles accounting for most of these emissions [47,48]. In this study, we
evaluate the changes in pollutant concentrations. We note that pollutant concentrations
depend on other factors, in addition to transportation emissions such as emissions from
other sources, short- and long-range transport, and loss processes and chemical transfor-
mations that are in turn affected by meteorological parameters such as temperature, hu-
midity, and solar radiation.

3.2.1. Spatial Distribution

Figure 3 shows the base NOz, CO, Os, AOD levels, the IAV of the base period, and
the sig A due to the lockdown period during the COVID-19 pandemic. Pollutant concen-
trations are lower on high elevation sites, the Sierra Nevada, and the Rocky Mountains in
the west, and the Appalachian Mountains in the east (Figure 3). NO2 is mainly an atmos-
pheric photochemical oxidation product of NO reaction with VOCs (RO:/HO: +
NO->NOy). Traffic is the primary source of NO. NO: levels have been reported to be sig-
nificantly decreased in different places around the world during the COVID-19 pandemic
[14-18]. NO:levels in the US are largest in the NE, including NY and Massachusetts (MA),
due to the high NO and VOC emissions in this region [47,49]. CO, a primary anthropo-
genic pollutant, reached its maximum in the NE with relatively high concentrations in the
Midwest and west coast of the US (Figure 3). Os is a photochemical secondary oxidation
product that results from NO: photolysis. Therefore, Os was higher in the southern part
of the US where higher solar radiation and temperature favor ozone formation. Ozone
formation depends on NOx and VOC levels as well as the sensitivity to the photochemical
regime [50]. The reduction of NO: levels under NO sensitive conditions may lead to de-
creased Os levels, while under VOC-sensitive conditions, ozone increases as NO: de-
creases [50]. The pollution levels in the US have declined significantly over the last few
decades [51,52], which led to several regions becoming NO-sensitive, except during spe-
cial pollution events. Furthermore, during the summer months in the northern hemi-
sphere, the boundary layer height (BLH) is deeper, and NO mixing ratios are lower com-
pared to winter. AOD was also high along the eastern and the southern coasts, including
FL and south TX.
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Figure 3. Top panel: Mean pollutant levels during the base period (Base); Middle panel: detrended Interannual Variability
(IAV) of the base period; Bottom panel: Significant relative change (sig A) during the lockdown period of the COVID-19
pandemic. Blank areas in the last row (sig A) refers to insignificant differences.

3.2.2. Interannual Variability and Significant Changes during the Lockdown

We used the IAV to evaluate the reduction of pollutants levels during the lockdown
compared to the previous years, i.e., how effectively the reduction in traffic volume im-
proved AQ (see Section 2.3.2). The detrended IAV (see Section 2.3) was lower than the
total variability (see supplementary), which included variability due to historical trends
and IAV. The NO:IAV was highest in the northern US and lowest in the south, related to
the higher photolysis rate and shorter lifetime in the south compared to the north (Figure
3). The relative change of the NO: due to the pandemic seemed to be within the interan-
nual variability (up to ~+20%) in most of the US but higher (up to -50%) in few other places
(e.g., NYC, FL, and CA). As shown in Figure 3, the IAV of CO over most of the US was
<10%, which was relatively small, and with no clear latitudinal trend as in NO2. This due
to NO: being a photochemical product while CO is primarily emitted, mainly from fuel
combustion, with a much longer atmospheric lifetime compared to NO2 [53]. As demon-
strated in Figure 3, CO relative changes over most of the US were within the IAV, except
for a few places, which we investigated further in the next sections.

Similar to CO, ozone IAV was lower than that of NO: and was slightly higher in the
east, especially over FL (~7%) compared to the west (~3%). The low variability of ozone
was due to the presence of significant ozone background levels over the US [54]. The rel-
ative reduction (sig A) in Os due to the pandemic is most significant in the eastern US,
including FL (Figure 3).

IAV of AOD seemed to vary much larger compared to CO and NO, ranging from
10% in northern FL to 80% in the north and northwest of the US (Figure 3). This was due
to the different aerosol sources from primary emissions, long-range transport (especially
on the western coast [55]), atmospheric oxidation, the aerosol dependency on meteorology
such as relative humidity, and BLH [56,57]. AOD measures the levels of organic and inor-
ganic aerosols. Secondary organic aerosol (SOA) formation increases in aged air masses
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as a result of the photochemical oxidation of primary organic aerosols (OA) [55]. While
inorganic sulfate aerosol formation can be oxidant (Os or H20z2)- or SO2 limited, the for-
mation of nitrate aerosols depends on the uptake of HNO:z into the cloud or aerosol parti-
cles and its reaction with ammonium or other cations [53]. In ammonia-limited regions
(such as coastal areas), enhanced sulfates substitute for nitrate and chloride ions in the
aerosol particles. Therefore, the formation of new aerosol particles and, or the change in
the chemical composition of the existing aerosols depends on the interplay of these factors
in each region. Recent studies showed discrepancies between MODIS AOD values and
ground-based measurement of the aerosol mass concentrations in China during the pan-
demic, which the authors relate to the variable meteorological conditions, such as water
content, which lead to an inaccurate evaluation of surface aerosols [56]. [56] found a
weaker PM25/AOD ratio in coastal areas and higher in winter and lower in summer. [42]
reported that, compared to AERONET AOD, MODIS AOD datasets generated by the deep
blue algorithm (used in this study) are negatively biased by ~22% in the AOD range of 0-
0.5 while the dark target algorithm and the merged dataset are positively biased. AOD sig
A was highest on the eastern and western coasts, while no sig A can be detected in FL
(Figure 3).

Generally, the lockdown period has a variable impact on the NOz, O3, CO, and AOD,
which we investigated their spatial patterns in each region in the following sections. We
also show daily time series plots for IAV of tropospheric NO2 and Os column (there are
no sufficient data to construct time series for CO and AOD) in select cities. Os data of 1°
resolution were not sufficient to calculate the 0.5° box, which would have been more rep-
resentative for urban traffic changes around city centers. Therefore, plots were calculated
using the mean of a 1° box around selected cities for both Os and NO: (for consistency
with Os). Therefore, these plots reflect more of a regional rather than an urban pattern.

3.3. Regional Impacts

Based on the overview analysis of pollutants level and variability over the US (Sec-
tion 3.2), we determined five regions where changes during the COVID-19 lockdown were
significant. In the following sections, we investigated the changes in each region and high-
lighted the main reason for these significant changes.

3.3.1. Northeast

Anthropogenic concentrations of CO and NOx, and VOC are highest in this part of
the US. In NYC, the NO2IAV is up to ~20%, and NO: reduction (sig A) is ~50% (see Figure
4), which is in agreement with ground-based measurements [14,58]. ETR(NO:) was ~30%
(i.e., 30% reduction beyond the IAV). Therefore, we could conclude that the reduction in
traffic volume in NYC during the lockdown was effective in reducing NOz by ~30% com-
pared to the base period. As shown in Figure 5, the reduction of NO:z in NYC during the
pandemic, compared to the mean IAV of the base period, was the highest among all in-
vestigated cities (Figure 5), in agreement with ground-based measurement [14]. [58] also
used ground-based measurements and a lockdown period from 13 March to 21 April, and
found a statistically significant reduction in NO, in agreement with our results. The re-
duction in NO2, as demonstrated in the spatial analysis (Figure 4), also agrees with [14],
who found significant NO: reduction over NYC using both satellite and ground-based
measurements. Downwind of NYC, NO:z IAV reached up to 30%, with a relative change
of up to 60%. Also, in Charleston, West Virginia (WV), there was an increase of NO2 of up
to ~20%, which was likely due to local industrial emissions from nearby heavy industrial
parks [59,60] but well within the IAV (ETR is <0). As shown in Figure 5, NO2 was slightly
increased (compared to the mean IAV of the base period) in Charleston, WV, during the
first two weeks and then decreased in the second two weeks of April. The increase in NO:
was not related to the reduction in traffic volume. In Ithaca, NY, there was a decrease in
NO2IAV during the pandemic. In New Jersey (N]), and Delaware (DE), the IAV was much
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less at ~15%, and the NO:z reduction due to the pandemic was also ~15%, ETR is <0. There-
fore, we conclude that reduction in traffic volume in these states was not as effective in
improving AQ as in NYC, which was due to the much lower traffic volume in these states
compared to NY [29]. Overall, the reduction of traffic volume during the COVID-19 pan-
demic in the NE US was effective in reducing NO2 compared to IAV only in NYC.
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Figure 4. Same as Figure 3, but for the northeastern US.
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Figure 5. Interannual variability of NO2 tropospheric column during the base period (solid black
line, 2015-2019) and during the lockdown period of the COVID-19 pandemic. The shaded areas
represent the difference caused by lockdown measures.

CO has a longer atmospheric lifetime than NO, so the impact of emission changes
would be less localized than for NO2. CO IAV was low at ~2% over NY and NJ and DE. A
COssig A of -15% over NY during the lockdown was evident, and was higher than the 3%
IAV, ETR = 12% (see Figure 4). Over New Jersey and Delaware, relative sig A of -5% was
well within the IAV values, and so ETR is <0. Therefore, the reduction in traffic volume
in NYC is also effective in reducing CO levels, compared to the base period.
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Os levels increased from north to south over this region (toward higher temperature
and solar radiation) with Os tropospheric column (TCO) measuring 35 DU over NY and
NJ and 40 DU to the south (on Virginia and North Carolina), see Figure 4. Os IAV was
very low, reaching ~2% over NY, NJ, and DE. TCO was reduced by 15% in this region,
which, given the small IAV in NYC, shows that the reduction of traffic volume in NYC
was effective in improving AQ (ETR~13%). The decrease in Os over NYC was also evident
in the ozone IAV time series (Figure 6). No significant Os changes could be seen over WV
or PA (blank areas in Figure 4).
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Figure 6. Same as Figure 5, but for Os tropospheric column.



Remote Sens. 2021, 13, 369

13 of 23

The relative IAV of AOD over NYC, NJ, DE, and WV was about 40%, 25%, 20%, and
20%, respectively. AOD levels were not significantly changed over these states (consider-
ing the IAV and the negative bias of the MODIS DB product, see Section 3.2). However,
AQOD levels were significantly increased by up to 80% in WV and downwind of NYC,
covering large parts of Connecticut and Pennsylvania. The decrease in CO levels but in-
creased AOD in these regions indicate that these AOD increases were related to aged air
masses containing a large fraction of secondary organic (SOA) and, or inorganic aerosols
from the hydrocarbon oxidation of gasses from nearby pollutions sources, e.g., near Ohio
River Valley to the west, downwind of NYC to the north [61-63]. The increased NO: levels
and decreased Os levels are evidence of high NOx conditions, under which the formation
of HNOs (OH + NO2 - HNOs) and alkyl nitrates (ROz2+ NO - RONO2) would be en-
hanced. RONO: and HNQO: can partition into particle-phase, which can constitute a large
fraction of nitrate aerosol [53,64]. Similarly, over Charleston, WV, the increased AOD was
likely due to the secondary aerosol formation from emitted OA from nearby chemical in-
dustries, especially given Charleston’s confined geographic location in Kanawha Valley
that allows for extended oxidation of OA under polluted condition [65]. The low relative
change due to the pandemic in NJ of about -20% was well within the IAV (see Figure 4).
In contrast to NOz, CO, and O3, the reduction in traffic volume during the pandemic did
not effectively reduce the aerosol load in NYC compared to the base period.

3.3.2. Midwest

Chicago, IL is a hot spot for traffic and industrial emissions and regularly experiences
pollution events [66,67]. Traffic volume in the Chicago region, which includes the “collier”
counties of Chicago: Cook, DuPage, Kane, Lake, McHenry, and Will, accounted for ~46%
of the traffic volume in the state of Illinois on March 11. The reduction in traffic volume,
compared to 2019, was ~50%, similar to that of the state of Illinois. In Chicago, NO2 IAV
varied by ~15%, and the NOz relative change increased during the lockdown by ~20%, i.e.,
only ~5% beyond the IAV. The increase of NO: during the pandemic indicates a pollution
event that caused a slight increase in NO: despite the reduction in traffic volume, which
implies that the NO: could have been higher without the lockdown and reduction in traf-
fic volume during this time of the year. Although relatively small, the increase in NO: also
indicates high-NOx conditions. Furthermore, the small increase of NO:z over Chicago was
very central, and the city center was surrounded by regions where NO: was reduced (see
Figure 7), and therefore cannot be reflected in the time series of the IAV in Figure 5, which
covers a large 1° box around the city center. No effective reductions (ETR <0 in NO:2 could
be seen in Wisconsin or Indiana as well, given their higher IAV.

CO levels were also high in Chicago (see Figure 7) and IAVs were low, at ~3%-5%.
The relative change of CO in Chicago was highest in this region, reaching up to ~10%, an
evident CO increase during the pandemic, although marginal. No significant change can
be seen in the northern city of Milwaukee. Similar to NO, the increase in CO (a primary
emitted pollutant) despite the reduction in traffic is evidence of a pollution event that is
often reported to be caused by the local meteorology in Chicago [67]. The increase of NO:
and CO despite the reduced traffic volume indicates that the reduction in traffic volume
in these states is not effective in reversing the pollution course.
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Figure 7. Same as Figure 3, but for the Midwest US.

The tropospheric Os column density was 35-37 DU. IAV was low at ~5%. sig A dur-
ing the lockdown was at —15% over the Chicago metropolitan area. The reduction in ozone
over Chicago during the pandemic is a result of two concurrent effects: (1) the high-NOx
conditions prevailed during the lockdown, which is mainly due to local meteorological
conditions [67], possibly enforced by emissions from the nearby industrial park southeast
of Chicago [68], and (2) The increase of NO: under the prevailing high-NOx conditions
causes a loss of OH [12,14], and thus less Os photochemical formation. Os reductions are
also evident in the daily IAV plots, starting April 15 (Figure 5). Similar to NO, the small
changes of Os over central locations may not be optimally presented by the 1° box time
series, especially if atmospheric changes are local such as changes in traffic emissions, and
for species with a relatively high background such as Os [14]. Therefore, the reduction in
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Os was not related to the reduction in traffic volume but to the increase in NO:z levels from
other local sources and, or meteorological conditions.

While the AOD IAV is ~10%-30%, there is a significant increase of up to 80% in the
AOQOD during the lockdown. The highest AOD is in the urban area of Chicago is impacted
by the industrial area in the east and southeast [68]. Local meteorology plays an important
role in the distribution and composition of pollutants in Chicago [67], and it seems that
southwesterly winds with warm air and/or air stagnation causes high AOD in this region.
The increase of NOz, CO, and AOD as a result of this pollution event led to increased
inorganic aerosol (e.g., increased nitrate aerosol from increased OH + NO - HNOs) con-
centration in Chicago, consistent with previous analysis of aerosol formation in Chicago
[67,68]. The small reduction of VOCs, CO, and NOx from the decrease in traffic volume
was not sufficient to reverse the pollution event over Chicago, resulting in the persistent
high aerosol event despite the reduction caused by the lockdown. Therefore, the impact
of the pandemic related lockdown has been overweighed by meteorological conditions
that led to higher NOx, CO, and aerosol load in Chicago. Therefore, we conclude that the
reduction in traffic volume during the pandemic was not effective in reducing NO2, CO,
and aerosol levels in Chicago because of the predominance of other pollution sources.

3.3.3. Southeast

In FL, which has a large traffic volume, the highest NO: levels were measured in the
central part, near Orlando (Figure 8). The IAV of NO: levels (2015-2019) was also lowest
(<10%) in the Tampa Bay region (in the central part) and reached up to ~10% in the north
(near Jacksonville). sig A NO: during the lockdown period reached up to -30%, which
shows that the reduction in traffic volume during the pandemic in FL was effective in
reducing the NOz levels (ETR=20%), similar to NYC. The NO2 reduction is also evident in
the IAV time series (Figure 5) over Orlando and Fort Myers. The time series of the NO2
over Jacksonville, Tampa, and Orlando (Figure 54) also showed a reduction during the
lockdown period.
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Figure 8. Same as Figure 3, but for the southeastern US (FL).

In FL, CO decreased from north to south while the IAV shows an almost opposite
pattern (i.e., increasing from north to south). CO IAVs were ~3% in central and north FL
but up to 7% in the south. The ETR was highest in central FL, reaching up to -15%, which
is the most effective reduction observed in CO on the US eastern coast.

The Os levels in FL were almost homogeneous at ~40 DU. Os IAV is at 5%~7% overall.
Significant Os reductions of 20% over central FL and 15% over north and south FL (Figure
8). Reductions in Os levels were also evident in the 1° box IAV time series (Figure 6). The
concomitant decrease of NO2z, CO, and Os, indicates NO sensitive conditions prevailing
over FL, which distinguish FL from the other states on the US eastern coast. These results
are also consistent with ground-based measurements in the state of FL [27].

AOD varied significantly, with IAV lowest in the north (10%-20%) and highest in
central (30%-70%) and south FL (30%-40%). No significant differences in AOD can be
detected in FL (Figure 8). In addition, [27] reported increased PMo:s levels in most of FL
during the month of April of the lockdown period, which further supports previous liter-
ature reporting negative bias for the MODIS DB AOD product [42].

3.3.4. South

In TX, NO:2 is highest near Houston, lower to the south near Corpus Christi. The IAV
reached ~10% near Houston but was lower (<10%) near Corpus Christi. Overall, NO: sig-
nificant reductions along the coast are within the IAV. NO: changes in the 1° IAV time
series are also very small compared to that of Orlando or NYC (Figure 5). Similarly, CO
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was reaching its maximum near Houston and slightly lower near Corpus Christi, with no
ETR during the lockdown.

The tropospheric ozone column is decreased by 10% over southern TX, which is also
within the IAV, i.e., no ETR (Figure 9). The AOD reduction was within the IAV over Hou-
ston but significantly increased over Corpus Christi, which may have been due to local
events. Indeed, the Coastal Bend region of the TX coast has been reported to suffer fre-
quent red tide blooms since the mid-1990s [69], which explains the vulnerable location of
Corpus Christi that is almost at the vortex of the bend region. Red tide events cause high
aerosol events that can be detected by remote sensing techniques [70,71]. The situation in
TX is quite comparable to that of FL since photochemistry in both seems to have NO-
sensitive conditions. Based on the above results, we conclude that a reduction in traffic
volume in TX was not effective (ETR < 0) in improving AQ due to the high IAV and the
dominance of other pollution sources.
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Figure 9. Same as Figure 3, but for the southern US.

3.3.5. West Coast

In California, NO:z IAV in Sacramento, San Francisco, and Los Angeles were 25%,
15%, and 10%, respectively. The relative changes during the lockdown were within the
IAV with some isolated increases north of San Francisco and Sacramento (see Figure 10).
Also, no reduction could be seen in the 1° IAV time series plots over San Francisco and
Los Angeles (Figure 5). The US west coast frequently experiences long-range trans-pacific
transport events from Asia and Europe that result in increased pollutants’ levels in this
region [72,55], which also peaks in late spring, coinciding with the pandemic lockdown
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incidence. The increase or no change in NOxz levels in San Francisco despite reduced NO:
emissions from their large traffic volume demonstrates that other sources dominate, e.g.,
meteorology and pollution events [73,14]. CO levels are relatively high in San Francisco,
and Los Angeles, IAVs were within 3% while relative changes in CO levels due to the
pandemic are either insignificant or higher, ETR(CO) <0.

Tropospheric ozone column levels can reach up to 43 DU on the western coast with
relatively low IAV of up to 1%-2% on San Francisco and Los Angeles. Reductions in the
ozone tropospheric column during the lockdown period is within 15% over San Francisco
and Los Angeles (see Figure 5 and Figure 10). As aforementioned, ozone is a photochem-
ical product, and the increase of NO: (north of San Francisco) under high-NOx conditions
also decreases Os formation.

AOD IAV during the base period (2010-2019) ranges between 10% and 30% over the
western coast. However, there was a significant increase of AOD of up to 80% over San
Francisco and to a much less extent of up to 30% over Los Angeles. Since these increases
in AOD were not directly related to the reduced traffic volume during the pandemic, we
report that ETR(AOD) was < 0 over CA.
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Figure 10. Same as Figure 3 but for the western coast.
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4. Conclusions

The COVID-19 pandemic has presented an unprecedented opportunity to investigate
the impacts of a large-scale reduction in traffic volume on AQ. In this comprehensive
study, we investigated the AQ status in the US during the pandemic using an ensemble
of four remote sensing products for nitrogen dioxide tropospheric column, carbon mon-
oxide atmospheric column, tropospheric ozone column, and AOD. We investigated and
addressed the potential factors that might have masked the impacts of reduction in traffic
volume and contributed to changes in AQ during the pandemic. We define the lockdown
period pertinent to AQ as the period where the reduction in traffic volume reached an
almost stable minimum level, based on actual data of traffic volume. We found that the
reduction in traffic volume reached a quasi-stagnant level of 60%—40% during the lock-
down period in most states. We determine a common effective lockdown period for all
investigated states from 1 April to 1 May. During this time period, all traffic volumes were
at their minimum.

In the NE US, the reduction of traffic volume was effective in reducing NO2, CO, and
O:s levels only in NYC, but not effective in other regions where other pollutions sources
dominate. In contrast to NOz, CO, and Os, reduction in traffic volume during the pan-
demic did not effectively reduce the AOD compared to the base period. In Chicago, the
impact of the pandemic related lockdown has been overweighed by meteorological con-
ditions and local emissions that lead to higher NOx, CO, and AOD. In FL, there has been
a reduction of NOz, CO, and Os, especially in central FL, while AOD changes were not
significant. Therefore, we conclude that the reduction in traffic volume during the pan-
demic in FL was effective in reducing the pollutant levels, except aerosols. In TX, NO,
CO, and Os levels were decreased as a result of the lockdown. However, the reductions
were within the IAV. Therefore, we conclude that the reduction in traffic volume in Texas,
despite significant, was not effective (ETR < 0) in improving AQ due to the high IAV and
the dominance of other pollution sources, especially in south TX. In CA, the reduction in
traffic volume was not effective in improving AQ due to the dominance of other sources
of pollution during the pandemic.

This large-scale experiment has allowed us to investigate the policy impacts of large-
scale reduction in traffic emissions. Our results indicate that reduction of traffic volume
during the pandemic was effective in improving air quality in regions where traffic is the
main pollution source, such as in NYC and FL, while it was not effective in reducing pol-
lution events where other pollution sources dominate, such as in IL, TX, and CA. There-
fore, policies to reduce other emissions sources (e.g., industrial emissions) should also be
considered, especially in places where the reduction in traffic volume was not effective in
improving AQ.

Supplementary Materials: The following are available online at www.mdpi.com/2072-
4292/13/3/369/s1, Figure S1: Statistical analyses of OMPS/MERRA2 TCO based on comparisons with
ozonesonde TCO. The analyses were done using co-located daily measurements for years 2013-2017
and plotted versus sonde station latitude. Both OMPS/MERRA2 and ozonesonde TCO use the same
tropopause pressure each day to derive the vertically integrated TCO columns. Upper left: Total
number of daily matchups. Upper right: Offset differences (DU). Lower left: Standard deviations
(DU) of their difference time series. Lower right: Temporal correlation between OMPS/MERRA2
and ozonesonde TCO time series, Figure S2: Selected daily time series comparisons between
OMPS/MERRA2 TCO (blue curves) and ozonesonde TCO (red boxes) for several NH and SH sonde
station sites for years when there were 2-3 years of mostly continuous weekly ozonesonde meas-
urements. Included in each panel are the OMPS minus sonde offset (in DU) and the standard devi-
ation (in DU) of their difference time series for 20152017, Figure S3: Selected monthly TCO (in DU)
time series comparisons at several city sites (three in NH, three in SH) between OMI/MLS (black
curves) and OMPS/MERRA?2 (red curves). One site shown is Washington DC (upper middle panel)
that was located over the eastern coast of the United States. The OMI/MLS TCO measurements
(Ziemke et al., 2006) use a different tropopause pressure definition (WMO 2K/km lapse rate defini-
tion) than OMPS/MERRA2 TCO. However, these different tropopause pressure definitions cannot
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produce more than ~1-2 DU time series differences between monthly OMI/MLS and
OMPS/MERRA2 TCO, Figure S4: OMPS/MERRA2 TCO minus OMI/MLS TCO average offsets and
calculated +1 standard deviations of their differences (shown as vertical bars). Data points for this
statistical analysis are accrued over both space (longitude) and time (month) in 5-degree latitude
bands. Mean offsets are small, at most 2-3 DU everywhere except in mid-high latitudes in the SH
where the average offset was about -5 DU. The cause for this offset in the SH was not unexpected
due to having two different TCO products with very different algorithms and also instrument cali-
bration differences that can have a latitude dependence. The difference standard deviations as
shown by the vertical bars are also small at only about 2-3 DU at all latitudes. These small standard
deviations show that the two TCO products are capturing very similar space-time variability, Figure
S5: OMPS/MERRA?2 TCO (in DU) seasonal climatology global maps derived using data from Janu-
ary 2012-December 2019. Seasonal means (indicated) are for December-January-February (DJF),
March-April-May (MAM), June-July-August (JJA), and September-October-November (SON). Fig-
ure S6: Top panel: Mean pollutant levels during the base period (Base, 2015-2019); Middle panel:
mean annual variability (due to trends and interannual variability) of the base period; Bottom panel:
Relative change during the lockdown period of the COVID-19 pandemic, Figure S7: 15-days run-
ning average of NO: tropospheric column during the base period (solid black line, 2015-2019); mean
standard deviation of the base period (error bars); and NO: tropospheric column during the lock-
down period of the COVID-19 pandemic. The time series is an average of a 1° box (lon x lat) from
the respective city center and therefore may have been biased with nearby pollution sources, Figure
S8: Same as S7 but for Os tropospheric column, Figure 59: Mean NO: during the base (soild black
line) period (2015-2019) compared to 2020 (solid red line).
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