
Article

Micromechanics based discrete
damage model with multiple
non-smooth yield surfaces:
Theoretical formulation,
numerical implementation
and engineering applications

Wencheng Jin and Chloé Arson

Abstract

The discrete damage model presented in this paper accounts for 42 non-interacting crack microplanes

directions. At the scale of the representative volume element, the free enthalpy is the sum of the elastic

energy stored in the non-damaged bulk material and in the displacement jumps at crack faces. Closed

cracks propagate in the pure mode II, whereas open cracks propagate in the mixed mode (I/II). The elastic

domain is at the intersection of the yield surfaces of the activated crack families, and thus describes a non-

smooth surface. In order to solve for the 42 crack densities, a Closest Point Projection algorithm is

adopted locally. The representative volume element inelastic strain is calculated iteratively using the

Newton–Raphson method. The proposed damage model was rigorously calibrated for both compressive

and tensile stress paths. Finite element method simulations of triaxial compression tests showed that the

transition between brittle and ductile behavior at increasing confining pressure can be captured. The

cracks’ density, orientation, and location predicted in the simulations are in agreement with experimental

observations made during compression and tension tests, and accurately show the difference between

tensile and compressive strength. Plane stress tension tests simulated for a fiber-reinforced brittle material

also demonstrated that the model can be used to interpret crack patterns, design composite structures

and recommend reparation techniques for structural elements subjected to multiple damage mechanisms.
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Introduction

Brittle materials such as concrete, rock, and ceramic composites, exhibit a complex mechanical
behavior at the macro-scale, including stress-induced damage and stiffness anisotropy, non-linear
stress/strain relationships and volumetric dilation, unilateral effects due to crack closure, and a
transition from brittle to ductile behavior at increasing confining stress (Chiarelli et al., 2003;
Krajcinovic et al., 1991). All of these effects can be explained by the nucleation and propagation
of micro-cracks at the grain boundaries and/or from pore spaces. Three approaches were adopted so
far to model these microstructural effects on the behavior of the Representative Volume Element
(RVE) (Yuan and Harrison, 2006): Continuum Damage Mechanics (CDM), statistical formulations
and micromechanics.

CDM is based on the thermodynamics of irreversible processes (Chaboche, 1981, 1988; Collins
and Houlsby, 1997; Krajcinovic, 1989; Simo and Ju, 1987). Damage tensors are used as internal state
variables and incorporated into the expression of the RVE free energy in order to account for stress-
induced anisotropy. Damage tensors are similar to crack density tensors in micromechanics or fabric
tensors in structural geology, and are usually of order two (Halm and Dragon, 1996; Mazars and
Pijaudier–Cabot, 1989; Murakami, 1988) or of order four (Ju, 1989; Simo and Ju, 1987). CDM
models are phenomenological in nature, which implies that damage tensors essentially measure the
damaged mechanical effects rather than the microstructure evolution itself (Swoboda and Yang,
1999a). As a result, damage evolution laws are arbitrarily crafted to match a macroscopic behavior
(usually represented by stress/strain curves), and do not represent any clear physical mechanism. The
behavior of brittle geomaterials depends on the sign of the applied stress/strain. Therefore, the
damage driving force (i.e. the energy release rate that is the work-conjugate to damage) has to be
split into positive and negative components, which are introduced in two different damage criteria
(one for tension, one for compression) (Comi and Perego, 2001; Frémond and Nedjar, 1996;
Lubarda et al., 1994). The singularities of the damage surfaces raise convergence issues in Finite
Element Methods (FEMs). Unilateral effects, induced by crack closure with partial recovery of
compression strength, require additional material parameters and adds even more complexity to
the FEM implementation of CDM models (Chaboche, 1992, 1993; Halm and Dragon, 1996).

Statistical formulations are based on microstructure descriptors, such as grain/pore size/orienta-
tion/shape. The RVE is seen as a statistical distribution of solids endowed with different local
stiffness and strength parameters (Weibull, 1951). Stress concentrations are calculated around het-
erogeneities, local failure criteria are checked, and local field variables are updated. The RVE
response is modeled by statistical averaging methods. In continuum mechanics approaches, such
as FEMs, local mechanical properties are assigned to Finite Elements that are distributed in space
according to microstructure statistical descriptors (Amitrano et al., 1999; Fang and Harrison, 2002;
Tang et al., 2000). In discrete approaches, the RVE is represented by rigid or elastic spheres or
irregularly shaped elements, which interact according to constitutive laws that depend on the stat-
istical properties (Amitrano et al., 1999; Blair and Cook, 1998; Jing, 2003; Potyondy and Cundall,
2004). Statistical approaches allow simulating micro crack initiation, growth and coalescence into
macro fractures. However, statistical micro crack properties have to be determined by trial and error
to fit the macro material behavior, which is somewhat random and time-consuming.

In micromechanical models, the RVE behavior is obtained by homogenization, after calculating
local stresses and displacements at crack faces. In the dilute homogenization scheme such, as
Taylor’s model (Espinosa, 1995; Feng and Yu, 2010; Gambarotta and Lagomarsino, 1993;
Krajcinovic and Fanella, 1986; Pensee and Kondo, 2003; Pensée et al., 2002; Swoboda and Yang,
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1999a), cracks are assumed to evolve independently from each other, and the RVE behavior is
obtained by superposition. By contrast, crack interaction is accounted for in the self-consistent
method (Budiansky and O’connell, 1976; Ju and Lee, 1991; Lee and Ju, 1991) and the Mori–
Tanaka scheme (Mori and Tanaka, 1973; Zhu et al., 2008, 2009). Microscopic interactions were
also accounted for by multiplying deformation gradients induced by various sets of defects (Clayton,
2010). Homogenization schemes were compared in several studies, including Krajcinovic and
Sumarac (1989) and Ju (1991). Simulation results indicate that the dilute scheme is accurate prior
to the peak strength. Micro-crack evolution laws are either derived from fracture mechanics (Ju and
Lee, 1991; Kachanov, 1982a; Krajcinovic and Fanella, 1986; Yu and Feng, 1995) or damage growth
criteria (Pensee and Kondo, 2003; Pensée et al., 2002; Swoboda and Yang, 1999a,b). In the former
case, stress intensity factors accounting, or not, for crack interactions are computed for Mode I
splitting, Mode II frictional sliding or mixed Mode propagation. In order to predict crack kinking
(i.e. wing crack formation), it is often assumed that a secondary crack aligned with the maximum
compressive stress initiates and grows due to stress- or displacement- driven energy release rates
(Horii and Nemat–Nasser, 1986; Kachanov, 1982b; Lee and Ju, 1991; Lehner and Kachanov, 1996).
The advantage of fracture mechanics is that a direct link is established between micro-crack propa-
gation and macroscopic mechanical behavior, and the material parameters involved all have a clear
physical meaning. However, the assumptions required to describe the crack arrangement, and to
predict the kinking direction, limit fracture mechanics-based approaches to a few loading paths only.
In the latter case, self-similar propagation laws are formulated in terms of force that is work-
conjugated to damage (or crack density). One of the major challenges raised by damage growth
criteria is the numerical implementation into FEM codes, which requires sophisticated algorithms
and important computational resources.

The main objective of the present paper is to formulate a damage model based on a discrete
description of damage microplanes, and to implement it in a FEM code in order to capture inelastic
deformation, unilateral effects and distinct strength and stiffness properties in tension and compres-
sion, for complex stress paths involving the propagation of both open and closed cracks in mode I,
mode II, and mixed mode. First, the theoretical formulation of the discrete damage model, based on
Bazant’s 2� 21 integration method and the dilute homogenization scheme, is presented. Different
yield criteria are employed for open and closed cracks for each microplane orientation considered in
the integration scheme. The elastic domain of the RVE is defined by the intersection of activated
damage surfaces, and the RVE inelastic strain tensor is obtained by superposing the irreversible
strains induced by all the activated crack opening displacements. Damage yield surfaces are not
smooth, which requires a special treatment to allow numerical implementation. Then, we present a
local Closest Point Projection algorithm, which we use to determine the set of activated cracks and
the corresponding increments of crack density. We explain the detailed calculations required to
calculate the Jacobian matrix at the material point, which is needed in the Newton–Raphson
method used to solve the non linear FEM equations. We also validate the implementation of the
resolution algorithm by comparing material-point simulation results to those obtained with a one-
element FEM model. In the final section of the paper, we calibrate the proposed discrete damage
model against experimental results of triaxial compression and uniaxial tension tests reported in the
literature. We simulate triaxial compression tests and Hassanzadeh’s direct tension test with the
calibrated model parameters obtained for concrete. We also model a composite made of a brittle
matrix reinforced by stiff elastic fibers to study the influence of reinforcement orientations on the
formation of crack patterns.
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Theoretical formulation of the discrete damage model

Micromechanics-based free enthalpy

We formulate a new damage model in which the expression of the free enthalpy is obtained from
micromechanics principles. In the following, we consider a RVE of volume �r and external bound-
ary @�r, in which a large number of penny shaped microscopic cracks of various orientations are
embedded in an isotropic linear elastic matrix of compliance tensor Sm. Each microscopic crack is
characterized by its normal direction ~n and its radius a, which is at least 100 times smaller than the
RVE size. Opposite crack faces are noted !þ and !�, with normal vectors ~nþ and ~n� respectively.
The displacement jump is noted

½~u� ¼ ~uþ � ~u� ð1Þ

where ~uþ (respectively ~u�) denotes the displacement vector at face !þ (respectively !�). We consider
a uniform stress field r applied at the boundary @�r. The displacement field at the RVE scale is
calculated by superposition, by adding up the displacement field in the elastic matrix in the
absence of cracks and the displacement field induced by the opening and sliding of micro-crack
faces (Figure 1).

We consider that the mechanical interaction between cracks is negligible and we use a dilute
homogenization scheme to calculate the crack displacement jumps. As a result, the average micro
stress is equal to the stress applied to the RVE, and we have

r ¼
1

�r

Z
�r

½rmðxÞ þ rdðxÞ�dx ð2Þ

in which rd is the stress field that is applied at micro-crack faces and rm is the stress field in the linear
elastic matrix. Moreover, the static constraint imposed by the dilute homogenization scheme is
applied to the elastic cracked RVE when the cracks do not propagate, which implies that the
local stress rd is the direct projection of the macro stress r on the crack faces. Consequently, for
each crack, the local stress that applies at the crack faces is self-equilibrating and the matrix stress is
equal to the macro stress

0 ¼

Z
!

rd ðxÞdx, r ¼ rm ð3Þ

The elastic strain tensor of the matrix ee depends on the undamaged compliance tensor Sm, as follows

ee ¼ S
m : rm ¼ S

m : r ð4Þ

m

d

Figure 1. Homogenization based on the principle of superposition.
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In the dilute homogenization scheme adopted here, we treat each micro-crack as a single crack
embedded in an infinite elastic homogeneous matrix, which allows the calculation of the displace-
ment jumps from fracture mechanics principles (Horii and Nemat–Nasser, 1983; Kachanov et al.,
2013). Considering a penny shaped crack of radius a subjected to a uniformly distributed normal
stress p (respectively shear stress ~�) at its faces and embedded in an infinite elastic medium with
Young’s modulus E0 and Poisson’s ratio �0, the average normal (respectively shear) displacement
jump, also known as Crack Opening Displacement (COD), is expressed as

h½un�i ¼
16

3

1� �20
�E0

pa

h½ut
!

�i ¼
32

3

1� �20
ð2� �0Þ�E0

~�a

ð5Þ

We consider that the RVE contains families of penny shaped cracks that have same orientation ni
!

and the same radius ai. Such a family of micro-cracks is shown in Figure 2(a). If the family contains
N cracks, the volume fraction of the normal and shear displacement jumps can be calculated as
follows

�i ¼
N

�r
h½un�i�a

2
i ¼ �ic0r

d : ð ni
!

� ni
!

Þ ¼ �ic0r : ð ni
!

� ni
!

Þ

�i
!

¼
N

�r
h½ut
!

�i�a2i ¼ �ic1½r
d � ni

!
� ð ni

!
� rd � ni

!
Þ ni
!

� ¼ �ic1½r � ni
!

� ð ni
!

� r � ni
!

Þ ni
!

�

ð6Þ

where ~� ¼ r � ni
!

� ð ni
!

� r � ni
!

Þ ni
!. Note that according to the dilute scheme assumption, the direct

projection of the macro stress r on the crack faces is equal to the direct projection of the local stress
rd on the crack faces. �i ¼ Na3i =�r is the crack density parameter along the direction ni

! introduced
in Budiansky and O’connell (1976). Note that the value of �i can exceed one. The coefficient c0
(respectively c1) is defined as the normal (respectively shear) elastic compliance of the crack
(Budiansky and O’connell, 1976; Kachanov, 1992)

c0 ¼
16

3

1� �20
E0

, c1 ¼
32

3

1� �20
ð2� �0ÞE0

ð7Þ
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Figure 2. (a) Single crack family. Sketch of an RVE with one family of parallel equally sized penny shaped micro-

cracks. (b) Discrete crack family orientations. Repartition of the integration points on the unit sphere, following the

microplane approach based on 2� 21 points presented in Bažant and Oh (1986).
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A normal displacement jump can only be induced by a tensile force, i.e. for ni
!

� r � ni
!

� 0 (in which
compression is assumed positive, according to the soil mechanics convention). The unilateral contact
condition at crack faces can be expressed as

½un� � 0, �nn ¼ ~n � r � ~n � 0, ½un��nn ¼ 0 ð8Þ

The average strain due to the displacement jumps of the all the micro-cracks of the family with
normal ni

! is calculated as

ed ¼
N

�r

Z
@!þ

½un�ð ni
!

� ni
!

ÞdSþ
N

2�r

Z
@!þ

½ut
!

�� ni
!

þ ni
!

� ½ut
!

�ÞdS

¼ �i ni
!

� ni
!

þ
1

2
ð �i
!

� ni
!

þ ni
!

� �i
!

Þ

ð9Þ

According to the principle of superposition, the Helmholtz free energy W* of the RVE containing
the N cracks of orientation ni

! is the sum of the elastic deformation energy of the matrix and the
energy stored in the micro cracks displacement jumps, as follows

W	 ¼
1

2
ee : Cm : ee þ

1

2
r : �i ni

!
� ni

!
þ
1

2
ð �i
!

� ni
!

þ ni
!

� �i
!

Þ

� �
ð10Þ

in which it is recalled that � : ni
!

� ni
!

¼ �d : ni
!

� ni
!, � : ni

!
� �i

!
¼ �d : ni

!
� �i

!. The Gibbs energy
(free enthalpy) is obtained by using the Legendre transformation, as follows

G	 ¼ r : eE �W	 ð11Þ

in which eE ¼ ee þ ed is the RVE elastic strain. As a result, G* is expressed as

G	 ¼
1

2
r : Sm : rþ

1

2
r : ed

¼
1

2
r : Sm : rþ

1

2
r : �i ni

!
� ni

!
þ
1

2
ð �i
!

� ni
!

þ ni
!

� �i
!

Þ

� � ð12Þ

By substituting equation (6) into the expression for the free enthalpy above, and introducing the
unilateral contact condition in equation (8), we get

G	 ¼
1

2
r : Sm : rþ

1

2
c0�iHð ni

!
� r � ni

!
Þr : Ni : rþ

1

2
c1�ir : Ti : r ð13Þ

where H(�) is the Heaviside jump function and ni
!

� r � ni
!

¼ �i
nn is the normal stress at the crack face.

The fourth order normal (respectively, tangent) operator N	 (respectively, T	) is defined by

N	 ¼ N	
ijkl ¼ n	i n

	
j n

	
kn

	
l

T	 ¼ T	
ijkl ¼

1

4
ðn	i n

	
k
jl þ n	i n

	
l 
jk þ 
ikn

	
j n

	
l þ 
iln

	
j n

	
kÞ � n	i n

	
j n

	
kn

	
l

ð14Þ
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in which n	j is the unit normal vector of each direction 	. We can calculate the total Gibbs energy of
the RVE by integrating G* for a distribution of crack orientations �(n), over the unit sphere
S2 ¼ f~n, j~nj ¼ 1g, as follows

G ¼
1

2
r : Sm : rþ

1

8�

Z
S2

�ð~nÞfc0Hð�i
nnÞr : Ni : rþ c1r : Ti : rgdS ð15Þ

Since the calculation of the integral above is impractical for a continuous distribution �ð~nÞ, we use a
numerical integration scheme, with M integration points

G ¼
1

2
r : Sm : rþ

1

2

XM
i¼1

wi�i½r : ðc0Hð�i
nnÞNi þ c1TiÞ : r� ð16Þ

where wi is the weight in the direction ni. We adopt Bazant’s discrete scheme with 2� 21 microplanes
(Bažant and Oh, 1986) as shown in Figure 2(b). Note that the calculation of G requires M calcu-
lations at each time step. Increasing M can exponentially increase the computational cost of the
numerical integration. Bazant’s 2� 21 scheme provides satisfactory accuracy at reasonable compu-
tation cost. For a detailed discussion about the performance of the numerical integration scheme,
the reader us referred to (Ehret et al., 2010; Levasseur et al., 2013).

Thermodynamically consistent yield function and evolution law

The derived Gibbs energy in equation (16) only accounts for the elastic crack displacement jump,
without considering crack growth. Moreover, triaxial compression tests on brittle materials, such as
rock and concrete, show that irreversible deformation exists after unloading, which indicates that
inelastic deformation is an additional dissipation mechanism that is coupled to micro-crack propa-
gation. In order to account for irreversible crack debonding (i.e. crack radius growth) accompanied
by inelastic deformation, we introduce the inelastic strain ein in the formulation. A hyper-elastic
framework (Collins and Houlsby, 1997), in which the RVE strain tensor e is split into a pure elastic
part ee, which corresponds to the deformation of the elastic matrix, an additional elastic part ed

which represents the micro-crack elastic strain, and the inelastic deformation ein, is adopted as
follows

e ¼ ee þ ed þ ein ¼ eE þ ein ð17Þ

in which

eE ¼ ee þ ed ¼
@G

@r

ee ¼
1þ �0
E0

r�
�0
E0

TrðrÞd

ed ¼
XM
i¼1

�iwiðc0NiHð�i
nnÞ þ c1TiÞ : r

ð18Þ
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For each micro-plane orientation i, conjugation relationships are established to calculate the damage
driving force Yi

Yi ¼
@G

@�i
¼

1

2
wir : ðc0NiHð�i

nnÞ þ c1TiÞ : r ð19Þ

In the framework of thermodynamics, the damage driving force in direction i is defined as the energy
release rate necessary to propagate a unit crack density in that direction. Additionally, in fracture
mechanics, the energy release rate must exceed the crack resistance R(�i) to allow the crack bound-
ary to grow. Thus, the most general expression for the yield surface is

fið�i,YiÞ ¼ Yi � Rð�iÞ ð20Þ

where R(�i) is the equation of the crack resistance curve, which accounts for the heterogeneities
inside the material matrix and depends on the crack radius (crack density). According to equation
(19), the expression of the energy release rate is quadratic in deviatoric stress when the unilateral
contact condition is not satisfied. However, rock samples subjected to compression tests exhibit a
brittle behavior at low confining pressure and a ductile behavior at higher confining pressure. In
order to capture this brittle-ductile transition, a term depending on the mean stress is added to
equation (20). The yield criterion adopted in the proposed model is inspired from the Drucker-
Prager model, and is expressed as follows

fið�i,YiÞ ¼ Yi � 	Tr r� Rð�iÞ ð21Þ

From a mechanical point of view, the expression of the resistance curve R(�i) controls the hardening
or softening behavior after the initial yield surface is reached. In this study, we consider that R(�i) is
a linear function of the crack density �i (Pensee and Kondo, 2003) and we emphasize that our model
is only applicable for dilute distributions of micro-cracks, i.e. before crack coalescence and before
the peak of strength. In addition, we distinguish the increase of open crack density in Modes I & II
(when the unilateral condition is satisfied for the ith microplane direction) and the increase of closed
crack density in Mode II (when the unilateral condition is not satisfied for the ith microplane
direction), as follows

fið�i,YiÞ ¼ Yi � 	Trr� kð1þ ��iÞ ð22Þ

where k¼ kc,�¼ �c if cracks of the ith family are closed, and k¼ ko,�¼ �o if cracks of the ith family
are open. Each crack yield criterion fi is associated with one particular crack family. The macro-
scopic yield surface is the boundary of the elastic domain intersected by all the activated crack yield
surfaces, as shown in Figure 3. For each active microplane direction, the closed crack criterion is
activated if the macroscopic stress projected on the crack plane is compressive, and the open crack
criterion is activated if the macroscopic stress projected on the crack plane is tensive. Note that in
equation (22), the crack yield criterion fi can be rewritten in the form of a function of stress and
crack density only, because the energy release rate is a function of stress. As a result, the increment
of crack density of an activated crack family (fi> 0) can be readily calculated by means of the
consistency condition under controlled stress conditions

fi
:

ð�i,YiÞ ¼
@fi
@r

: r
:
þ

@fi
@�i

�i
:
¼ 0 ð23Þ
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The present discrete damage model requires solving all the equations that express consistency con-
ditions for all activated crack families simultaneously. By contrast, only one consistency condition is
used in Continuum Damage Mechanics models, which limits the number of crack propagation
modes considered. Figure 4 shows the evolution of activated crack yield surfaces during an

Figure 3. Representation of crack yield surfaces in the 3D stress space, for a uniformly distributed damage density

�i¼ 0.001 in all microplane directions. Material parameters are kc¼ 278.9, �c¼ 116.6, 	¼ 10�5 for closed crack

families and ko¼ 35.9, �o¼ 20.6, 	¼ 10�5 for open crack families. For a given state of stress, the elastic domain is the

space at the intersection of all the non-smooth activated crack yield surfaces. Note the shape difference between the

open crack yield surfaces and the closed crack yield surfaces, due to the expression of energy release rate Yi. (a)

Color code used for microplane orientations. (b) Yield surfaces in stress space for closed cracks. (c) Yield surfaces in

compressive stress space for closed cracks. (d) Yield surfaces in stress space for open cracks. (e) Yield surfaces in

tensile stress space for open cracks.
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oedometric test (with no lateral expansion). Crack yield surfaces expand independently from each
other because of the crack non interaction assumption.

Inelastic strains observed after unloading are due to residual geometric incompatibilities at the
crack faces, which purely depend on the damage-driving forces Yi. Microscopic crack yield criteria
are expressed in terms of the mean stress, and not just on the damage driving forces, which makes it
challenging to represent the residual geometric incompatibilities that arise at crack faces after
unloading. In order to overcome this limitation, we predict the evolution of inelastic strains due
to these geometric incompatibilities by resorting to non-associate flow rules. We introduce discrete
damage potentials, expressed as homogeneous functions of degree one in Yi, as follows

giðYiÞ ¼Yi � C0 ð24Þ

Following a non-associate flow rule, the macroscopic inelastic strain increment can be computed
from the damage potential, as follows

e
: in ¼

XM
i¼1

_�i
@giðYiÞ

@r
¼

XM
i¼1

wi �i
:
ðc0NiHð�i

nnÞ þ c1TiÞ : r ð25Þ

where �i is a Lagrange multiplier for the ith crack family of normal ni
!. Note that the non associate

flow rule for the crack density is expressed as

_�i ¼ _�i
@gi
@Yi

¼ _�i ð26Þ

Figure 4. Evolution of activated yield surfaces (i¼ 4–7,18–20) during an oedometer test (no lateral expansion). (a)

Color code used for activated crack directions. (b) Initial yield surfaces with a uniformly distributed crack density

�i¼ 0.012. (c) Activated yield surfaces at the end of the test: �4–7¼ 0.253, �18–1¼ 0.300. Note that some yield

surfaces are superimposed due to symmetries.
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Therefore, the Lagrange multiplier is equal to the increment of crack density, because plastic
deformation is coupled to damage evolution.

Numerical implementation of the multi-yield surface model

Local return mapping algorithm - closest point projection

As shown in Figure 3, the elastic domain in the proposed discrete damage model is defined by the
intersection of multiple non-smooth yield surfaces. At singular points, the normal to this macro-
scopic yield surface is not unique. In order to achieve the numerical implementation of the model
into a UMAT subroutine in the Abaqus Finite Element program, we adopt the closest point pro-
jection algorithm presented in Simo and Hughes (1998). In the following, we note the �, a variation
within a load increment, and the 
, a variation within an iteration performed during a load incre-
ment. We use the subscript n to refer to load increment n, and the superscript (k) to refer to the
iteration number. From the constitutive relations stated in equations (4) and (18), we have

eE ¼ ½S
m
þ
XM
	¼1

�	w	ðc0N
þ
	 þ c1T	Þ� : r

e
: in ¼

XM
	¼1

_�	@rg	ðrÞ ¼
XM
	¼1

_�	w	ðc0N
þ
	 þ c1T	Þ : r

ð27Þ

where N
þ
	 ¼ N	Hð�	

nnÞ. In the following, we note P	 ¼ w	ðc0N
þ
	 þ c1T	Þ for simplicity. From the

discrete Kuhn Tucker conditions, we have

if f trial�,nþ1 4 0, for some 	 2 ð1, 2, . . . ,MÞ ð28Þ

then, it is an inelastic loading step. We define the inelastic strain residual Rnþ1 as follows

�Rnþ1 ¼ ��einnþ1 þ
X
	2J act

��	nþ1@rg	,nþ1 ð29Þ

where J act is the set of crack families that are activated. From equation (29), the iterative correction
is obtained as follows


einðkÞnþ1 ¼ R
ðkÞ
nþ1 þ

X
	2J act

��	ðkÞnþ1@r�g	,nþ1
r
ðkÞ
nþ1 þ

X
	2J act


�	ðkÞnþ1@rg	,nþ1 ð30Þ

The first trial stress is given as

rtrialnþ1 ¼ ðS
m
Þ
�1 : ½en þ� enþ1 � edn � einn � ð31Þ

Thereafter, iterations are performed to satisfy the yield criteria, flow rules and stress–strain rela-
tionships. Throughout the iteration process, the given total strain increment �enþ1 is fixed.
Correspondingly, the iterative change in stress is obtained as


rðkÞnþ1 ¼ �ðS
m
Þ
�1 : ½
ed,ðkÞnþ1 þ 
ein,ðkÞnþ1 � ð32Þ
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Where the iterative change of damage-induced elastic strain is given by


ed ðkÞnþ1 ¼
XM
	¼1

�	ð0Þnþ1P	 : 
rðkÞ
ðnþ1Þ þ r

ðkÞ
ðnþ1Þ :

X
	2J act

P	
�
	ðkÞ
nþ1 ð33Þ

Making use of equations (30) and (33), equation (32) is rearranged as


rðkÞnþ1 ¼ �Cc : ½R
ðkÞ
nþ1 þ r

ðkÞ
nþ1 :

X
	2J act

2P	
�
	ðkÞ
nþ1� ð34Þ

In which the consistent stiffness matrix is defined as follows

Cc ¼ S
m
þ
XM
	¼1

�	ð0Þnþ1P	 þ
X
	2J act

��	ðkÞnþ1P	

" #�1

@rg	,nþ1 ¼ P	 : r
ðkÞ
nþ1

ð35Þ

By using a first order Taylor expansion to linearize the yield criteria which apply for the sets of
activated crack families, we get

f
ðkÞ
	,nþ1 þ @rf	 : 
rðkÞnþ1 þ @�	 f	 � 
�

	ðkÞ
nþ1, 	 2 J act ð36Þ

After substituting equation (34) into the above formulae, we obtain a system of coupled equations in
which the 
�	nþ1 are the unknowns

f
ðkÞ
	,nþ1 � @rf	 : Cc : R

ðkÞ
nþ1 ¼ @rf	 : Cc :

X
�2J act

2@rg�,nþ1
�
�ðkÞ
nþ1 � @�	 f	 � 
�

	ðkÞ
nþ1 ¼ 0, 	 2 J act ð37Þ

For the given trial stress rtrialnþ1, we obtain the crack density at the current increment and at the current
iteration 
�	ðkÞnþ1 by solving the coupled equations for all activated orientations 	 2 J act. Then it is
possible to update the correction of stress and the inelastic strain using equations (34) and (30). The
updated stress is then used to check the yield criteria as well as the inelastic strain residual. If f

ðkþ1Þ
	,nþ1

or R
ðkþ1Þ
nþ1 exceeds the tolerance, the iterative process is continued until both the yield criteria and the

residual fall below some given tolerances

f
ðkþ1Þ
	,nþ1 5TOL1, 	 2 J act

kR
ðkþ1Þ
nþ1 k5TOL2

ð38Þ

As shown in Figure 5, the set of activated crack families, estimated from the trial stress, may
contain crack families that are actually non active. For a given increment of total strain, the true
stress state must be at the intersection of the active yield surfaces only. In order to ensure the
convergence from the trial stress to the true stress, the non-active crack families need to be elimi-
nated from the set Jact. To do so, the sign of the iterative increment of crack density is checked after
each iteration (in addition to checking the yield criteria): if the value of the crack density increment is
negative, the corresponding crack family is removed from the activated crack set and the iteration is
restarted by using the trial stress.
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Algorithmic tangent moduli

We use the direct solver of Abaqus UMAT, in which the iterative resolution algorithm is based on
the Newton–Raphson method. Consequently, we need to not only update the stress and the state
internal variables, but also need to calculate the Jacobian matrix at the integration point level. In
this section, we derive the explicit expression of the Jacobian matrix. The differentiation operator is
noted as d. Note that differentiations are done at the end of iterations for each loading increment, as
explained in Table 1. First, we differentiate the stress strain relationship and the discrete flow rules,
as follows

deEnþ1 ¼ ½S
m
nþ1 þ

XM
	¼1

�	nþ1P	� : drnþ1 þ rnþ1 :
X
	2J act

P	d�
	
nþ1

deinnþ1 ¼
X
	2J act

��	nþ1@
2
r�g	ðrnþ1Þ : drnþ1 þ

X
	2J act

d�	nþ1@rg	ðrnþ1Þ

¼
X
	2J act

��	nþ1P	 : drnþ1 þ
X
	2J act

d�	nþ1P	 : rnþ1

ð39Þ

By substituting the above two equations into denþ1 ¼ deEnþ1 þ deinnþ1, we obtain the following
relationship

denþ1 �
X

	2J act

��	nþ1P	 : drnþ1 �
X

	2J act

d�	nþ1P	 : rnþ1

¼ S
m
nþ1 þ

XM
	¼1

�	nþ1P	

" #
: drnþ1 þ rnþ1 :

X
	2J act

P	d�
	
nþ1

ð40Þ

Equivalently

drnþ1 ¼ Chom : dnþ1 � 2
X

	2J act

d�	nþ1P	 : rnþ1

" #
ð41Þ

σn

σn+1,trial
σn+1,1

σn+1 σn+1,k

Figure 5. Geometrical representation of the return mapping algorithm used in this study: The closest point pro-

jection method is applied for multiple non-smooth yield surfaces.
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where Chom is the consistent modulus, expressed as

Chom ¼ S
m
nþ1 þ

XM
	¼1

�	nþ1P	 þ
X
	2J act

��	nþ1P	

" #�1

ð42Þ

The crack density increment d�	nþ1 is obtained from the discrete consistency condition by differen-
tiating f	ðrnþ1Þ ¼ 0 for all activated orientations

@rf	 : drnþ1 þ @�	 f	 � d�
	
nþ1 ¼ 0, 	 2 J act ð43Þ

Table 1. Closest point projection algorithm for multiple non-smooth yield surfaces implemented in UMAT sub-

routines for the Abaqus direct solver.

Step Description

1 Get the stored state variables �	n ð	 ¼ 1,. . . ,42Þ; ein
n ; rn from the previous increment n; Abaqus calculates

the total strain increment �enþ1.

2 Initialize e
inð0Þ
nþ1 ¼ ein

n ; �ið0Þnþ1 ¼ �in

rtrial
nþ1 ¼ rn þ S

m
þ
PM
i¼1

�ið0Þnþ1Pi

� ��1

: �enþ1

Compute f trial
i,nþ1ðr

trial
nþ1,�ið0Þnþ1Þ for i 2 f1,2,. . . ,Mg, ��	nþ1 ¼ 0

3 Check the yield criteria

IF: f trial
i,nþ1 � 0 for all i 2 f1,2,. . . ,Mg THEN:

ð�Þnþ1 ¼ ð�Þ
tr
nþ1, EXIT

ELSE:

J
ð0Þ
act ¼ f	 2 f1,2,. . . ,Mgj f trial

i,nþ1 4 0g, ��	ð0Þnþ1 ¼ 0

4 Evaluate the inelastic residual R
ðkÞ
nþ1 from equation (29).

5 Check the convergence of f
ðkÞ
	,nþ1ðr

ðkÞ
nþ1,�	ðk�1Þ

nþ1 Þ for 	 2 J
ðkÞ
act

IF: f
ðkÞ
	,nþ1 5TOL1 for all 	 2 J

ðkÞ
act and kR

ðkÞ
nþ1k5TOL2 THEN:

Provide the Jacobian matrix by using equation (46) to ABAQUS, and EXIT

6 Compute the consistent stiffness matrix by using equation (35). Introduce Cc and R
ðkÞ
nþ1 in equation (37).

7 Solve equation (37) for 
�	nþ1, 	 2 J act

Update ��	ðkþ1Þ
nþ1 ¼ ��	ðkÞnþ1 þ 
�	nþ1

IF: ��	ðkþ1Þ
nþ1 5 0, 	 2 J k

act, THEN:

Reset J
ðkþ1Þ
act ¼ f	 2 J

ðkÞ
actj��	ðkþ1Þ

nþ1 4 0g, Go to 4.

ELSE:

Calculate the inelastic strain increment correction by using equation (30).

8 Update state variables and compute the new trial stress

e
inðkþ1Þ
nþ1 ¼ ein

n þ 
einðkþ1Þ
nþ1

�	ðkþ1Þ
nþ1 ¼ �	n þ��	ðkþ1Þ

nþ1 , 	 2 J k
act

r
ðkþ1Þ
nþ1 ¼ S

m
þ

PM
	¼1

�	ðkþ1Þ
nþ1 P	

� ��1

: ð en þ denþ1 � e
inðkþ1Þ
nþ1 Þ

Go to 5.
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By substituting equation (41) into equation (43), we have

@rf	ðrnþ1Þ : Chom : denþ1 ¼ @rf	ðrnþ1Þ : Chom : 2
X
�2J act

d��nþ1P� : rnþ1

" #

� @�	 f	ðrnþ1Þ � d�
	
nþ1, 	 2 J act

ð44Þ

Equivalently

d�	nþ1 ¼
@rf	ðrnþ1Þ : Chom : denþ1

2
P

�2J act
@rf	ðrnþ1Þ : Chom : @rg� � @�	 f	ðrnþ1Þ

, 	 2 J act ð45Þ

Note that the number of equations required to express the relationship between d�	nþ1 and denþ1 is
equal to the number of activated yield surfaces. Substituting d�	nþ1 back into equation (41) results in
a stress/strain relationship that exhibits the desired tangent moduli used in the Newton–Raphson
method

drnþ1

dnþ1
¼ Chom : I� 2

X
	2J act

@rg	 � @rf	 : Chom

2
P

�2J act
@rf	 : Chom : @rg� � @�	 f	

" #
ð46Þ

The overall steps of the return mapping algorithm, including the local Closest Point Projection that
we implemented in ABAQUS for multiple non-smooth yield surfaces, are summarized in Table 1.

Implementation verification

The implementation of the resolution algorithm is checked by comparing the model predictions
obtained at the integration point (using MATLAB) to those obtained with the Finite Element
Method (one-element Abaqus model). For the tests performed at the integration point, we simulated
pure shear in plane strain conditions and confined compression (oedometer test) by applying strain
loads of �12¼ 2% and e11¼ 2%, respectively. All the other strain components were set to zero. Pure
shear tests were simulated with the FEM by applying a 
0.0005m displacement along the edges of a
square with sides of 1m in length. The oedometer test was simulated with the FEM by applying a
�0.002m displacement in direction 1 and by using fixed boundaries on all of the other faces of a
cube. The cube edge length was 1m. 200 loading increments were used for all of the simulations.
Table 2 summarizes the material parameters used for the simulations. Note that these parameters do
not correspond to any specific material, although parameter values fall within the range that would
be expected for a granite rock. In particular, the Young’s modulus, the yield and hardening par-
ameters represent the behavior of a rock material in tension or compression.

Figure 6 shows the results. For all the cases simulated, both the linear elastic response and the
non-linear damaged response are well captured by the discrete damage model. The difference
between the stress/strain curves obtained at the material point (MATLAB) and in the one-element
FEM model (Abaqus) is negligible. Note that the reason why the stress/strain curve is almost linear
in the oedometer test is because the lateral pressure increases the hardening effects. Figure 6(b)
shows the crack density distribution for the oedometer test. Results show that only mode II crack
propagation driven by deviatoric stress is possible. As a result, the direction normal to the activated
crack planes is closer to the loading direction than to the direction normal to the inactivated crack
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Figure 6. Verification and accuracy tests. Comparison of the stress/strain curves obtained at the material point and

with the FEM for an oedometer test (a) and for a pure shear test (c). The corresponding distributions of damage

density are shown in (b) and (d) respectively.

Table 2. Material parameters used for the verification of the implementation of the algorithm.

Elasticity Initial state Damage function

E0 �0 a0 N 	 kc �c ko �o
GPa � L N/L3

� Pa Pa Pa Pa

53.5 0.35 0.05 960 10�5 278.9 116.6 35.9 20.6
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planes. Figure 6(d) shows the crack density distribution for the pure shear test. During a pure shear
path, principal tension and compression components rotate by 45 degrees with respect to the shear
axes 1 and 2. The resistance to tension for brittle materials is much less than the shear resistance,
which explains the predominance of crack propagation in planes with normals oriented by an angle
of 45 degrees to the horizontal or vertical. Note that because the MATLAB simulations are done in
plane strain and the Abaqus simulations are done in 3D, there is a small discrepancy between the
two stress/strain curves at the later stage of the pure shear test (Figure 6(c)). We conclude that the
proposed discrete damage model is suitable to track anisotropic crack density evolution and that the
Closest Point Projection algorithm implemented in UMAT is accurate.

Damage model calibration and numerical applications

Principle of the calibration algorithm

The proposed discrete damage model depends on 9 constitutive parameters, which can be grouped into
3 categories: elasticity, initial state, and damage (Table 2). The model can account for intrinsic anisot-
ropy (i.e. with anisotropy not induced by micro-crack propagation), if different values are chosen for
the reference (initial) microcrack radius (a0) and the initial number of microcracksN ¼ N

�r
for different

crack orientations. By construction of the yield criteria, two independent loading paths are needed in
tension and in compression to calibrate the material parameters (depending whether the unilateral
condition is satisfied or not). If the simulation only involves compressive stress (respectively tensile
stress), the two damage function parameters ko,�o (respectively kc,�c) can be omitted.

We used the Interior Point Algorithm programmed in MATLAB to determine the unknown
vector B ¼ ðE0, �0, a0,N ,	, kc, �c, ko, �oÞ that minimizes the squared residual of the distance between
experimental results yi and numerical predictions f(x,B). The residual that is minimized iteratively is
defined as

RðBÞ ¼
Xn
i¼1

½ yi � f ðx,BÞ�2 ð47Þ

where x stands for the vector of known input variables (e.g. strain or stress, depending whether the
load is controlled by force or displacement). The algorithm is initialized with an initial guess and a
reasonable range of values for the coefficients of the unknown parameter vector B. Then, the tests
with the discrete damage model are simulated at the material point, and the value of the residual
R(B) is updated iteratively. The gradient of the residual R(B) with respect to each parameter listed in
the vector B is calculated. This gradient of residual is used to minimize the difference between
numerical and experimental stress–strain curves, as follows

Bnþ1 ¼ Bn � �n�RðBÞ ð48Þ

where �n is the barrier parameter, which is updated at each iteration step in the Interior Point
Algorithm. The procedure is described in detail in Byrd et al. (2000) and Waltz et al. (2006).

Triaxial compression test for concrete

We first calibrate and validate the discrete damage model against a series of triaxial compression
tests performed on high strength concrete by Papanikolaou and Kappos (2007). The experimental
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stress/strain curves obtained with confinements of 4 & 12MPa were used for calibration.
Experimental data obtained with a confining pressure of 8MPa was used for validation. The soil
mechanics sign convention was adopted throughout the paper (with compression assumed to be
positive). Note that only the portion of the experimental data obtained before the peak of the stress/
strain peak was used, because the proposed discrete damage model is only valid for non-interacting
cracks. Table 3 summarizes the values of the calibrated material parameters.

Figure 7(a) shows the results obtained after model calibration for confining pressures of �3¼ 4, 8 &
12MPa. The excellent match between numerical and experimental curves, especially for the test per-
formed at 8MPa (used for model validation) show that the discrete damage model allows the non-linear
behavior of concrete subject to compressive damage to be represented. Because the yield criteria depend
on the mean stress via the term 	Trr, the model can capture the increase of the yield stress �y with
increasing confining pressure �3, as can be seen from the evolution of the crack densities in the different
directions of space in Figure 7(b). The discrete damage model highlights the difference of crack density
magnitude among the activated crack families. Overall, the performance of the discrete damage model
for the calibrated parameters is very satisfactory for closed micro-crack propagation.

Figure 7. Calibration and validation of the discrete damage model parameters against experimental stress–strain

curves obtained during triaxial compression tests performed on concrete under various confining pressures.

(a) Triaxial test stress–strain curves. Results of tests performed with a confining pressure of �3¼ 4&12 MPa were

used to calibrate the model. Experimental results obtained for a confining pressure of �3¼ 8 MPa were employed

to validate the calibration. (b) Evolution of the typical damage densities in different directions with the calibrated

parameters, for the three confining pressures.

Table 3. Model parameters calibrated against triaxial compression tests reported in Papanikolaou and Kappos

(2007) for high strength concrete.

Elasticity Initial state Damage function

E0 �0 a0 N 	 kc �c
GPa � L N/L3

� Pa Pa

53.6 0.22 2� 10�4 8178 3.3� 10�5 34.3 615.7
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With the parameters calibrated above for concrete, we simulated a triaxial compression test
performed under a confinement of 4MPa with the FEM. Following the standards of the
American Society for Testing and Materials (ASTM), we modeled a cylindrical concrete sample
of diameter 0.1m and length 0.2m. Due to symmetries, only 1/8 of sample is meshed in Abaqus, as
shown in Figure 8. In total, 4000 hexahedral elements were used. Besides the symmetry boundary

Figure 8. FEM simulation of a triaxial compression test performed on an ASTM concrete sample subjected to a

4 MPa confining pressure. Isosurfaces of the crack densities for the activated crack families.
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conditions, a zero horizontal displacement (in directions x1 and x2) was imposed at the top surface
(perpendicular to the x3-axis), in order to mimic the friction effect between the steel plate and the
concrete sample. After applying a 4MPa hydrostatic confinement on all of the external boundaries,
the top surface was subjected to a vertical displacement of 0.0003m. Figure 8 shows the crack
density distribution for all activated crack families at the end of the test. By contrast with the
oedometer test, the confining pressure is maintained at a constant value, therefore, more crack
families are activated during the triaxial compression test. As expected, the space variations of
crack density differ from one crack plane orientation to the other. Note however that for all
activated crack families, the highest crack density is reached at the edge of the sample that is in
contact with the steel plate. This phenomenon is a frictional boundary effect, which explains macro
fracture initiation in isotropic and homogeneous samples. It can also be noted that for all damage
directions, activated cracks concentrate in the center of the sample. This result is in agreement with
experimental measures of damage based on acoustic emission velocity and lateral deformation.
Given that cracks of different directions are superposed; it is clear that the inner part of the
sample is the most damaged during the test. The proposed discrete damage model provides a
detailed description of the fabric of materials damaged in compression with only 3 damage param-
eters (	, kc, �c), 2 initial crack parameters (a0 and N ) and 2 elasticity parameters (E0 and �0). This is
a significant gain of information compared to former damage models implemented in FEM, which
are formulated using a second-order damage tensor at most (Jin et al., 2017; Xu and Arson, 2015).

Hassanzadeh’s direct tension test for concrete

In most brittle materials, uniaxial tension results in a highly localized macroscopic crack propaga-
tion followed by tensile failure. The stress–strain curve recorded during uniaxial tension tests cannot
truly reflect the material behavior because the strain is not uniform throughout the sample. That is
the reason why Bazant and Pijaudier–Cabot (1989) designed a specific testing apparatus, in which
the concrete sample is glued to parallel thin-steel rods. The testing procedure allows obtaining the
stress strain curve even when micro-cracks are diffused throughout the sample. We used the harden-
ing portion of the stress/strain curves reported in Bazant and Pijaudier–Cabot (1989) in order to
calibrate the discrete damage model for open crack propagation modes (i.e. when the unilateral
condition is satisfied). Calibration results are given in Table 4 and shown in Figure 9(a), in which the
soil mechanics sign convention was adopted (compression counted positive). Concrete behaves as a
perfectly plastic material prior to yielding. The hardening behavior is captured, but as explained
before, the post-peak behavior cannot be represented with the dilute homogenization scheme
adopted here. Note that because all of the cracks are initially closed, the cracks that propagate
during the test are those in the planes perpendicular to the loading direction, as can be seen from the
evolution of �1 in Figure 9(b).

Table 4. Model parameters calibrated against uniaxial tension tests reported in Bazant and Pijaudier–Cabot (1989)

for concrete.

Elasticity Initial state Damage function

E0 �0 a0 N 	 ko �o
GPa � L N/L3

� Pa Pa

27.0 0.23 4.8� 10�3 485 0.5� 10�5 95.0 0.095
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In order to demonstrate the capability of the proposed model to predict the behavior of brittle
solids in tension, we simulated Hassanzadeh’s direct tension test (Hassanzadeh, 1992). A four-edge
notched specimen was assigned using the calibrated parameters listed in Table 4. The specimen
geometry and the applied boundary conditions are shown in Figure 10. Due to symmetries, only
1/8 of the sample was modeled. A vertical displacement field was imposed at the bottom face of the
domain (u¼ 0.01mm). We used a coarse mesh with 9943 3D hexahedral elements and a fine mesh
with 35,550 elements.

The isosurfaces of horizontal crack density (i.e. density of crack planes perpendicular to the
tensile loading axis) are shown in Figure 11 for both the coarse and fine meshes. Of course, in
this purely hypothetical simulation test, the high magnitude reached by �3 is not realistic: physically,
a macroscopic horizontal fracture would propagate during the test, which cannot be captured by
using a dilute scheme homogenization scheme. Interestingly, results show that micro-cracks propa-
gate from the edges to the center of the central part of the sample, which is in agreement with

Figure 9. Calibration of the discrete damage model against uniaxial tension experimental data (Bazant and

Pijaudier–Cabot, 1989) for open crack propagation. (a) Stress–strain curves - Uniaxial Tension Test. (b) Crack density

evolution - Uniaxial Tension Test.

70 mm

70 mm

28 mm

28 mm

4 mm

u

25 mm
25 mm

sym
sy
m

sym

u=0.01 mm

Figure 10. Hassanzadeh’s direct tension test: problem definition, simulation domain and boundary conditions.
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experimental observations. Note that the maximum crack density calculated with the coarse mesh is
less than that with the fine mesh, and the extent of the damaged zone is larger with the coarse mesh
than that with the fine mesh. To avoid this problem of mesh-dependency, a non-local discrete
damage model formulation is required. Such a regularization goes beyond the scope of the present
study, but is currently being undertaken by the authors. For both mesh refinements, the extent of the
damaged zone exceeded the size of a single Finite Element. In addition to the crack families per-
pendicular to the loading direction (x3-axis), four crack sets were activated during the test, as shown
in Figure 12. As expected, these four directions are the closest to the loading direction. Overall, the
discrete damage model can predict micro crack propagation in tension at a very low yield stress. The
authors work on combining the model implemented in FEM with Cohesive Zone Elements (Jin and
Arson, 2016; Jin et al., 2017) or XFEM (Comi et al., 2007) will allow the simulation of the evolution
of the damage process zone evolution around macroscopic fractures.

Plane stress tension test for a fiber-reinforced composite

In the following, we study the activation and propagation of crack sets in a fiber-reinforced com-
posite subjected to a plane stress tensile test. The fibers are assumed to have a much higher tensile

Figure 12. Hassanzadeh’s direct tension test: Isosurfaces of damage density for non-horizontal activated crack

families obtained from fine mesh results.

Figure 11. Hassanzadeh’s direct tension test: Final horizontal crack density isosurfaces for the coarse (left) and fine

(fine) meshes.
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strength than the matrix, and are modeled as linear elastic materials. The matrix material is assigned
the discrete damage model, in which only open crack propagation modes are considered. The
material parameters adopted in the simulations are listed in Table 5. Note that the matrix material’s
Young’s modulus is less than that of the fibers. We compare the results obtained when fibers are
either aligned or perpendicular to the direction of the applied tension to those obtained when the
fibers are all oriented by an angle of 45� to the tensile direction, as shown in Figure 13. Simulations
were done in 3D. The elements’ thickness was 0.1m. The same boundary conditions were adopted in
both cases. Hexahedral elements with an average edge size of 0.025m were used in both cases. The
mesh was structured for the simulation of tension in the axis of the fibers, and random for the
simulation of tension at 45� from the axis of the fibers (due to the complexity of the geometry). At
the interface between the fibers and the matrix, nodes were shared, i.e. the two materials were
perfectly bonded so that the interface friction was not considered. The composite plates were
assumed to be symmetric about the horizontal and vertical axes, therefore fixed displacements
were applied at the bottom and left boundaries of the domain. A displacement of 0.01mm was
applied normal to the top boundary. On the right boundary, a zero horizontal displacement and a
zero vertical stress were imposed.

Figure 14 shows the distributions of horizontal and vertical stress for both composites. Note that
results are displayed in a plane located at at mid-thickness of the plates in the x3 direction (thickness
direction). As expected, fibers bear most of the load applied due to their higher stiffness. Note that

Figure 13. Problem definition and boundary conditions for the simulation of tension tests on a fiber-reinforced

composite.

Table 5. Model parameters used in the simulation of tension tests on a fiber-reinforced composite.

Elasticity (fibers) Elasticity (matrix) Initial state Damage function

E0 �0 E � a0 N 	 ko �o
GPa � GPa � L N/L3

� Pa Pa

50 0.3 35 0.25 0.001 120 2� 10�5 20 24
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when fibers are aligned with a principal stress direction, all the stress in that direction concentrates in
the fibers. For example, the vertical stress (in x2 direction) is concentrated along the vertical fibers,
and the horizontal stress (in x1 direction) is concentrated along the horizontal fibers. When tension is
applied at an angle of 45� to the fibers, the maximum vertical stress reached in the fibers is less than
that in the vertical fibers, and the maximum horizontal stress reached in the fibers is more than that
in the horizontal fibers.

The effect of fiber orientation on the distribution of cracks in the matrix material is illustrated in
Figure 15. Note the color code used to represent the families of activated crack planes: �1, �2 in green,
�4 in blue and �14 in red. The variations of �4 (respectively �14) inside the domain are similar to those
of �5,25,26 (respectively �15–17,36–39), due to the symmetry in crack orientations. Note that all of the
crack families that are activated during the test are inside the plane of x1,x2, or have a very small
component in the x3-axis. The smallest and largest of all possible values reached by the crack densities
are obtained at the intersection of the inclined fiber reinforcements. Cracks also concentrate at the
boundary, close to the inclined fibers. Crack densities are more uniformly distributed in the composites
with non-inclined fibers. This example illustrates the benefits of accounting for fiber orientation in the
design of thin structures subjected to tension, such as the walls of pressurized vessels. In this particular
case, putting fibers in the axis of the tensile load will allow reducing the load borne by the matrix
material, and therefore, to reduce the density of tensile cracks. Fiber intersections are the parts of the
composite plate that are the most exposed to tensile damage, and need to be checked in priority for
monitoring purposes. The proposed discrete damage model thus provides useful predictions of crack

Figure 14. Distribution of horizontal and vertical stress in composites with various orientations of fiber

reinforcements. (a) Horizontal stress distribution. (b) Vertical stress distribution.
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Figure 15. Crack density distribution for typical directions inside the base material.
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patterns in brittle materials subject to mixed mode crack propagation, with a small number of material
parameters which all have a sound physical meaning.

Conclusions

The discrete damage model presented in this paper is based on a dilute homogenization scheme, which
allows summing up the energy potentials stored in the displacement jumps of crack families of different
orientations to represent the energy stored at the scale of the Representative Volume Element(RVE).
42 microplane orientations are considered. Closed cracks propagate in pure mode II, whereas open
cracks propagate in mixed mode (I/II). The elastic domain is at the intersection of the yield surfaces of
the activated crack families. These surfaces are not smooth. In order to solve for the 42 crack densities,
a Closest Point Projection algorithm is adopted locally. The irreversible strains at the RVE scale are
obtained by using a Newton–Raphson algorithm. To the authors’ best knowledge, this is the first time
that a discrete damage model accounting for two crack propagation modes is successfully imple-
mented in a Finite Element program. The proposed damage model was rigorously calibrated for
both compressive and tensile stress paths. Simulations of triaxial compression tests showed that the
transition between brittle and ductile behavior at increasing confining pressure can be captured. The
cracks’ density, orientation and location predicted in the simulations are in agreement with experi-
mental observations made during compression and tension tests, and accurately show the difference
between tensile and compressive strength. Plane stress tension tests, simulated for a fiber-reinforced
brittle material, also demonstrated that the model can be used to interpret crack patterns, design
composite structures and recommend reparation techniques for structural elements subjected to mul-
tiple damage mechanisms. This is a significant asset compared to the capabilities of former Continuum
Damage Mechanics models used in FEMs. More work is needed to regularize the model, avoid mesh
dependence and extend the formulation to interacting sets of micro-cracks.
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