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SUMMARY

We propose a numerical method that couples a cohesive zone model (CZM) and a finite element-based
continuum damage mechanics (CDM) model. The CZM represents a mode Il macro-fracture, and CDM
finite elements (FE) represent the damage zone of the CZM. The coupled CZM/CDM model can capture the
flow of energy that takes place between the bulk material that forms the matrix and the macroscopic fracture
surfaces. The CDM model, which does not account for micro-crack interaction, is calibrated against triaxial
compression tests performed on Bakken shale, so as to reproduce the stress/strain curve before the failure
peak. Based on a comparison with Kachanov’s micro-mechanical model, we confirm that the critical micro-
crack density value equal to 0.3 reflects the point at which crack interaction cannot be neglected. The CZM
is assigned a pure mode II cohesive law that accounts for the dependence of the shear strength and energy
release rate on confining pressure. The cohesive shear strength of the CZM is calibrated by calculating the
shear stress necessary to reach a CDM damage of 0.3 during a direct shear test. We find that the shear
cohesive strength of the CZM depends linearly on the confining pressure. Triaxial compression tests are
simulated, in which the shale sample is modeled as an FE CDM continuum that contains a predefined thin
cohesive zone representing the idealized shear fracture plane. The shear energy release rate of the CZM is
fitted in order to match to the post-peak stress/strain curves obtained during experimental tests performed on
Bakken shale. We find that the energy release rate depends linearly on the shear cohesive strength. We then
use the calibrated shale rheology to simulate the propagation of a meter-scale mode II fracture. Under low
confining pressure, the macroscopic crack (CZM) and its damaged zone (CDM) propagate simultaneously
(i.e., during the same loading increments). Under high confining pressure, the fracture propagates in slip-
friction, that is, the debonding of the cohesive zone alternates with the propagation of continuum damage.
The computational method is applicable to a range of geological injection problems including hydraulic
fracturing and fluid storage and should be further enhanced by the addition of mode I and mixed mode
(I+11+III) propagation. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In numerical methods, cavities, faults, and fractures are usually modeled as separated or weakly
bonded surfaces [1, 2], or as notch-shaped flaws [3]. The corresponding governing equations are pri-
marily based on fracture mechanics (FM). For instance, fractures are usually represented by Griffith
macroscopic cracks, which open or slide under the influence of a differential stress [4]. In classi-
cal FM, the fracture is assumed to propagate when the stress intensity factor (SIF) (respectively the
strain energy release rate) reaches the fracture toughness (respectively the strength of the bounding
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material) at the crack tip [5]. Such propagation criteria are only valid for purely elastic materials.
In non-elastic continua, models require that the maximum size of the plastic or damage zone near
the fracture tip be smaller than the specimen or domain dimensions by at least two orders of magni-
tude. In continuum damage mechanics (CDM), models were either based on phenomenology [6, 7]
or grounded on micromechanics [8, 9]. At the scale of the representative elementary volume (REV),
CDM models were proposed to account for unilateral effects [10, 11], microcrack friction [12] and
strength difference in tension and compression [13]. CDM models were also formulated with sophis-
ticated damage internal variables (e.g., anisotropic damage tensors [14] and discrete sets of damage
tensors [15]) in order to represent the evolution of the process zone, that is, the area surrounding the
crack tip that undergoes inelastic deformation. For materials that undergo significant inelastic defor-
mation, the crack tip open displacement (CTOD) method, the J-integral method [16], and cohesive
zone models (CZM) [17, 18] are more suitable to model macro-scale fracture propagation.

The concept of cohesive zone was introduced by Barenblatt [19] and was used since then to study
different types of failure mechanisms. Xu and Needleman [20] used exponential-shaped traction—
separation models to study the fast growth of cracks in brittle materials under dynamic loading.
Hutchinson et al. [21-23] used a trapezoidal-shaped traction—separation model to calculate the crack
growth resistance in elasto-plastic materials. The bilinear cohesive zone model was used to predict
the behavior of brittle materials, for example to simulate hydraulic fracturing in rocks [2] and to
explain fracture patterns in concrete [24]. Paulino et al. formulated unified potential-based CZMs to
study asphalt and concrete [25-28]. CZMs are widely used and computationally efficient. In CZMs,
the damage path is predefined [29, 30], and the presence of smaller-scale discontinuities in the
damage process zone is not accounted for [31]. While the need for an a priori definition of the crack
location limits the problems to predictable and idealized propagation paths, using the CZM method
allows testing and refining the coupling algorithms between the micro and macro-scales without
the added numerical complexity intrinsic to other discrete fracture methods (e.g., XFEM, discrete
elements, particle codes, etc.). Namely, our present focus is to better simulate the propagation of a
discrete geometric fracture within a damaged region of rock.

Indeed, neglecting the effects of micro-cracks leads to ignoring the stiffness degradation of the
bounding material and therefore to underestimating fracture propagation. A representation of rock
microstructure, at the scale of the material internal length, is needed to relate the extent of the
damaged zone to the density, size, and shape of the cracks. Recent studies established an explicit
relationship between rock grain size distribution and the dimensions of the fracture process zone
[32]. Multiscale strategies were also proposed to couple fracture mechanics criteria with a CDM
model to represent the evolution of micro-cracks in the bounding material. For instance, Valko and
Economides [33, 34] calculated the velocity of the tip of a hydraulic fracture by using a SIF that
depends on a scalar damage variable. Mazars and Pijaudier-Cabot [35] established an equivalence
between the energy dissipated by opening a discrete fracture and the energy dissipated by a dilute
distribution of micro-cracks. Based on similar thermodynamic principles, Jirasek and Zimmermann
[36, 37] used a non-local damage model to predict micro-crack propagation and the transition to
cohesive zone debonding due to micro-crack coalescence. Comi et al. [38, 39] used the value and the
gradient of nonlocal damage in order to predict the transition between smeared continuum damage
propagation and discrete fracture growth, and to calculate the propagation direction of the macro-
fracture. The energy dissipated by CZM debonding is equivalent to that dissipated by CDM non-
local damage propagation in the absence of coalescence. An Extended FE method was presented in
[40], in which local damage is predicted by a gradient-enhanced CDM model. When local damage
reaches unity (usually around the fracture tip), the finite element is split along the direction of
maximum non-local equivalent strain. Cazes et al. [41] found a method to derive the shape of the
debonded cohesive zone from non-local damage. Cuvilliez et al. [42] designed a flexible modeling
framework, in which the transition between continuum damage and discrete fracture can be set
for any REV size. The computational method explained in [43] relies on homogenization; macro-
fracture propagation is upscaled from the micro-crack density tensor. Note that in all the multiscale
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A FRACTURE PROPAGATION COMPUTATION TOOL 225

modeling strategies listed, an internal length parameter is explicitly introduced in the formulation,
which prevents damage localization and mesh dependency problems when simulating the softening
response.

In the following study, we propose a numerical method that couples a CDM model (for the bulk)
to a cohesive zone model (for the fracture), in order to simulate the propagation of a discrete mode
II fracture within a damaged zone. In Section 2, we provide an analysis of the dissipation processes
that are represented during crack propagation in the CZM and in the CDM differential stress induced
damage (DSID) model [7, 44]. Then we calibrate the CZM/CDM model so as to reproduce the
stress/strain curves of Bakken shale during typical triaxial compression tests. Bakken shale is a tight
organic reservoir rock that exhibits representative deformation curves common to many rocks that
undergo hydraulic fracturing. We present the calibration method for the behavior simulated before
the failure peak (Section 3) and after the failure peak (Section 4). In Section 5, we calculate the
propagation rate of a mode II fracture embedded in a meter-scale damaged zone.

2. THEORETICAL FRAMEWORK OF THE COUPLED MODEL OF DAMAGE AND
FRACTURE PROPAGATION

2.1. Continuum damage mechanics model

In most continuum mechanics models of anisotropic damage, the free energy postulated for the solid
skeleton is expressed in terms of deformation. As a result, the damage work-conjugate variable Y
(called energy release rate or damage driving force in the following) is also a function of deforma-
tion [45-48]. In order to better account for states of tensile deformation under differential stress,
we use the differential stress induced damage (DSID) model, in which the free energy potential is
expressed as a function of stress [7]. The damage tensor (noted ) is a phenomenological internal
variable, which controls the degradation of material stiffness along principal crack planes. The Gibbs
free energy (Gy) is the sum of the damaged elastic deformation energy stored in the material, the
potential energy that can be released by creating new material surfaces and the potential energy that
can be released by opening cracks (i.e., potential irreversible deformation energy). This free energy
potential is expressed as a polynomial that is quadratic in stress and linear in damage, which implies
that the material is linear elastic in the absence of damage [6, 49]. The thermodynamic framework
of the DSID model is summarized in Table I. Stress/strain relationships are obtained by deriving
the Gibbs free energy by stress. Damage evolution is controlled by a damage function, similar to
the Drucker—Prager yield function (expressed in terms of energy release rate instead of stress). The
damage flow rule is non-associate, and the damage potential is chosen so as to ensure the positivity
of dissipation associated to damage. The irreversible deformation due to damage follows an associ-
ated flow rule, which ensures that dilation due to crack opening takes place in the damage principal
directions (i.e., in the directions orthogonal to the crack planes). With sustained deformation, it is
anticipated that a non-associative flow rule would be needed to capture shear dilatancy. We captured
the resulting shear localization by coupling the DSID model to a CZM of discrete fracture. Irre-
versible shear strains calculated with the DSID model were considered small enough to justify the
use of the DSID associate flow rule.

At the scale of a continuum REV (i.e., at the material point), the energy dissipated by damage can
be calculated from the inequality of Clausius—Duhem:

észa:é—¢s=a:éid+Y:QZO.

) 1 . ) 1
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Where 5 is Helmholtz free energy (defined as the Legendre transform of Gibbs energy), and
o : & is the incremental deformation power (equal to the power provided by external forces to the
REV). The total dissipated energy | @, dr is the difference between external work and recoverable
strain energy, %a : ¢ Note that in the DSID model, the total elastic deformation &% is the sum
of the purely elastic deformation e¢’ (deformation undergone by the material in the absence of
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damage) and of the damaged elastic deformation £ (additional recoverable deformation caused
by material softening). As shown in Figure 1, the decomposition of deformation allows accounting
for two types of energy dissipation processes: micro-crack debonding causing stiffness degradation

Table I. Thermodynamic framework of the DSID model.
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Figure 1. Evolution of energy potentials in a REV governed by the DSID model.
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but no irreversible deformation (term [ Y :  dr); and micro-crack opening resulting in residual
irreversible strains (term [ o : &' dr).

2.2. Cohesive zone model

The DSID model assumes that micro-cracks do not interact; this assumption does not hold when
damage exceeds a critical value .. In order to overcome this limitation, we propose to couple the
DSID model with a fracture mechanics model. Above the critical value 2., continuum damage is
replaced by a cohesive law (CZM) assigned to a local area representing an initially bonded discrete
crack with properties set equivalent to the damaged bulk material at the damage threshold ;. As
the fracture faces debond according to a traction—separation law, the bulk material surrounding the
discrete crack unloads, which results in partial recovery of elastic energy.

CZMs that are governed by different force—displacement curves but that have equal cohesive
strength and equal cohesive energy release rate provide similar predictions of stress and strain except
close to boundaries [50, 51]. The type of traction—separation law in the CZM mostly influences the
stress and strain fields at the fracture tip [52]. We considered a range of real deformation tests on
our test material (Bakken shale from subsurface core) and found the actual form of the traction—
separation response to be difficult to constrain without more robust laboratory testing. Thus, for
simplicity, we chose a bilinear CZM (Figure 2). When the cohesive strength is reached (0,45 in
mode I, 7,4, in mode II), the relative displacement of the fracture faces reaches the threshold value
8o (cohesive crack tip), and the faces of the cohesive zone start to separate. Failure (i.e., complete
face separation) is reached at the material crack tip (for a relative displacement § s ), where cohesive
strength acting across the cohesive zone surfaces are equal to zero. The mechanical work needed to
create a unit area of fully debonded crack is referred to as the cohesive fracture energy (noted G.).
For a sharp crack embedded in a homogeneous elastic body, G, can be calculated as [18]

8r
G, = / 0ds @)
0
In elastic materials, the value of the energy release rate G, is an intrinsic material property that
can be expressed as

G :K;C Kiic . Kinc
¢ E’ E’ 2G

3

Where Kjc (respectively Krrc, Krrrc) is mode I (respectively mode II, mode III) fracture
toughness in linear elastic fracture mechanics. £’ = E in plane stress and E’ = E/(1—v?) in plane
strain. Note that for most rock materials, the cohesive strength and the energy release rate depend
on the confinement stress and thus need to be calibrated for various confinement pressures. Con-
finement also tends to reduce the stress drop depicted in Figure 2 after the peak stress, which results
in a residual shear strength. In this case, the zero in the lower bound of the integral in Equation (2)
can be replaced with the residual shear displacement, and G, is accordingly modified. For exam-
ple, in seismicity and other dynamic studies, it may be important to capture the magnitude of the
shear-stress drop.

2.3. Transfers of energy between fracture surfaces and the damage zone

As explained in Equation (2), the energy release rate G, is entirely dissipated in the cohesive zone if
the bounding material is purely elastic. By contrast, in a material that is subject to micro-cracking,
fracture propagation is both because of the micro-crack initiation and debonding within the bound-
ing material (this is accounted for with the DSID model) and to the separation of macro-crack
faces (this is accounted for with the CZM). In other words, the energy release rate measured during
laboratory experiments includes the energy dissipated to form micro-cracks in the matrix, to pro-
duce irreversible strains in the matrix and to propagate the macro-fracture. When a cohesive crack
propagates in a damaged elastic REV, the energy balance is expressed as
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In which Ey, is the energy supplied by external work, E. is the energy dissipated by crack debond-
ing in the CZM, and E, and E;, are respectively the stored elastic energy and the dissipated energy
in the bounding material (around the cohesive crack). E. is the sum of purely elastic deformation
energy (stored in the undamaged part of the matrix) and deformation energy due to recoverable
micro-crack displacement jumps at micro-crack faces. E;, accounts for both the debonding of
micro-cracks (i.e., the creation of material surfaces in micro-cracks) and for the irreversible defor-
mation induced by residual crack openings. We have G, = E;, + E.. The question is as follows:
What is the proportion of mechanical work that dissipates in the form of micro-cracks (E;,), and
what is the proportion of mechanical work that dissipates in the form of a discrete portion of fracture
(E;)? Chandra et al. [51, 53] investigated the influence of the ratio of cohesive strength over yield
strength 0 ,,,4x /0 5, for elastic—plastic materials. As shown in Figure 3, the plastic work takes a more
important percentage of strain energy as the ratio of 0,45 /0 , increases. This is commonly referred
to as the brittle—ductile transition, and is evidenced in stress/strain behavior as an increasingly
developed strain hardening zone and lack of a post-failure stress drop with increased confinement.
By tracking the energy components in different patches within the bounding material and within
different segments of a cohesive fracture, Shet and Chandra [53] modeled the evolution of the elas-
tic energy FE,, the plastic energy £, (equivalent to E;, in the DSID model), and the cohesive energy
E . evolution during fracture propagation. The dissipation of plastic energy (E ) initiates when the
yield stress o', is reached. When the stress in the cohesive segments reaches the cohesive strength

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2017; 41:223-250
DOI: 10.1002/nag



A FRACTURE PROPAGATION COMPUTATION TOOL 229

yn

Cohesive Energy/(2.0E-26 8 )

0 1 2 3 4
Plastic Energy/(2.0E—2csy8n)

Figure 3. Evolution of the plastic energy and of the cohesive energy dissipated during crack propagation
in an elasto-plastic material, with the ratio cohesive strength by yield strength 6 ,;,4x /0 . 85, is the relative
displacement of two faces when the traction reaches o, (constant) — adapted from [53].

0 max, the cohesive elements and the bounding material elements behind the tip are unloaded, plastic
dissipation stops (i.e., the cumulated plastic work remains stationary), and elastic energy is recov-
ered in the bounding material. However, the cohesive energy continues to increase until crack faces
are completely debonded. The final crack length depends on the cohesive strength 6,45 [51]. In
the following, we calibrate the DSID model coupled with the CZM in order to capture micro-crack
propagation followed by macroscopic failure (fracture propagation) in shale. We start by determin-
ing the initial damage yield threshold (similar to ¢ ), and then, we calibrate the ultimate cohesive
strength of the damaged material (similar to ¢ ,,4x). By contrast with the work presented in [53],
we quantify the fractions of energy dissipated by micro-crack debonding, irreversible micro-crack
opening, and macro-fracture debonding.

3. FINITE ELEMENT DAMAGE MODEL

3.1. Calibration of the continuum damage model

We calibrated the DSID model against experimental stress/strain curves obtained during triax-
ial compression tests performed on Bakken shale samples using ConocoPhillips rock mechanics
dataset [54]. We performed our simulation work on a range of triaxial tests from the different Bakken
lithologies. However, for simplicity, we focus reporting on a set of results from a single represen-
tative suite of tests taken from the same depth and lithology but at different levels of confinement
(Sample B11 shown in Fig. 11). We used a MATLAB algorithm to minimize the squared residuals
of the distance between experimental results y; and numerical predictions f(x, B) as

n
S=Y - fx.B) )
i=1
Where x stands for the vector of known input variables (e.g., strain or stress, depending whether
the load is controlled in force or displacement) and B is the vector of parameters that need to be
calibrated. We employed the gradient method to minimize the difference between numerical and
experimental stress—strain curves:

Byiv1 =B, —y.Af(x,B) (6)

Y 1s the step size; it varies from step to step. The algorithm was initialized with a reasonable initial
vector B and with reasonable minimum and maximum values for the model parameters. Optimal
DISD parameters (for S below a certain threshold value) are listed in Table II.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2017; 41:223-250
DOI: 10.1002/nag



230 W. JIN ET AL.

Table II. Calibrated DSID parameters.

Elasticity Free energy Damage function
Eo Vo ai as as aq Co Cq o
GPa - MPa™! MPa™! MPa~1 MPa™! MPa MPa -—

46 0.186 7.35x1077 121x107% =3.15x10711 239x10712 o0.01 1.18 0399

3.2. Cutting Plane algorithm

We adopt the cutting plane algorithm [55] to implement the DSID model in ABAQUS FEM software.
The purpose of the cutting plane algorithm, which belongs to the category of return mapping algo-
rithms, is to ensure stable and convergent solutions with a reasonable simulation time. The elastic
predictor problem is solved with initial conditions that correspond to the converged values of the
previous time step. A stress return correction is initiated if the trial elastic stress is outside of the
yield surface. We follow the steps of the operator splitting theory [56] to obtain the incremental
non-linear constitutive relationships that govern the DSID model:

Total Elastic predictor Return corrector
de = def + de'? de = def + de’? de =0
do =S7!:[def —6:00S:dR] do =S7':de do =-S7!:[de'? + 0 :0gS :dR]
deid = drYa de’? =0 de'd = dr Y4
3 b
de =dka—§ d =0 de =d)&a—§,

In the aforementioned equations, the total stress increment is obtained by differentiating the
following constitutive relationship

ef=S(Q):0 (7)
as
def = S(R) :do + 0 : 9aS : dQ (8)

The return corrector can be rewritten as

do

o= —S7': [0 fa + 0 : 0aS : Iy g] ©)

Equation (9) expresses the rate independent equation of stress relaxation (from a point outside of
the yield surface to a point on the yield surface). Stress relaxation is calculated iteratively. The yield

function is linearized around the current values of the state variables, aff}rl, SZSJ)FI, as

i+1 j i) i+1 i i) . i+1 j
fn(l+1 )~ n(l+)1 + aafn(jr)l : ["SH) _ar(zlJ)rl] + 8Slfn(l+)1 : I:Szle+1) - SZSJ)rl] (10)

After discretizing Equation (9) and the damage flow rule, we have

+1) @) @ q-1 . @) @ . @ . @
Tpit —Onir = DAy 1Sy [8afn3r1 +0,51 0008, aanl+1:| (11
i1 . . .
szlil) - ﬂff)ﬂ = Akfll-)i-laygr(tlj-l (12)
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Figure 4. Cutting plane algorithm of the UMAT subroutine implemented in ABAQUS for the DSID model.
Solid lines represent computational steps controlled by the programs written in UMAT. Dashed lines
represent computational steps controlled by built-in subroutines of ABAQUS .

After substituting Equation (11) in Equation (10), the Lagrange multiplier is calculated as
@)
: 5
Akf’l')*'l - O .g-1 . @) @ . n+1(i) . @) @ . @) (13)
Oo fidy Skt [0 i1 + oy 1008 vl | - de 0 : ovel),

Figure 4 shows the flow chart of the algorithm implemented in ABAQUS UMAT for the purpose
of this study. Note that because the cutting plane algorithm is based on a forward integration of
the rate equations, it is not unconditionally stable. In order to validate and test the accuracy of the
return mapping algorithm, we compared the results obtained with the cutting plane algorithm with
those obtained with the direct secant algorithm (which we implemented in MATLAB). We simulated
pure shear, uniaxial compression, and uniaxial tension by applying strain loads of y;, = —2%,
€33 = —2% and €33 = 2%, respectively. All the other strain components were set to zero. We
used 1000 loading increments in the direct secant algorithm. For the cutting plane algorithm, we
compared the results obtained with MATLAB for 10, 100, and 1000 loading increments, to the
results obtained with ABAQUS for 50 loading increments applied in a one-element model.

Figure 5 shows the results. Note that higher loading increments (Ay or Ae) correspond to a
lower number of increments. For all the cases simulated, the linear elastic response and non-linear
damage part are well captured at the material point (MATLAB) and in the one-element (ABAQUS)
simulations. The difference between the stress/strain curves obtained with the direct secant method
and with the cutting plane algorithm is less than 10% for a number of increments larger than 50
with the FEM, and larger than 100 with MATLAB. We conclude that the cutting plane algorithm is
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Figure 5. Verification and accuracy tests. Comparison of the stress/strain curves predicted by the cutting

plane (CP) algorithm (one-element tests performed with ABAQUS and material point tests performed in MAT-

LAB) and by the direct secant algorithm (material point tests performed in MATLAB). The total loading
was 2% in all tests; several loading increments were tested.

accurate for loading increments that are of the order of 0.01%. Moreover, the global FEM equation
obtained after assembling all the elementary matrix equations obtained with the UMAT subroutine
was solved with the ‘standard solver’ built in ABAQUS, which is based on an unconditionnally
stable algorithm.

4. CALIBRATION OF THE COHESIVE ZONE MODEL

The objective of this paper is to couple the DSID model to a CZM to predict continuum damage
propagation before and after shear localization. In the following, we propose a calibration method
that couples the propagation of micro-cracks (DSID model) to that of macro-fractures (CZM) in
mode II. We use a bilinear CZM, which depends on three constitutive parameters: the cohesive
(shear) stiffness K, the cohesive (shear) strength t,,,, and the energy release rate Gy, (in mode
II). Based on a sensitivity analysis of 7,5, and Gj., we introduce a relationship to account for
the dependence of the cohesive zone failure to the confining pressure. In the following, the proce-
dure to determine the material parameters of the CZM is explained. We calibrate the CZM against
the same experimental dataset as the one used to calibrate the DSID model assigned to the finite
elements. This calibration stage is required to ensure that multi-scale crack propagation is modeled
as the transition between damage propagation without and with discrete fracture, within the same
material—as opposed to the coupled activation of fracture propagation in a composite made of a
weak layer (CZM) embedded in a brittle continuum (CDM).
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Figure 6. Influence of the stiffness of a cohesive zone in a numerical model of laminated material, modified
from [57].

4.1. Choice of the cohesive stiffness: numerical requirements

In the finite element method, it is assumed that a cohesive zone has a zero thickness. The stiffness of
CZM elements is chosen so as to ensure that the effective stiffness of a laminated material modeled
with a cohesive zone of finite thickness is not influenced by the stiffness of this cohesive zone (in
other words, the stiffness of the bulk material in the laminated composite is negligible in front of
that of the cohesive elements) [57]. Figure 6 shows how the CZM influences the deformation of a
sandwich laminate. Assuming that shear stress is uniformly distributed in the cohesive zone and in
the bulk of the bounding material, we have

‘[ZG)/ZK()A
28t + A A (14)
A YR

where 7 is the shear stress, Y.y is the effective shear strain of the sandwich laminate element,
y = St—’ is the shear strain of one of the two bounding layers, and K represents the cohesive stiffness
that relates the cohesive shear with the shear displacement A. The equilibrium © = G.frryerr
condition requires that the effective shear modulus satisfies

1
Gerr =G (—) (15)
L+ 5=

Given that the cohesive stiffness should not influence the effective modulus of composite, the
cohesive shear stiffness must satisfy G << 2K, ¢. Numerically, the CZM is assigned a stiffness
expressed as

Ko = — (16)

With o >> 1. In theory, K¢ should be infinite to insure that all the elastic deformation energy is
stored in the bulk material and not in the cohesive zone prior to debonding (Equation (4)). However,
oscillations were noted for very high values of a [57]. We choose % = 50 for all the following
simulations, which ensures that the elastic energy stored in the cohesive zone prior to debonding is
insignificant compared with the total energy release G, that is dissipated after total debonding. Note
that according to the derivations earlier, the CZM stiffness does not depend on the loading path and
thus does not depend on the confining stress.

4.2. Determination of the cohesive strength: critical damage value

The cohesive strength is distinct from the stress threshold necessary to trigger damage. In order
to capture the energy flow between the damaged continuum and the material surfaces of the cohe-
sive zone [51, 53], we define the cohesive strength as the stress that marks the transition between
smeared micro-cracking (accounted for by the DSID model implemented in finite elements) and dis-
crete macro-cracking (accounted for by the CZM). Our usage of cohesive strength also differs from
conventional CZM models (without matrix damage) where the term refers to the material’s peak
strength. Accordingly, we determine the critical continuum damage value (i.e., micro-crack density)
earlier that micro-crack interaction cannot be neglected, and we calculate the shear stress necessary
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to reach this critical damage value in mode II. In order to determine the critical damage value, we
calculate the damaged shear modulus of a 2D REV that contains one set of parallel equally sized
cracks, using two methods: first, the DSID model, which does not account for micro-crack interac-
tion; second,Kachanov’s micro-mechanical model [58], which accounts for micro-crack interaction.
The difference between the shear modulus calculated with Kachanov’s model and the shear mod-
ulus calculated with the DSID model increases with damage, because micro-crack interactions
increase with damage. The critical damage value is defined as the level of damage earlier that the
difference between Kachanov’s shear modulus and the DSID shear modulus stops increasing. Note
that in the DSID model, the damage tensor is a phenomenological variable, which is not equal to
the micro-crack density defined by Kachanov. Both damage variables account for mesoscale crack
development and stiffness degradation. In the following, we start by recalling the main equations of
Kachanov’s micro-mechanical damage model (for the sake of completeness), and we then explain
in detail an original method to determine the critical damage value, which marks the transition from
CDM to CZM.

4.2.1. Kachanov’s micro-mechanical model. In the 2D micro-mechanical damage model proposed
by Kachanov, the stress and strain fields in a linear elastic plate containing N cracks subjected
to the stress 0 at infinity are calculated as those in a plate subjected to zero far field stress and
containing N loaded micro-cracks. The faces of each micro-crack (i = 1,..., N) are subjected
to the traction t? = n; - 0, in which n; is the unit vector normal to the faces of the ith crack.
According to the superposition theory for elastic media, this problem can be solved by considering
N plates containing only one crack subjected to the traction t; (i = 1,..., N), defined as the sum
of t? and the additional tractions due to stress interactions with the other micro-cracks. The tractions
can be determined by solving a system of integral equations, as follows [58]:

ti(G) =1t +n; - Z/ 07 (G, gyt ;CHI+ 05 -1, (AT)
JFE

In which /; is the half length of the jth crack and 7 ; is the unit vector that is tangential to the
faces of the jth crack. aj'.’ (i, ;) (respectively a} (¢i, £;)) is the stress tensor at the current point ¢;
on the ith crack, generated by a pair of equal and opposite unit forces located at point {; along the
normal (respectively tangential) direction of the jth crack. Following the approximation proposed
and validated by Kachanov [58], we consider that the stress applied at the ith crack is that because
of the traction applied at infinity and the average tractions along the faces of the j th cracks. In other
words, we assume that the stress at {; is not sensitive to the deviations of ¢ ; ({;) from the average
(¢ ;). This allows transforming Equation (17) into

() =1 4 (-t mi - Y TG A+ (Tt ) mi Y 5 (8) (18)

J#i J#
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E’} (&) is the stress generated at point {; due to a uniform tensile load of unit intensity applied in
the direction normal to the faces of the jth crack. Noting x = t; and y = n;, we have [58]
ol =1, —8y*I, +8y*Is
of, =2(=yls + xyly + 4y> Is — 4xy> I¢) (23)
op, =1L +4y*1,—8y*Is
Note that in the last of the aforementioned equations, we corrected a typo in the equations pre-
sented in [58]. E; (&;) is the stress generated at point {; due to a uniform tensile load of unit intensity

applied in the direction tangential to the faces of the jth crack. Noting x = r; and y = n;, we
have [58]

oxx =2 (3yI3 —3xyls — 4y>Is + 4xy°Is)
oxy = I, =8y’ I + 8y* I (24)
Oyy = 2(=3yI3 + xyls + 4y°Is — 4xy° I)

In which
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3 (ay)1/283/2
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4= (ay)1/283/2
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L B3y + V) + 8(y*? + a?/?)

6= 5 (ay)3/285/2

o= (x—10)>+y?
B=20x*+y*=1?
y=x+0D*+)?
§=p8+2/ay
Equation (17) allows solving for the tractions ¢;({;). The average relative displacement vector

< b; > across the faces of the ith crack is found by superposing the displacements due to punctual
tractions at each point of the ith crack faces [58]:

_ 4l; li 211/2
< b >= E—O/lin@»[l @) P ag 25)

In which Ej is the Young’s modulus of the matrix (bounding material) between the cracks. The
fourth order effective compliance tensor S¢// is used to relate the average strain < € > to the
applied far field stress o > over a representative area A:

N l;
<e>=S 6% =506+ % ;-/—li [1; (8)bi (Gi) + bi(Gi)ni (8)]dE (26)

Where S° is elastic compliance tensor without cracks, and n; (¢;) is the unit vector normal to
the ith crack face at point ¢;. We consider flat cracks, for which n; ({;) is a constant. Equation (26)
thus becomes
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N
l.
<e>=S°:a°°+Z’Z[n,~<b,->+<b,->ni] 27)

i=1

The expressions of the stress distributions that are involved in the integral terms of Equations (17)
and (25) are very complex, which makes it challenging to obtain the exact solution of the traction
and displacement distributions along each crack face. To overcome this problem, several approx-
imation methods were proposed [58—61]. In the following, we adopt Kachanov’s approximation
method [58], in which Equation (25) is written as follows:

/4 l,’

< b; >=E—O<t,~> (28)

where < ¢; > is the mean traction field that applies to the i th crack.

4.2.2. Critical continuum damage value. In the following, we consider a 2D REV that contains
cracks perpendicular to the x-axis, and we calculate the shear modulus in the xy-direction. Stress
interactions between micro-cracks are highly dependent on the position of these cracks, that is,
the crack pattern has a major effect on the overall mechanical response of the REV. Hence, in
order to determine the critical damage value earlier that the damaged elasticity tensor predicted by
the DSID model departs from the damaged elasticity tensor expected with crack interactions, we
tested several crack patterns (Figure 7), denoted as the following: ‘parallel’ (aligned crack centers),
‘zigzag’ (crack centers in staggered rows), ‘random’ (crack centers positioned according to a ran-
dom space distribution) and ‘special case’ (random distribution of centers with no cracks close to
the boundary).

Two sets of simulations are performed, with REV sizes equal to 10 and 25 times that of the cracks.
The crack density p is defined as

1 N
p=— I (29)
l D N
I I
o
Pattern 1 - parallel Pattern 2 - zigzag
Size ratio: R=I/D T
— =
L |
L2
Ia |—x

Pattern 3 - random Pattern 4 -special case

Figure 7. Crack patterns used to compare the damaged shear modulus according to the DSID model and
according to Kachanov’s micro-mechanics model.
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In the present case, because all the cracks are perpendicular to x-axis, the elastic moduli are
affected by the crack density (p) in Kachanov’s model and by the xx— component of the damage
tensor (£2,y) in the DSID model. We simulated the pure shear test at the material point with the
DSID model, and we used Equation (30) to calculate the effective shear modulus along the xy-
direction (solid black line in Figure 8). The shear modulus was obtained from the compliance tensor:

PG,
T 902

(30)

Where Gy is Gibbs free energy expressed in Table 1. We calculated the damaged elastic tensor
with Kachanov’s model for several values of crack density, by either increasing the number of cracks
in the REV with a fixed crack length (crack initiation), or by increasing the length of a fixed number
of cracks in the REV (crack propagation). Note that in all simulations, the centers of the cracks were
randomly distributed inside the REV, with non-overlap and non-intersection constraints.

We observe that in the micro-mechanical model, the evolution rate of the shear modulus with
damage depends on the crack pattern considered (dashed lines in Figure 8). Overall, the evolution
rate of the shear modulus with damage is higher in the DSID model than in the micro-mechanical
model, which accounts for the shielding effects of interacting micro-cracks. It is worth noting that
for a given crack pattern though, the value of the damaged shear modulus only depends on crack
density—and not on the type of damage growth (crack initiation vs. crack propagation). Results also
show that the lowest (respectively highest) values of damaged shear modulus are obtained for the
‘parallel’ pattern (respectively ‘zigzag’ pattern). In nature, crack patterns are not periodic in rocks;
therefore, we considered a random distribution of crack centers. In order to assess boundary effects,
we compared the ‘random’ pattern with the ‘special case’ and found that removing cracks from the
area close to the boundary did not change the results significantly neither for the model of crack
initiation or for the model of crack propagation. Therefore, we did not plot the results obtained with
the ‘special case’ in Figure 8. In the following, we base our calibration on the ‘random’ pattern
(Pattern 3). Kachanov [59] found that crack interaction could not be neglected for crack densities
that exceed p = 0.3. We note a 20% relative difference between the damaged shear modulus pre-
dicted by the DSID model for 2xx = 0.3 and that predicted by the micro-mechanical model for a
density of randomly distributed cracks equal to p = 0.3. Although this difference is partly due to
the distinct mathematical definitions used for p and €2, the rate of shear modulus degradation is

1 T T T : T T r -
—DSID
| o #1 for initiation (R=1/25) I
0.9 ——#1 for propagation (R=1/25)
- - -#1 for propagation (R=1/10)
0.81 o #2 for initiation (R=1/25) H
—— #2 for propagation (R=1/25)
07k - = = #2 for propagation (R=1/10) |
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QXX/p
Figure 8. Damaged shear modulus calculated with the DSID model and with Kachanov’s micro-mechanical
model for a set of cracks parallel to the x-axis, for various crack patterns. Damage propagation is modeled
by increasing the length / of a fixed number of equally sized cracks that are randomly distributed in the REV
of size D,from R =1/D =0to R=1/D =1/250orfrom R =[/D =0to R =1/D = 1/10. Damage
initiation is modeled by increasing the number of equally sized cracks that are randomly distributed in the
REV (with either R = 1/10 or R = 1/25).
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mainly controlled by the interaction or non-interaction between cracks. The relative difference in
shear modulus does not change any further when the damage density p or the damage component
Q. x increases beyond 0.3. Thus, in the following, we consider that the relative difference of 20% is
a representative deviation to mark the transition between continuum damage and discrete fracture,
and we set the critical damage value as €2, = 0.3 in mode II. To summarize, the value of 0.3 is
not an absolute theoretical limit but rather the approximate point where micro-mechanical behaviors
transition from being dominantly related to micro-crack nucleation to including non-linear effects
caused by micro-crack propagation.

4.2.3. Cohesive shear strength under various confining pressures. In our model, the transition
between damage propagation without and with discrete fracture (i.e., before and after shear local-
ization) is determined by the continuum damage value calibrated earlier. The cohesive strength of
the CZM is the shear stress at which this critical damage value is reached, which varies with the
boundary conditions—the confining pressure in particular. In the following, we establish a rela-
tionship between the CZM cohesive shear strength 7,,,x and the confining pressure, which will
allow determining the critical energy release rate Gy, in the last part of the calibration. We sim-
ulated a confined shear test at the material point with the DSID model by applying a hydrostatic
confining pressure followed by a shear stress. The shear loading was stopped when damage in the
direction perpendicular to the shear direction reached 30% (i.e., Q2xx = 0.3). The loading paths fol-
lowed those of the laboratory experiments used for calibration. For hydrostatic confining pressures
of 6.9 MPa (1000 psi), 13.8 MPa (2000 psi), 20.7 MPa (3000 psi), and 27.6 MPa (4000 psi), we
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Figure 9. Material-point simulation of a confined shear test (pure mode II) with the DSID model, up to the
critical damage value (which marks the transition with the opening of the cohesive zone).
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found that the shear stress needed to reach 2., = 0.3 was 7,4 =81.4 MPa, 86.1 MPa, 91.2 MPa,
and 96.6 MPa, respectively (Figure 9). We note that when 2, = 0.3, the damage component
perpendicular to the shear plane (€2;;) is higher for higher confining stresses.

4.3. Determination of the cohesive energy release rate

After the cohesive strength (defined here as the transition between micro-scale and macro-scale
propagation) is reached, both the cohesive element and the bounding material near the cohesive seg-
ment [§o; & ¢] begin to unload (Figure 10). The elastic energy E, stored in the bounding material
located in this area flows into cohesive elements and is transformed into dissipated cohesive energy
E. (Equation (4)). Note that due to stress concentrations, only the elements that are along the frac-
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Figure 10. Evolution of the stress/strain state in the damaged zone as a cohesive fracture propagates. Note
that the displacements and deformation increments that would be obtained in mode II are challenging to
sketch; therefore, we illustrate the energy flow model in mode I. Note that the principle is the same in mode
II. Different material points in the bounding material (green shaded area) are subjected to different stress
and damage states. Continuum damage initiates at P,,, ahead of the fracture tip. Po indicates a damaged
state at a material point along the cohesive zone, for which stress is less than the cohesive strength. Pg- P, -
Py illustrates the stress build-up along the cohesive zone, as the material point gets closer to the tip. Pp
marks the material point at the boundary between the bounding material and the cohesive zone for which
shear stress reaches the cohesive shear strength; the cohesive zone starts to open. Pj-P»-P3- P4 illustrates
the progressive unloading of the bounding material from the cohesive crack tip (debonding initiation) to
the material crack tip (complete debonding). The path Po-P,-Pj, illustrates the transfer of energy from
the damaged elastic bounding material to the crack faces. Within the damaged zone, the bounding material
closer to the material crack tip is subjected to unloading (P, to Pp). At a distance larger than r away from
the damaged zone, the bounding material stress state is not influenced by the cohesive crack (Pp remains at
Po whatever the location of the material point is along the crack).
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ture faces reach the cohesive strength. As the energy is released from the continuum to the fracture
faces, the other elements along the fracture faces start unloading.

Following the approach used by Woelke et al. [23] and Paulino [24], we calibrated the value
of the cohesive shear energy release rate Gyj. by matching a pre-assumed value of Gy, with the
energy released during a confined axial compression test conducted in ConocoPhillips rock mechan-
ics laboratory. Typical shear failure planes that were observed in many of the Bakken shale plugs
after triaxial compression tests are shown for sample B11-3, in Figure 11. In order to simulate the
transition from micro-scale continuum damage to macro-scale cohesive zone propagation, we mod-
eled cylindrical plugs with the same dimensions as those tested in the laboratory: diameter 25.4 mm
(1 inch) and length 50.8 mm (2 inches). We modeled the planes of weakness observed experimen-
tally by single two-dimensional planar cohesive zone. We used a pure mode II CZM, even though
the triaxial compression tests do not lead to a pure mode II failure. Indeed it should be noted that
some of the plugs from other samples failed in a more irregular three-dimensional fracture pattern.
For the more complex cases, the cohesive method can still be used; however, modeling branching
cohesive zones is outside the present scope. In order to avoid convergence issues associated with
triangular elements in the cohesive zone, we modeled the cohesive zone as a diagonal plane placed
with a slight offset (A) from the top and bottom of the sample, as shown in Figure 12. This geomet-
ric choice allowed us meshing the finite element domain with brick elements, which were projected
into rectangular cohesive elements. We performed the tests for a ratio of offset/sample length equal

| L=50.8mm/2 in

|D=25.4 mn/1 in |

B11-3 B11-3

Figure 11. Pictures of Bakken shale samples before (left) and after (right) the triaxial compression test
leading to mode II failure.

Figure 12. Left/right: horizontal/vertical damage (i.e., distribution of vertical/horizontal micro-crack planes,

normal to the x/x, axis) just after failure subsequent to a triaxial compression test (upper half of the shale

sample). The applied confining pressure was 13.8 MPa and the total displacement imposed at the top surface
was 0.708 mm.
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Figure 13. Distribution of axial stress just after failure subsequent to a triaxial compression test with the

coarse (5100 elements) and fine (23,200 elements) meshes. The applied confining pressure was 13.8 MPa

and the total displacement imposed at the top surface was 0.708 mm. Note that the displacements were
amplified five times, and compressive stress was counted negative.

to A/L = 1/10and A/L = 1/40, and verified that the stress/strain curve predicted numerically
was not sensitive to the offset. In the following simulations, we used A /L = 1/40.

In the experiments, friction between the sample and the loading plates is an inevitable source
of some of the plug damage, but it is difficult to parameterize. Therefore, we assumed that finite
elements representing the platens and those representing the rock in contact with the platens shared
the same nodes. The bounding steel platens were idealized as stiff 2.5 mm plates. For steel finite
elements, we assumed a linear elastic behavior with £ =200 GPa and v = 0.3. For shale finite
elements, we used the DSID model calibrated against triaxial compression tests (Table II).

During the simulation, we approximated the laboratory loading conditions by fixing the 6 degrees
of freedom of the center point in the bottom steel plate to prevent free body movement. During the
first stage of the simulation, we applied the confining pressure at the top and lateral surfaces of the
shale sample. Then we applied an axial displacement boundary condition at the top face of the top
steel plate.

Figure 12 shows the distribution of horizontal damage components £ xx = 11 and £, = Q77,
which represent vertical micro-crack planes (normal to the x; and x, axes) in the upper half of
the sample, just after complete failure. The confining pressure was 13.8 MPa, and the top surface
was subjected to a uniform quasi-static loading to represent experiments performed with an axial
strain rate of 107>s~1. The cumulated displacement at the end of the simulation was 0.708 mm.
We note that the two horizontal damage components are distributed uniformly in the sample, where
Q,x = Ry, = 0.15, or about 15% stiffness degradation at the point macroscopic failure, except
close to the steel plate. Figure 13 shows the corresponding axial stress distribution at the end of the
simulation, just after failure. The same boundary effects were noted close the steel plate elements.
In order to verify the absence of mesh dependency of the model, we performed the simulation with
three different mesh sizes, in which the whole finite element domain was meshed with 5100 elements
(coarse mesh); 11,400 elements (intermediate); and 23,200 elements (fine). For the same confining
pressure and vertical displacement imposed at the top plate, stress distributions were very similar in
the three FE models, except at the interface between the plates and rock sample. Figure 14 shows
the shear stress distribution along the weak plane modeled with the fine cohesive zone just before
failure, when the vertical displacement of the top steel plate is 0.652 mm. Note that at this stage, the
shear stress in all the cohesive elements have entered the softening regime; therefore, shear stress
is less than the cohesive shear strength. Shear stress relaxation occurred first at the top and bottom.
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Figure 14. Shear stress distribution calculated in the cohesive zone after the initiation of debonding and
before the total failure subsequent to a triaxial compression test, with the fine mesh (23,200 elements). The
confining pressure was p. =13.8 MPa, and the total displacement imposed at the top surface was 0.652 mm.

Thus, the model captures failure localization as observed in the experiments, with an initiation of
the debonding close to the steel plates.

After the simulation, we extracted the mean axial stress and average displacement of the top steel
plate. The differential stress was obtained by subtracting the corresponding confining pressure out
of the mean stress, and the axial strain was obtained by dividing the mean displacement with sam-
ple length and subtracting the initial strain due to confining pressure. We calibrated the parameters
against the stress/strain curve of sample B11-3, under a 13.8 MPa confinement pressure. Figure 15
shows a range of simulated stress/strain curves varying minor numerical parameters against several
other of the Bakken sample tests run at the same confinement. The results show that the calibrated
simulated curves fall within the range of the rock mechanics tests, showing a good match to the
overall deformation response of the suite of laboratory samples. In order to capture the specific vari-
ability of each test, calibrated parameters would need to be derived independently. In reality, each of
the Bakken shale plugs reflects some lithologic variability, as revealed by XRD data (not discussed
here). We tried several values of cohesive shear energy release rate (Gjj.) until we were able to
capture the post-peak behavior with enough accuracy. Note that the peak of differential stress corre-
sponds to the cohesive strength that marks the transition between smeared damage propagation and
discrete fracture propagation. The bilinear cohesive model captures the softening behavior, espe-
cially at low confining pressure. As can be seen in Figure 15(b), simulations performed with three
different mesh sizes provide similar results, which shows that the proposed computational frame-
work is mesh independent. It is also noted that the offset distance A has no significant influence on
the post-peak behavior (Figure 15(c)).

The energy required to produce shear displacements increases with the normal stress that applies
on the faces of the cohesive zone; therefore, the cohesive shear energy release rate increases with
the confining pressure. Figure 16 compares the empirical relationship between simulated confining
pressure and cohesive shear strength for the CDM (red axis) or cohesive shear energy release rate
CZM (black axis) domains. We plotted the four previously calibrated cohesive shear strengths Ty,
against confining pressure p. and interpolated a linear relationship between cohesive shear strength
and confining pressure (red line). We simulated seven additional pure shear tests at the material point
(red circles in Figure 16) for confining pressures in the range 0—30 MPa. For each of these additional
tests, we calculated the cohesive shear strength as the shear stress necessary to reach a horizontal
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Figure 15. Experimental and numerical stress/strain curves obtained during triaxial tests under various con-
fining pressures. Samples B§-B13 correspond to different lithologies, which results in different stress/strain
curves. For p. =13.8 MPa, mesh dependency was investigated by using a fine (5100 elements), inter-
mediate (11,400), and fine (23,200 elements) meshes. For p. =20.7 MPa, the sensitivity of the model to
the offset effects was investigated by using two ratios of offset/sample length: r = A/L = 1/20 and
r = A/L = 1/40. Note that by construction, the adopted cohesive zone model cannot capture the residual
stress after failure. This phenomenon, due to friction at fracture faces, would require additional parameters
and a more sophisticated CZM (e.g., [62]).
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damage of 30% in the bounding material represented by the DSID model. It is verified that the
cohesive shear strength obtained in the additional tests followed the linear relationship obtained by
interpolation. A linear relationship was also interpolated between the cohesive strength 7,4, and the
cohesive shear energy release rate Gy, obtained in the CZM calibration procedure (blue squares
in Figure 16). Consequently, we adapted the bilinear CZM to account for the dependence of the
shear strength t,,,, and energy release rate Gy, to the confining pressure, as shown in Figure 17.
The modified failure envelope conforms better to experimental observations, which indicate that the
deviatoric stress necessary to initiate fracture propagation and the subsequent energy release rate
G 1. both depend on the stress normal to fracture faces, the loading strain rate and temperature. Like
in previous models of frictional CZMs [62], we only considered quasi-static loading conditions, and
we ignored thermal effects. In the following simulations of fracture propagation with process zone,
we used the failure envelope shown in Figure 17 to determine the CZM properties.

5. SIMULATION OF FRACTURE PROPAGATION IN MODE II WITH PROCESS ZONE

In the previous sections, we showed how the parameters for both the CDM and CZM zones can be
calibrated by using laboratory rock mechanics experiments and three-dimensional simulations. In
the following section, we apply the CDM/CZM model to an idealized 2D direct shear problem. We
perform 2D simulations of mode II fracture propagation in shale at various depths (i.e., for various
normal pressures applied at the faces of the cohesive fracture). The domain and boundary conditions
considered are shown in Figure 18. This idealized configuration may reflect a range of geological

A

Tona K =0, 7208 p_+76. 4806

&im

) 25 ]

) |

Figure 17. CZM failure envelope, modified from the bilinear cohesive zone model to account for
confining pressure.
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Figure 18. Geometry and boundary conditions adopted to simulate macro fracture propagation in mode II
in shale.
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scenarios: (1) lateral slip on bonded layers due to a horizontal driving force, (2) shear activation of a
rough fault (oriented optimally or inoptimally, as shown, depending on the vector Ps), or (3) spalling
of a weakly confined block subject to asymmetric loading. We embedded a horizontal cohesive
zone of zero thickness in the middle of a 4 m high, 6 m wide continuum domain that contained

Figure 19. Horizontal damage (i.e., distribution of vertical micro-cracks, perpendicular to the x; axis)
around the cohesive zone when the material crack tip reaches a =2.5 m, for p, =5 MPa (left) and
Pe =25 MPa (right).

Figure 20. Vertical damage (i.e., distribution of horizontal micro-cracks, perpendicular to the x5 axis) around
the cohesive zone when the material crack tip reaches a =0.5 m,a =1.5 m, and a =2.5 m for p. =5 MPa
(left) and p. =25 MPa (right).

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2017; 41:223-250
DOI: 10.1002/nag



246 W.JIN ET AL.

2160 rectangular finite elements. The bounding elements were assigned the DSID model, with the
constitutive parameters reported in Table II. A fracture was pre-assigned on a length of 0.5 m in
the cohesive zone. Pure mode II bilinear cohesive zone elements were assigned calibrated values of
stiffness, shear cohesive strength, and shear energy release rate, as explained in the previous section.
We simulated a shear test for two confining pressures: p, =5 MPa and p. =25 MPa. For the critical
continuum damage value calibrated for Bakken shale, we can use Figure 16 to determine the CZM
numerical parameters: the cohesive zone shear strength is 80.3 MPa at p. =5 MPa and 94.5 MPa
at p. =25 MPa, and the cohesive zone shear energy release rate is 23.9 kJ /m? at p. =5 MPa and
38.1 kJ/m? at p. =25 MPa.

Beyond the initial crack of 0.5 m, we note a as the length of the completely debonded part of the
cohesive zone, that is, the position of the material crack tip (Figure 18). Figures 19 and 20 show the
distributions of vertical micro-cracks (£211) and horizontal micro-cracks (£2,) at several key stages
of the propagation of the material crack tip. Because of the boundary conditions adopted in this sim-
ulation, the domain is subjected to horizontal compression in the top part and to horizontal tension
in the bottom part, which results in the propagation of horizontal damage (£21) below the cohesive
zone. Vertical damage (£25,) concentrates around the cohesive zone, that is, close to the shear plane.
This is due to the damage criterion adopted in the DSID model: damage propagates when the differ-
ential stress exceeds the yield stress, which is reached at points of high stress concentration, close
to the cohesive crack tip. The intensity of damage is higher for p. =25 MPa than for p. =5 MPa.
The observation of the propagation of the cohesive zone and of the damage zone for several values
of a indicates that at low confining pressure (p. =5 MPa), both the cohesive fracture and con-
tinuum damage propagate simultaneously, whereas at high confining pressure (p. =25 MPa), the
shear cohesive fracture propagates in a slip-friction mode, that is, the dissipation process is a cycle
of continuum damage propagation (which occurs when tensile differential stress exceeds the yield
stress) and cohesive crack propagation (beyond the damaged zone). This difference of propagation
mode explains why the distribution of damage is more uniform at low confining pressure.

Following the notations adopted in Equation (4), we define

t
Ee:/ (/a:éeldV—i-/a:éeddV) dr
0 Vv Vv
t
E,-,:/ (/a:éiddV)dt
0 Vv
t
Egz:/ (/Y:QdV)dr
0 Vv
t
Ec:[ (/a:SdS)dr
0 S

The total mechanical work input is equal to the sum of the elastic energy stored in the bounding
material (E,), the inelastic deformation energy dissipated in the bounding material (E;, ), the energy
released by opening the micro-cracks (E), and the energy released by opening the cohesive fracture
(E.). For each finite element, we calculate E,, E;, and Eg by multiplying the mean value of the
energy function considered by the area of the finite element. At the scale of the entire domain, E,,
E;,, and Eq are obtained by summing the energy of all the finite elements. We calculate E, by
multiplying the cohesive energy release rate by the cohesive crack length a. Note that we calculated
the total energy cumulated and dissipated during the loading phase only, that is, after applying
the confining stress. As shown in Figure 21, the confining pressure affects the magnitude but not
the evolution trend of the energy stored and dissipated. E., E;,, Eq, and E. are about 1.4 larger
under p, =25 MPa than under p. =5 MPa when the cohesive fracture tip reaches a =2.5 m.
We verify that E, is proportional to a, which is in agreement with the CZM shown in Figure 17.
E, mostly accumulates at the early stages of damage and cohesive crack propagation. E;, is about
three times smaller than E, and follows a trend similar to that of E,. The energy dissipated by
micro-crack debonding (Eg) is the only energy component that is smaller when p, =25 MPa than
when p. =5 MPa. We actually observe that under a confining pressure of 25 MPa, dissipation by
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Figure 21. Evolution of the forms of energy stored and dissipated in the domain as the cohesive crack
propagates.
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Figure 22. Comparison of the forms of energy dissipated during cohesive crack propagation in mode II:
energy released by the creation of new material surfaces in the cohesive zone (E.) and energy dissipated by
continuum damage propagation (E; ).

micro-crack debonding nearly stops when a reaches 0.5 m. This observation is in agreement with
the fracture propagation modes described previously: at low confining pressure, continuum damage
and cohesive crack propagate simultaneously, whereas at high confining pressure, the propagation
of continuum damage alternates with that of cohesive crack (slip-friction mechanism).

Figure 22 compares the forms of energy dissipated during the propagation of the cohesive crack;
Ein, = Eq+ Ej; is the total energy dissipated because of the propagation of continuum damage, and
E. is the energy dissipated by opening new material surfaces in the cohesive zone. It is worth being
noted that the energy dissipated due to continuum damage propagation exceeds the energy dissipated
by cohesive crack propagation. In the early stages of cohesive crack propagation, the evolution of
the energy dissipated is the same for both confining pressures tested. In a second phase (when E, =~
E;n, > 6x10* J), the energy dissipated by cohesive crack propagation is larger under high confining
pressure than under low confining pressure for the same level of energy dissipated by continuum
damage propagation. This confirms again the propagation mechanisms noted earlier: simultaneous
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propagation of continuum damage and cohesive crack at low confining pressure or in the early stage
of the shear loading performed at high confining pressure, and slip-friction mechanism in the later
stage of the shear loading performed at high confining pressure.

6. CONCLUSION

In this paper, we proposed a strategy to simulate mode II fracture propagation at macro-scale accom-
panied by micro-crack evolution within the fracture process zone at mesoscale for intact brittle
material. A CZM is used to represent macro-fracture propagation. A CDM model, which repre-
sents micro-crack propagation, is calibrated against triaxial compression tests performed on Bakken
shale so as to reproduce the stress/strain curve before the failure peak. We simulate a direct shear
test with the CDM model, which does not account for micro-crack interaction. We compare the
damaged shear modulus with that obtained, in the same loading conditions, with Kachanov’s micro-
mechanical model, which accounts for micro-crack interaction. The results show that the critical
damage threshold, at which crack interaction cannot be neglected, is equal to 0.3. The CZM is
assigned a pure mode II bilinear cohesive law. The cohesive shear strength of the CZM is defined
as the shear stress that marks the transition between smeared micro-crack propagation and crack
coalescence followed by macro-crack propagation. We calibrate the cohesive shear strength by cal-
culating the shear stress necessary to reach a CDM damage of 0.3 during direct shear tests performed
on Bakken shale. We find that the shear cohesive strength of the CZM depends linearly on the con-
fining pressure. Triaxial compression tests are simulated, in which the material sample is modeled as
a FE CDM continuum that contains a CZM along the plane of weakness. The shear energy release
rate of the CZM is fitted in order to match to the post-peak stress/strain curves obtained during
experimental tests performed on Bakken shale. We find that the energy release rate depends linearly
on the shear cohesive strength. Accordingly, we propose a modified failure envelope for the CZM to
account for the dependence of the shear strength and energy release rate on confining pressure. The
calibration procedure ensures that the coupled CZM/CDM model can capture the flow of energy
that takes place between the bulk material that forms the matrix and the macroscopic fracture sur-
faces. We then show a simple application of the coupled damage propagation model by simulating
the propagation of a meter-scale mode II fracture. Under low confining pressure, the macroscopic
crack (CZM) and its damaged zone (CDM) propagate simultaneously (i.e., during the same loading
increments). Under high confining pressure, we observe slip-friction fracture propagation, that is,
the debonding of the cohesive zone alternates with the propagation of continuum damage. Hence
the proposed CZM/CDM model captures important tectonic features. Original contributions made
in this paper include the following: (1) A thermodynamic analysis of the energy transfers between a
fracture and a bounding continuum subject to softening and irreversible deformation; (2) A consis-
tent calibration procedure for a model that accounts not only for the interaction between a fracture
and its damage zone but also for the transition from continuum damage to macro-scale fracture; (3)
A finite element model of fracture propagation in a dynamic damage zone, which can distinguish
continuous and stick-slip propagation modes. We are currently extending the formulation to the
propagation of fractures in mode I and in mixed mode, in order to apply this computational method
to the design of geological storage and hydraulic fracturing systems.

ACKNOWLEDGEMENT

Funding to complete this research work was received from ConocoPhillips, Houston, TX.

REFERENCES

1. Chen Z. Finite element modelling of viscosity-dominated hydraulic fractures. Journal of Petroleum Science and
Engineering 2012; 88:136—144.

2. Haddad M, Sepehrnoori K. Simulation of hydraulic fracturing in quasi-brittle shale formations using characterized
cohesive layer: stimulation controlling factors. Journal of Unconventional Oil and Gas Resources 2015; 9:65-83.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2017; 41:223-250
DOI: 10.1002/nag



10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25

26.

27.

28.

29.

30.

31.

32.

33.

A FRACTURE PROPAGATION COMPUTATION TOOL 249

.Jin W, Xu H, Arson C. Energy dissipation during mode I fracture propagation in shale: comparison between a

continuum damage model, a cohesive zone model and the extended finite element method. /3th ISRM International
Congress of Rock Mechanics, International Society for Rock Mechanics, 2015.

. Florez-Nino JM. Integrating geology, rock physics, and seismology for reservoir-quality prediction. Ph.D. Thesis,

Stanford University, 2005.

. Zehnder AT. Lecture Notes on Fracture Mechanics. Cornell University, 2007.
. Halm D, Dragon A. An anisotropic model of damage and frictional sliding for brittle materials. European Journal of

Mechanics-A/Solids 1998; 17(3):439-460.

. Xu H, Arson C. Anisotropic damage models for geomaterials: theoretical and numerical challenges. International

Journal of Computational Methods 2014; 11(02):1342007-1-1342007-23.

. Kachanov M. Continuum model of medium with cracks. Journal of the Engineering Mechanics Division 1980;

106(5):1039-1051.

. Pensée V, Kondo D, Dormieux L. Micromechanical analysis of anisotropic damage in brittle materials. Journal of

Engineering Mechanics 2002; 128(8):889-897.

Halm D, Dragon A. A model of anisotropic damage by mesocrack growth; unilateral effect. International Journal of
Damage Mechanics 1996; 5(4):384-402.

Zhu C, Arson C. A model of damage and healing coupling halite thermo-mechanical behavior to microstructure
evolution. Geotechnical and Geological Engineering 2015; 33(2):389-410.

Paliwal B, Ramesh KT. An interacting micro-crack damage model for failure of brittle materials under compression.
Journal of the Mechanics and Physics of Solids 2008; 56(3):896-923.

Paredes JA, Barbat AH, Oller S. A compression—tension concrete damage model, applied to a wind turbine reinforced
concrete tower. Engineering Structures 2011; 33(12):3559-3569.

Arson C, Gatmiri B. Thermo-hydro-mechanical modeling of damage in unsaturated porous media: Theoretical frame-
work and numerical study of the EDZ. International Journal for Numerical and Analytical Methods in Geomechanics
2012; 36(3):272-306.

Comi C, Perego U. Fracture energy based bi-dissipative damage model for concrete. International Journal of Solids
and Structures 2001; 38(36):6427-6454.

. Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks.

Journal of Applied Mechanics 1968; 35(2):379-386.

Hillerborg A, Modéer M, Petersson P-E. Analysis of crack formation and crack growth in concrete by means of
fracture mechanics and finite elements. Cement and Concrete Research 1976; 6(6):773-781.

Gurtin ME. Thermodynamics and the cohesive zone in fracture. Zeitschrift fiir angewandte Mathematik und Physik
ZAMP 1979; 30(6):991-1003.

Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics
1962; 7(1):55-129.

Xu X-P, Needleman A. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and
Physics of Solids 1994; 42(9):1397-1434.

Tvergaard V, Hutchinson JW. Effect of strain-dependent cohesive zone model on predictions of crack growth
resistance. International Journal of Solids and Structures 1996; 33(20):3297-3308.

Nielsen KL, Hutchinson JW. Cohesive traction—separation laws for tearing of ductile metal plates. International
Journal of Impact Engineering 2012; 48:15-23.

Woelke PB, Shields MD, Hutchinson JW. Cohesive zone modeling and calibration for mode I tearing of large ductile
plates. Engineering Fracture Mechanics 2015; 147:293-305.

Song SH, Paulino GH, Buttlar WG. A bilinear cohesive zone model tailored for fracture of asphalt concrete
considering viscoelastic bulk material. Engineering Fracture Mechanics 2006; 73(18):2829-2848.

. Park K, Paulino GH. Cohesive zone models: a critical review of traction—separation relationships across fracture

surfaces. Applied Mechanics Reviews 2011; 64(6):060802-1-060802-20.

Park K, Paulino GH, Roesler JR. A unified potential-based cohesive model of mixed-mode fracture. Journal of the
Mechanics and Physics of Solids 2009; 57(6):891-908.

Park K, Paulino GH. Computational implementation of the PPR potential-based cohesive model in abaqus:
educational perspective. Engineering Fracture Mechanics 2012; 93:239-262.

Spring DW, Paulino GH. A growing library of three-dimensional cohesive elements for use in abaqus. Engineering
Fracture Mechanics 2014; 126:190-216.

Elices M, Guinea GV, Gomez J, Planas J. The cohesive zone model: advantages, limitations and challenges.
Engineering Fracture Mechanics 2002; 69(2):137-163.

Qiao P, Chen Y. Cohesive fracture simulation and failure modes of FRP—concrete bonded interfaces. Theoretical and
Applied Fracture Mechanics 2008; 49(2):213-225.

Liu ZH, Shen W. Experimental study of fracture under combined modes K ;—KjI1I. International Journal of
Fracture 1984; 25(1):R21-R29.

Fakhimi A, Tarokh A. Process zone and size effect in fracture testing of rock. International Journal of Rock
Mechanics and Mining Sciences 2013; 60:95-102.

Valko P, Economides MJ, et al. Applications of a continuum damage mechanics model to hydraulic fracturing. Low
Permeability Reservoirs Symposium. Society of Petroleum Engineers, Denver, Colorado, 1993.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2017; 41:223-250

DOI: 10.1002/nag



250 W. JIN ET AL.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Valké P, Economides MJ. Propagation of hydraulically induced fractures—a continuum damage mechanics
approach. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 31:
Elsevier, 1994; 221-229.

Mazars J, Pijaudier-Cabot G. From damage to fracture mechanics and conversely: a combined approach. Interna-
tional Journal of Solids and Structures 1996; 33(20):3327-3342.

Jirasek M, Zimmermann T. Embedded crack model: 1. basic formulation. International Journal for Numerical
Methods in Engineering 2001; 50(6):1269-1290.

Jirasek M, Zimmermann T. Embedded crack model. Part II: Combination with smeared cracks. International Journal
for Numerical Methods in Engineering 2001; 50(6):1291-1305.

Comi C, Mariani S, Perego U. From localized damage to discrete cohesive crack propagation in nonlocal continua.
Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna University of Technology,
Vienna, Austria, 2002.

Comi C, Mariani S, Perego U. An extended fe strategy for transition from continuum damage to mode I cohe-
sive crack propagation. International Journal for Numerical and Analytical Methods in Geomechanics 2007; 31(2):
213-238.

Simone A, Wells GN, Sluys LJ. From continuous to discontinuous failure in a gradient-enhanced continuum damage
model. Computer Methods in Applied Mechanics and Engineering 2003; 192(41):4581-4607.

Cazes F, Coret M, Combescure A, Gravouil A. A thermodynamic method for the construction of a cohesive law from
a nonlocal damage model. International Journal of Solids and Structures 2009; 46(6):1476-1490.

Cuvilliez S, Feyel F, Lorentz E, Michel-Ponnelle S. A finite element approach coupling a continuous gradient dam-
age model and a cohesive zone model within the framework of quasi-brittle failure. Computer Methods in Applied
Mechanics and Engineering 2012; 237:244-259.

Nguyen VP, Stroeven M, Sluys Lambertus Johannes. An enhanced continuous—discontinuous multiscale method for
modeling mode-I cohesive failure in random heterogeneous quasi-brittle materials. Engineering Fracture Mechanics
2012; 79:78-102.

Xu H, Arson C. Mechanistic analysis of rock damage anisotropy and rotation around circular cavities. Rock
Mechanics and Rock Engineering 2015; 48(6):2283-2299.

Simo JC, Ju JW. Strain-and stress-based continuum damage models—I. formulation. International Journal of Solids
and Structures 1987; 23(7):821-840.

Shao JF, Hoxha D, Bart M, Homand F, Duveau G, Souley M, Hoteit N. Modelling of induced anisotropic damage in
granites. International Journal of Rock Mechanics and Mining Sciences 1999; 36(8):1001-1012.

Dragon A, Halm D, Désoyer T. Anisotropic damage in quasi-brittle solids: modelling, computational issues and
applications. Computer Methods in Applied Mechanics and Engineering 2000; 183(3):331-352.

Chiarelli AS, Shao JF, Hoteit N. Modeling of elastoplastic damage behavior of a claystone. International Journal of
Plasticity 2003; 19(1):23-45.

Shao JF, Zhou H, Chau KT. Coupling between anisotropic damage and permeability variation in brittle rocks.
International Journal for Numerical and Analytical Methods in Geomechanics 2005; 29(12):1231-1247.

Alfano G. On the influence of the shape of the interface law on the application of cohesive-zone models. Composites
Science and Technology 2006; 66(6):723—730.

51. Li H, Chandra N. Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models.
International Journal of Plasticity 2003; 19(6):849-882.

52. Volokh KY. Comparison between cohesive zone models. Communications in Numerical Methods in Engineering
2004; 20(11):845-856.

53. Shet C, Chandra N. Analysis of energy balance when using cohesive zone models to simulate fracture processes.
Journal of Engineering Materials and Technology 2002; 124(4):440-450.

54. Amendt D, Busetti S, Wenning Q, ef al. Mechanical characterization in unconventional reservoirs: a facies-based
methodology. Petrophysics 2013; 54(05):457-464.

55. Ortiz M, Simo JC. An analysis of a new class of integration algorithms for elastoplastic constitutive relations.
International Journal for Numerical Methods in Engineering 1986; 23(3):353-366.

56. Simo JC, Hughes TJ. Computational Inelasticity. Springer-Verlag: Berlin, 1998.

57. Turon A, Davila CG, Camanho PP, Costa J. An engineering solution for mesh size effects in the simulation of
delamination using cohesive zone models. Engineering Fracture Mechanics 2007; 74(10):1665—-1682.

58. Kachanov M. Elastic solids with many cracks: a simple method of analysis. International Journal of Solids and
Structures 1987; 23(1):23-43.

59. Kachanov M. Effective elastic properties of cracked solids: critical review of some basic concepts. Applied Mechanics
Reviews 1992; 45(8):304-335.

60. Shen L, Yi S. New solutions for effective elastic moduli of microcracked solids. International Journal of Solids and
Structures 2000; 37(26):3525-3534.

61. Shen L, Li J. A numerical simulation for effective elastic moduli of plates with various distributions and sizes of
cracks. International Journal of Solids and Structures 2004; 41(26):7471-7492.

62. Borja RI, Foster CD. Continuum mathematical modeling of slip weakening in geological systems. Journal of
Geophysical Research: Solid Earth 2007; 112(B4):B04301.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2017; 41:223-250

DOI: 10.1002/nag



	Computational model coupling mode II discrete fracture propagation with continuum damage zone evolution
	Summary
	INTRODUCTION
	THEORETICAL FRAMEWORK OF THE COUPLED MODEL OF DAMAGE AND FRACTURE PROPAGATION
	Continuum damage mechanics model
	Cohesive zone model
	Transfers of energy between fracture surfaces and the damage zone

	FINITE ELEMENT DAMAGE MODEL
	Calibration of the continuum damage model
	Cutting Plane algorithm

	CALIBRATION OF THE COHESIVE ZONE MODEL
	Choice of the cohesive stiffness: numerical requirements
	Determination of the cohesive strength: critical damage value
	Kachanov's micro-mechanical model
	Critical continuum damage value
	Cohesive shear strength under various confining pressures

	Determination of the cohesive energy release rate

	SIMULATION OF FRACTURE PROPAGATION IN MODE II WITH PROCESS ZONE
	CONCLUSION
	REFERENCES


