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Abstract—General Matrix Multiplication (GEMM) is the key
operation in Deep Neural Networks (DNNs). While dense GEMM
uses SIMD CPUs efficiently, sparse GEMM is much less efficient,
especially at the modest levels of unstructured sparsity common
in DNN inference/training. Thus, most DNNs use dense GEMM.

In this paper, we propose SAVE, a novel vector engine for CPUs
that efficiently skips ineffectual computation due to sparsity in
dense DNN implementations. SAVE’s hardware extensions to the
vector pipeline are transparent to software. SAVE accelerates
FP32 and mixed-precision kernels with unstructured sparsity
from both weights and activations. Further, SAVE is not DNN-
specific and can potentially speed-up any vector workload with
sparsity. To evaluate SAVE, we use simulations of a 28-core ma-
chine and run VGG16, ResNet-50, and GNMT, with and without
pruning. With realistic sparsity, SAVE accelerates inference by
1.37x-1.68x and end-to-end training by 1.28x-1.64x.

I. INTRODUCTION

Deep Neural Networks (DNNs) have attained state-of-the-
art results in tasks such as image recognition [40], speech
recognition [4], scene generation [49], and game playing [55].
For DNN inference, CPUs are generally favored due to
their flexibility, high availability, and low latency, especially
when tight integration between DNN and non-DNN tasks is
desired [25]. For DNN training, GPUs and accelerators provide
higher raw compute power. However, the high memory capacity
on CPU platforms makes training with large datasets and/or
models easier [65]. Also, the high availability of datacenter
CPUs encourages companies to distributedly train DNNs on
CPUs during off-peak periods [61]. For example, Facebook
trains their Sigma and Facer frameworks either entirely or
partially on CPUs [25]. Other examples of training on CPUs
include Intel’s assembly and test factory [68], deepsense.ai’s
reinforcement learning [1], Kyoto University’s drug design [21],
Clemson University’s natural language processing [9], GE
Healthcare’s medical imaging [33], and more [52]. Further,
CPU makers have recently introduced features to accelerate
training, such as BFloat-16 [65] and Intel Advanced Matrix
Extensions [36]. Therefore, accelerating both DNN training
and inference on CPUs is an important yet undervalued area.

Given this fact, our goal is to improve CPU performance on
DNNs. We are inspired by literature that exploits sparsity in
DNNs [3], [22], [24], [27], [38], [47], [48], [62], [66], [67].
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Sparsity offers work-skipping opportunities due to the axiom
that x ·0 = 0. If a multiply operand is zero, the result is zero,
so the multiplication is ineffectual and can be skipped.

In DNNs, sparsity is often unstructured. On one hand, the
popular ReLU [26], [29], [30], [40], [43], [56], [60] activation
function outputs zero between 40-90% of the time in an
unpredictable way [47], [51]—creating dynamic, unstructured
sparsity. On the other hand, weight pruning can drive weights
to zero in training and/or inference [24], [41], [45].

To align the sparsity pattern with the underlying hardware,
structured pruning has been proposed [5], [42], [62]. How-
ever, it often lowers the accuracy of the model more than
unstructured pruning does at the same pruning rate. Luckily,
while unstructured sparsity is difficult to exploit, prior work
has shown significant performance gains from it by designing
‘sparse’ accelerators from the ground-up [3], [22], [47], [67].

Yet, exploiting unstructured sparsity on CPUs is notably
more challenging. DNN workloads on CPUs consist of General
Matrix Multiplications (GEMMs) that, for high performance,
are vectorized. The goal is to maximize the utilization of Vector
Processing Units (VPUs) performing Vector Fused Multiply-
Add (VFMA) operations. To exploit unstructured sparsity,
consider a naı̈ve scheme that dynamically checks if vector
lane operands are zero and, if so, skips the corresponding
multiplications for those lanes. This approach can seldom
improve performance because the vector instruction still has
to wait for the other lanes to compute their results.

To address this challenge, we observe that VPUs are typically
under-provisioned relative to other features in the core, to
meet the needs of common-case applications. For example,
Intel’s Sunny Cove and AMD’s Zen micro-architectures both
support 2 VPUs (for 2 VFMA ops per cycle), yet have
allocation/dispatch bandwidths of up to 5 and 6 micro-ops
per cycle, respectively [15], [63]. This implies that in DNN
codes, which are dominated by VFMAs, the VPU reservation
stations fill quickly, and are bottlenecked waiting for the VPUs.

Based on this, our key idea is to add hardware that searches
through the operands pending in reservation stations, to find
and dynamically schedule effectual operations from different
instructions to available VPU lanes. We call our new vector
pipeline Sparsity-Aware Vector Engine (SAVE). If a VFMA
lane can be skipped because it is ineffectual, SAVE tries to
find a pending lane from another VFMA to schedule there.



The result is fewer VPU operations, leading to speed-ups.
On top of this base idea, we introduce a number of additional

optimizations. First, we design hardware-efficient mechanisms
to load-balance VPU lanes. Second, because GEMM frequently
issues vector broadcasts, we add a small high-bandwidth cache
to exploit locality and improve broadcast throughput. Third,
we devise techniques to handle the complications from mixed-
precision VFMAs. Finally, we disable one VPU when it is idle
due to high sparsity, and boost the core frequency.

To the best of our knowledge, SAVE is the first CPU vector
pipeline that exploits unstructured sparsity. SAVE is transparent
to software and can thus benefit any legacy vector code. We
evaluate SAVE using simulations of a 28-core machine. At
realistic sparsity, SAVE speeds up the convolutional layers and
LSTM cells in inference with dense VGG16, dense ResNet-50,
pruned ResNet-50, and pruned GNMT by 1.68x, 1.37x, 1.59x,
and 1.39x, respectively. Further, SAVE accelerates their end-
to-end training by 1.64x, 1.29x, 1.42x, and 1.28x, respectively.

II. BACKGROUND

A. Matrix Multiplication

GEMM is the core operation in DNNs. LSTMs [19] and
batched MLPs use GEMM as a building block. Convolution
can be computed either through (un)folding a big GEMM [11]
or directly with a series of small GEMMs [18].

Fig. 1 illustrates a vectorized GEMM on a 2×2 tile with
2-lane vectors. In each step, the vector operation is shown
at the top-left. The first step broadcasts the scalar A1,1 to a
vector, then element-wise multiplies the vector by B1,[1:2] and
finally accumulates the product into C1,[1:2]. The next three
steps similarly multiply different broadcasted scalars from A
and vectors from B, and accumulate into vectors from C.
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Fig. 1: Vectorized GEMM with two lanes on a 2×2 tile.

The GEMM reuses registers to reduce memory traffic. C1,[1:2]
and C2,[1:2] are kept in accumulator registers throughout the
computation. Further, (a) and (b) reuse B1,[1:2], while (c) and
(d) reuse B2,[1:2]. Although the broadcasted scalars from A are
not reused in the example, accesses to A exploit spatial locality,
e.g., (c) reads A1,2 after (a) reads A1,1. For larger matrices,
tiling may create reuse of A.

B. Instruction Set Architecture for GEMM

We evaluate our ideas in an x86 environment with AVX-512
extensions [34]. However, the ideas we present are generalizable
to other ISAs.

The core of GEMM is multiply-accumulate (MAC). Modern
SIMD ISAs, such as ARM SVE [59] and Intel AVX-512 [34],

include VFMA instructions. With AVX-512, a VFMA takes
three operands of up to 512 bits in length each. A single VFMA
can operate on 16 single-precision floating-point (FP32) lanes,
where each lane i computes:

C′i =Ci +AiBi (1)

The accumulator and the two multiplicands can all be vector
registers, or one multiplicand can be from memory. The memory
operand can be a full vector or a scalar broadcasted to all vector
lanes, supporting the use case in Fig. 1.

When a broadcasted scalar has high reuse, the software may
use an explicit broadcast instruction to fill a vector register with
the broadcasted scalar, and then reuse the register to reduce
memory traffic. We call this the explicit broadcast pattern.
On the other hand, if a broadcasted scalar has low reuse, the
software may employ VFMA memory operands to minimize
register pressure and increase code density. We call this the
embedded broadcast pattern.

Reduced precision [39] and quantization [8] improve DNN
performance. One can use lower precision multiplicands, but the
accumulator often keeps a higher precision [28]. Vendors are
adding mixed-precision MACs, such as Intel’s AVX512VNNI
(fixed-point) and AVX512 BF16 (Bfloat-16, or BF16), and
ARM’s BF16 extensions [6]. BF16 is a 16-bit FP format. BF16
and FP32 have the same dynamic range. Training in BF16
yields an accuracy comparable to that of using FP32, without
tuning hyperparameters [39], [65].

A BF16/FP32 mixed-precision VFMA instruction, such as
Intel’s VDPBF16PS and ARM’s BFDOT, operates on two
multiplicand vectors with BF16 elements, and an accumulator
vector with half as many FP32 elements. Two adjacent BF16
lanes map to one FP32 lane, forming a group. In each group,
the instruction computes the dot product of the two-lane BF16
sub-vectors and then accumulates onto the FP32 accumulator:

C′i =Ci +A[2i:2i+1] •B[2i:2i+1] (2)

We use • to denote vector dot product. VDPBF16PS computes
the dot product in hardware by performing two consecutive
MAC operations [34], shown in Fig. 2.
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Fig. 2: Mixed-precision operation in VDPBF16PS.

C. Performance Bottleneck of DNN Kernels

For compute-bound DNN operations such as convolution,
the main bottleneck is the throughput of the VPU. For example,
Intel’s Sunny Cove micro-architecture has 5-wide allocation but
only 2 VPUs [63]. Similarly, AMD’s Zen has 6-wide dispatch
but only 2 VPUs [15]. As a result, their front-end bandwidth
is heavily underutilized in DNN computations.



D. Sparsity in DNN Workloads and Ineffectual Operations

Sparsity has long been exploited in linear algebra codes. In
DNN training and inference, where we operate on matrices,
sparsity may arise in the activations and/or weights [23].
Networks that use the rectified linear unit (ReLU) [46] see
40-90% sparsity in activations. Dropout [58] also sparsifies
activations, often to 50%. Sparsity in activations is innately
unstructured. Weights sparsity comes from pruning, where an
increasing fraction of weights is zeroed out during training.
Pruned networks may be stored in a compressed representation
for inference but are often in dense form during training, and
masks are used for identifying dropped weights [69].

Pruning may be structured or unstructured. Structured
pruning partitions weights into blocks of non-zero values to
be efficiently processed by parallel hardware [5]. This requires
considerable software effort and network tuning. Unstructured
pruning [24], [69] is much easier to implement, but results
in a pseudo-random pattern of non-zeros. Hardware for dense
computations usually sees limited speedup from it.

When either multiplicand in a MAC is zero, the accumulator
value does not change. We can skip such an ineffectual
operation to increase the compute throughput. This is simple
for scalar MACs but challenging for VFMAs. Unless all vector
lanes are ineffectual, we cannot skip a VFMA.

III. SPARSITY-AWARE VECTOR ENGINE

We propose SAVE, a sparsity-aware vector engine for CPUs
that skips ineffectual MAC operations. SAVE is transparent
to software and speeds up DNN training and inference by
exploiting unstructured sparsity in weights and activation.

Sparsity in a VFMA is either non-broadcasted (NBS) or
broadcasted (BS). NBS occurs when some elements of a vector
are zero; BS occurs when a zero scalar is broadcasted to a vector.
For NBS, SAVE combines the non-zero lanes from multiple
VFMAs before issuing the VPU operation. This is feasible
because the front-end bandwidth of server CPUs is higher than
the VFMA throughput. Hence, DNN kernels quickly fill up the
reservation stations (RS) with VFMAs. For BS, SAVE skips
the entire VFMA, since it is ineffectual.

Fig. 3 shows the execution back-end and memory subsystem
of a processor with SAVE. We show the added logic blocks
in gray and the storage in black. In the rest of this section, we
describe the basic SAVE architecture that skips ineffectual com-
putation. In Section IV, we present advanced techniques that
increase SAVE’s performance. Finally, Section V introduces
additional SAVE support for mixed-precision VFMAs.

To exploit NBS, we combine effectual lanes from multiple
ready VFMAs. We call the set of ready VFMAs at a given
time the Combination Window (CW). Since modern CPUs have
deep RS and ROB, we can have large CWs. However, VFMAs
with the same accumulator have a true dependence, and only
the oldest can be ready for execution. Hence, the number of
VFMAs in the CW cannot exceed the number of accumulator
registers. We observe that, for a large enough GEMM, with
32 ISA vector registers, the CW is often 24-28.
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Fig. 3: SAVE adds logic units (gray) and storage units (black)
to the execution backend and the memory subsystem. Each
block is discussed in the section in the parentheses.

A VFMA’s lane i is effectual when both multiplicands at
lane i are non-zero. However, AVX-512 VFMAs can use write
masks (WM) for predication, e.g., for dropped weights when
pruning DNNs. The masked-out lanes are ineffectual.

SAVE generates an Effectual Lane Mask (ELM) for each
VFMA, with one bit per lane. We allocate the ELMs from
the AVX-512 mask physical register file (RF) to avoid addi-
tional storage cost [34]. In the studied GEMM kernels, one
multiplicand is non-broadcasted while the other is broadcasted;
however, we support NBS in both multiplicands A and B for
generality. When A and B (and the WM, if used) of a VFMA
are ready, SAVE schedules them to a Mask Generation Unit
(MGU). For each lane, the MGU checks the corresponding
elements from A and B. If both are non-zero and the lane’s
WM bit (if present) is set, the hardware sets the lane’s ELM
bit. Fig. 4 shows this simple logic.

Because the MGU is simple, SAVE replicates it to process
instructions in parallel. By matching the number of MGUs to
the issue-width, the MGU throughput is never a bottleneck.
We do not need the accumulator C of a VFMA to be ready
before generating the ELM for the VFMA. A VFMA enters
the CW once all of its operands and its ELM are available.

SAVE merges effectual lanes from multiple VFMAs in
the CW into a temporary accumulator and two temporary
multiplicands, collectively referred to as temp. To simplify the
logic, SAVE keeps all the elements in their original vector
lanes — an approach we refer to as Vertical Coalescing. Then,
it computes a vector MAC in the VPU with the temp.

Algorithm 1 describes the scheduling algorithm of vertical
coalescing. In each cycle, the scheduler first clears the temp
(Line 1). Then, for each lane position (Line 2), it tests all
entries in the RS simultaneously and finds the first VFMA with
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Fig. 4: Multiple Mask Generation Units (MGUs) producing the
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The RS shows a single VFMA being worked on.



a2 a2 a2 a2 B2[0] 0 0 0C2[0] C2[1] C2[2] C2[3]

0 0 0 0 B1[0] B1[1] 0 0C1[0] C1[1] C1[2] C1[3]

a0 a0 a0 a0 B0[0] 0 B0[2] 0C0[0] C0[1] C0[2] C0[3]

a0 a3 a0 / B0[0] B3[1] B0[2] /C0[0] C3[1] C0[2] /

I1

I2

I3

T

+ *

+ *

+ *

+ *

a3 a3 a3 a3 0 B3[1] B3[2] 0C3[0] C3[1] C3[2] C3[3]I4 + *

C2'[0] C2'[1] C2'[2] C2'[3]

C1'[0] C1'[1] C1'[2] C1'[3]

C0'[0] C0'[1] C0'[2] C0'[3] =

=

=
C3'[0] C3'[1] C3'[2] C3'[3] =

Res C0'[0] C3'[1] C0'[2] / VPU Compute

(a) A single compaction via vertical coalescing. The data from a VFMA’s effectual lane are assigned to the same lane in T .
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(b) A single compaction via horizontal compression. The data from a VFMA’s effectual lane can be assigned to any lane in T .

Fig. 5: Comparison of compaction methods. a0-a3 are scalars broadcasted to all vector lanes; B0-B3 are vectors that contain
non-broadcasted sparsity. Gray lanes are effectual and assigned to T ; black lanes are effectual but will be scheduled later due
to resource limitation; white lanes are ineffectual lanes. Lanes with “/” in T are unfilled. Arrows show the transfer of data.

an unscheduled effectual lane in the corresponding position.
(Lines 3-9). This is done in a single cycle with conventional
priority-based select logic [54]. If an effectual lane is found,
it assigns the input operands to the temp (Lines 5-6) and
records the source VFMA of the lane (Line 7) so that, after the
computation, it can write the lane’s result back to its proper
destination. The ELM bit of a lane is cleared when the lane is
assigned to the temp. After that, the scheduler issues a VPU
operation if the temp contains effectual lane(s) (Lines 10-11)
and removes from the RS any VFMA without unscheduled
effectual lanes (Lines 12-14).

Algorithm 1: Scheduling of vertical coalescing
definition : temp operands T , reservation stations RS, vector

processing unit V PU , effectual lane mask ELM,
µop identifier ID, vector length V

1 clear(T);
2 for lane in V in parallel do
3 for µop in RS do
4 if isVFMA(µop) AND ready(µop) AND

µop.ELM[lane] then
5 T.accum base[lane] = µop.accum base[lane];
6 T.multiplicands[lane] = µop.multiplicands[lane];
7 T.ID[lane] = µop.ID;
8 µop.ELM[lane] = 0;
9 break

10 if NOT empty(T.ID) then
11 VPU.issue(T);
12 for µop in RS in parallel do
13 if isVFMA(µop) AND empty(µop.ELM) then
14 RS.remove(µop);

For simplicity, the algorithm describes scheduling to a single
VPU. With N VPUs, each VPU has a temp. For a given lane
position in the temps (Line 2), the algorithm selects up to N
effectual lanes from ready VFMAs and assigns them to the N
temps. This is a common practice when scheduling to multiple

functional units [54]. Finally, for any VPU with a nonempty
temp, we issue the compacted computation.

The algorithm can also handle BS because BS resembles a
special case of NBS where all lanes are ineffectual. For BS,
since all ELM bits are zero initially, the ineffectual µop is
directly removed from the RS (Lines 12-14).

SAVE uses a VPU’s existing input latch to hold the temp and
thus avoids additional storage. However, SAVE needs to keep
track of the source VFMA of each temp lane. The bookkeeping
overhead is V P log2(NRS) bits per VPU, where V is the vector
length, P is the number of VPU pipeline stages, and NRS is
the number of RS entries.

Fig. 5a illustrates a single compaction via vertical coalescing
with four quad-lane VFMA instructions, I1-I4, in program order.
Each accumulator is shown both as an input (C) and as an
output (C′), which are renamed to separate physical registers.
a0-a3 are scalars broadcasted to all vector lanes. The three
right-hand-side (RHS) inputs of the instructions’ effectual lanes
are combined into the temp T shown below them. The VPU
then produces the result Res from T . Finally, each lane in Res is
written back to the corresponding positions in the instructions’
destinations. Because T is assembled from only the RHS inputs,
in the rest of this paper’s figures, we may omit the accumulation
outputs for simplicity.

In the example, T gets I1’s lane 0, I4’s lane 1, and I1’s lane 2.
Since all of I1’s effectual lanes are issued, we remove it from
the RS. I2 has BS, so it is entirely ineffectual and removed
from the RS directly. No instruction has an effectual lane 3, so
T ’s lane 3 is unused. Since vertical coalescing does not move
elements across vector lanes, I3’s lane 0 and I4’s lane 2 cannot
fill the hole in lane 3, and must wait. Lane conflicts like this
can cause load imbalance when NBS in the CW is unevenly
distributed among lanes.

When an exception occurs, if there are unscheduled effectual
lanes from VFMAs that are before the faulting instruction



in program order, the scheduling algorithm keeps executing
until all those lanes complete. On the other hand, completed
lanes from VFMAs that are after the faulting instruction
are discarded when those VFMAs are squashed. Hence, the
coalescing scheme does not jeopardize precise exceptions.

Another scheme for exploiting NBS is Horizontal Compres-
sion. This technique first bubble-collapses the ineffectual lanes
of a VFMA. Then, it concatenates multiple VFMAs’ effectual
lanes into the temp. After the computation, it bubble-expands
the results. Fig. 5b illustrates a single compaction via horizontal
compression. In the example, T gets lanes 0 and 1 from I1’s
lanes 0 and 2, lane 2 from I3’s lane 0, and lane 3 from I4’s
lane 1. After issuing the VPU operation, I1-I3 are removed
from the RS. Only I4’s lane 2 is left to be scheduled later.

Horizontal compression does not suffer from lane conflicts.
However, bubble-expanding and collapsing add non-trivial
latency and require expensive crossbars. Previous works have
used horizontal compression to reduce the memory traffic
in DNN workloads [2], [51]. Using it to reduce memory
traffic is acceptable because (de)compression is only performed
when loading from or storing to memory, so using existing
permutation hardware in the VPU is sufficient. However, here
we would need to bubble collapse and expand for each VFMA
instruction, needing additional highly-expensive crossbars to
keep up with the VFMA throughput. Hence, SAVE eschews
horizontal compression but embraces vertical coalescing with
additional optimizations to combat load imbalance.

With compaction, the scheduler may fill T with operands
from multiple instructions. As a result, in each cycle, it may
read more than the usual number of entries from the vector
register file (RF). We could add read ports to the vector RF
for this, but another option is available. Specifically, for each
vector lane, we read only a single set of input elements (i.e., A,
B, and C). Therefore, SAVE adopts a vector RF design where
each lane of a vector register can be accessed independently.
With this design, a vector RF with V lanes per vector register
functions analogously to V independent scalar RFs.

IV. ADVANCED FEATURES

SAVE is enhanced with additional features to improve
performance. First, because GEMM frequently issues vector
broadcasts, we add a small high-bandwidth Broadcast Cache
to exploit locality and improve broadcast throughput. Second,
to load-balance VPU lanes, we introduce the Rotate-Vertical
Coalescing Scheme and the Lane-Wise Dependence Scheme.
Finally, we disable one VPU when it is idle due to high sparsity,
and boost the core frequency. We now consider each technique.

A. Broadcast Cache

The basic SAVE design speeds up computation when VFMA
throughput is the only bottleneck, such as in the explicit
broadcast pattern (Sec. II-B), when broadcasted inputs are
reused. However, the embedded broadcast pattern is limited
by both VFMA throughput and L1-D cache read bandwidth.
For example, in modern architectures such as Intel Skylake or
AMD Zen, the number of L1-D read ports matches VFMA

throughput [15]. Since the design so far does not reduce L1-D
traffic, it hardly benefits embedded broadcast.

SAVE is enhanced to reduce memory pressure by exploiting
spatial locality in the broadcasted values. In GEMM, different
scalar values in the same cache line are broadcasted nearby in
time. Hence, we capture this locality with a small, read-only
cache, called the Broadcast Cache (B$), that exclusively serves
the broadcast load requests.

We propose two B$ designs: one where a line contains the
values from the L1-D line that are broadcasted, and one where
a line contains a mask indicating if each element in the L1-D
line is zero. The designs are shown in the left and the right
sides, respectively, of Fig. 6. In the figure, cache lines hold
four vector elements.
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non-zero, load from L1-D.

Fig. 6: Broadcast Cache with data (left) or with masks (right).

In the first B$ design, a broadcast µop checks the B$. On a
miss (Fig. 6a), SAVE fetches the corresponding line from L1-D,
stores it in the B$, and broadcasts the requested value to the
load buffer. Future broadcast µops may hit in the B$, directly
obtaining the broadcasted element from the B$, regardless of
whether the element is zero (Fig. 6c) or not (Fig. 6e).

The second B$ design is shown on the right side of the
figure. B$ only needs 16 bits per line, if we assume that the
L1-D has 64B lines and 4B elements. When a broadcast µop
misses in the B$, SAVE fetches the requested line from the
L1-D and compares each element to zero, to generate the mask
for the B$ (Fig. 6b). In addition, it broadcasts the requested
element into the load buffer.

When a broadcast µop hits in the B$, SAVE checks the
corresponding mask bit. If set (Fig. 6d), SAVE populates the
load buffer with zeros and does not read the data from the
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(b) Rotate-vertical coalescing. The operands from instruction I2 are
rotated right one lane; those from I3 are rotated left one lane.

Fig. 7: Operand rotation combats load imbalance in vertical coalescing.

L1-D. Otherwise (Fig. 6f), SAVE fetches the data from the
L1-D. Overall, this B$ design needs less storage, but it only
skips an L1-D access when broadcasting zeros.

B$’s ideal size depends on how GEMM is register-tiled. We
need one B$ line per accumulation buffer for C. The example
in Fig. 1 uses 2 such buffers; therefore, we only need 2 entries
in the B$ to capture the locality in A. More generally, the
maximum number of B$ entries needed is the total number
of architectural vector registers; the number of accumulation
buffers cannot exceed this. In the context of AVX-512 with
32 vector registers, we give the B$ 32 entries. With a direct-
mapped B$, we see > 90% hit rates for all tested DNN kernels.

This small B$ size allows more ports at a low cost. For our
modeled core, 4 read ports are sufficient. We add additional
address generation logic to support the ports. We keep the
B$ coherent with the L1-D. Since the broadcasted inputs are
read-only in GEMM, we do not expect B$ invalidations from
other cores.

B. The Rotate-Vertical Coalescing Scheme

Vertical coalescing is sensitive to imbalanced load across
lanes. Such imbalance is inherent when we reuse a register
holding non-broadcasted data. Fig. 7a shows this case. All 3
instructions use register B0. Thus, their sparsity patterns are the
same. Therefore, vertical coalescing cannot assign any effectual
lanes from I2 and I3 to T due to conflicts. When we have such
reuse, the effective CW shrinks significantly — the CW size
is divided by the average number of reuses per register.

SAVE improves vertical coalescing by assigning a Rotational
State (R-state) to each VFMA. Depending on the state, we
rotate a VFMA’s operands to the left or right by one lane, or
do not rotate them at all. In this way, we limit the rotations and
thus the hardware cost. Rotation eases the imbalance triggered
by register reuse. We call this Rotate-Vertical Coalescing.

Fig. 7b shows an example. Fig. 7b is like Fig. 7a except that
the operands of I2 and I3 are rotated right and left, respectively,
both by one lane. After the rotations, the effectual lanes from
the 3 instructions no longer conflict. The 3 R-states increase
the effective CW by up to 3x.

Keeping copies of differently rotated operands consumes
more physical registers; therefore, SAVE applies two optimiza-
tions to minimize the additional registers needed. First, because
all scalar elements in the broadcasted multiplicand is the same,
rotating it makes no difference. Hence, SAVE uses a single
copy of the broadcasted multiplicand for all rotations. This is
also reflected in Fig. 7b.

Second, SAVE assigns the same R-state to instructions with
the same logical register as their accumulator; this ensures that
a VFMA producing an accumulator and a VFMA consuming
it are rotated the same way. Consequently, SAVE can keep
a single copy of each accumulator. To implement it, SAVE
determines an instruction’s R-state by taking the logical register
number for the accumulator, and performing a modulo operation
with the total number of rotational states, which is 3. This also
relieves SAVE from bookkeeping each instruction’s R-state
since it can be easily inquired through a table lookup.

With the two optimizations, SAVE only needs to store up to
3 copies of each non-broadcasted multiplicand (one for each
R-state). Since the multiplicands are highly reused in GEMM
kernels, the actual number of additional registers needed is
low. We observe that, when running a typical explicit broadcast
kernel, rotation consumes less than 25% additional registers.
The number is much lower, less than 5%, when running a
typical embedded broadcast kernel. We found that the size of
the physical register file does not become a bottleneck with
such additional consumption. As a result, we do not expand
the register file.

C. The Lane-Wise Dependence Scheme

Current SIMD processors track data dependences at the
vector register granularity. A dependent VFMA is ready when
all lanes in the source VFMA complete. We call this a Vector-
Wise Dependence, which may create false dependences between
VFMAs when vertical coalesing is employed.

We say that a dependent VFMA’s lane i falsely depends on
a source VFMA when, 1) lane i in the source is ineffectual or
completed, and 2) some lanes in the source are not completed.
Under these conditions, the inputs for the dependent’s lane i are
available, but we cannot schedule the lane. When the distances
of true (RAW) dependences are short, false dependences
frequently block otherwise issueable lanes.

Fig. 8a is an example of a false dependence. For simplicity,
we consider two-lane vectors. Since I1’s lane 1 is ineffectual,
we want to issue I2’s lane 1 simultaneously with I1’s lane
0. However, since both instructions accumulate into C0, a
vector-wise dependence requires I2 to wait.

SAVE eliminates false dependences by enforcing depen-
dences at the lane level, called Lane-Wise Dependence. In
this case, a dependent VFMA’s lane i is ready as soon as the
source VFMA’s lane i completes. Fig. 8b illustrates that the
scheme allows I2’s lane 1 to be issued along with I1’s lane
0. This is compatible with rotate-vertical coalescing because,
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Fig. 8: Vector-wise dependence prevents I2’s lane 1 from issuing
with I1’s lane 0. Lane-wise dependence does not.

as discussed, instructions with the same accumulator have the
same R-state; thus, their lanes are still aligned after the rotation.

The naı̈ve way to implement lane-wise dependence is to
replicate the dependence logic for each lane. SAVE circumvents
this by recognizing that the execution of VFMAs with the same
accumulator respects true dependences. We honor dependences
by scheduling effectual lanes in program order.

First, SAVE does not stall a VFMA if its only unresolved
dependence is its accumulator’s true dependence on a prior
VFMA’s accumulator. For example, in Fig. 8b, as soon as a0,
B0, and C0 are available for I1, and a1 and B1 are available for
I2, SAVE marks both I1 and I2 ready, despite the fact that I2’s
accumulator C0 still depends on I1’s C0. Then, when SAVE
schedules with Algorithm 1, for each lane, it selects the pending
effectual lane from the earliest ready VFMA in program order
in Lines 3-9. For example, SAVE schedules I1’s lane 0 before
I2’s lane 0 because I1 is earlier in program order. Prioritizing
by program order is a well-known heuristic in conventional
select logic and has mature implementations [54].

D. Power Saving and Frequency Boosting

Today’s VPUs are so power hungry that the power managers
may reduce core frequency when running vector code. For
example, Intel downclocks its CPUs when running wide SIMD
code [35]. However, at high sparsity, there are insufficient
effectual lanes to keep all VPUs occupied. This means that
reducing the number of VPUs would have little performance
impact. Therefore, at high sparsity, we propose SAVE to disable
a subset of the VPUs to save power. SAVE may change
the number of active VPUs either statically through control
registers, or dynamically through heuristics from performance
counters. After disabling a VPU, the power manager may
increase core frequency.

V. MIXED-PRECISION TECHNIQUES

Recently, manufacturers started to support mixed-precision
VFMAs [6], [28], mostly for DNNs. The x86 implementation
was described in Sec. II-B. We now extend SAVE to apply the
techniques in Sec. III and IV to mixed-precision VFMAs.

For mixed-precision VFMAs, SAVE uses rotate-vertical
coalescing to skip ineffectual FP32 Accumulator Lanes (ALs) in
the C vector. However, because two BF16 Multiplicand Lanes
(MLs) map to one FP32 AL, an AL is ineffectual only if both

MLs are ineffectual. Consequently, sparsity in the multiplicands
is typically not fully exploited.

Consider the example in Fig. 9, which omits rotation for
simplicity. It shows 2 ALs, each mapped to 2 MLs. The dot
product (denoted with •) of MLs [0 : 1] accumulates into AL 0,
and that of MLs [2 : 3] accumulates into AL 1. In the figure,
I1’s ML 1 is ineffectual. However, one cannot skip I1’s ML 1
because I1’s AL 0 needs to be scheduled due to I1’s ML 0 being
effectual. Consequently, we cannot schedule I2’s AL 0 in this
cycle. On the other hand, we can skip I1’s AL 1 and schedule
I2’s AL 1 because ML 2 and 3 for I1 are both ineffectual.
Hence, T receives I1’s AL 0 and I2’s AL 1. However, MLs 1
and 3 in T are ineffectual. In general, if the multiplicands have
random sparsity patterns, the level of exploitable sparsity is
the square of the actual sparsity. e.g., when the multiplicands
are 50% sparse, we only leverage 0.52 = 0.25 or 25% sparsity.

C0[0] C1[1]

C1[0] C1[1]

C0[0] C0[1]

a1 a1 a1 a1 0 B1[1] B1[2] 0

a0 a0 a0 a0 B0[0] 0 0 0

a0 a0 a1 a1 B0[0] 0 B1[2] 0

+ • 
+ • 

+ • 

FP32 Accumulator lanes BF16 Multiplicand lanes
I1

I2

T

Fig. 9: Vertical coalescing is inefficient for mixed-precision. An
accumulator lane can be skipped only when both multiplicand
lane pairs mapped to it are ineffectual. The operator • stands
for the dot product of two-lane multiplicand sub-vectors.

A. Horizontal Compression on Multiplicands

To address the above problem, SAVE combines effectual
MLs from multiple VFMAs with the same accumulator.
For example, assume that two instructions, I1 and I2, both
accumulate to C0. Their ML [2i:2i+1] map to AL i. Suppose
that the ML 2i+1 of I1 and the ML 2i of I2 are both ineffectual.
Their computation for AL i becomes:

I1 : C0i =C0i +A02iB02i +0
I2 : C0i =C0i +0+A12i+1B12i+1

(3)

We can combine the two operations into a single one as:

C0i =C0i +A02iB02i +A12i+1B12i+1 (4)

We may combine the MLs via either horizontal compression
or vertical coalescing, and both methods are correct with real
number arithmetic. However, horizontal compression maintains
the accumulation order, while vertical coalescing does not.
Preserving the order is crucial to produce deterministic results
with floating-point arithmetic.

For example, Fig. 10a vertically combines I1’s ML 0 and
I2’s ML 1. I2’s ML 1 is accumulated into C0 before I2’s
ML 0. This changes the accumulation order. In contrast,
Fig. 10b horizontally schedules I1’s ML 0 and then I2’s ML 0,
therefore preserving the accumulation order. The figures show
the accumulated results in both cases, in Res.

For this reason, SAVE uses horizontal compression to
combine MLs from mixed-precision VFMAs with the same
accumulator. In Sec. III, we claimed that SAVE forsakes
horizontal compression on the 16-lane vector due to hard-
ware complexity. However, in the mixed-precision case, it is
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(a) Vertical coalescing on multiplicand lanes.
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(c) Hardware of horizontal compression for mixed-precision VFMAs.
Data pass through the thick lines in the case of the example in (b).

Fig. 10: Horizontal compression on multiplicand lanes preserves
accumulation order while vertical coalescing does not.

acceptable to perform horizontal compression. This is because
the complexity of the crossbar needed to perform horizontal
compression is quadratic to the number of lanes. For the mixed-
precision VFMAs, we permute MLs only within the 2 possible
positions that map to the same AL; for the 16-lane vector, we
would need to permute within 16 possible positions.

SAVE implements horizontal compression within each AL
with two cheap 32-bit 4-to-1 multiplexers, as shown in Fig. 10c.
Each multiplexer selects a pair of A and B multiplicands from
4 candidates. Furthermore, it only needs bubble-collapsing to
compact the inputs into T ; it does not need to bubble-expand
the data out of the VPU after the computation.

B. Properly Writing Back Results

The above technique produces the correct result for the last
instruction in a chain of VFMAs with the same accumulator.
We define any VFMA before the last one in the chain as an
intermediate VFMA. Although all instructions in the chain write
to the same ISA register, with register renaming, their actual
destinations are different physical registers. To be transparent
to software and to support precise exceptions, SAVE also needs
to write the correct results of all intermediate VFMAs to the
destination physical registers. Taking Fig. 10b as an example,
the result for I1 should be Cbase + a0×B0[0], and the result
for I2 should be Cbase + a0×B0[0]+ a1×B1[0]+ a1×B1[1].
However, the intermediate result computed with the temp is
R =Cbase +a0×B0[0]+a1×B1[0], which is the proper result
for neither I1 nor I2. The next step of the computation will
issue I2’s ML1 and produce the correct final result for I2.

By design, a mixed-precision VFMA performs two consecu-
tive accumulations for each AL. The VPU uses the result from

the first accumulation as the base of the second one. To produce
correct values for the destination registers of intermediate
VFMAs, we utilize both accumulation results.

When either result is available for an AL, we mark the ML
that produces the result as completed. However, we do not
write the result to the AL’s destination until both of the MLs of
the AL are completed. Otherwise, if a VPU operation’s second
result is not the final result of an AL for any VFMA, we define
it as a partial result. A partial result is transient in nature and
only useful as the base for a future accumulation. Hence, it
should not update the architectural state of any instruction.
Furthermore, if an exception happens, we discard the partial
result and recompute it after serving the exception. In SAVE,
we avoid storing the partial result by immediately scheduling
the next VPU operation in the chain, and forwarding the partial
result to the VPU as the accumulation base.

C. Example of a Mixed-Precision VFMA

For simplicity, we show an example instead of listing the
complete algorithm. Fig. 11 illustrates how SAVE generates
proper results for a single AL from 3 instructions with the
same accumulator C0. The figure also illustrates the register
renaming for the accumulator. In the following, we assume
that a VFMA takes two cycles to finish, and that the first result
is out after one cycle. The instructions have RAW dependence
on C0, so the example does not pipeline the VPU operations.

Fig. 11a shows the initial state, before any operation occurs.
No effectual lane has been scheduled, and T is empty. In
each instruction, C0 is renamed to two physical registers: one
as the accumulation base (e.g., R0 in I1), and the other as
the accumulation destination (e.g., R1 in I1). A subsequent
instruction’s accumulation base is renamed to the same physical
register as the previous instruction’s destination (e.g. R1 in
both I1 and I2). SAVE fills T with the accumulation base
and the multiplicands. After the computation, SAVE takes the
output result (Res in the figure) and updates the instruction’s
destination register accordingly. The rest of the examples
replace C0 with the actual physical registers: R1 to R3.

In cycle 1 (Fig. 11b), the initial value of C0 is Cbase, held in
R0. We issue the first VPU operation with ML 0 from both I1
and I2, and use Cbase as the accumulation base. The ineffectual
lanes are marked as completed with a slashed pattern.

In cycle 2 (Fig. 11c), the first result (Res0) of the first VPU
operation is available. I1’s ML 0 completes. Because both MLs
of I1 are completed, we update I1’s destination R1 with Res0.

In cycle 3 (Fig. 11d), there are two operations. First, the
second result (Res1) of the first VPU operation is produced.
We mark I2’s ML 0 as completed. However, since I2’s ML 1 is
unprocessed, Res1 is not the result for I2, so we do not write it
to I2’s destination R2. The second operation is scheduling the
next VPU operation on accumulator C0. Because Res1 is the
accumulation base, we forward Res1 to the VPU input directly
(see forward arrow to T ). We schedule ML 1 of both I2 and
I3 for the next VPU operation.

In cycle 4 (Fig. 11e), the first result of the second VPU
operation (Res2) is out. We mark I2’s ML 1 complete. Since
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Fig. 11: Example of using mixed-precision VPU operation to properly update the destination registers in a set of instructions
using the same accumulator. The completed lanes of each VFMA are shown in a slashed pattern.

both MLs of I2 are complete, we update I2’s destination R2 with
Res2. Finally, in cycle 5 (Fig. 11f), the second VPU operation
finishes. The result Res3 is written back to I3’s destination R3.

Because this design updates every destination register with
the correct result, SAVE guarantees correct architectural state
when completing any mixed-precision VFMA. Hence, SAVE
supports precise exceptions.

VI. EXPERIMENTAL SETUP

We implement SAVE in the Sniper multicore simulator [10].
Table I lists the modeled processor, which resembles the 28-
core Intel Skylake Xeon 8180 CPU, with the exception that
we widen the issue-width to 5 µop/cycle, up from 4. This
reflects a change in the newer Sunny Cove architecture. In
addition, because Sniper does not support non-inclusive caches,
we model Skylake’s 1.375MB/core non-inclusive L3 with a
2.375MB/core inclusive cache. We model the latency and
execution ports of common instructions [14]. We set the latency
of a FP32 VFMA to 4 cycles, as in the Skylake; we set the
unknown latency of a mixed-precision VFMA to 6 cycles, since
it needs simpler multipliers but an additional accumulation.

In each cycle, the Xeon 8180 can execute up to two 256-
bit AVX2 instructions at 2.1GHz or up to two AVX-512
instructions at 1.7GHz [35]. Because one 512-bit VPU is broken
down into two 256-bit units when executing AVX2 code [15],
executing one 512-bit VFMA draws power comparable to
executing two 256-bit VFMAs. Therefore, we evaluate SAVE
at 1.7GHz with two 512-bit VPUs and at 2.1GHz with one
512-bit VPU. The baseline has two 512-bit VPUs at 1.7GHz.
The core frequency affects L1 and L2 but not L3.

TABLE I: Architecture configuration.

Core 28 cores, no SMT, 97 RS entries, 224 ROB entries, 5-issue,
1 VPU at 2.1GHz or 2 VPUs at 1.7GHz

B$ 32 lines direct-mapped, with data or with masks
L1-D/I 32KB/core private, 8-way, LRU
L2 1MB/core private, inclusive, 16-way, LRU
L3 2.375MB/core, shared, inclusive, 19-way, SRRIP, NUCA
NoC 2D-mesh, XY routing, 2-cycle hop
Memory 119.2GB/s BW, 6 channels, 50ns latency

TABLE II: Storage structures in SAVE modeled at 22nm.

Only supports FP32 FP32 and mixed-precision
Size Pleak Eaccess Size Pleak Eaccess

T per VPU 56B N/A N/A 168B N/A N/A
B$ w/ mask 276B 0.24mW 2.9E-4nJ 340B 0.29mW 3.8E-4nJ
B$ w/ data 2260B 3.2mW 1.6E-2nJ 2260B 3.2mW 1.6E-2nJ

With the above configurations, we list SAVE’s storage
overhead in Table II. We also model the leakage power and
access energy of the broadcast cache (B$) configurations using
CACTI 7.0 [7] at the 22nm process.

We evaluate the training and inference of popular CNNs and
LSTMs. To compute the convolutional (conv) layers and the
LSTM cells, we use the kernels from Intel DNNL [32] (formerly
MKL-DNN), a state-of-the-art AVX-512 DNN library.

For CNNs, we choose ResNet-50 [26] and VGG16 [56]
on ImageNet-1K [13]. Because VGG16’s activation sparsity
is high [51], evaluating a pruned version would not provide
additional insights. Therefore, we evaluate VGG16 with dense
weights. In ResNet-50, the residual connections lower the



activation sparsity by adding positive bias before ReLU. Its use
of batch normalization (BatchNorm) [37] further eliminates
the sparsity in the output gradient during training. Therefore,
we evaluate ResNet-50 with both dense and pruned weights.

For LSTMs, we choose GNMT [64] on WMT’16 EN-DE.
Since GNMT does not employ ReLU, the activation sparsity
is from dropout with a constant rate of 20%. The activation
sparsity further diminishes when the input is concatenated with
the previous output. Therefore, we only evaluate GNMT with
pruned weights because the activation sparsity is low.

Table III lists the types of sparsity (Broadcasted Sparsity
or Non-Broadcasted Sparsity) that are present in inference
and in different phases of training. For CNNs, DNNL has
two phases in the backward propagation: propagation of input
and propagation of weights. For LSTMs, the two phases are
merged. Note that when training ResNet-50 without pruning,
the backward propagation of input has no sparsity.

TABLE III: Types of sparsity in the evaluated networks.

CNN forward/inference backward input backward weights
BS NBS BS NBS BS NBS

dense VGG16 X X X X
dense ResNet-50 X X
pruned ResNet-50 X X X X

LSTM forward/inference backward

BS NBS BS NBS

pruned GNMT X X X X

Because full training in a simulator is infeasible, we use a
sampling method to estimate SAVE’s performance. First, we
need the realistic weight and activation sparsity during full
training runs. For VGG16, we use the sparsity progression
reported by Rhu et al. [51]. For ResNet-50, we profile the
sparsity during training with and without pruning. The 90-
epoch dense training gives a 76.7% top-1 accuracy. We prune
using a magnitude based method [69] with the hyperparameters
from [17] that yields a 75.4% top-1 accuracy. We start pruning
at epoch 32 and stop at 80% target sparsity in epoch 60. The
training stops at epoch 102. The weights in each layer are
pruned at the same rate. We do not compress the pruned model.
For GNMT, we start pruning at iteration 40K and stop at 90%
target sparsity at iteration 190K. The training stops at iteration
340K. The final BLEU score is 28.4 [31].

Fig. 12 presents the progression of activation sparsity during
training. We omit GNMT since its activation sparsity is
constantly 20%. Fig. 13 shows the schedule of weight pruning.
We assume that, without pruning, the weights are fully dense.

Next, for each layer, we simulate SAVE with both weight
and activation sparsities of 0%-90% at 10% intervals, using
a uniform random distribution. The result is a 2D surface of
execution times with 100 different combinations of weight and
activation sparsities. We warm up L3 with the output from
the previous DNN operation: for forward propagation, it is
the input activation; for backward propagation, it is the output
gradient. The weights and the layer’s results are cold.
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Fig. 12: Activation sparsity during end-to-end training. Each
x-axis segment shows a layer. Within a segment, from left to
right are the sparsities from the first epoch to the last one.
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Fig. 13: Schedule of weight pruning.

Finally, we calculate SAVE’s mean performance on end-to-
end training. For each epoch and layer, we linearly map the
profiled weight and activation sparsities to the 2D surface of
execution times computed above, and obtain the execution time
of the layer at the epoch. We sum all the layers’ execution
times at an epoch to get the run time of the whole network
at the epoch. At last, we take the average of all the epochs as
SAVE’s mean network execution time during training.

To compute the execution time of inference, we simulate
with the sparsity obtained at the end of training.

VII. EVALUATION

We first present SAVE’s performance on whole-network
training/inference with the complete set of SAVE’s features.
We then discuss the impact of the different features of SAVE.

A. Whole Neural Network Performance

We assess SAVE’s whole-network training and inference
performance with all SAVE features. We configure the broad-
cast cache to store the data. Fig. 14 shows the normalized
execution time of all conv layers or LSTM cells in the studied
networks. For each network, we show bars for the baseline
and for several configurations of SAVE: 1) using two VPUs,
2) using one VPU at higher frequency, 3) for each training
epoch, statically using the better of one or two VPUs (static
bars), and 4) for each DNN kernel, dynamically using the
better of one or two VPUs (dynamic bars). Configuration 3
does not apply to inference because the switching interval
is much coarser than an inference. Configuration 4 neglects
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Fig. 14: Execution time of all conv layers or LSTM cells in the studied networks at realistic sparsity, normalized to the baseline.

any overhead for enabling/disabling a VPU and changing the
frequency. The reason is that the switching overhead of a
typical DVFS manager is around ten microseconds, while our
configuration switches at tens of milliseconds. In addition, a
VPU’s warm-up period is even smaller. Each bar is labeled
with the speedup of the configuration over the baseline.

Fig. 14a and Fig. 14c are for CNN inference and training
respectively. They show times for dense VGG16, dense ResNet-
50, and pruned ResNet-50 at realistic sparsity, each with FP32
and with mixed precision (MP). The bars are broken down
into two or more categories. For inference and training, we
separate the first layer because 1) it does not have sparse input
activations, and 2) it does not compute the back-propagation
of input. For training, we also distinguish between forward
propagation and backward input and weight propagation.

The figures show that SAVE delivers substantial speedups
over the baseline. Configuration 4 performs the best: SAVE with
mixed precision speeds-ups dense VGG16, dense ResNet-50,
and pruned ResNet-50 by 1.68x, 1.37x, and 1.59x, for inference,
and by 1.64x, 1.29x, and 1.42x, for training. The speedups are
slightly lower for FP32 and for other configurations.

When SAVE uses a fixed number of VPUs, most workloads
perform better with two VPUs. This is because, while many
kernels have high sparsity and can benefit from using one VPU
at higher frequency, some kernels have dense inputs, and thus
prefer two VPUs. For example, the first layer in a CNN has
no activation sparsity, and for training the dense ResNet-50,
back-propagation of input has sparsity in neither weights nor
activations due to Batch Normalization [37].

Configuration 3 performs better than using a fixed number
of VPUs since the sparsity level changes during training.
Configuration 4 further speeds-ups both training and inference
because each kernel’s input has different sparsity levels.

SAVE achieves higher speed-up on VGG16 than on ResNet-

50. One reason is that, in VGG16, the first layer (which has
no activation sparsity) contributes a smaller portion of the
total execution time than in ResNet-50. Also, VGG16 does not
incorporate Batch Normalization, so its back-propagation of
input has sparsity in the activation gradient. Finally, VGG16’s
activation sparsity is on average higher than ResNet-50’s.

Fig. 14b and Fig. 14d are for GNMT inference and training
respectively. In inference, the bars are not broken down; in
training, they are broken down into forward and backward. We
see that SAVE delivers sizeable speedups over the baseline.
For the dynamic configuration, SAVE with mixed precision
attains a speedup of 1.39x for inference and 1.28x for training.

Because LSTM have lower compute-to-memory ratios than
CNN, it becomes memory bound more easily as SAVE reduces
computation. Hence, the speedups are on average lower than on
the CNNs. It can be shown that, with two VPUs, the speedup
is capped when the weights are 20% pruned; with one VPU,
we continue to see speedup until the weights are 60% pruned.

B. Boosting Frequency with Fewer VPUs

We study the effect of using one or two VPUs at different
core frequencies. Fig. 15 shows SAVE’s speedup on the
ResNet2 2 kernel with two VPUs (a) or one VPU (b) at
different sparsity levels. Each bar group corresponds to a
different NBS level. Within a group, each bar corresponds
to a different BS level. At 0% total sparsity, using two VPUs
matches the baseline performance, while using one VPU gives a
29% slowdown. As sparsity increases, SAVE’s benefit increases.
With two VPUs, SAVE’s benefit is capped at 1.49x, when either
the BS or NBS level reaches around 60%. Then, the execution
is no longer throttled by VPU throughput. With one VPU, we
benefit from higher sparsity, up to at least 90% of either type,
and reach a maximum speedup of 1.96x. When either type of
sparsity exceeds 70%, one VPU outperforms two.
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Fig. 15: SAVE speedups on the mixed-precision forward
propagation of ResNet2 2 with 1 or 2 VPUs.

At high sparsity, the speedup reaches a ceiling because
the execution becomes memory, frontend, or latency bound,
depending on the kernel. Unless the execution is L3 or DRAM
bound, higher core frequency usually helps. The speedup caps
of the 93 studied kernels are considered in Fig. 16, for FP32
and mixed precision (MP), and 2 and 1 VPUs. The figure
counts the number of kernels whose speedup caps are within
a range, for conv layers and LSTM cells. We see that using 1
VPU and boosting the frequency effectively lifts the caps. For
FP32, the geometric mean of the speedup cap is 1.39x with
two VPUs and 1.62x with one VPU. For mixed precision, it
is 1.48x with two VPUs and 1.77x with one VPU.
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Fig. 16: Histograms of the speedup caps. Each bar counts the
number of kernels whose speedup caps are within a range.

C. Broadcast Cache Designs

To address the L1-D read bandwidth limitation under an
embedded broadcast pattern, SAVE introduces the B$. We
proposed two designs of the B$: one holds data and the other
holds masks. The second design saves storage. However, the
requested non-zero elements are always fetched from L1-D. If
a workload with embedded broadcast only has BS, this is not
a problem because the reduction in L1-D read requests from
sparsity matches the reduction in VFMA operations. However,
if the workload also has NBS, the reduction in VPU operations
may make L1-D bandwidth a bottleneck again.

Fig. 17 shows the speedups from SAVE with the two B$
designs running a kernel with an embedded broadcast pattern.
It also shows the speedups without a B$. The figure shows BS
levels of 0% and 40%, and different NBS levels. Without a B$,
we do not get speedup at any level of NBS or BS. Without NBS,
as BS increases, both types of B$ designs deliver speedups.
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Fig. 17: SAVE speedups with different B$ designs on the FP32
back-propagation of weights of ResNet3 2 with two VPUs.

However, as NBS increases, B$ with data typically delivers
additional speedup, while B$ with masks does not due to the
L1-D bandwidth bottleneck discussed earlier. Consequently, a
B$ is essential to speeding up the embedded broadcast pattern,
and a B$ with data performs much better than a B$ with masks.

D. Techniques for Load-Balancing VPU Lanes

We now compare vertical coalescing (VC), rotate-vertical
coalescing (RVC), lane-wise dependence (LWD), and com-
binations of them in an environment with only NBS. We
also include the impractical horizontal compression (HC) for
comparison. For HC, we use the 3-cycle latency of AVX-512
vector permutation (i.e., VPERMPS) [14] as the cost of bubble
collapsing/expanding, so we add 6 cycles to VFMA’s latency.

Fig. 18 shows, for two kernels, the speedups of these
techniques over the two-VPU baseline. We use NBS levels of
0%-90%, 0% BS, and one VPU. We choose two kernels of
back-propagation of input in pruned ResNet-50 because this is
the only case when NBS is present while BS is not (Table III).
To correlate the speedups with realistic sparsity, we list, above
the bars, the percentage of training iterations where the NBS
of the layer is ±5% of the sparsity written below the bars.
Therefore, bars with higher numbers are more representative.

Recall that adding rotation to VC increases the effective
combination window (CW), so RVC benefits more when the
CW is small. On the other hand, LWD tackles the severe false
dependences when the dependence distance is short.
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(a) ResNet3 2 FP32 back-propagation of input, effective CW ≈ 1.

32.4% 2.0% 1.0% 2.0% 1.0% 2.0% 2.9% 4.9%
52.0% 0.0%

0.0
0.5
1.0
1.5
2.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Sp
ee

d
u

p

Non-broadcasted Sparsity Level

VC RVC VC+LWD RVC+LWD HC
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Fig. 18: SAVE speedups with different techniques for load
balancing VPU lanes.



Fig. 18a shows a kernel that uses 28 accumulators. Both
the dependence distance and the CW size are 28. However,
each non-broadcasted multiplicand is reused 28 times, so the
effective CW size is around 1. This is a common situation
among kernels with the embedded broadcast pattern. In the
figure, we see that VC suffers from severe load imbalance
and has low performance. RVC mitigates the load imbalance
and performs well. VC+LWD provides less benefit than
RVC because the effective CW is extremely small while the
dependence distance is long. RVC+LWD performs the best,
which indicates that the two optimizations are synergistic. We
also see that RVC+LWD performs close to HC at medium
sparsity. However, HC is slower than RVC+LWD at high
sparsity, where the kernel becomes latency sensitive, and HC’s
6 additional cycles harm performance.

Fig. 18b shows a kernel that uses 21 accumulators. The
dependence distance is 21. Each non-broadcasted multiplicand
is reused 7 times, so the effective CW size is approximately 3.
For this kernel, VC+LWD is more beneficial than RVC. This is
because, compared with the other kernel, the effective CW is
larger while the dependence distance is shorter. Moreover, HC
is less effective, since the shorter dependence distance makes
the kernel more sensitive to HC’s additional latency.

Overall, combining the RVC and LWD optimizations gives
the best performance across different kernel behaviors.

E. Mixed-Precision Technique

We now consider the impact of SAVE’s optimization on
mixed-precision VFMAs. The technique exploits the sparsity
when only some of the MLs mapping to an AL are ineffectual.
Fig. 19 shows the speedups of a mixed-precision kernel with
the one-VPU SAVE, either with or without SAVE’s mixed-
precision (MP) optimization, over the two-VPU baseline. The
experiments are at 0% BS and various NBS levels. As before,
we list the percentage of pruned ResNet-50 training iterations
where the NBS of the layer is ±5% of the sparsity written below
the bars. We see that the mixed-precision technique improves
speedups at all sparsity levels, sometimes substantially.
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Fig. 19: SAVE speedups on the mixed-precision ResNet4 1a
back-propagation of input with SAVE, either with or without
SAVE’s mixed-precision (MP) technique.

VIII. RELATED WORKS

Google’s TPU, NVIDIA’s Tensor Core, and Intel’s Cooper
Lake all support mixed-precision DNN training. Henry et
al. [28] suggest that BF16/FP16 systolic arrays may provide
8-32x more compute potential than a FP32 vector engine.
Micikevicius et al. [44] demonstrate that mixed-precision DNN
workloads on Volta GPU see a 2-6x speedup over FP32.

Model pruning [23], [24], [69] sparsifies the weights. Gale
et al. [17] pruned weights to 95% with low accuracy loss.
However, their unstructured-pruned models can perform badly
on conventional parallel hardware. Structured pruning [5], [62]
is hardware-friendly for inference, but it usually prunes to a
lesser degree and results in worse accuracy. It is also very
difficult to exploit structured pruning during training.

PruneTrain [42] prunes entire channels and reconfigures the
model to a smaller dense form during training. Our work is
orthogonal to it and both techniques can work together.

Several accelerators exploit sparsity during inference. Cn-
vlutin [3] uses activation sparsity to skip ineffectual compu-
tations. Eyeriss [12] clock-gates hardware units when a zero
is detected. It saves energy but not time. Cambricon-X [67]
skips multiplications with pruned weights. EIE [22] exploits
weight/activation sparsity with a compressed representation, but
it is limited to matrix-vector multiplication. SCNN [47] accel-
erates convolutions with weight/activation sparsity. Proposals
targeting CPUs and/or training are scarce.

SparCE [53] saves front-end bandwidth of light-weight CPUs
by annotating skippable code blocks in software and checking
for sparse inputs in hardware. It requires co-design and mainly
works on scalar code. SAVE targets high-performance SIMD
CPUs with spare front-end bandwidth and software transparent.

ZCOMP [2] introduces instructions to load/store compressed
vectors. It synergizes with SAVE since its memory reduction
is proportional to SAVE’s computation reduction, and SAVE
can directly use the vector loaded by ZCOMP for VFMA. Rhu
et al. [51] also use a similar compression method to reduce
the PCIe traffic between GPUs and the CPU.

SparseTrain [20] is a pure software approach to exploit the
ReLU-induced dynamic sparsity in both training and inference.
It only leverages broadcasted sparsity while SAVE exploits
both broadcasted and non-broadcasted sparsity.

Control divergence induces ineffectual lanes in GPU SIMT
hardware. Fung et al. [16] dynamically create warps from
threads with the same next PC, and they identify the issue
of aligned divergence, similar to the lane imbalance that we
face. Rhu et al. [50] tackle the aligned divergence by statically
permuting the thread-to-lane mapping. Their method is suitable
for the coarse-grained control divergence but not the fine-
grained lane imbalance discussed in this work.

Finally, this work is related to works exploring masked
execution of conditional operations in vector code [57].

IX. CONCLUSION

We propose SAVE, the first sparsity-aware CPU vector
engine. SAVE skips operations on zero values, and combines
non-zero operations from multiple VFMA instructions. It is
also transparent to software. SAVE includes optimizations
to mitigate VPU lane imbalance, to alleviate the cache
bandwidth bottleneck, and also to exploit mixed-precision
computations. Using simulations of a 28-core machine running
DNN workloads at realistic sparsity, we showed that SAVE
accelerates inference by on average 1.37x-1.68x and end-to-end
training by on average 1.28x-1.64x.
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