SparseTrain: Leveraging Dynamic Sparsity in Software for
Training DNNs on General-Purpose SIMD Processors

Zhangxiaowen Gong
gong15@illinois.edu
University of Illinois at
Urbana-Champaign
Champaign, IL, USA

Christopher J. Hughes
christopher.j. hughes@intel.com
Intel Labs
Santa Clara, CA, USA

ABSTRACT

Our community has improved the efficiency of deep learning appli-
cations by exploiting sparsity in inputs. Most of that work, though,
is for inference, where weight sparsity is known statically, and/or
for specialized hardware. In this paper, we propose SparseTrain, a
software-only scheme to leverage dynamic sparsity during training
on general-purpose SIMD processors. SparseTrain exploits zeros
introduced by the ReLU activation function to both feature maps
and their gradients. Exploiting such sparsity is challenging because
the sparsity degree is moderate and the locations of zeros change
over time.

SparseTrain identifies zeros in a dense data representation and
performs vectorized computation. Variations of the scheme are ap-
plicable to all major components of training: forward propagation,
backward propagation by inputs, and backward propagation by
weights. Our experiments on a 6-core Intel Skylake-X server show
that SparseTrain is very effective. In end-to-end training of VGG16,
ResNet-34, and ResNet-50 with ImageNet, SparseTrain outperforms
a highly-optimized direct convolution on the non-initial convolu-
tional layers by 2.19x, 1.37x, and 1.31x, respectively. SparseTrain
also benefits inference. It accelerates the non-initial convolutional
layers of the aforementioned models by 1.88x, 1.64x, and 1.44x,
respectively.

CCS CONCEPTS

+ Computing methodologies — Neural networks; Shared mem-
ory algorithms; Vector / streaming algorithms.

KEYWORDS

Deep neural networks, training, convolution, sparsity, CPU

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PACT °20, October 3—7, 2020, Virtual Event, GA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8075-1/20/10...$15.00
https://doi.org/10.1145/3410463.3414655

Houxiang Ji
hj14@illinois.edu
University of Illinois at
Urbana-Champaign
Champaign, IL, USA

Christopher W. Fletcher
cwiletch@illinois.edu
University of Illinois at
Urbana-Champaign
Champaign, IL, USA

Josep Torrellas
torrella@illinois.edu
University of Illinois at
Urbana-Champaign
Champaign, IL, USA

ACM Reference Format:

Zhangxiaowen Gong, Houxiang Ji, Christopher W. Fletcher, Christopher J.
Hughes, and Josep Torrellas. 2020. SparseTrain: Leveraging Dynamic Spar-
sity in Software for Training DNNs on General-Purpose SIMD Processors. In
Proceedings of the 2020 International Conference on Parallel Architectures and
Compilation Techniques (PACT °20), October 3—7, 2020, Virtual Event, GA, USA.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3410463.3414655

1 INTRODUCTION

Deep Neural Networks (DNNs) have become ubiquitous, achieving
state-of-the-art results across a range of tasks from image recog-
nition [26] to speech recognition [5], scene generation [37], and
game playing [42]. While GPUs are amongst the fastest hardware
solutions today for DNN training, CPUs are also popular platforms
because they have already been widely deployed in datacenter,
client, and edge devices, therefore lowering the Total Cost of Own-
ership (TCO) for the DNN market [2, 39, 47, 52]. The large memory
capacity on the CPU platforms (e.g., up to 4.5TB per socket with the
third generation Intel Xeon Scalable processors) also makes train-
ing with large datasets and/or models easier [52]. Consequently,
industry often uses a significant number of datacenter CPUs avail-
able during off-peak periods to do distributed training. For example,
Facebook trains their “Sigma” product entirely on CPUs and their
“Facer” product partially on CPUs [16]. Other examples of training
on CPUs include Intel’s assembly and test factory, deepsense.ai’s re-
inforcement learning (RL), Kyoto University’s drug design, Clemson
University’s natural language processing (NLP), GE Healthcare’s
medical imaging, and many more [39]. Previous works [8, 11] have
already demonstrated good strong scaling of distributed training on
clusters of CPU nodes; hence, a good way to further reduce train-
ing time is to accelerate the work assigned to each CPU node [11].
Overall, accelerating DNN training on general-purpose processors
is an important yet sometimes undervalued task.

An effective approach to accelerating DNNs is to remove useless
computations on zero values in the data, known as sparsity. Indeed,
prior efforts spanning hardware to software and algorithms have
exploited sparsity to eliminate computation or data transfers at
different points in DNN computations. Most of these efforts, though,
require hardware changes [3, 7, 13, 34, 38, 40, 57] and/or apply
only to inference [3, 7, 13, 15, 34, 35, 50, 53, 57]. This is not ideal,

https://doi.org/10.1145/3410463.3414655
https://doi.org/10.1145/3410463.3414655

since most of real-world DNN computations are performed on
conventional CPUs and GPUs [4, 16, 33, 51], and significant time
goes into training.

This paper addresses these shortcomings through a software only
effort to speed up DNN training leveraging sparsity, on unmodified
general-purpose CPUs. This is challenging for multiple reasons.
First, works targeting sparse inference typically rely on sparse
representations (e.g., Compressed Sparse Row, or CSR), leveraging
static sparsity patterns (i.e., the locations of the non-zeros) [13, 34,
35, 50, 53, 57]. This is reasonable in inference because the DNN
weights do not change. In training, though, the sparsity pattern in
both inputs and weights changes over time, since the weights are
updated with each batch of inputs. Second, operating on sparse data
incurs overhead: modern machines are highly optimized for dense
computations, and suffer from the extra indirections and branches
that appear when processing sparse data. Prior work either relies on
custom hardware to minimize these overheads [3, 7, 13, 34, 40, 57],
or sophisticated pre-processing to “shape” the sparsity pattern to
better match existing hardware [35, 50, 53]—which only applies to
static sparsity.

Our software scheme to exploit dynamic sparsity on general-
purpose SIMD processors is called SparseTrain. SparseTrain lever-
ages the rectified linear unit (ReLU [30]), a ubiquitous operator used
by convolutional neural networks (CNNs) [17, 19, 20, 26, 43, 46],
multilayer perceptrons (MLPs) [23], and recurrent neural networks
(RNNGs) [5]. After each ReLU-activated DNN layer, all neurons (out-
puts) in the layer are clamped to zero if negative. Whether a neuron
is negative depends on the inputs and weights, both of which change
during training. Thus, ReLU introduces dynamic sparsity.

However, ReLU only induces 40%-90% sparsity [38], which is
moderate compared to many sparse scientific computations. Further,
the sparsity pattern has no discernible structure. Hence, SparseTrain
operates on data in a dense format. It exploits sparsity by detecting
zero input values at runtime, and, when appropriate, branching
over useless computations such as multiply-by-zero.

The amount of computation that can be skipped due to a zero
neuron depends on the number of reuse of the neuron. High reuse
helps amortize the overheads incurred while detecting and exploit-
ing sparsity. Among different types of DNNs, CNNs have the highest
reuse of their neurons. Therefore, while the approach is generally
applicable to any DNN employing ReLU, we focus on CNNs in this
paper. Furthermore, SparseTrain introduces optimizations to mini-
mize overhead while maximizing data locality, available parallelism,
and the amount of work skipped per zero input.

Our experiments on a 6-core Intel Skylake-X server show that
SparseTrain is very effective. In end-to-end training of VGGI16,
ResNet-34, and ResNet-50 with ImageNet, SparseTrain outperforms
a highly-optimized direct convolution on the non-initial convolu-
tional layers by 2.19x, 1.37x, and 1.31x, respectively. SparseTrain
also benefits inference. It accelerates the non-initial convolutional
layers of the aforementioned models by 1.88x, 1.64x, and 1.44x
respectively.

We make the following contributions:

o The development of SparseTrain, the first approach to exploit
dynamic sparsity during DNN training on general-purpose
CPUs in software.

e A novel sparse algorithm that does not rely on a sparse
representation and is effective for moderate sparsity.

e Anevaluation showing that SparseTrain outperforms a highly-
optimized direct convolution on multiple DNNs.

2 BACKGROUND

2.1 Training Convolutional Neural Networks

A CNN is a type of DNN that is effective for analyzing images. The
leading competitors in recent years’ ImageNet Large Scale Visual
Recognition Competition (ILSVRC) are mostly variants of CNNs,
such as AlexNet [26], VGG [43], GoogLeNet [46], and ResNet [17].
Within a CNN, the convolutional (i.e., conv) layers are the most time
consuming components; thus, reducing the amount of computation
in them can greatly boost performance. In the following discussion,
we use the symbols listed in Table 1.

Table 1: List of the symbols and their dimensions & iterators.

‘Description Itr.H ‘Description Dimension Iterator
N |minibatch size i ||D |input tensor NCWH i,c,x,y
C |input channels ¢ ||Y |output tensor NKW'H' i, k,x",y
K |output channels k ||G |weight tensor KCRS k,c,u,v
W |input width x ||L |loss function
H |input height y ||V |vector length
R [filter width u ||T |# of skippable ops
S |filter height v || M |minibatch tile size
O |horizontal stride Q |output channel tile
P |vertical stride size

The convolution on a minibatch of N images with C channels
and size H X W correlates a set of K filters with C channels and
size S X R on the images, producing a minibatch of N images with
K channels and size H/P X W /O, where P and O are the strides
of the two dimensions, respectively. We denote filter elements as
Gk, c,u,» and image elements as D; ¢, x,y- The forward convolution
for output Y; g, . is:

9}

=

©
|

-1

1

Di,c,x'xO+u,y’xP+v X Grcup (1)
0

Yi,k,x’,y’ =

0 u=0

[
I
Il

Q
I

In the backward propagation of a convolutional layer, the gradi-
ent of the loss function L with respect to the weights G is calculated
by applying the chain rule:

oL 0L oY

3G~ 9Y 4G
We need JL/3Y from the next layer, and compute dL/dD for the
previous layer if needed. dL/dD is a convolution of L/JY with the
layer’s filters transposed. The gradient with respect to the weights
is a convolution of D with dL/dY, producing S X R outputs for each
input/output channel combination.

Training a conv layer has three major components: the forward
propagation (FWD), the backward propagation by input (BWI), and
the backward propagation by weights (BWW). Table 2 lists the
parameters of the layers that we evaluate.

@)

Table 2: Evaluated layer configurations from VGG and ResNet v1.5.

Name C K H W RS OP|Name |c K H W RS O P|[Name |c K H W RSOP
vggl 2 64 64 224 224 3 3 1 1 |jvgg2 1 64 128 112 112 3 3 1 1 ||vgg2 2 128 128 112 112 3 3 1 1
vgg3_1 128 256 56 56 3 3 1 1 ||lvgg3_2 256 256 56 56 3 3 1 1 ||vggd 1 256 512 28 28 3 3 1 1
vggd 2 512 512 28 28 3 3 1 1 |jvgg5_1 512 512 14 14 3 3 1 1 ||resnet2_la |64 64 5 56 1 111
resnet2_1b |256 64 56 56 1 1 1 1 [|resnet2_2 64 64 5 56 3 3 1 1 [|resnet2_3 64 256 5 56 1 1 11
resnet3_la |256 128 56 56 1 1 1 1 [|resnet3_1b |512 128 28 28 1 1 1 1 [|resnet3_2 128 128 28 28 3 311
resnet3_2/r 128 128 56 56 3 3 2 2 ||resnet3_3 128 512 28 28 1 1 1 1 (|resnet4_la |512 256 28 28 1111
resnet4_1b |1024 256 14 14 1 1 1 1 ||resnet4 2 256 256 14 14 3 3 1 1 ||resnetd_2/r |256 256 28 28 3 3 2 2
resnet4_3 256 1024 14 14 1 1 1 1 ||resnet5_la [1024 512 14 14 1 1 1 1 ||resnet5_1b [2048 512 7 7 1111
resnet5_2 512 512 7 7 3 3 1 1 |[|resnet5_2/r |512 512 14 14 3 3 2 2 ||resnet5 3 512 2048 7 7 1111

2.2 ReLU and Dynamic Sparsity

Each output of a DNN layer is usually passed through an activation
function to introduce non-linearity. One popular activation is ReLU:

f(x) = max(0, x) ®)

and its derivative is!:
7|

By definition, ReLU and its derivative produce 50% sparsity when
the distribution of x is centered at 0. When ReLU-activated conv
layers are cascaded, this is reflected in D in the forward propagation
and 0L/JY in the backward propagation, and it affects all three
training components.

Since ReLU-induced sparsity varies with input, we call it dynamic
sparsity to differentiate it from the static sparsity of weight-pruning.
Other sources of dynamic sparsity include dropout [44] and max
pooling during backward propagation. Dynamic sparsity is the only
type that exists during the majority of the training time.?

Exploiting dynamic sparsity is challenging because the level of
sparsity is too low for a typical irregular sparse computation to out-
perform highly optimized regular dense computation. In addition, at
modest sparsity, the metadata overheads of sparse representations
such as CSR may exceed any savings.

1,ifx>0
0, otherwise

©

2.3 Baseline Platform

We consider a shared-memory server comprising general-purpose
processors with multiple cores and SIMD support. While we tune
and evaluate on a specific platform described in Section 4, our ap-
proach is applicable to most modern shared-memory nodes with
processors supporting SIMD. Further, our approach is fully com-
patible with multi-node implementations; it will simply accelerate
the work done on each node.

To provide context for our design decisions, we briefly describe
our baseline platform. We study a system with Intel Skylake cores.
In each cycle, each core can execute two AVX-512 arithmetic instruc-
tions (e.g., vector fused multiply-add, or VFMA), read two cache
lines (64B) and write one cache line from/to the L1 data cache, and
retire four instructions. Each core has 32 vector registers, a 32KB
L1 data cache, a 1IMB L2 cache and a 1.375MB non-inclusive shared
L3 cache.

I The derivative at x = 0 is undefined but usually set to 0.

ZStatic sparsity is also present when re-training a weight-pruned network, but we
focus on regular dense training.

We implement our work as new convolution kernels in MKL-
DNN [21], a highly tuned DNN library. We specialize the kernels ac-
cording to the size of the convolution and the hardware parameters
via just-in-time (JIT) compilation. Prior works also demonstrated
that JIT-ing achieves higher performance than statically-tuned
BLAS-calls for convolution [11, 18]. Because for a given convolu-
tional layer, we only JIT the kernels once during the whole training
process, the kernel generation overhead is virtually non-existent.
Being low-level software, our implementation can be incorporated
to DNN frameworks like TensorFlow [1] or PyTorch [36].

3 EXPLOITING DYNAMIC SPARSITY

We propose SparseTrain, which leverages dynamic sparsity to speed-
up DNN training on shared-memory SIMD multiprocessors. The
idea is to skip computations that are rendered ineffectual by ReLU.
In particular, SparseTrain skips a multiply-accumulate operation
(MAC) if one of its multiplicands is zero. SparseTrain uses a dense
data representation for three reasons. First, the sparsity from ReLU
is usually too low for any sparse representation to benefit. Second,
we avoid the overhead of converting between dense and sparse
representations. Finally, a dense format allows regular memory
access patterns and more efficient vectorization.

In the following, we start by describing a naive initial design,
and then progressively improve it.

3.1 Naive Forward Propagation (FWD)

We base our scheme on direct convolution. Algorithm 1 describes a
naive vectorized approach that skips computation in FWD upon
detecting a zero input. Line 1 and Line 4 represent collapsed loop
nests. For simplicity, the algorithm assumes unit stride, but can be
easily expanded for strided convolution. In the rest of the paper, we
assume unit stride unless otherwise specified. The sparse algorithm
for BWI is similar to FWD, and we will talk about BWW separately.

The main idea is as follows. Since an input element is reused R X
SXK times, by making the input stationary in the computation loop
nest, we may skip at most RxSXK operations when we detect a zero.
We vectorize the computation along the output channel dimension
(K). The statement in Line 5 represents a VFMA operation of length
V. When we detect a zero in Line 2, we skip all of the following
RxSXK/V ineffectual VFMAs. We denote the number of skippable
VFMAs per check as T. As shown in Table 2, K is often on the order
of hundreds. This, together with the reuse of R X S means that,
potentially, T is large.

Algorithm 1: Naive Vectorized Sparse FWD.

input :input D, filters G

output :output Y
1 fori=0,c=0,y=0,x=0toN-1,C-1,H-1,W -1do
if Dj ¢, x,y # 0 then

for k =0to K — V step V do

foru=0,v=0toR-1,S-1do
Yi,[k:k+V71],x7u,yfz) =
Yi,[k:kw&Vfl],xfu,yf‘u + Di,c,x,y X G[k:k+V71],c,u,'u;

2
3
4
5

The naive algorithm has several downsides. First, it naturally
has input parallelism: it compares each D element to zero and then
updates multiple Y elements. Input parallelization requires atomic
updates of Y, which drastically reduces performance. Output par-
allelization is generally faster. The simplest such approach is to
let each core work on different images in the minibatch. However,
common practice on training on CPU clusters is to assign, to each
multicore, only a small minibatch. As a result, it is likely that differ-
ent cores will get a different number of images, resulting in load
imbalance.

The second downside is that a CPU has a limited amount of ISA
vector registers; this is 32 in the CPU we target. If T = RXSXK/V is
greater than the number of registers, we must spill registers during
computation, inducing overhead. Therefore, we want to confine T
within the register budget.

Finally, D has an unpredictable sparsity pattern, triggering fre-
quent branch mispredictions in the zero-checking. Limiting T to
the register budget (~32) reduces our chance to amortize the mis-
prediction penalty.

3.2 Optimized Forward Propagation (FWD)

To improve the naive FWD algorithm, we now introduce five opti-
mizations. Algorithm 2 includes the high-level ideas.

Algorithm 2: Parallel Vectorized Sparse FWD.

input :input D, filters G

output :output Y
1 for i = 0to N — M step M in parallel do
2 fory =0to H — 1in parallel do
3 forv=0toS—1do
4 for k = 0 to K — Q step Q in parallel do
5 forc=0to C -V step V do
6
7
8

for i’ = itoi+ M —1in parallel do
forx =0to W —1do
mio.v-1] = [d #0fordin Di,[c:c+V—l],x,y+v]§

9 forc’ =0toV —1do

10 if ms is true then

1 for k' =ktok + Q- V step V do

12 foru=0toR-1do

13 Yir [k k' +v-1l,x—u,y = Yi' [k :k'+V-1],x-u,y T

Di’,c+c’,x,y+v X G[k’:k’+V—1],c+c’,u,y§

3.2.1 Vectorized Zero-Checking. The naive algorithm compares
D elements to zero one at a time. To improve it, we vectorize this
check along the input channel dimension (C). Specifically, Line 8 in
Algorithm 2 does a vector comparison to zero to generate a vector

boolean mask m[o.y7_1]; each mask bit is set if the corresponding
input element is not zero. We then use the mask to determine
whether to skip computation.

3.2.2 Increasing Output Parallelism. In a convolution, a D element
affects a set of spatially-grouped Y elements. Similarly, a Y element
is calculated from a limited set of spatially-grouped D elements.
This allows us to increase output parallelism by reducing T.

We parallelize at an output row granularity. When a core works
on an output row, it processes the D elements from S corresponding
input rows, one row at a time. This approach lowers T from R X S X
K/V to RXK/V.Moreover, if RXK/V is still larger than the number
of ISA registers, we further reduce T to avoid register spilling. We
accomplish this by tiling the output channel dimension (K) and
decrease T to R X Q/V, where Q is a factor of K and a multiple of
V. We will discuss how we choose Q in the next section. We can
process the same output row at different output channel tiles in
parallel. With T = R x Q/V, the number of parallel tasks rises from
N in the naive algorithm to N X H X K/Q.

Since an input row corresponds to S output rows, multiple cores
may read a given input row. In a shared memory system, such reuse
may be captured in a shared cache.

3.2.3 Efficient Vector Register Usage. A VFMA has three operands:
one accumulator vector and two multiplicand vectors. In the target
ISA, one multiplicand vector can be a memory operand. In modern
Intel and AMD microarchitectures such as Skylake and Zen, the
L1 read bandwidth matches the VFMA throughput (2 per cycle per
core) [10]; thus, utilizing the memory operand does not slow down
the computation.

When we translate Line 13 of Algorithm 2 to a VFMA instruction,
we use the multiplicand vector G[g.x'+ v _1],c+¢’,u,o @5 @ memory
operand. We broadcast Djs c+¢’ x,y+v to all lanes of a vector reg-
ister and use the register as the other multiplicand vector. Note
that all T = R x Q/V VFMAs in the loop from Lines 11-13 share
this broadcasted D element. Finally, each VFMA needs a dedicated
vector register to hold the accumulator vector Yy [gr.xr4v_1], x—u,y-
Therefore, we need T + 1 vector registers for a given T.

The target ISA has 32 zmm vector registers. Algorithm 2 keeps a
vector of zeros for the vector compare instruction in Line 8. Hence,
there are 31 vector registers available. Because we need T + 1 vector
registers, we limit T to 30 in order not to spill the registers.

Besides avoiding register spilling, we further reduce memory
operations. As shown in Lines 7-13, we scan through an input row
and update the affected Y elements accordingly. We call such a scan
a Row Sweep. Figure 1 illustrates examples of how we optimize both
memory access and register usage during a row sweep.

Due to a convolution’s spatial nature, adjacent D elements may
contribute to overlapping Y elements, depending on the filter width
R and the horizontal stride O. Consider the example in Figure 1a.
WhenR =3and O = 1, Dj ¢, x,y contributes to Y; [k.k+v 1], [x—2:x],y-
The next element Dj ¢, x+1,y contributes to Y; [r.k4+v-1],[x—1:x+1],y-
Thus, both D elements contribute to Y; (k.k+v-1],[x-1:x],y- AS @
result, as x increments, we can keep Y; [k:k+v-1],[x-1:x],y iD the
registers. We only need to save Y; [f.k4v-1],x—2,y to memory and
load Y; [x:k+V—1],x+1,y from memory. Consequently, each Y vector
is only read and written once during a row sweep.

Di,c, x,y zmm0 zmm] zmm2
contributes to [Yi, [k:k+V-11,x-2,y | Vi, [k:ltV=1],x-1Ly | Vi, [k:k+V-1], %,y |

x+1 during a Store to memory
Tow sweep Transfer Transfer
Di, c, xt1,y zmmQ zmml Zmm2

contributes to [Yi, [k:ktV-11,x-1,y | Yi, [k:ktV-11, %,y | Vi, [k:k+V-1], x+1,y |
Load from memory

(a) When proceeding to the next D element during a row sweep, we do not store
and then reload the output Y vectors affected by both the current and the next
inputs. However, a naive implementation requires transferring data between
registers.

Di,c, x,y zmm0 zmm] zmm2
contributes to [Yi, [k:ktV-11,x-2,y | Vi, [k:ktV-11,x-1Ly | Vi, [k:k+V-1], %,y |

x+1 during a Store to memory
TOW Sweep

Di, e, x+1,y zmm1 zmm2 zmm0
contributes to [Yi, [k:ktV-11,x-1,y | Yi, [k:ktV-11,x,y | Vi, [k:k+V-1], x+1, |
Remain in the same registers

Load from memory

(b) Cyclic register renaming further avoids transferring data between registers.

Figure 1: Examples of how SparseTrain minimizes both
memory access and moving data between registers during
arow sweep whenR=3and O = 1.

However, although the shared Y vectors can stay in the registers
as x advances, a naive implementation that statically uses regis-
ters according to the spatial order of the convolution still requires
transferring the Y vectors from one register to another. For ex-
ample, in Figure 1a, zmm[@: 2] hold the Y vectors affected by a D
element in the order from left (lower index in the W dimension)
to right (higher index in the W dimension). As x increments, the
Y vector in zmm[1:2] needs to be transferred to zmm[0:1]. Mod-
ern microarchitectures typically eliminate such register-to-register
moves at the register allocation stage to bypass executing them in
the back-end [10]. Nevertheless, the move instructions still consume
front-end resources.

To avoid the move instructions, we devise a software scheme
that simulates register renaming. As illustrated in Figure 1b, we
use zmm[@:2] to hold the Y vectors. When working on D ¢ x,y,
zmm® holds Y; k.k+v-1],x—2,4> z0m1 holds Y; [x.k+v-1],%-1,y> and
zmm2 holds Y; [k:k+v-1],x,y- After moving on to D, c,x+1,y, Zmm@
proceeds to load Y; gk v 1], x+1,4 While Y; [gpiv-1],x-1,y and
Y; [k:k+V—1],x,y are kept in their previous registers.

This scheme requires unrolling the row sweep loop, starting on
Line 7. For large W, fully unrolling can lead to kernels larger than
the instruction cache. Since the cyclic renaming repeats every R
iterations, we instead unroll by a factor of R to limit code size.

The number of registers used, how they are cyclically renamed,
and the unrolling factor all depend on the parameters R and O. As
a result, statically compiled code cannot implement this scheme.
Hence, it is crucial to use JIT compilation.

Because R and V are fixed by the convolution configuration
and the hardware, respectively, the only tunable parameter in T =
RXx Q/V is Q. As a result, the register budget is often underutilized.
To see why, assume that we want Q to be a factor of the number
of output channels K, so blocks have the same size. When R = 5,

V = 16, and K = 256, which is a typical number of channels, a
reasonable maximum value of Q is 64. As aresult, T = 20. Recall that
we have 32 vector registers in total, and we use 2 vector registers for
other uses: one to hold an all-zero vector and the other to hold the
broadcasted input D element. Therefore, 10 registers are unused.

In such cases, we use the spare registers to pipeline the load of
the Y vector affected by the next D element. Consider the registers
in Figure 2 that hold Y vectors when processing Dj ¢, x,y- Figure 2a
is the case without pipelining. With R = 3 and O = 1, we need 3
registers along the W dimension. Because we vectorize along the
K dimension, with Q = 32 and V = 16, we need Q/V = 2 registers
along the K dimension. Therefore, we allocate 6 registers in total.
In this case, we load Y; [x.k+v-1],x,y a0d Y; [k+Vik+2v-1],x,y from
memory. Dj ¢, x,y contributes to both of them.

zmm3 zmm4 zmmb

[Yi, [k#V:ektav-11, x-2, v | Vi, [k#Vektav-11, x-1, y | Vi, [k#V:kt2v-11,x,y |
zmmQ zmm] zmm2

[Vi, Deckv-17,x-2,y | Yi, [kek#V-11,x-Ly | Vi, [kekV-11,x,5 |

Load from memory

(a) Without pipelining, 6 registers are used.

zmm4 zmmb zmm6 ZIm
[Yi, Iktv:ke2v-11, x-2, y | Yi, [e#Vikt2v=11, x-1,y | Yi, [ktVik+2V-11, %,y | Vi, [ktV:kt2v-11, L, y |
zmm0 zmml zmm2 zmm3
[Vi, [kektv-11,x2y | Vi, DektV-10,xLy | Vi, DekV-1l,5y | Yi, DektV-11,xtLy |
Load from memory

(b) With pipelining, 8 registers are used. The pipelined loads are marked with
gray background.

Figure 2: Example allocations of the output buffer registers
that hold Y vectors affected by D; ¢ x,y whenR = 3,0 = 1,
Q=32,and V = 16.

Figure 2b is the case with pipelining. Because Q/V is unchanged
in the example, we also need 2 registers along the K dimension.
If we have 2 spare registers, we use them to preload Y vectors
along the W dimension, ie., we preload Y; [g.k+v-1],x+1,y and
Yi [k+V:k+2V-1],x+1,y- The next Dj ¢ x+1,y contributes to them, but
the current Dj ¢, x,y does not. In this way, the VFMAs depend on
loads from an earlier iteration so that the out-of-order hardware
can dispatch the VFMAs sooner. Note that, with pipelining, the
unroll factor of the row sweep loop becomes R + 1 instead of R.

We need (R+1)x Q/V registers as output buffers with pipelining
or R x Q/V without it. Therefore, we want the number of output
buffer registers to be maximized but no higher than the budget,
which is 30 as discussed. At K = 256 and V = 16, the optimal values
of Q for common values of the filter width R are shown in Table 3.
The values of Q are 128 for R = 1 with pipelining, 128 for R = 3
without pipelining, and 64 for R = 5 with pipelining.

For R = 1, we found that the alternative of Q = 256 without
pipelining is slower. This is because when processing each D ele-
ment in a row sweep, we compute R X Q/V VFMAs and load Q/V
number of Y vectors from memory. Thus, the compute to load ra-
tio is R. When R = 1, the ratio is so low that pipelining provides
substantial benefit by hiding the load latency.

3.24 Reducing Branch Mispredictions. As discussed, the optimal T
is < 30 on the target CPU. Under this constraint, the zero checking

Table 3: Optimal value of Q for K = 256 and V = 16 at differ-
ent R.

R ‘ ‘ Q ‘ Pipelined? ‘ # of output buffer registers ‘ T

1] 128 Yes 16 = (R+1)Q/V 8=RQ/V
3 || 128 No 24 = RQJV 24 = RQJV
5 1 64 Yes 24=(R+1)QJV 20 = RQ/V

and skipping method in Lines 8-13 of Algorithm 2 may induce so
many branch mispredictions that the code actually slows down. To
address the issue, we transform a series of branches to a single loop
and reduce the number of branches by a factor of V. With many
fewer branches, we drastically reduce the overall misprediction
penalty.

Algorithm 3 shows the method that can replace Lines 8-13 in
Algorithm 2. First, we compare the input vector to zeros to generate
a mask (Line 1, which maps to Line 8 in Algorithm 2). This is
done with the vempps instruction on the target CPU. Then, we
use popcnt (Line 2) to count the number of 1s in the mask, which
represents the number of non-zero elements in the input vector.
After that, the code loops this number of times as shown in Lines 3-
13, where each loop iteration processes a non-zero element from
the input vector.

Algorithm 3: Zero Checking for Branch Performance.

input :input pointer D, filter pointer G
output :register array Y
constant: filter offset B
1 m[@:V-1] = vect_cmp_neq_zero(D[0@:V-1]);
2 0 = population_cnt(m[@:V-11);
3 fori=0too—-1do
4 z = trailing_zero_cnt(m);
5 D+=2z; G += 2z * B;
6 forj=0to Q/V fully unrolled do
7 for k = 0 to R fully unrolled do
8 Y[j1[k]1[0:V-1]+=broadcast(D[0]1)*G[jI1[kI[0:V-1]
9 end
10 end
11 m = shift_right(m, z+1);
12 D+=1; G += B;
13 end

In each iteration, we first count the number of trailing zeros (z)
in the mask with the tzcnt instruction (Line 4). Then, we advance
the input pointer by z, to reach the next non-zero element in the
input vector. We also advance the filter pointer such that it points
to the filter elements corresponding to the given non-zero input
element. Finally, we do the VFMAs.

We fully unroll the loop nest in Lines 6-10. The Y[j1[k][0:V-1]
vectors shown in the loop body are actually in the output buffer
registers, which are allocated though the cyclic renaming scheme
discussed earlier. Finally, we shift the mask to the right by z+1 to
reflect that we have finished processing the rightmost non-zero
input element (Line 11), and also adjust the input and filter pointers
accordingly (Line 12).

For readability, we omit some low-level optimizations in Algo-
rithm 3. Specifically, we pipeline the vector compare instruction
such that the vector mask for the next iteration is generated during
the current iteration. In this way, we can overlap the compute from
the current D element with the load of the next D element. We also
manually schedule and pipeline the integer instructions in the loop
body to minimize dependence stalls. Moreover, we use shifts and
load effective address (lea) instructions to reduce the strength of
the integer multiplications and the number of integer instructions.
In the end, each loop iteration of Lines 3-13 only contains 8 cheap
integer instructions plus the VFMAs.

3.2.5 Memory Access Optimization. We structured both the work-
ing sets and the loop nest carefully for high memory performance.
First, we set the lowest dimension of the datasets to a channel tile
of size V. On the target CPU, this is the zmm vector register size and
the cache line size. Recall that we vectorize the computation along
channels. Therefore, when the channel tile is aligned to a cache
line boundary, vector instructions operate efficiently on a vector of
channel data.

We have 3 working sets, with different behaviors: the input D,
the filters G, and the output Y. D and Y have spatial locality in
a row sweep. Each row element from them is loaded/stored only
once per row sweep, and adjacent elements in a row are accessed
consecutively. Such a streaming pattern benefits from hardware
prefetching when we assign the second lowest dimension to the
row dimension. We may also strategically software-prefetch the
elements of the next row to the L2 cache when the line fill buffers
(LFB) are not saturated.

In contrast, G has temporal locality in a row sweep. Since we
compute partial results for W X Q output elements from W x V
input elements in a row sweep, we access Q X V X R filter elements
repeatedly. With the R and Q values listed in Table 3, when R =
{3, 5}, 24KB or 20KB of G elements are used per row sweep. Thus, on
a machine with a 32KB L1-D cache, the next set of G elements needs
to be loaded from the L2 or below when the input/output channels
of focus change. To counter the issue, we block the minibatch
dimension (N) with a tile size of M to reuse each G element M
times, as in Lines 1 and 6 in Algorithm 2. The heuristic is that
M = 16 is appropriate for most convolution configurations.

Layers such as ReLU, pooling, LRN, normalization, and batch
concatenation can be efficiently implemented on the same layout
that the convolutional layers use [11], so in most cases we do not
need to transpose the activations between layers.

3.3 Backward Propagation by Input (BWI)

For a unit-stride convolution, BWI is virtually the same as FWD,
with the exception that the filters are flipped. However, non-unit
strides introduce some differences. Specifically, when applying the
register usage optimization described in Sec. 3.2.3 with horizontal
stride O > 1, in FWD, we load Q/V new Y vectors into the accumu-
lator registers after we finish processing O vectors of D. However,
in BWIL, we load O X Q/V new dL/dD vectors into the accumulator
registers after we finish processing one dL/dY vector.

Also, in a FWD row sweep, some D elements may contribute to a
number of Y vectors that is less than T due to the horizontal stride;
however, in a BWI row sweep, except for the image boundaries,

an 0L/JY element always contributes to T dL/dD vectors. We
generate the appropriate number of skippable VFMAs through JIT.

Finally, the unroll factor of the row sweep loop in FWD is W X O;
it is the least common multiple of W and O in BWL

3.4 Backward Propagation by Weights (BWW)

Algorithm 4 is a naive sparse algorithm for BWW. It checks for
zeros in D. We can easily modify the algorithm to check for zeros
in AL/dY instead, if we expect more sparsity in dL/0Y of the target
layer. In Algorithm 5, we improve on Algorithm 4 by applying
output-parallelization and similar optimizations used in FWD and
BWI, with some changes.

Algorithm 4: Naive Vectorized Sparse BWW.
input :input D, output gradients dY
output :filter gradients dG
1fori=0,c=0,y=0,x=0toN-1,C-1,H-1,W -1do
if D; ¢ x,y # 0 then
for k =0to K — V step V do
foru=0,v=0toR-1,S—-1do
dG[k:k+V—1],c,u,v =
dG[k:k+v-1],c,u,0 T Dicox.y X AYi [k V-1l x—u,y-ov

2
3
4
5

Algorithm 5: Parallel Vectorized Sparse BWW.

input :input D, output gradients dY
output :filter gradients dG

1 fori=0to N -V step V do

2 fory=0toH—-1do

3 forov =0to S —1in parallel do

4 for k = 0 to K — Q step Q in parallel do

5

6

7

for ¢ = 0 to C — 1 in parallel do
forx =0to W —1do
myo.v-1) = [d # 0 for d in Dy v_1),c,x,y+0l;

8 fori’ =0toV —1do

9 if m;s is true then

10 fork’ =ktok+ Q- V stepV do

1 foru=0toR-1do

12 dG[r k' +V-1],c,u,0 = AG[k' k' +V-1],c,u,0 +

Di+i’,c,x,y+v X in+i’,[k’:k'+V—1],x—u,y;

In Algorithm 5, we vectorize the zero-checking along the mini-
batch dimension (N) instead of the channel dimension as in FWD
and BWI, reflected in Line 7. This is because in BWW, the destina-
tion of the VFMA operation, dGj.k1+v-1],c,u,v> changes as the in-
put channel ¢ changes. As a result, if we vectorize the zero-checking
along the input channel dimension (C), we need to store the previ-
ous group of dGyg.k+v_1],c,u,o Vectors to memory and load a new
group before entering the loop starting at Line 10, and this frequent
register spilling may harm performance significantly. Luckily, be-
cause dG[k:k+V-1],c,u,v is minibatch-invariant, all input elements
from the vector Dy;.j1v—1],¢,x,y+o contribute to the same group of
AG[k:k+V-1],¢,u,v vectors. Therefore, vectorizing the zero-checking
along the minibatch dimension avoids spilling the registers.

Due to the change in vectorization scheme, we transpose D such
that the lowest dimension is a minibatch tile of size V. This allows

us to load D vectors directly as opposed to gathering from locations
apart.

In a row sweep, a core works on R X Q filter gradients. Because
the total number of filter gradients is R X S X K X C, the maximum
parallelism becomes S x C X K/Q.

Since the set of filter gradient elements is constant during a row
sweep, if we limit the number of filter gradient vectors being worked
on, which is T = R x Q/V, to the register budget, they can stay in
the registers during the entire row sweep. Consequently, we do not
apply the cyclic register load/store and renaming scheme described
in Section 3.2.3. This also lifts the restriction on the unrolling factor
for the row sweep loop so that it can be chosen freely.

Instead of loading the previous partial results of the G vectors
at the beginning of a row sweep, and storing the new partial results
to memory at the end, we clear the accumulator registers at the
beginning and store the VFMA results in them during a row sweep.
At the end, we load the previous partial results and add them to
the accumulator registers as the new partial results, and we im-
mediately store them back to memory afterwards. Therefore, the
filter gradient elements are only accessed twice in succession at
the end. We also prefetch the filter gradient elements in software
at the beginning. With this optimization, we do not need to tile the
minibatch dimension to reuse the filter elements as described in
Sec. 3.2.5.

The two multiplicand vectors of the VFMA instructions in BWW
are the broadcasted input element Dj4/ ¢ x,y+v in a vector reg-
ister and the L/0Y vector dY;,p (kx4 V-1],x—u,y @S @ memory
operand.

3.5 Generalization to Other Hardware

We implement SparseTrain with AVX-512’s vector FMA and vector
comparison instructions. Other ISAs beyond x86, such as ARM
Neon [6], also support them. Nevertheless, the techniques are gen-
eralizable to ISAs without them. Without vector comparison, we
may fall back to comparing each scalar element to zero. Note that
we still need to compare a batch of scalar elements at once and then
apply Algorithm 3 to combat branch misprediction. On machines
without vector FMA, SparseTrain is actually more effective. This is
because with scalar FMAs, the number of skippable instructions per
zero input is much higher, which can more easily hide the branch
misprediction penalty.

Our general idea is also applicable to GPUs. On CPUs, the main
challenge is to reduce branch misprediction. On the other hand,
on GPUs we need to minimize control divergence, which happens
when threads in the same SIMD group, or warp in CUDA terms,
take different paths in a control sequence. One possible solution
is to let threads in a given warp compare the same input with
zero simultaneously; therefore, all threads in the same warp may
either issue or skip the computation. However, the method only
works with general MAC computations, and not with hardware
accelerated GEMM instructions such as Nvidia’s Tensor Core MMA
instructions, which compute a GEMM tile directly [24]. As a result,
it may be hard for a GPU SparseTrain implementation to beat the
Tensor Core accelerated GEMM. Nevertheless, the method can
be useful on GPUs without a hardware GEMM accelerator (e.g.,
the integrated GPUs used for inference on edge devices [49]), or

when we desire higher precision than the one supported by the
accelerator.

4 EXPERIMENTAL SETUP

We build SparseTrain as new kernels in MKL-DNN [21]. We use
the xbyak JIT assembler [32] to generate the code. Because Ten-
sorFlow [1] uses MKL-DNN as the backend library on CPUs, we
also integrate our new kernels into TensorFlow. We evaluate full
network training/inference using TensorFlow with the SparseTrain-
augmented MKL-DNN.

We use MKL-DNN’s direct convolution as the baseline, which we
refer to as direct. MKL-DNN has three other implementations of con-
volution: (1) a method that first flattens the inputs with im2col and
then applies a GEMM, (2) a vectorized Winograd convolution [27]
for unit-stride 3 X 3 convolutions only, and (3) a special kernel that
optimizes 1 X 1 convolutions. We compare SparseTrain to them
when applicable.

We run our experiments on an Intel Skylake-X server with 6
cores. Each core has two AVX-512 vector units, 32KB L1 I- and
D-caches, and a 1MB L2 cache. There is a non-inclusive 8.25MB
shared L3 cache. We disable hyperthreading as well as dynamic
frequency scaling. We run 6 threads in parallel.

We evaluate SparseTrain with VGG16 [43], ResNet-34, and ResNet-
50 [17]. Batch Normalization (BatchNorm) [22] affects SparseTrain’s
effectiveness because when the conv-BatchNorm-ReLU structure
is present, 0L/dY becomes dense. Since VGG16 does not employ
the structure, SparseTrain benefits all of its FWD, BWI, and BWW.
However, the two ResNet variants have the structure. Therefore,
SparseTrain does not accelerate their BWI. Zhang et al. [54, 55]
demonstrated that, with proper initialization and data augmen-
tation, one can train ResNet without BatchNorm with marginal
accuracy loss. Therefore, we also experiment with the BatchNorm-
free ResNet-50, called Fixup ResNet-50.3

We first examine SparseTrain’s training performance with CIFAR-
10 [25] as a proof of concept, and then evaluate with the larger
ImageNet-1K [9] data set. Because CIFAR-10 is small, we train
ResNet-34 with SparseTrain from end to end, and time all conv layers
to obtain the training performance. However, training multiple
DNNs with ImageNet on a small CPU server takes an unreasonable
amount of time, so we adopt the following sampling-based method:

(1) We train a network from scratch on GPUs. During training,
we checkpoint models at each epoch.

(2) For each epoch, we randomly sample 5 mini-batches. For
each mini-batch, we run a training iteration with SparseTrain
using the checkpoint model. We record the average execution
time from the 5 samples as SparseTrain’s mean performance
at the given epoch.

(3) We take the average sampled run time across all epochs as
SparseTrain’s mean training performance.

We observe that the sparsity progression between adjacent epochs
is smooth, and that the randomly-sampled mini-batches have low
sparsity variations. Therefore, we are confident that the sampled
performance faithfully approximates the overall training perfor-
mance.

3We use the variant without the scalar bias between each ReLU and its subsequent
conv layer.

Since SparseTrain also benefits inference, we use the trained
models to evaluate SparseTrain’s inference performance.

Besides whole-network performance, we also assess SparseTrain’s
performance on individual layers at various sparsity levels. For this,
we generate synthetic inputs with random sparse patterns and ex-
periment on all but the first conv layers of VGG and ResNet. We
use a batch size of 16 during the experiments. Table 2 lists the layer
configurations used.

5 EVALUATION

We first discuss the sparsity progression in end-to-end training,
and then present SparseTrain’s speedup on whole-network train-
ing/inference at realistic sparsity. Next, we discuss SparseTrain’s
performance on individual layers with different filter sizes, and
finally evaluate our technique to mitigate branch misprediction.

5.1 Activation Sparsity in Training

Figure 3 presents the ReLU output sparsities at each epoch in the

end-to-end training of VGG16, ResNet-34, ResNet-50, and Fixup

ResNet-50 with ImageNet. Each plot shows numbered segments.
Each segment is the output from a conv-ReLU cluster in VGG16/Fixup
ResNet-50, or a conv-BatchNorm-ReLU cluster in ResNet-34/50.
Within a segment, from left (in darker color) to right (in lighter

color) are the sparsities from the first epoch to the last.

Sparsity

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

80% _ResNet-50
40% -
20% | i
0% T T T 1
1 35 7 91113151719212325272931333537394143454749
80% - Fixup Net-50

2 ALl e afbtetheig

135 7 91113151719212325272931333537394143454749
RelU ID

Sparsity
3
x

Sparsity
3
N

Figure 3: Measured ReLU sparsity in end-to-end training
with ImageNet. Each numbered segment of the x-axis cor-
responds to a ReLU in the network. Within a segment, from
left to right are the sparsities from the first epoch to the last.

The figure shows that the average sparsity of a layer typically
ranges from 20% to 90%. Later layers generally have higher sparsity
then earlier ones [38]. In addition, we also discover that, in the
ResNet variants, the sparsity of adjacent layers fluctuates periodi-
cally. This is caused by the shortcut in each residual block, which
adds positive biases before ReLU and, therefore, lowers the sparsity.

The conv-ReLU cluster and the conv-BatchNorm-ReLU cluster
result in different sparse inputs to each training component. We
list them in Table 4. Note that D of a convolutional layer is from
the cluster before the layer, while dL/dY of a convolutional layer
is from the cluster that contains the layer.

Table 4: The sparse input to different training components
of conv layers.

| FWD BWI BWW
VGG16 D JOL/dY D and dL/0Y
ResNet-34 D N/A D
ResNet-50 D N/A D
Fixup ResNet-50 D OL/OY D and dL/OY

The table shows that, in vanilla ResNet-34/50, BWI has no sparse
input at all due to BatchNorm, making SparseTrain ineffective. In
this case, one may prefer to use a dense kernel instead. When we
evaluate whole-network training, we substitute SparseTrain with
direct for ResNet-34/50’s BWL

On the other hand, when BatchNorm is absent such as in VGG16
and Fixup ResNet-50, BWW’s both inputs (D and dL/3Y) are sparse.
Therefore, with heuristics or online profiling, one can configure
SparseTrain to take advantage of the input that has a higher sparsity.

5.2 Whole-Network Performance

We now present SparseTrain’s whole-network performance. Figure 4
shows the end-to-end training (a) and inference (b) time of the
convolutional layers with different networks and algorithms. For
each network and algorithm, the execution time is normalized to
that of direct. For training, we break the time into FWD, BWI, and
BWW. Because SparseTrain is not applicable to the first layer in the
network due to the input images often being zero-free, we show
the first layer as a separate component.

In the figure, the SparseTrain bars correspond to using only
SparseTrain, or in the case of the ResNet-34/50, using SparseTrain for
FWD and BWW and direct for BWI. The win/Ix1bars correspond to
using the Winograd convolution or the optimized 1x1 kernel when
possible; otherwise, we use direct. The combined bars combine the
fastest algorithm of each layer. Finally, we find that the method
using imZ2col plus GEMM described in Section 4 is consistently over
2x slower than direct, so we omit it in the figure.

In general, the CIFAR-10 and the ImageNet results are similar.
SparseTrain achieves notable speedups on all networks. In contrast,
Winograd performs well on VGG16 but worse on ResNet. Further,
its performance with CIFAR-10 is much lower because it performs
badly with small input width and height. Since CIFAR-10 has small
input images (32 X 32), the input width and height are as low as 4
in the later layers.

Table 5 lists the speedups of the different algorithms over di-
rect, both including and excluding the first layer. The first layer
contributes 1-3% of the execution time of CIFAR-10 ResNet-34 and
VGG16, but rises to 9-12% for the ImageNet ResNet variants. This is
because the ImageNet ResNet variants have costly 7 X 7 first layers.

We can see that, when including the first layer, SparseTrain
speeds up the training of the convolutional layers in the studied

Forward [Backward input Backward weight B 1st layer

)
£ S
~ -
c 8 & 8 g S
o 4 <r 0 —“soe —
5 7 '5 ©° ~ 3 o 7 '5) 7
<) S
i N 4 S| 1
S Eeie BORE M HH
N gegl £%73 BELD BEYD BEYTD
8 9FSc Esg gEdc pgEd2 oFAC
E ©geEs LES THEs Tlggs S©loes
5} vz E vz E vz E vz E vz E
Z g~ 3 g~ 3 g~ 3 8”8 8”8
(%] wv wv (%] (%]
CIFAR-10 ImageNet ImageNet ImageNet ImageNet
ResNet-34 VGG16 ResNet-34 ResNet-50 Fixup
ResNet-50
(a) End-to-end training.
Oother layers B 1st layer
Eg 2 g 8 = S.2 8.
Ot ded, —S%3y SRR3R SRR3R
S Hdﬂd nos S S SIS oo
SIIELEhREIE
=]
Q
: 117
w = T = T = T = T = T
- 9ESE geae gEs2 gE52 ge5e
2 T cs Sl o Sl ca Sl ca Sl e
= 03 E w3 E w3 E w3 E w3 E
o g~ 9 &~ 9 s~ 9 G~ 9 G~ 9
€ o © o © a © o © o ©
B (%] (%] (%] (%] (%]
Z CIFAR-10 ImageNet ImageNet ImageNet ImageNet
ResNet-34 VGG16 ResNet-34 ResNet-50 Fixup
ResNet-50

(b) Inference.

Figure 4: Breakdown of the execution time of all convolu-
tional layers from different networks, normalized to the
dense direct convolution. The training time of ResNet-34 on
CIFAR-10 and all the inference times are measured from ac-
tual runs. The training times on ImageNet are estimated us-
ing the methodology described in Sec. 4.

networks by 1.28x-2.15x. By choosing the best algorithm for each
layer, we can speed up training by 1.39x-2.35x. The speedup on
VGG16 is notably higher than that on the ResNet variants because:
(1) VGG16 has higher dynamic sparsity, and (2) VGG16 does not
have BatchNorm, so SparseTrain is applicable to its BWI Note that
SparseTrain speeds up Fixup ResNet-50 by 1.45x instead of 1.28x
on the original ResNet-50. The reason is also the absence of Batch-
Norm. Without including the first layer, the speedups of SparseTrain
are 2.19x, 1.37x, 1.31x, and 1.51x for VGG16, ResNet-34, ResNet-50,
and Fixup ResNet-50, respectively, with ImageNet.

For inference, when including the first layer, SparseTrain speeds
up the conv layers in the studied networks by 1.36x-1.83x. The
numbers increase to 1.41x-2.09x after choosing the best algorithm
for each layer. Without including the first layer, the speedups of
SparseTrain are 1.88x, 1.64x, 1.44x, and 1.44x for VGG16, ResNet-
34, ResNet-50, and Fixup ResNet-50, respectively, with ImageNet.
Overall, SparseTrain delivers good speedups over the state-of-the-
art across networks for end-to-end training and inference.

Table 5: Speedup of the different algorithms over the dense direct convolution on all of the evaluated networks’ convolutional

layers at realistic sparsity levels.

Including the first layer Excluding the first layer
SparseTrain win/1x1 combined SparseTrain win/1x1 combined
CIFAR-10 ResNet-34 1.35x 0.71x 1.47x 1.36x 0.70x 1.48x
VGG16 2.15x 1.66x 2.35x 2.19x 1.68x 2.40x
R e I IS O O
Fixup ResNet-50 1:45x 1:08X 1:53x 1:51x 1:09x 1:62x
CIFAR-10 ResNet-34 1.50x 0.91x 1.55x 1.51x 0.91x 1.57x
VGG16 1.83x 1.60x 2.09x 1.88x 1.63x 2.15x
Inference ResNet-34 1.48x 1.10x 1.61x 1.64x 1.12x 1.83x
ImageNet | p sNet-50 1.36x 1.08x 1.41x 1.44x 1.09x 1.50x
Fixup ResNet-50 1.36x 1.08x 1.43x 1.44x 1.09x 1.52x
[SparseTrain 0%-90% sparsity from left to right B im2col winograd
230 e
530 : - .]
o 20 :
& 10 s s Hﬂﬂﬂﬂﬂﬂw il ﬂﬂﬂﬂﬂﬂﬂﬂm.ﬁ HHHHHHHHM.E HHHHHHHHHHI HHHHHHHHHH. il ol HHHHHHHHHH-E HHHHHHHHHH. HHHHHHHHHH. HHHHHHHHHH.
a Zg BWI
T 3.0 M Tl | M
3 20 7
o110 HHHHHHHHHH.E HHHHHHHHHH.E il 5 ﬂﬂﬂﬂﬂﬂﬂw ol il mﬂﬂﬂﬂﬂﬂmﬁ HHHHHHHHH T g mﬂﬂﬂﬂﬂﬂﬂb -l HHHHHHHHHH.
a 28 BWW :
B30)l N 1 i 1
o 2.0 Nl i E—
1 e ey e | e | e e e HHHHHHHM . il .HHHHHHWH'E
W W @ W@ W S @ e ‘es(\e‘l’l (eg\e‘3 2 (esﬂe‘A 2 ‘es“e‘c’ > e 2 et 2 ne® 2

Figure 5: Speedup of the different algorithms over the dense direct convolution on the individual 3 X 3 layers at different

sparsity levels.

5.3 3 x 3 Convolutional Layers

We now consider SparseTrain’s performance on individual con-
volutional layers with different filter sizes. We first discuss 3 X 3
(R = S = 3) filters, which have become more popular than larger
filter sizes in recent years.

Figure 5 shows the speedup of SparseTrain at 0-90% sparsities,
of im2col, and of Winograd over direct, for FWD, BWI, and BWW
on the 3 X 3 layers from the evaluated networks. Table 6 lists the
mean speedup at various sparsities.

The table shows that, at 0% sparsity (i.e., a dense input), Sparse-
Train reaches 92%-95% of direct’s performance on average, depend-
ing on the component. This indicates that the overhead to check
for and exploit sparsity is low, and the loop order, as well as the
tiling strategy of SparseTrain are effective.

The speedups of SparseTrain increase with the sparsity. On av-
erage, the sparsity cross-over point for SparseTrain to outperform
direct is between 10%-20%, which is lower than the observed spar-
sity during training. At 50% sparsity, which is the expected value at
the beginning of the training when the distribution of the weights is

Table 6: Mean speedup at various sparsity for 3 x 3 layers.

SparseTrain

40% 50% 60% wi.

im2c.

0% 10% 20% 30% 70% 80% 90%

FWD
BWI
BWW

0.92 0.96
0.93 0.98
0.95 0.98

1.04
1.06
1.03

1.13 1.24 1.38 1.56
1.15 1.26 1.40 1.58
1.10 1.18 1.30 1.48

1.79 2.11
1.81 2.10
1.76 2.23

2.48
2.45
3.15

0.33
0.31
0.37

1.45
1.48
1.44

centered at 0, SparseTrain on average delivers a 1.30x-1.40x speedup.
Typically, the later layers in a network have higher sparsity than
the earlier layers. For the later layers, the sparsity reaches over 90%
for VGG16 and ResNet-34, and over 80% for ResNet-50. At such
levels, SparseTrain is on average over 2x faster than direct.

im2col is always significantly slower than direct. Although GEMM
on CPU is highly optimized, the flattening of the inputs through
im2col incurs severe time and memory overhead.

Winograd is only applicable to unit-stride layers. For these lay-
ers, Winograd is on average 1.44x-1.48x faster than direct. However,

33;3 T i TG HHHHHHHHHHIE g T HHHHHHHHHHIE il HHHHHHHHHHIE HHHHHHHHHu HHHHHHHHH.a
ggfg o AT e TN o HHHHHHHHHI% i HHHHHHHHHIE millle HHHHHHHW . HHHHHHHW g
‘; (1)8 HHHHHH Wé HHH i mlé i HHHHWNH }lﬁ HHHHHWM}IE ﬂﬂﬂﬂﬂﬂﬂﬂﬁ HHHHHHHW ([HHHHHWWNF I HHHHHMN . HHHHHHWN %

Figure 6: Speedup of the different algorithms over the dense direct convolution on the individual 1 X 1 layers at different

sparsity levels.

because the Winograd algorithm transforms the problem to the
“Winograd space,” it has two drawbacks that are absent in Sparse-
Train. First, the transformation introduces numerical instability as
the filter size increases, so its application is usually limited to 3 X 3
layers [48]. Second, it requires additional workspace memory.
SparseTrain performs better at later layers (e.g., vgg5_1), while

is less effective on 1 X 1 layers than on 3 X 3 layers, only reaching
1.66x-2.04x speedups on average at 80% sparsity.

Table 7: Mean speedup at various sparsity for 1x1 layers.

SparseTrain .
Winograd dominates at earlier layers (e.g., vgg1_2). This is partly 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% | TeC|1X1
due to the increased sparsity at later layers; on average, it takes at
. . . FWD |0.97 0.98 1.03 1.09 1.17 1.27 1.39 1.51 1.66 1.78 |0.62 |1.06
least 50%-60% sparsity for SparseTrain to surpass Winograd. The
ther reason is that early layers have a smaller number of channels BWI 1103 1.03 108 1.15 1.22 1.33 143 1.53 1.66 1.76 1091 108
© vy : BWW|[0.71 0.76 0.83 0.92 1.05 1.20 1.39 1.66 2.04 2.61 [0.87 [1.23

which limits the number of skippable VFMAs per input element,
and thus reduces the efficiency of SparseTrain. For example, both
vggl 2and resnet2_2have C and K of 64, giving us only 12 skippable
VFMAs in SparseTrain. Overall, since SparseTrain and Winograd
have different specialties, they can supplement each other.

SparseTrain for BWI delivers similar performance as for FWD
with unit-stride. However, for stride-2 layers (layers with the /r
suffix in Figure 5), BWI is slower than FWD. As discussed in Sec-
tion 3.3, AL/AD needs to be loaded O? times more rapidly during a
row sweep in BWI than Y being loaded in FWD. Therefore, BWI
suffers from cache bandwidth limitations.

5.4 1Xx 1 Convolutional Layers

1x 1layers (R = S = 1) are widely used in ResNet-50’s bottleneck
blocks. They are unique amongst convolutions in that the spatial
reuse of R X S is absent.

Figure 6 shows the speedup of SparseTrain at 0-90% sparsities, of
im2col, and of the specialized 1x1 kernel over direct, for FWD, BWI,
and BWW on the 1 X 1 layers from the evaluated networks. Table 7
lists the mean speedup at various sparsities.

SparseTrain exploits a convolution’s high compute-to-memory
ratio. However, the ratio for 1 x 1 layers is 9x lower than that for
3 x 3 layers with the same input/output/channel sizes. Thus, as we
eliminate useless VFMAs, 1X1 layers may become bandwidth-bound
sooner than 3 X 3 layers. Therefore, at high sparsity, SparseTrain

We also notice that BWW behaves differently than the other two
components. At 0% sparsity, SparseTrain’s performance is on par
with the direct for FWD and BWIL For BWW, though, SparseTrain
only attains 71% of direct. However, at high sparsity, SparseTrain’s
speedup is higher for BWW than for FWD and BWIL

The difference between BWW and FWD stems from two com-
peting factors, both related to how BWW accesses JL/JY against
how FWD accesses Y. First, BWW uses a different loop order, and
in a row sweep touches V times more elements from dL/dY than
FWD touches Y at 0% sparsity. Second, BWW reads dL/dY ele-
ments as a memory operand of a VFMA. When we skip a group
of VFMAs, we also skip the access to the dL/dY elements. At high
sparsity, we eliminate many such accesses. In contrast, FWD loads
and stores Y elements using the cyclic register allocation scheme
described in Sec. 3.2.3. Therefore, the Y elements are loaded and
stored regardless of sparsity pattern. As a result, at low sparsity,
BWW performs many more memory accesses, and at high sparsity,
performs many fewer. This effect is less visible at 3 x 3 layers due to
their higher compute-to-memory ratio; however, it is very obvious
at 1 x 1 layers.

The fewer channels in earlier 1 X 1 layers hurts SparseTrain more
than they do in earlier 3 X 3 layers due to the absence of spatial
reuse. For example, resnet2_1a has 64 for C and K, resulting in only
4 VFMAs being skippable per zero-checking. Consequently, we can

W 12.5% sparsity mW25.0%

W 37.5%

m50.0% mW62.5% O75.0% 087.5%

Speedup
=Tl
oNunINNoONU;
ouvouviouno

A 3 A p% < !
\l?;g}’l N \1%%7”1 N \l?ﬁf’} N u%%A’l - ‘es(\e'a} ‘esr\e@’l (es“e“"} ‘es(\e‘s’?; e’@-'}l‘ e\“}l(e e

(a) 3 X 3 layers.

Speedup
cooorRRR
oNUnINONWU;
ouvounowno

2 \J
@ S‘\e\l /X ‘e‘.v“e‘l /'\—

>
(eﬁt“e'a -

A
<P«5“e‘

(b) 1 x 1 layers.

Figure 7: Speedup over SparseTrain FWD when branch mispredictions in Algorithm 3 are eliminated.

hardly see any speedup from SparseTrain on earlier 1 X 1 layers.
Nonetheless, we can still efficiently leverage the dynamic sparsity
in later 1 X 1 layers.

As shown in Table 7, on average, the cross-point sparsity for
SparseTrain to surpass the specialized 1x1 kernel is around 20% for
FWD, at 0% for BWI, and around 40% for BWW.

In addition to 1 X 1 and 3 X 3 layers, we also experimented with
several 5 X 5 layers from AlexNet [26] and GoogLeNet [46] and got
even higher speedups. We omit the results due to lack of popularity
of the 5x5 layers. Finally, we confirmed that SparseTrain’s execution
time scales linearly with minibatch size N by experimenting with
N = {32, 64}.

5.5 Mitigating Branch Misprediction Penalty

The unpredictable loop branch in Line 3 of Algorithm 3 accounts for
most of the branches in SparseTrain because it is in the innermost
loop. Moreover, the rest of the branches are all predictable. There-
fore, it is crucial for Algorithm 3 to hide the branch misprediction
penalty. To evaluate the performance of Algorithm 3, we design a
study that quantifies the performance headroom that SparseTrain
has if the branch in Line 3 was instead predictable.

In Algorithm 3, branch mispredictions stem from an unpre-
dictable number of non-zero elements in an input channel vec-
tor (o in Line 2). In our study, we eliminate the misprediction at
steady state by using special input data that has a fixed number n
of non-zero elements per input channel vector. With this input, a
local history predictor can easily predict the loop branch. In the
experiments, we vary n from 1 to 15 (which is the value of V - 1).
As a result, the sparsity of the input is 1 — n/V for a given n.

Figure 7 shows the speedup from eliminating branch mispredic-
tions at steady state in Algorithm 3, at selected sparsity levels. The
3 X 3 layers are on the top, and the 1 X 1 layers are at the bottom.
Each bar shows SparseTrain’s FWD execution time with a random
input (with branch misprediction) over SparseTrain’s FWD execu-
tion time with the special input (without branch mispredictions), at
different sparsity levels.

In most 3 X 3 layers (Figure 7a), SparseTrain sets the number of
skippable VFMAs (T) to 24. As a result, the misprediction penalty
is well hidden. Consequently, eliminating misprediction generally
provides only up to 5% speedup.

There are, however, some exceptions. First, vggl_2 and resnet2_2
both have a small output channel of K = 64. Therefore, SparseTrain
can only set T to 12, which is insufficient to fully hide the mispre-
diction penalty. Second, the stride-2 layers (layers with the /r suffix)
have a variable T that is on average less than 24, exposing some of
the penalty. As a result, eliminating misprediction speeds up these
layers as sparsity increases, reaching up to 35% for resnet2_2 at
87.5% sparsity.

The 1 X 1 layers (Figure 7b) have a lower T of < 16 due to a
lack of spatial reuse. The worst case is resnet2_la and resnet2_1b,
whose T is only 4. For these layers, eliminating misprediction can
yield over 50% speedup at high sparsity. Nonetheless, Algorithm 3
performs relatively well on other 1 X 1 layers, leaving only a small
room for improvement.

In conclusion, while Algorithm 3 is less effective as T decreases,
it performs well and close to the upper bound on most of the studied
layers. Further reducing mispredictions in software may be hard.
However, previous hardware proposals [41] could help: since the
loop trip count is generated outside of the loop body, the count could
be communicated to the branch predictor in hardware, completely
eliminating branch mispredictions.

6 RELATED WORKS

Various works compress DNN models by eliminating redundant
weights [14, 35]. Weight quantization [58, 59] sacrifices numerical
precision to reduce model size. Structured sparsity [50] is more
hardware-friendly, but it is inapplicable to training and does not
exploit dynamic sparsity in the activation.

PruneTrain [29] prunes entire channels and reconfigures the
model to a smaller dense form during training. SparseTrain is orthog-
onal to it. SparseTrain can further leverage the activation sparsity
after PruneTrain reconfigures the model.

meProp [45] sparsifies the back propagation of LSTMs and MLPs
by only propagating a small number of gradients in each pass.
This reduces back propagation time. Yet, it does not affect the
forward propagation, nor has it been tested on CNNs. Our work is
orthogonal to it and can be applied in conjunction with it.

Several DNN accelerators exploit the sparsity in weights and/or
activations. Cnvlutin [3] leverages activation sparsity to skip inef-
fectual computations. Eyeriss [7] clock-gates the hardware when
there are zeros in the activation. It saves energy but not cycles.
Cambricon-X [57] skips multiplications associated with pruned
weights. EIE [13] exploits sparsity in both weights and activations
of fully connected layers. SCNN [34] leverages sparsity in both
weights and activations of conv layers. These accelerators are appli-
cation specific, while our work targets general-purpose processors.

SparCE [40] skips ineffectual code blocks based on a sparse input.
It annotates skippable code blocks in software and tests conditions
in hardware. Therefore, it requires hardware-software co-design.
Also, it mainly works on scalar code. We target high-performance
SIMD CPUs and use software only.

ZCOMP [2] adds new instructions to load/store vectors from/to
memory in a compressed form. It perfectly synergizes with Sparse-
Train because its reduction in memory traffic is proportional to
SparseTrain’s reduction in compute intensity.

SAVE [12] proposes a vector unit for CPUs that exploits DNN
sparsity in hardware. If one of the multiplicands of a VFMA’s vec-
tor lane is zero, that lane is deemed ineffectual. SAVE combines
effectual vector lanes from multiple VFMA instructions before is-
suing the compacted computation. If the whole VFMA instruction
is ineffectual, SAVE still fetches and decodes it before skipping it;
SparseTrain skips it entirely.

Apart from sparsity, algorithmic transformations are developed
to speed-up convolution. Georganas et al. [11] and Zhang et al. [56]
demonstrate that on CPUs, well-tuned direct convolution is much
faster than the conventional im2col-based convolution. For larger
filter sizes, the FFT-based convolution [31] accelerates the compu-
tation by operating in the frequency space. For smaller 3 X 3 layers,
the Winograd algorithm [27] reduces computation by incorporat-
ing the Chinese Remainder theorem. However, the transformation
introduces numerical instability with larger filter sizes and erases
the dynamic sparsity in the activation.

Liu et al. [28] restore the activation sparsity with the Winograd
convolution by applying ReLU to the activation after transforming
to the Winograd space. However, their approach changes the net-
work structure. In addition, their focus is to reduce the operation
count for running DNN inference on mobile devices, and they do
not target training or an efficient vectorized implementation.

7 CONCLUSION

SparseTrain is the first approach to exploit dynamic sparsity in
software for DNN training on general-purpose CPUs. SparseTrain
identifies zeros in a dense data representation and performs vec-
torized computation. It is applicable to all major components of
training: forward propagation, backward propagation by inputs,
and backward propagation by weights. We evaluate SparseTrain on
a 6-core Intel Skylake-X server. In end-to-end training of VGG16,
ResNet-34, and ResNet-50 with ImageNet, SparseTrain outperforms

a highly-optimized direct convolution on the non-initial convolu-
tional layers by 2.19x, 1.37x, and 1.31x, respectively. SparseTrain also
benefits inference. It accelerates the non-initial convolutional layers
of the aforementioned models by 1.88x, 1.64x, and 1.44x, respec-
tively. Overall, SparseTrain is effective and opens up new research
directions in speeding-up computations with modest sparsity.

ACKNOWLEDGMENTS

This work was partially supported by NSF under grant CCF 17-
25734.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangging Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,

Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

https://www.tensorflow.org/ Software available from tensorflow.org.

Berkin Akin, Zeshan A Chishti, and Alaa R Alameldeen. 2019. ZCOMP: Reducing

DNN Cross-Layer Memory Footprint Using Vector Extensions. In Proceedings of

the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM,

126-138.

[3] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ineffectual-Neuron-Free Deep
Neural Network Computing. In Proceedings of the 43th Annual International
Symposium on Computer Architecture.

[4] Amazon. 2019. Amazon SageMaker ML Instance Types. https://aws.amazon.

com/sagemaker/pricing/instance-types/.

Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan

Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich

Elsen, Jesse Engel, Linxi Fan, Christopher Fougner, Tony Han, Awni Hannun,

Billy Jun, Patrick LeGresley, Libby Lin, Sharan Narang, Andrew Ng, Sherjil Ozair,

Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho

Sengupta, Yi Wang, Zhigian Wang, Chong Wang, Bo Xiao, Dani Yogatama, Jun

Zhan, and Zhenyao Zhu. 2015. Deep Speech 2: End-to-End Speech Recognition

in English and Mandarin. arXiv:1512.02595 [cs.CL]

[6] ARM. 2016. ARM Compiler Version 5.06 armcc User Guide.

[7] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: a Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks. In Proceedings
of the 43th Annual International Symposium on Computer Architecture.

[8] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan Vaidy-
nathan, Srinivas Sridharan, Dhiraj Kalamkar, Bharat Kaul, and Pradeep Dubey.
2016. Distributed Deep Learning using Synchronous Stochastic Gradient Descent.
arXiv preprint arXiv:1602.06709 (2016).

[9] JiaDeng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
a Large-Scale Hierarchical Image Database. In 2009 IEEE conference on computer
vision and pattern recognition. IEEE, 248-255.

[10] Agner Fog. 2019. The microarchitecture of Intel, AMD and VIA CPUs: An

optimization guide for assembly programmers and compiler makers. Copenhagen

University College of Engineering (2019), 02-29.

Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj Kalamkar,

Greg Henry, Hans Pabst, and Alexander Heinecke. 2018. Anatomy of High-

Performance Deep Learning Convolutions on SIMD Architectures. In SC18: In-

ternational Conference for High Performance Computing, Networking, Storage and

Analysis. IEEE, 830-841.

Zhangxiaowen Gong, Houxiang Ji, Christopher W. Fletcher, Christopher J.

Hughes, Sara Baghsorkhi, and Josep Torrellas. 2020. SAVE: Sparsity-Aware

Vector Engine for Accelerating DNN Training and Inference on CPUs. In Proceed-

ings of the 53rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO).

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,

and William J Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep

Neural Network. In Proceedings of the 43th Annual International Symposium on

Computer Architecture.

[14] SongHan, Huizi Mao, and William] Dally. 2015. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.
arXiv preprint arXiv:1510.00149 (2015).

[15] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning Both Weights
and Connections for Efficient Neural Network. In Advances in neural information

5

[5

[11

[12

=
&

https://www.tensorflow.org/
https://aws.amazon.com/sagemaker/pricing/instance-types/
https://aws.amazon.com/sagemaker/pricing/instance-types/
https://arxiv.org/abs/1512.02595

[16]

[17]

[18

[19

[20]

[21]

[22

[23]

[24]

[25

[26]

[30

[31]

[32

[33]

[34

[35

[36]

[37

processing systems. 1135-1143.

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. 2018.
Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective.
In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 620-629.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. 2016.
LIBXSMM: Accelerating Small Matrix Multiplications by Runtime Code Genera-
tion. In SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 981-991.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). arXiv:1704.04861 http://arxiv.org/abs/1704.04861

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
2017. Densely Connected Convolutional Networks. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017), 2261-2269.

Intel. 2019. Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R)
MKL-DNN). https://github.com/intel/mkl-dnn.

Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. arXiv preprint
arXiv:1502.03167 (2015).

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings
of the 44th Annual International Symposium on Computer Architecture. 1-12.
Andrew Kerr, Timmy Liu, Mostafa Hagog, Julien Demouth, and John Tran. 2019.
Programming Tensor Cores: Natice Volta Tensor Cores with CULTLASS. https://
developer.download.nvidia.cn/video/gputechconf/gtc/2019/presentation/s9593-
cutensor-high-performance-tensor-operations-in-cuda-v2.pdf

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning Multiple Layers of Features
from Tiny Images. (2009).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet Clas-
sification with Deep Convolutional Neural Networks. In Advances in neural
information processing systems. 1097-1105.

Andrew Lavin and Scott Gray. 2016. Fast Algorithms for Convolutional Neural
Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 4013-4021.

Xingyu Liu, Jeff Pool, Song Han, and William J. Dally. 2017. Efficient Sparse-
Winograd Convolutional Neural Networks. CoRR abs/1802.06367 (2017).
Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen, Sujay Sanghavi, and
Mattan Erez. 2019. PruneTrain: Fast Neural Network Training by Dynamic Sparse
Model Reconfiguration. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 36.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. 2013. Rectifier Nonlinearities
Improve Neural Network Acoustic Models. In Proc. icml, Vol. 30. 3.

Michael Mathieu, Mikael Henaff, and Yann LeCun. 2013. Fast Training of Convo-
lutional Networks Through FFTs. arXiv preprint arXiv:1312.5851 (2013).

Shigeo Mitsunari. 2019. Xbyak: JIT assembler for x86(IA32), x64(AMD64, x86-64)
by C++. https://github.com/herumi/xbyak.

Nvidia. 2015. GPU-Based Deep Learning Inference: A Performance and Power
Analysis. https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_
tx1_whitepaper.pdf.

Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and
William J Dally. 2017. SCNN: an Accelerator for Compressed-Sparse Convo-
lutional Neural Networks. In Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture.

Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and
Pradeep Dubey. 2016. Faster CNNs with Direct Sparse Convolutions and Guided
Pruning. In Proceedings of the International Conference on Learning Representa-
tions.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative- style-high- performance- deep-learning-library.pdf

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks. arXiv
preprint arXiv:1511.06434 (2015).

[38

[39

[40

[41

[42

[43]

[44

[46

[47

(48]

[50

[51

[52

[53

[54

[55

[56

o
=

[58

[59

Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun Kwon,
and Stephen W Keckler. 2018. Compressing DMA Engine: Leveraging Activa-
tion Sparsity for Training Deep Neural Networks. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 78-91.
Andres Rodriguez. 2017. Intel Processors for Deep Learning Train-
ing. https://software.intel.com/content/www/us/en/develop/articles/intel-
processors-for-deep-learning-training. html

Sanchari Sen, Shubham Jain, Swagath Venkataramani, and Anand Raghunathan.
2017. SparCE: Sparsity Aware General Purpose Core Extensions to Accelerate
Deep Neural Networks. arXiv:1711.06315 [cs.DC]

Rami Sheikh, James Tuck, and Eric Rotenberg. 2015. Control-Flow Decoupling:
an Approach for Timely, Non-speculative Branching. IEEE Trans. Comput. 64, 8
(2015), 2182-2203.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. 2016. Mastering the Game of Go with
Deep Neural Networks and Tree Search. Nature 529, 7587 (Jan. 2016), 484-489.
https://doi.org/10.1038/nature16961

Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014).
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a Simple Way to Prevent Neural Networks from
Overfitting. The journal of machine learning research 15, 1 (2014), 1929-1958.
Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. 2017. meProp:
Sparsified Back Propagation for Accelerated Deep Learning with Reduced Over-
fitting. In Proceedings of the 34th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 70). 3299-3308.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going Deeper with Convolutions. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 1-9.

Dean Takahashi. 2018. Gadi Singer interview - How Intel designs processors
in the Al era. https://venturebeat.com/2018/09/09/gadi- singer-interview-how-
intel-designs-processors-in-the-ai-era/

Kevin Vincent, Kevin Stephano, Michael Frumkin, Boris Ginsburg, and Julien
Demouth. 2017. On Improving the Numerical Stability of Winograd Convolutions.
In International Conference on Learning Representations - Workshop Track.
Leyuan Wang, Zhi Chen, Yizhi Liu, Yao Wang, Lianmin Zheng, Mu Li, and Yida
Wang. 2019. A Unified Optimization Approach for CNN Model Inference on
Integrated GPUs. In Proceedings of the 48th International Conference on Parallel
Processing. 1-10.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
Structured Sparsity in Deep Neural Networks. CoRR abs/1608.03665 (2016).
arXiv:1608.03665 http://arxiv.org/abs/1608.03665

Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat
Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, et al. 2019. Machine
Learning at Facebook: Understanding Inference at the Edge. In 2019 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA). IEEE,
331-344.

Koichi Yamada, Wei Li, and Pradeep Dubey. 2020. Intel’s MLPerf Re-
sults Show Robust CPU-Based Training Performance For a Range of Work-
loads. https://www.intel.com/content/www/us/en/artificial-intelligence/posts/
intels-mlperf-results.html

Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das,
and Scott Mahlke. 2017. Scalpel: Customizing DNN Pruning to the Underlying
Hardware Parallelism. In Proceedings of the 44th Annual International Symposium
on Computer Architecture.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017.
mixup: Beyond Empirical Risk Minimization. arXiv preprint arXiv:1710.09412
(2017).

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. 2019. Fixup Initialization:
Residual Learning Without Normalization. arXiv preprint arXiv:1901.09321(2019).
Jiyuan Zhang, Franz Franchetti, and Tze Meng Low. 2018. High Performance
Zero-Memory Overhead Direct Convolutions. arXiv preprint arXiv:1809.10170
(2018).

Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: an Accelerator For Sparse
Neural Networks. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 1-12.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. 2017. Incremen-
tal Network Quantization: Towards Lossless CNNs with Low-Precision Weights.
arXiv preprint arXiv:1702.03044 (2017).

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. 2016. Trained Ternary
Quantization. arXiv preprint arXiv:1612.01064 (2016).

https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://github.com/intel/mkl-dnn
https://developer.download.nvidia.cn/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.cn/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://developer.download.nvidia.cn/video/gputechconf/gtc/2019/presentation/s9593-cutensor-high-performance-tensor-operations-in-cuda-v2.pdf
https://github.com/herumi/xbyak
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://software.intel.com/content/www/us/en/develop/articles/intel-processors-for-deep-learning-training.html
https://software.intel.com/content/www/us/en/develop/articles/intel-processors-for-deep-learning-training.html
https://arxiv.org/abs/1711.06315
https://doi.org/10.1038/nature16961
https://venturebeat.com/2018/09/09/gadi-singer-interview-how-intel-designs-processors-in-the-ai-era/
https://venturebeat.com/2018/09/09/gadi-singer-interview-how-intel-designs-processors-in-the-ai-era/
https://arxiv.org/abs/1608.03665
http://arxiv.org/abs/1608.03665
https://www.intel.com/content/www/us/en/artificial-intelligence/posts/intels-mlperf-results.html
https://www.intel.com/content/www/us/en/artificial-intelligence/posts/intels-mlperf-results.html

	Abstract
	1 Introduction
	2 Background
	2.1 Training Convolutional Neural Networks
	2.2 ReLU and Dynamic Sparsity
	2.3 Baseline Platform

	3 Exploiting Dynamic Sparsity
	3.1 Naïve Forward Propagation (FWD)
	3.2 Optimized Forward Propagation (FWD)
	3.3 Backward Propagation by Input (BWI)
	3.4 Backward Propagation by Weights (BWW)
	3.5 Generalization to Other Hardware

	4 Experimental Setup
	5 Evaluation
	5.1 Activation Sparsity in Training
	5.2 Whole-Network Performance
	5.3 33 Convolutional Layers
	5.4 11 Convolutional Layers
	5.5 Mitigating Branch Misprediction Penalty

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

