

A REVIEW OF MODERN COMMUNICATION TECHNOLOGIES FOR DIGITAL MANUFACTURING PROCESSES IN INDUSTRY 4.0

T. Kurfess¹, C. Saldana², K. Saleeby¹, M. Parto-Dezfouli²

¹ Oak Ridge National Lab, Oak Ridge, Tennessee

²Georgia Institute of Technology, Atlanta, Georgia

ABSTRACT

Digital Manufacturing technologies have quickly become ubiquitous in the manufacturing industry. The transformation commonly referred to as the fourth industrial revolution, or Industry 4.0, has ushered in a wide range of communication technologies, connection mechanisms, and data analysis capabilities. These technologies provide powerful tools to create more lean, profitable, and data-driven manufacturing processes. This paper reviews modern communication technologies and connection architectures for Digital Manufacturing and Industry 4.0 applications. An introduction to Cyber-Physical Systems and a review of digital manufacturing trends is followed by an overview of data acquisition methods for manufacturing processes. Numerous communication protocols are presented and discussed for connecting disparate machines and processes. Flexible data architectures are discussed and examples of machine monitoring implementations are provided. Finally, select implementations of these communication protocols and architectures are surveyed with recommendations for future architecture implementations.

INTRODUCTION AND BACKGROUND

The widespread adoption of high-bandwidth digital communication protocols combined with tremendous advanced in computational speed and information storage has radically changed the manufacturing industry over the past 30 years. The shift toward intelligent and connected manufacturing processes, commonly accepted as the 4th Industrial Revolution and referred to as Industry 4.0, is the culmination of three previous revolutions focused on mechanization, large-scale production, and automation, respectively [1]. These technologies have provided the foundation for significant advances in data collection, communication, and analysis across manufacturing processes.

Digital manufacturing technologies, the collection and application of digital information for the enhancement of manufacturing process, have existed in the manufacturing community for the past four decades [2]. The third industrial revolution, automation of manufacturing process, served as a steppingstone by providing the mechanisms of information generation and utilization. However, this information typically remained within the same machine or process and was only used for local adjustments.

The integration of communication protocols for connectivity between disparate manufacturing and computational equipment is one of the defining accomplishments of the fourth industrial revolution, distinguishing it from previous developments in digital manufacturing. While the term Digital Manufacturing once referred the use of digital control components within a manufacturing line (opposed to analog control mechanisms) it now implies a much larger scope, referring to the merging of manufacturing technology, network information technology, and information analysis to provide a better understanding, coordination, and control of manufacturing processes [3]. Furthermore, the ability for hardware and manufacturing machines to communicate with computational systems has generated a new classification of equipment, Cyber-Physical Systems (CPS), or systems that are built from and depend upon the synergy of computational and physical components [4]. Such systems have become integral to lean manufacturing by providing detailed insight into the production process. Mechanisms for advanced closed-loop control, process optimization, and quality control are among the most common applications for CPS.

The advent of CPS has subsequently driven the need to better understand computational networks and structures. During the early development of CPS, computational abilities were significantly limited by physical size and data transmission rates, requiring most data transmission to be relegated to simple file transfer in background tasks [5]. Data analysis was frequently restricted to large computational machines, distally located from the manufacturing floor, while data were aggregated and manually transferred via removable storage media. The past two decades of digital technological advancements have driven computational and data transmission capabilities to a mobile scale, where computers and low-energy communications systems are now available as a commodity. The cost of implementing such technologies has also steadily decreased, enabling access for a greater subset of the manufacturing population [6].

Increased availability of CPS, computational power, and communication mechanisms have led to the development of many similar initiatives in the field of Digital Manufacturing.

Development of Digital Factory technologies and Smart Manufacturing technologies are both common terms with blurred lines of demarcation. It can be clearly demonstrated that each of these initiatives significantly overlap. Kuhn et al. defines the Digital Factory as a concept of simulation capabilities, 3D-visualization, and comprehensive data management leading to fully developed virtual models of manufacturing processes [7]. The Institute for Defense Analysis took a broader stroke in their 2012 report by defining the term Smart Manufacturing as the pursuit and implementation of Digital Manufacturing and Digital Factory technologies that encompasses not only the shop floor but the ecosystem of manufacturing machines, data collection devices, transmission networks, and advanced modeling and feedback systems, holistically aimed at using data and information throughout the entire product life cycle to create more flexible manufacturing process [8].

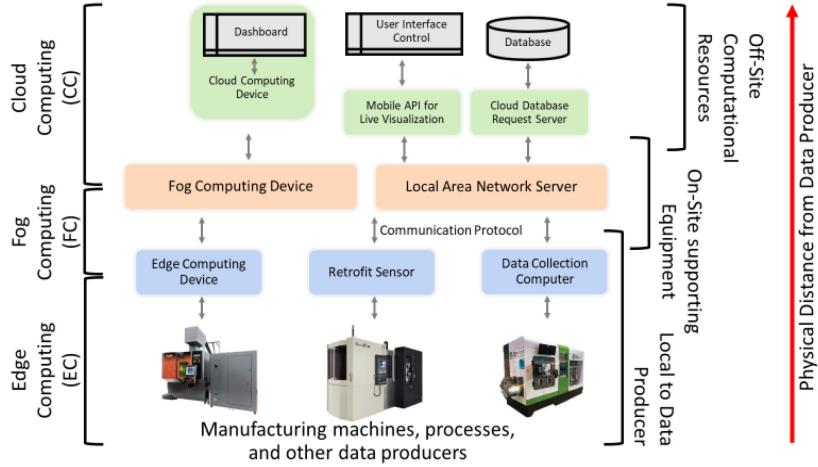
Although the ability to access these technologies is a major step toward improving the manufacturing industry, transitioning the overall capabilities of Digital Manufacturing to actionable implementation decisions for manufacturing companies is another challenge entirely. Each of the initiatives above rely on significant communication frameworks to transfer information between machines and it is not immediately clear for a manufacturing company how to leverage these technologies. The availability of Digital Manufacturing technologies inherently introduces a need for greater understanding of which methods are most appropriate and how they can be applied for beneficial changes in each manufacturing process.

This paper provides a review of specific Digital Manufacturing connection technologies and frameworks for communication between CPS. It aims to compare various methods of communication and provide insight into specific strengths and weaknesses of the technique. Furthermore, it provides examples of implementation to serve as a reference for other manufacturing processes. A high level overview of connection architectures is provided with select references for specific implementations. A discussion and comparison of specific communication protocols used as components of architecture frameworks is given. Finally, select implementations are surveyed to illustrate concepts discussed in the review.

CONNECTION STRATEGIES AND FRAMEWORKS

Development of appropriate data frameworks, communication networks, and computational strategies for connecting CPS is an integral topic to Digital Manufacturing. With drastically smaller computational systems, traditional local computation is no longer the only option to store and analyze information. The development and accessibility of high-bandwidth information communication protocols has enabled distributed computing frameworks where information can be aggregated and analyzed, often physically far away from the point of generation. As a result, many terms, frameworks, and connection patterns have been used to describe the physical and

network locations used in computing systems. Understanding and navigating the design decisions behind implementation choices is critical for successful industry adoption.


Distributed Computing Terminology

Cloud Computing, Fog Computing, and Edge Computing are among the most popular terms used to describe information computation locations. Each of these three computing techniques are used to describe the physical proximity of the computation location to the data collection source. However, these terms are not intended to provide implication to the communication protocol or computational technique used for that information.

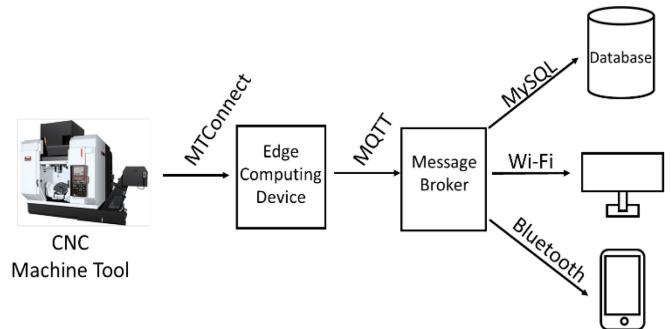
For the purposes of this discussion and from our own architecture experience, we adhere to the following convention for distinguishing between Edge, Fog, and Cloud locations. Cloud Computing (CC), the most commercialized and publicized technology across manufacturing and other industries, refers to computations that take place on-demand at an offsite network of centralized and shared computing resources. [9] These computing resources are located in a separate physical location or building from the main data source. On the other hand, Edge Computing (EC) refers to the execution of computation at the closest location to the data source, the end points of either the data producer or data consumer. [9] Fog Computing (FC) traverses the edge and cloud locations by providing computational resources in the connecting networks, such as network routers, intermediate data storage devices, and other supporting hardware. [9] FC is distinguished from EC by reasonable proximity to the data producer (for example, the manufacturing machine generating the data.) Computational machinery located next to the data producer for the purpose of collecting and formatting the data would be considered part of the Edge network, while a router and server used to transfer that data to another onsite location would be considered part of the Fog network. Figure 1 provides a graphical description of these terms. Although each method may be appropriate for certain circumstances, there has yet to be a universally adopted network structure. A review of the connection mechanisms between the Edge, Fog, and Cloud layers is presented in following sections.

Connection Architecture Frameworks

Numerous studies have been conducted to evaluate different architectures for connecting CPS. Some of these architectures focus on specific levels of connectivity, such as Edge-to-Fog connections or Fog-to-Cloud connections, while others have capability to handle complete Edge-to-Cloud communications. One widely accepted, high-level model for connecting CPS is proposed by Lee et al., detailing hierachal levels for information communication and use. The 5C model comprises the levels of Connection, Data Conversion, Cyber, Cognition, and Configuration for connectivity and intelligent analytics in the cyber space [10-12]. Although not specifically identified, this architecture tends to deal with the local Edge and Fog levels but

Figure 1: Diagram of connections and physical locations of Edge Computing (EC), Fog Computing (FC), and Cloud Computing (CC) devices with relation to data producers. **EC, FC, and CC devices are distinguished based on physical proximity to the data source.**

can potentially be expanded to include Cloud components. The work of Monostori et al. also presents a comprehensive CPS framework, with a notable inclusions of case studies about the use of OPC-UA and other smart connection capabilities [13]. The works in this category provide the architecture, communication protocols and other structure towards a model for connected CPS. However, these models do not fully explore the flow of data, connectivity of the communication layers, or protocols for a multi-source implementation needed for a data-driven production process.


Other computational frameworks for Edge-to-Cloud communication techniques have been proposed that address some of these challenges. It is common for Edge-to-Cloud techniques to blend multiple communication protocols such as OPC-UA, MTConnect, MQTT and Bluetooth, all within the same communication chain. Each of these communication protocols are discussed in depth in subsequent sections. An example framework blending multiple communication protocols is provided in **Figure 21**. Lynn et al. demonstrates the architecture displayed in **Figure 21** with the development of a rapidly deployable monitoring system for machine tools based on MTConnect [14].

Tao et al. provides another framework relying largely on recently developed communication protocols to fill the data flow gap, demonstrating the importance of Internet-of-things technology, CC, and machine learning for the manufacturing industry [15]. In other studies, Tao et al. and Ferrari et al. have proposed different generalized architectures and frameworks for CPS for manufacturing applications, in which computations and analytics are performed in the cloud [16-18]. Similarly, enterprise IoT cloud service providers such as AWS IoT, Azure IoT, and Watson IoT, from Amazon, Microsoft, and IBM, respectively, propose computational frameworks for CPS that utilize CC as well as EC with close coordination [19, 20]. The

works in this category display the importance of CC and how different architectures could be utilized to implement analytics in the edge and cloud layer; however, it must be acknowledged that the scalability and performance of these solutions often require extensive cloud resources, appropriate use of the architectures require vast amounts of data (such as training machine learning models), and computational time to complete these tasks is often time consuming and Internet dependent. Each of these factors must be considered when balancing costs to choose the best framework for a given application.

MANUFACTURING DATA ACQUISITION METHODS

Data acquisition and information communication methods in the manufacturing industry have evolved over time based on the needs and available technologies. This section of the paper discusses the efforts and technologies utilized for data acquisition over the last few decades as well as the new directions and trends driving Industry 4.0. First, the

Figure 2: Example data transmission framework with mixed communication protocols. MTConnect provides initial data acquisition which is received by the edge computing device. Data is converted to MQTT for more generic communication to the message broker. At this point, data can be sent via Wi-Fi, Bluetooth, or other communication protocols to relevant storage and analysis devices.

communication protocols and data acquisition systems used in Industrial Controls Systems (ICS) such as Supervisory Control and Data Acquisition (SCADA) and Distributed Control System (DCS) architectures are discussed. Next, data acquisition techniques are used to collect data from the modern manufacturing equipment are discussed. Finally, IoT retrofit sensor solutions, as one of the most recent technologies of Industry 4.0, are discussed. The goal of implementing these technologies is to make cloud communication and Cloud Computing (CC) in the manufacturing domain more seamless and affordable.

Data Acquisition and Feedback in ICS

Since Industry 3.0, technologies such as Programmable Logic Controllers (PLC), Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), and Computer Numerical Control (CNC) have improved the industry and helped in the development of computer integrated manufacturing (CIM) [21, 22]. The Distributed Control System (DCS) was introduced in the 1970's – 1980's as a method of reliability to prevent the failure of one system from causing failure of the entire operational process. Under DCS, a multi-layered network is created where granularity of control is related to physical proximity of the controlled device. For example, overall scheduling of production is located at the highest layer while direct control of motion is located at the lowest layer. This model provides useful lessons in reliability that can be applied with modern communication techniques.

Due to the advantages of CC, there have been studies where researchers have proposed Internet connectivity to PLCs and SCADA frameworks such as a study by Zhilenkov et al. who have discussed a power line communication based on IoT enabling PLC systems [23, 24]. A study by Benias et al. presents the readiness of the industry and the potential challenges that are possible during implementation such as security issues and getting infected by different viruses in SCADA systems [25]. According to some studies, since these protocols and methodologies were initially designed for communications and data exchange using local networks, they are typically not designed for nor capable of secure and authenticated communication and encryption; which make them easily attackable [26, 27].

Data Acquisition from Machine-Tool Controllers

The digital factory and smart manufacturing concepts towards Industry 4.0 has led to several movements in the development of communication standards and protocols. The Open Platform Communications – Unified Architecture (OPC-UA) has been implemented to facilitate access to the manufacturing data, among other machines [28, 29]. OPC-UA was developed by the OPC Foundation for unified M2M HTTP communication (Machine-to-Machine HyperText Transfer Protocol) and industrial automation of system and processes in

industries [29]. One of the strengths of OPC-UA is found in the choice to develop a platform-independent architecture that can operate on nearly any operating software, data producing machine tool, data transmitting network hardware, or data consuming analysis hardware. It also includes significant development of permissions-based read and write access, encryption and authentication capabilities, and hierachal address methods to facilitate discovery of complex structures by OPC clients. This provides an extremely flexible, yet industry ready protocol that can be modularly applied to a diverse set of manufacturing equipment and well as computational machines.

Unifying and standardizing communications have been the goal of other recently developed standards as well, such as MTConnect standard for machine tool communication [30]. The development of the MTConnect protocol was initiated to address the need of collecting quality measurements from built-in sensors and existing information on Computer Numeric Controlled machine-tool (CNC machines) in a standard format [31]. MTConnect is an open standard, XML-based read-only protocol that facilitates data acquisitions from manufacturing machines through a TCP connection [32, 33]. MTConnect has been widely adopted by leading machine tool manufacturers such as Mazak, Okuma, and DMG Mori. Torrisi presents an example implementation of the MTConnect protocol on a CNC machine, investigating connection speed to create a reliable part production monitoring system [34].

Modern manufacturing equipment are often compatible with at least one of these technologies, providing low-cost or free access to the machine's data [28, 29, 35]. Studies by Lei et al., Lynn et al., Vijayaraghavan et al., and Edrington et al. demonstrate various types of frameworks with MTConnect for finishing assembly interfaces, monitoring systems strategies for small and medium size companies, improved interoperability for machine tools, and web-based monitoring strategies, respectively [14, 36-38].

Combined Information Communication Methods

An interesting paradigm exists when the MTConnect protocol is combined with the OPC-UA protocol, or when multiple Digital Manufacturing technologies are combined to create a more generalized architecture. MTConnect focuses specifically on machine tools to handle information specifically related to the machining process. For example, newer Beta versions are allowing the transfer of specific cutting tool information along with the standard usage information. OPC-UA is less equipped to handle this particular data acquisition, but it excels in transmission of this information after it has been collected. The generalized, cross-platform compatibility of the OPC-UA protocol makes it an excellent candidate for data transmission in a distributed, de-centralized network. The benefits of both protocols can be leveraged when combined; MTConnect as a method of direct data collection from the machine tool, and OPC-UA as a method of generalized

information transfer immediately after collection to the final data storage location. Additional benefits are added when the base standard of both protocols are considered. For example, many versions of MTConnect enforce read-only characteristics. No protocol exists for data to be passed directly to the machine tool. With OPC-UA alone, machine tools are more vulnerable to program modifications whether they are innocent or malicious. By leveraging MTConnect as the direct source of the information and OPC-UA as the Edge-to-Cloud transmission protocol we can increase the security of machines and manufacturing equipment.

Due to the usage of standard network communications by these protocols, such as TCP/IP which are followed by Open Systems Interconnection (OSI), encryption and authentication techniques can be applied to machine tool communications to increase the security and authorized access to the data [34]. The Open Systems Interconnection model (OSI), is a 7-layer communication model using an open generalization system produced by the International Organization for Standardization (ISO) that prescribes the means by which different applications and protocols may interact via a network [39, 40]. In this model, Layer 1, the Physical Layer, defines the physical and electrical characteristics of the network such as the type of the cable that transfers the data. Layer 2, the Data Link Layer, defines the access strategy for sharing the physical signals. Ethernet, Point-to-point (PPP) protocol, and Switch are among the technologies on this layer. Layer 3 is the Network Layer, which is the main layer allowing the routers to operate at. At this layer, the network connections can be established, controlled, and terminated. It is clear that Layer 1 through Layer 3 are all related to hardware layers.

The focus of the communication technologies such as MTConnect or OPC-UA is on the heart of OSI and the software layers that are the Layers 4, 5, 6, and 7, respectively. The 4th layer, the Transport Layer, enables the reliability and integrity of the next layer, the Session Layer. Protocols such as TCP and UDP relate to this layer and are detailed in the following sections. Layer 5, 6, and 7, are Session, Presentation, and Application Layers that provide data exchange between entities, formatting the data, and end user protocols, respectively. Standards and communication protocols such as Web Sockets, XML, JSON, HTTP, and MQTT, live on these software layers.

Since MTConnect and OPC-UA can only share the information given by the hosted machine-tool, the data are limited to the parameters available to the controller. The update rate of the parameters as well as the rate of transmission of the data are also limited to the hardware resources available to MTConnect. Due to these limitations, current implementations of MTConnect might not be able to provide sufficient data rates required for some high frequency monitoring or simulation applications. However, studies have shown that many parameters such as feedrate, velocity of the motors and spindle, load on the spindle motor, current G-Code program, current G-Code Block and many other parameters can be accessed via

MTConnect that can be utilized to improve visibility and PLM [14, 36-38, 41].

INFORMATION COMMUNICATION PROTOCOLS

MTConnect and OPC-UA are only two of the many communication protocols, data acquisition technologies, and information strategies available for use in Digital Manufacturing frameworks. A subset of notable protocols is provided with sample applications. Similar to the combined MTConnect / OPC-UA architecture explored above, many of these communications protocols and strategies can be combined (and are even required to be combined) with others to form a larger network.

Edge, Fog, and Cloud Communication Protocols

This section reviews common information connection protocols that can be implemented to communicate within and across the Edge, Fog, and Cloud computation levels. In most applications, these technologies are used to provide information between the Edge layer, the nearest network and often physical point where data is generated, and the Cloud, the distributed and networked computational devices. However, other novel frameworks exist.

TCP, UDP

Transmission Control Protocol/Internet Protocol (TCP/IP), and User Datagram Protocol or Universal Datagram Protocol (UDP) are a set of rules and procedures for the Internet communications [42]. The main difference between TCP and UDP is that TCP is connection-oriented and confirms the delivery of the packets; however, UDP is a connectionless protocol and send the packets with no delivery confirmations. Due to its structure, TCP communicates only in unicast. However, UDP can communicate in three modes: unicast, multicast, and broadcast modes. Therefore, TCP is recommended for the applications where there is a need for high reliability of data delivery and speed is not crucial. UDP, on the other hand, suits the applications where quick and efficient data transmission is more important [42-50].

HTTP

The majority of Internet connected applications such as web browsers and smartphone apps exchange data on Representational State Transfer (REST) architecture with Hypertext Transfer Protocol (HTTP) [51]. REST is a technical description of principals behind the World Wide Web, known as web, that lives on the Application layer of OSI model [52]. Since HTTP makes use of TCP, it can have a reliable communication and assure a complete transfer of data with no loss in packets. HTTP uses communication verbs of GET, POST, PUT, and DELETE to perform different tasks with data in between the client and server [53].

MQTT

In contrast to HTTP where data can be only transferred between a client and a sever, publish-subscription protocols such as Message Queue Telemetry Transport (MQTT) facilitate data exchange by enabling data to be transferred to multiple clients known as subscribers [54]. MQTT is an open protocol initially developed by IBM and has recently become a popular protocol. Publish-subscription communication protocols are known as many-to-many and are developed to address the need of quick and distributed communication as in IoT systems. Some of the other popular protocols in this category are Data Distribution Service (DDS), Advanced Message Queuing Protocol (AMQP), Simple/Streaming Text Oriented Messaging Protocol (STOMP), and Extensible Messaging and Presence Protocol (XMPP). Each one of these protocols or a combination of them could be utilized to address the needs of an application. Due to the simplicity of the architecture of MQTT, efficient communication of this protocol, as well as its use by cloud service providers such as Amazon Web Services (AWS), Microsoft Azure, and IBM Watson, MQTT has become a popular and prominent protocol for IoT.

MQTT supports three levels of Quality of Service (QoS) to ensure a reliable data transmission. QoS0 is the simplest QoS that indicates the data to be transmitted (at most) once with no delivery verification. QoS1 provides one step up in reliability, ensuring that the messages are delivered at least once. However, QoS1 does not guarantee that the messages are delivered only once, resulting in the potential for multiple deliveries on the subscription side. QoS2 is the most complicated QoS in MQTT that ensures the messages are delivered exactly once. This QoS is not supported by some services due to the complexity of the infrastructure for verification required by QoS2 [55]. Communication latency of these protocols depends on many factors such as the computation power of the server computer. The latencies of MQTT in an end-to-end communication in a wired network for different QoS are compared in a case study and could be used as a reference to compare the performance of these QoSs [56].

WPAN and Hardware Communication Protocols

This section introduces the technologies that are either used to communicate between sensors and edge computation devices or between edge devices themselves in Wireless Personal Area Networks (WPANs). Communication protocols such as UART and ADC are commonly used capture data from sensors and communicate to edge devices via wired connections, while protocols such as Bluetooth, Zig-Bee, and Z-Wave, however, are suggested as WPANs that could be utilized in the industry to have local communication between edge devices.

UART/RS-232/RS-485/Modbus

The universal asynchronous receiver transmitter (UART), which is sometimes referred to as transistor-transistor logic (TTL), is a serial communication protocol that is widely

used, especially in MCU and MPU projects. The logic voltage for UART is usually 5VDC, which provides a reliable data transfer for short distances. RS485 uses a higher logic-voltage serial communication which is more suited for industrial application where longer distances, higher reliability, and faster data communication are needed. RS485 can be implemented on TCP and on network interfaces such as Modbus. Modbus over TCP/IP or over RTU (Remote Terminal Unit) are the major protocols in Supervisory Control and Data Acquisition (SCADA) systems to communicate with devices such as PLCs [57, 58].

ADC, I2C, SPI

Sensors and sensing modules have various methods to exchange data with platforms. Sensors are often analog, meaning that they either act as a variable resistor or generate a variable voltage proportional to their range of measurement. Data from this type of sensor can be acquired by converting the analog signal to a digital value, which is achieved with an Analog-Digital-Converter (ADC). Sensors with no analog output often communicate with other communication protocols such as UART, Inter-Integrated Circuit (I2C), or Serial Peripheral Interface SPI [59].

Bluetooth

Bluetooth Low Energy (BLE), or Bluetooth 4.0, has received a significant interest in the recent years. In IoT applications particularly where battery management is important, BLE could be a very important wireless communication method [60-63]. Network technologies such mesh network topology has nowadays implemented on wireless communications tools such as Bluetooth, enabling Bluetooth to stay among the top wireless technologies in this industry [64]. Bluetooth 5.0 provides a longer range for communication and provides additional services in addition to Bluetooth 4.0 such as more advanced device discovery, which makes this technology advantageous for IoT applications [65].

Zig-BEE and Z-Wave

ZigBee is an IEEE 802.15.4-based standard that defines communication protocols for low-power, low-data-rate, and short-range wireless communication in 868MHz, 915MHz, and 2.4GHz frequencies with a maximum data exchange rate of 250Kbit/s [66]. Z-Wave is a non-standards based communication protocol intended to provide low-latency transmission, at the cost of only 100Kbit/s. However, Z-wave requires less power for transmission than ZigBee [67]. Both ZigBee and Z-Wave can be used to create mesh networks similar to a Bluetooth mesh. As with other wireless communication technologies, both ZigBee and Z-Wave are approved for operation on a different range of frequencies in various countries. Implementation of ZigBee and Z-Wave must adapt accordingly to respect the regional regulations. For example, Z-Wave does not operate on standard 2.4GHz frequencies in any country, inherently avoiding

crowding and noise problems and providing a major advantage over ZigBee in some locations.

APPLICATIONS FOR MANUFACTURING PROCESSES

Manufacturing industries can more easily leverage these data acquisition, communication, and connection protocols to benefit production processes. These technologies can be used for in-depth analysis and process monitoring to improve efficiency, production throughput, and process optimization. However, the diverse range of technologies does not provide a clear entry point to implement these techniques. Some authors have attempted to bridge this gap by providing applied examples. This section provides a brief summary of example applications of Digital Manufacturing technologies.

Hardware, Software Upgrade and Retrofit Solutions

The decrease in cost and increased accessibility of many of the communication protocols presented allow for convenient methods to upgrade traditional manufacturing processes and equipment with modern technologies.

Brundage et al. provides a clear guide to not only implementing Digital Manufacturing technologies on the shop floor, but also provides direction for how to determine where to start and which technologies may be appropriate to deploy [68]. Similarly, Dazhong et al. provides a comparison of machine learning technologies for Digital Manufacturing applications [69]. Finally, Mingtao et al. addresses secure implementations of CPS with a goal of detecting unwanted intrusion into the digitally connected machines [70].

Significant work has been developed regarding the addition of low-cost sensors and other hardware components to traditional manufacturing equipment. These additions provide increased data collection mechanisms and communication platforms. While some retrofit solutions require hardware modifications, implementation of communication and connection protocols often allow for similar if not equal capabilities through software upgrades alone. Many protocols can be implemented with only small changes to existing and open-source code. For example, MQTT applications can be loaded onto standard computers that are often found sitting next to manufacturing equipment, typically used to transfer pre-programmed instructions to the equipment. The MQTT applications allow for communication out to the FC layer for data aggregation. This process only requires software changes to upgrade current systems, without the need for extra hardware or more traditional retrofit solutions, enabling enhanced Digital Manufacturing technologies.

Common platforms for low-cost hardware development include the Arduino Uno platform, Raspberry Pi, and Particle Photon.[71-73] Each of these platforms offer tradeoffs in power

consumption, computational speed, and communication protocols. For example, typical Arduino platforms (running on the ATmega328P microcontroller) are convenient for standard analog and digital I/O but do not provide wireless communication protocols such as Wi-Fi or Bluetooth. However, Particle photons (recent models operate on the STM32 ARM Cortex M3 microcontroller) provide these communication protocols at the cost of higher power consumption and fewer I/O ports. Each of these tradeoffs must be balanced to find the right fit for a given environment.

Studies by Guerreiro et al. and Nsiah et al. in this category refer to IoT retrofit sensor packs as cost-affordable addressing solutions for data acquisition needs in the manufacturing industry where sensing solutions are either not available or the existing solutions and their communication capabilities do not satisfy the required accuracy, sensitivity, or the response frequency [74, 75]. A study by Manavalan et al. presents the benefits of IoT enabled embedded and retrofit solutions in improving the supply chain for Industry 4.0 [76]. Civerchia et al. in a study propose battery powered IoT sensing devices for development of advanced predictive maintenance applications in which the battery in their setup could last for one year with a 30 min interval publishing frequency. Studies by Tritschler, Prevost, and Saleeby, propose IoT vibration retrofit platforms as machine tool health monitoring systems in which high frequency data can be acquired from sensors and analyzed [77-79].

Process and Digital Twin Modeling Solutions

With modern developments or communication protocols and connection architectures, numerous initiatives have attempted to model physical machines, processes, and results with computational methods. These “Digital Twins” of the physical world have been developed to different extents, each modeling and predicting different areas of the production process. The concept of Digital Twin modeling is defined by Cai et al. as “virtual machine tools of physical machines for cyber-physical manufacturing by using sensory data and information fusion integration techniques” [80]. Digital Twin initiatives have been implemented to address a wide variety of modeling scenarios. Simple solutions range from open loop monitoring of process data while more complex implementations include AI-powered feedback to correct errors in a manufacturing process [81].

Many digital twin methods integrate models of physical systems with information and results from both computer simulations and CPS connected data. These two sources of information are combined to provide a more accurate method of predicting the system’s behavior and production results. DebRoy et al. discusses this concept by summarizing the technology needed for complete digital twin to predict microstructure development, residual stresses, and part defects in additive manufacturing [82]. Knapp et al. provides part of the implementation suggested by DebRoy through the integration of temperature and velocity fields from both numerical simulation and experimental measurements [83]. Knapp’s Digital twin

model for directed energy deposition in additive manufacturing provides a more accurate cooling rate and temperature gradient prediction than traditional conduction calculations [83].

Looking to the future of Digital Twin modeling where complete factories of CPS can be connected and monitored provides exciting opportunities for process development. With more advanced capabilities to link and correlate manufacturing data from different sources, Tao et al. demonstrates a future application for Digital Twin modeling in partial and parallel disassembly sequence planning for products [84]. Implementation of near real-time analysis for product information, timing information, and upstream/downstream events would provide beneficial flexibility and adaptability for assembly planning methods.

DISCUSSION AND RECOMMENDATIONS

The availability of vastly different communication protocols and connection architectures provides an uncertain path forward for many manufacturing industries. While no single connection architecture has been found to be appropriate for every application, the authors have found three best practices that can be applied to many Digital Manufacturing implementations.

Use of the MQTT messaging protocol has provided a very convenient methods of communicating varied data formats across each of the Edge, Fog, and Cloud computing layers. This protocol seems to be supported by a vast number of low-cost hardware platforms such as the Raspberry Pi and Particle Photon. Additionally, the light-weight packet standard allows for very little increase in message sizes due to overhead, or extra information needed for the communication protocol that's not related to the actual information being communicated. The authors have found this protocol to be applicable to many different manufacturing applications.

Additionally, the authors have found the MTConnect and OPC-UA standards for CNC Machine Tool information to be very useful for low sample frequency applications. While these protocols are implemented for machining processes, a clear need exists for similarly standardized protocols to be developed for other machine and process classifications, such as additive manufacturing machines, injection molding machines, and continuous manufacturing processes. These is also a need for support of increased sample frequency in the MTConnect and OPC-UA protocols on CNC machining equipment.

Finally, the authors recommend implementations of communication architectures that prioritize aggregation of collected data locally at Fog levels instead of transmitting collected data off-site to cloud computation levels. At scale, significant cost can be incurred for manufacturing facilities based on data transmission rates. While it may be relatively cheap to purchase data storage space at the Cloud computing level, it is expensive to transmit large amounts of data between local Fog layers and external Cloud layers. In other words,

evaluating the costs of purchasing company owned data storage mechanisms for Fog layer storage may save costs rather than connecting CPS to Cloud storage.

CONCLUSION

Technologies developed during the previous three decades leading to Industry 4.0 and Digital Manufacturing have dramatically increased capabilities for the manufacturing community. Modern connected CPS have enabled rapid, high quality data acquisition while significant increases in computational capabilities have enabled greater access to these technologies. Communication protocols provided the means by which vast amounts of information can be transferred throughout different levels of an industrial network while Digital Twin capabilities enable fascinating process modeling techniques. With a diverse range of Digital Manufacturing technologies, it becomes challenging to determine which tools are best suited for a given application. This paper serves as a review of similar connection and communication technologies and provides recommendations for implementing them on manufacturing processes. Combining these technologies in new ways will certainly enable more efficient, accurate, and predictable manufacturing processes over the next quarter century.

APPENDIX A. ACRONYMS AND ABBREVIATIONS

AMQP	Advanced Message Queuing Protocol
AWS	Amazon Web Services
CAM	Computer Aided Manufacturing
CC	Cloud Computing
CIM	Computer Integrated Manufacturing
CNC	Computer Numerical Control
CPS	Cyber-Physical System
DCS	Distributed Control System
DDS	Data Distribution Service
EC	Edge Computing
FC	Fog Computing
HTTP	Hypertext Transfer Protocol
IoT	Internet of Things
JSON	JavaScript Object Notation
LAN	Local Area Network
MCU	Microcontroller Unit
MQTT	Message Queue Telemetry Transport
OEE	Overall Equipment Effectiveness
OPC-UA	Open Platform Communications - Unified Architecture
PLC	Programmable Logic Controller
REST	Representational State Transfer

RS	Recommended Standard
SCADA	Supervisory Control and Data Acquisition
STOMP	Simple/Streaming Text Oriented Messaging Protocol
TCP	Transmission Control Protocol
TTL	Transistor-Transistor Logic
UART	Universal Asynchronous Receiver-Transmitter
UDP	User Diagram Protocol
XML	Extensible Markup Language
XMPP	Extensible Messaging and Presence Protocol

Table 1: List of acronyms and abbreviations relating to communication protocols presented.

REFERENCES

- [1] L. De Oliveira and A. Alvares, "Axiomatic Design Applied to the Development of a System for Monitoring and Teleoperation of a CNC Machine through the Internet," *Procedia CIRP*, vol. 53, 12/31 2016, doi: 10.1016/j.procir.2016.06.099.
- [2] D. McFarlane, Brintrup, A. "What is Digital Manufacturing?" Institute for Manufacturing, University of Cambridge. <https://www.ifm.eng.cam.ac.uk/research/digital-manufacturing/what-is-digital-manufacturing/> (accessed 24 November 2019).
- [3] Z. Zhou, S. Xie, and D. Chen, "Introduction," in *Fundamentals of Digital Manufacturing Science*, Z. Zhou, S. Xie, and D. Chen Eds. London: Springer London, 2012, pp. 1-18.
- [4] I. Dumitache and S. I. Caramihai, "The Enterprise of Future as a Cyber-Physical System," *IFAC Proceedings Volumes*, vol. 46, no. 9, pp. 1310-1315, 2013/01/01/2013, doi: <https://doi.org/10.3182/20130619-3-RU-3018.00418>.
- [5] V. O. Natalia Olifer, *COMPUTER NETWORKS: PRINCIPLES, TECHNOLOGIES AND PROTOCOLS FOR NETWORK DESIGN*. Wiley India Pvt. Limited, 2006.
- [6] D. N. William, "The Progress of Computing," Cowles Foundation for Research in Economics, Yale University, Sep 2001. [Online]. Available: <https://ideas.repec.org/p/cwl/cwldpp/1324.html>
- [7] W. Kuhn, "Digital Factory - Simulation Enhancing the Product and Production Engineering Process," in *Proceedings of the 2006 Winter Simulation Conference*, 3-6 Dec. 2006 2006, pp. 1899-1906, doi: 10.1109/WSC.2006.322972.
- [8] Science and Technology Policy Institute. (2012). *IDA Paper P-4603, Emerging Global Trends in Advanced Manufacturing*. [Online] Available: <https://www.ida.org/research-and-publications/publications/all/e/em/emerging-global-trends-in-advanced-manufacturing>
- [9] F. Tao, M. Zhang, and A. Y. C. Nee, "Chapter 8 - Digital Twin and Cloud, Fog, Edge Computing," in *Digital Twin Driven Smart Manufacturing*, F. Tao, M. Zhang, and A. Y. C. Nee Eds.: Academic Press, 2019, pp. 171-181.
- [10] J. Lee, H.-A. Kao, and S. Yang, "Service innovation and smart analytics for industry 4.0 and big data environment," *Procedia CIRP*, vol. 16, pp. 3-8, 2014.
- [11] J. Lee, B. Bagheri, and H.-A. Kao, "A cyber-physical systems architecture for industry 4.0-based manufacturing systems," *Manufacturing Letters*, vol. 3, pp. 18-23, 2015.
- [12] B. Bagheri, S. Yang, H.-A. Kao, and J. Lee, "Cyber-physical systems architecture for self-aware machines in industry 4.0 environment," *IFAC-PapersOnLine*, vol. 48, no. 3, pp. 1622-1627, 2015.
- [13] L. Monostori *et al.*, "Cyber-physical systems in manufacturing," *CIRP Annals*, vol. 65, no. 2, pp. 621-641, 2016.
- [14] R. Lynn, W. Louhichi, M. Parto, E. Wescoat, and T. Kurfess, "Rapidly deployable MTConnect-based machine tool monitoring systems," in *Proceedings of the 12th ASME Manufacturing Science and Engineering Conference (MSEC)*, 2017.
- [15] F. Tao, Y. Cheng, L. Da Xu, L. Zhang, and B. H. Li, "CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system," *IEEE Transactions on Industrial Informatics*, vol. 10, no. 2, pp. 1435-1442, 2014.
- [16] F. Tao, Y. Zuo, L. Da Xu, and L. Zhang, "IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing," *IEEE Transactions on Industrial Informatics*, vol. 10, no. 2, pp. 1547-1557, 2014.
- [17] F. Tao, L. Zhang, V. Venkatesh, Y. Luo, and Y. Cheng, "Cloud manufacturing: a computing and service-oriented manufacturing model," *Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture*, vol. 225, no. 10, pp. 1969-1976, 2011.
- [18] P. Ferrari, A. Flammini, S. Rinaldi, E. Sisinni, D. Maffei, and M. Malara, "Impact of quality of service on cloud based industrial IoT applications with OPC UA," *Electronics*, vol. 7, no. 7, p. 109, 2018.
- [19] "Azure Stream Analytics on IoT Edge." <https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-edge> (accessed.
- [20] "Build a Visualization and Monitoring Dashboard for IoT Data with Amazon Kinesis Analytics and Amazon QuickSight." [Online]. Available:

- [21] <https://aws.amazon.com/blogs/big-data/build-a-visualization-and-monitoring-dashboard-for-iot-data-with-amazon-kinesis-analytics-and-amazon-quicksight/>.
- [22] L. D. Xu, E. L. Xu, and L. Li, "Industry 4.0: state of the art and future trends," *International Journal of Production Research*, vol. 56, no. 8, pp. 2941-2962, 2018.
- [23] S. Feng, L. X. Li, and L. Cen, "An object-oriented intelligent design tool to aid the design of manufacturing systems," *Knowledge-Based Systems*, vol. 14, no. 5-6, pp. 225-232, 2001.
- [24] B. Li, Y. Ling, H. Zhang, and S. Zheng, "The design and realization of cherry tomato harvesting robot based on IOT," *International Journal of Online and Biomedical Engineering (iJOE)*, vol. 12, no. 12, pp. 23-26, 2016.
- [25] A. A. Zhilenkov, D. D. Gilyazov, I. I. Matveev, and Y. V. Krishtal, "Power line communication in IoT-systems," in *2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EICONRUS)*, 2017: IEEE, pp. 242-245.
- [26] N. Benias and A. P. Markopoulos, "A review on the readiness level and cyber-security challenges in Industry 4.0," in *2017 South Eastern European Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM)*, 2017: IEEE, pp. 1-5.
- [27] A. Sajid, H. Abbas, and K. Saleem, "Cloud-assisted IoT-based SCADA systems security: A review of the state of the art and future challenges," *IEEE Access*, vol. 4, pp. 1375-1384, 2016.
- [28] Y. Wang, "sSCADA: securing SCADA infrastructure communications," *arXiv preprint arXiv:1207.5434*, 2012.
- [29] O. Foundation. "OPC Unified Architecture." <https://opcfoundation.org/developer-tools/specifications-unified-architecture> (accessed 2019).
- [30] S.-H. Leitner and W. Mahnke, "OPC UA-service-oriented architecture for industrial applications," *ABB Corporate Research Center*, vol. 48, pp. 61-66, 2006.
- [31] *MTConnect Standard*, ANSI/MTC1.4-2018, M. Institute, 2018. [Online]. Available: <http://www.mtconnect.org/>
- [32] S. Atluru and A. Deshpande, "Data to information: can MTConnect deliver the promise," *Transactions of NAMRI/SME*, vol. 37, no. 2009, pp. 197-204, 2009.
- [33] R. Lynn, W. Louhichi, M. Parto, E. Wescoat, and T. Kurfess, "Rapidly deployable MTConnect-based machine tool monitoring systems," in *ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing*, 2017: American Society of Mechanical Engineers, pp. V003T04A046-V003T04A046.
- [34] A. Vijayaraghavan, "MTConnect for realtime monitoring and analysis of manufacturing enterprises," in *Proceedings of the international conference on digital enterprise technology, Hong Kong*, 2009.
- [35] N. M. Torrisi and J. F. G. de Oliveira, "Remote monitoring for high-speed CNC processes over public IP networks using CyberOPC," *The International Journal of Advanced Manufacturing Technology*, vol. 60, no. 1-4, pp. 191-200, 2012.
- [36] J. Imtiaz and J. Jasperneite, "Scalability of OPC-UA down to the chip level enables "Internet of Things"," in *2013 11th IEEE International Conference on Industrial Informatics (INDIN)*, 2013: IEEE, pp. 500-505.
- [37] P. Lei, L. Zheng, L. Wang, Y. Wang, C. Li, and X. Li, "MTConnect compliant monitoring for finishing assembly interfaces of large-scale components: A vertical tail section application," *Journal of Manufacturing Systems*, vol. 45, pp. 121-134, 2017.
- [38] A. Vijayaraghavan, W. Sobel, A. Fox, D. Dornfeld, and P. Warndorf, "Improving machine tool interoperability using standardized interface protocols: MT connect," 2008.
- [39] B. Edrington, B. Zhao, A. Hansel, M. Mori, and M. Fujishima, "Machine monitoring system based on MTConnect technology," *Procedia Cirk*, vol. 22, pp. 92-97, 2014.
- [40] N. Briscoe, "Understanding the OSI 7-layer model," *PC Network Advisor*, vol. 120, no. 2, 2000.
- [41] T. G. Handel and M. T. Sandford, "Hiding data in the OSI network model," in *International Workshop on Information Hiding*, 1996: Springer, pp. 23-38.
- [42] R. Lynn, E. Wescoat, D. Han, and T. Kurfess, "Embedded fog computing for high-frequency MTConnect data analytics," *Manufacturing Letters*, vol. 15, pp. 135-138, 2018.
- [43] J. Postel, "Transmission control protocol," 1981.
- [44] R. Braden, "Requirements for Internet hosts-communication layers," 1989.
- [45] D. D. Clark, "Window and acknowledgement strategy in TCP," 1982.
- [46] D. D. Clark, "The design philosophy of the DARPA internet protocols," *ACM SIGCOMM Computer Communication Review*, vol. 25, no. 1, pp. 102-111, 1995.
- [47] D. Comer, "Internetworking with TCP/IP, Vol. I: Principles, Protocols, and Architecture, 3/e," ed: Englewood Cliffs (NJ): Prentice-Hall, 1995.
- [48] K. R. Fall and W. R. Stevens, *TCP/IP illustrated, volume 1: The protocols*. addison-Wesley, 2011.
- [49] V. Jacobson, "Congestion avoidance and control," in *ACM SIGCOMM computer communication review*, 1988, vol. 18, no. 4: ACM, pp. 314-329.
- [50] V. Jacobson, "Modified TCP congestion avoidance algorithm," *end2end-interest mailing list*, 1990.

- [50] P. Srisuresh and K. Egevang, "Traditional IP network address translator (Traditional NAT)," 2070-1721, 2000.
- [51] W. Colitti, K. Steenhaut, N. De Caro, B. Buta, and V. Dobrota, "REST Enabled Wireless Sensor Networks for Seamless Integration with Web Applications," presented at the 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, 2011.
- [52] M. Masse, *REST API Design Rulebook: Designing Consistent RESTful Web Service Interfaces*. " O'Reilly Media, Inc.", 2011.
- [53] M. Parto Dezfouli, "A secure MTConnect compatible IoT platform for machine monitoring through integration of fog computing, cloud computing, and communication protocols," Georgia Institute of Technology, 2017.
- [54] "Getting Started with MQTT using Mosquitto." Embedded Laboratory. <http://embeddeditlaboratory.blogspot.com/2018/01/getting-started-with-mqtt-using.html> (accessed.
- [55] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, "MQTT-S—A publish/subscribe protocol for Wireless Sensor Networks," in *2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE'08)*, 2008: IEEE, pp. 791-798.
- [56] S. Lee, H. Kim, D.-k. Hong, and H. Ju, "Correlation analysis of MQTT loss and delay according to QoS level," in *The International Conference on Information Networking 2013 (ICOIN)*, 2013: IEEE, pp. 714-717.
- [57] A. Daneels and W. Salter, "What is SCADA?," 1999.
- [58] R. Kalapatapu, "SCADA protocols and communication trends," *ISA2004*, pp. 5-7, 2004.
- [59] "Raspberry Pi I2C / SPI / UART Communications." <https://www.mbttechworks.com/hardware/raspberry-pi-UART-SPI-I2C.html> (accessed.
- [60] J.-C. Cano, J.-M. Cano, E. González, C. Calafate, and P. Manzoni, "Power characterization of a bluetooth-based wireless node for ubiquitous computing," in *Wireless and Mobile Communications, 2006. ICWMC'06. International Conference on*, 2006: IEEE, pp. 13-13.
- [61] P. Mohan, V. N. Padmanabhan, and R. Ramjee, "Nericell: rich monitoring of road and traffic conditions using mobile smartphones," in *Proceedings of the 6th ACM conference on Embedded network sensor systems*, 2008: ACM, pp. 323-336.
- [62] T. Pering, Y. Agarwal, R. Gupta, and R. Want, "Coolspots: reducing the power consumption of wireless mobile devices with multiple radio interfaces," in *Proceedings of the 4th international conference on Mobile systems, applications and services*, 2006: ACM, pp. 220-232.
- [63] X. Zhang and G. Riley, "An on-demand bluetooth scatternet formation and routing protocol for wireless sensor networks," in *Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2005 and First ACIS International Workshop on Self-Assembling Wireless Networks. SNPD/SAWN 2005. Sixth International Conference on*, 2005: IEEE, pp. 411-418.
- [64] S. Darroudi and C. Gomez, "Bluetooth low energy mesh networks: A survey," *Sensors*, vol. 17, no. 7, p. 1467, 2017.
- [65] Á. Hernández-Solana, D. Perez-Díaz-de-Cerio, A. Valdovinos, and J. L. Valenzuela, "Proposal and evaluation of BLE discovery process based on new features of bluetooth 5.0," *Sensors*, vol. 17, no. 9, p. 1988, 2017.
- [66] S. Farahani, *ZigBee wireless networks and transceivers*. Newnes, 2011.
- [67] B. Fouladi and S. Ghanoun, "Security evaluation of the Z-Wave wireless protocol," *Black hat USA*, vol. 24, pp. 1-2, 2013.
- [68] M. P. Brundage *et al.*, "Where Do We Start? Guidance for Technology Implementation in Maintenance Management for Manufacturing," *Journal of Manufacturing Science and Engineering*, vol. 141, no. 9, 2019, doi: 10.1115/1.4044105.
- [69] D. Wu, C. Jennings, J. Terpenny, R. X. Gao, and S. Kumara, "A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests," *Journal of Manufacturing Science and Engineering*, vol. 139, no. 7, 2017, doi: 10.1115/1.4036350.
- [70] M. Wu and Y. B. Moon, "Intrusion Detection System for Cyber-Manufacturing System," *Journal of Manufacturing Science and Engineering*, vol. 141, no. 3, 2019, doi: 10.1115/1.4042053.
- [71] Particle.com. "Particle Photon." <https://www.particle.io/> (accessed 12 March 2020.
- [72] Raspberrypi.org. "Raspberry Pi." <https://www.raspberrypi.org/> (accessed 12 March 2020.
- [73] Arduino.com. "Arduino." <https://www.arduino.cc/> (accessed 03/12/2020.
- [74] B. V. Guerreiro, R. G. Lins, J. Sun, and R. Schmitt, "Definition of Smart Retrofitting: First steps for a company to deploy aspects of Industry 4.0," in *Advances in Manufacturing*: Springer, 2018, pp. 161-170.
- [75] K. A. Nsiah, M. Schappacher, C. Rathfelder, A. Sikora, and V. Groza, "An open-source toolkit for retrofit industry 4.0 sensing and monitoring applications," in *2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)*, 2018: IEEE, pp. 1-6.
- [76] E. Manavalan and K. Jayakrishna, "A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements," *Computers & Industrial Engineering*, vol. 127, pp. 925-953, 2019.

- [77] E. A. M. E. Prevost, "Detection of bearing defects with approximate bearing configuration," Georgia Institute of Technology, 2019.
- [78] K. S. Saleeby and T. R. Kurfess, "Low cost wireless accelerometer sensor platform with internet-of-things for manufacturing (IOT4MFG) applications," in *Micro- and Nanotechnology Sensors, Systems, and Applications XI*, 2019, vol. 10982: International Society for Optics and Photonics, p. 1098210.
- [79] N. B. Tritschler, "Delevoping a Device for Automatic Monitoring of Rolling Element Bearing Conditions," Georgia Institute of Technology, 2019.
- [80] Y. Cai, B. Starly, P. Cohen, and Y.-S. Lee, "Sensor Data and Information Fusion to Construct Digital-twins Virtual Machine Tools for Cyber-physical Manufacturing," *Procedia Manufacturing*, vol. 10, pp. 1031-1042, 2017/01/01/ 2017, doi: <https://doi.org/10.1016/j.promfg.2017.07.094>.
- [81] S. Powers, Dehoff, R., Paquit, V., Steed, C., Kistler, D., "Application of Data Analytics to Additive Manufacturing," presented at the 11th INFORMS Workshop on Data Mining and Decision Analytics (DM-DA 2016), Nashville, TN, Nov 12, 2016, 2016.
- [82] T. DebRoy, W. Zhang, J. Turner, and S. S. Babu, "Building digital twins of 3D printing machines," *Scripta Materialia*, vol. 135, pp. 119-124, 2017/07/01/ 2017, doi: <https://doi.org/10.1016/j.scriptamat.2016.12.005>.
- [83] G. L. Knapp *et al.*, "Building blocks for a digital twin of additive manufacturing," *Acta Materialia*, vol. 135, pp. 390-399, 2017/08/15/ 2017, doi: <https://doi.org/10.1016/j.actamat.2017.06.039>.
- [84] F. Tao, L. Bi, Y. Zuo, and A. Y. C. Nee, "Partial/Parallel Disassembly Sequence Planning for Complex Products," *Journal of Manufacturing Science and Engineering*, vol. 140, no. 1, 2017, doi: 10.1115/1.4037608.