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Abstract—This paper explores performance limits of differen-
tial power processing (DPP) for large-scale modular dc energy
systems with stochastic loads. An analytical stochastic model is
developed to estimate the average power loss of a DPP topology
under probabilistic load distributions. A scaling factor S(•) is
introduced to describe how power loss scales as the system size or
load power variance increases. The average power losses of sev-
eral example DPP topologies are analyzed and compared against
conventional dc-dc converters given the same total switch die area
and magnetic volume. The performance limits for various DPP
topologies are derived and verified by Monte-Carlo simulations
in SPICE, and the results indicate that the ac-coupled DPP
converter stands out from all the representative DPP topologies
discussed here in terms of the lowest power loss. The paper
provides an analytical framework to evaluate the performance
of different DPP topologies in a methodical way, offering insights
for the design of DPP systems with large-scale stochastic loads.

Index Terms—Differential power processing (DPP), stochastic
models, dc-dc converters, performance limits

I. INTRODUCTION

Differential power processing (DPP) has been effectively

implemented in many applications, including solar photo-

voltaics, battery management systems, and servers in data

centers [1]–[10]. In these systems, numerous loads or sources

are connected in series, with a set of series voltage domains.

Each voltage domain usually comprises many parallel units,

resulting in a large-scale modular load array as shown in

Fig. 1. A DPP converter operates to process power differences

between the voltage domains. This differential power should

be a small fraction of the total load power, so the overall

power conversion is greatly reduced and the energy efficiency

of DPP-based dc energy systems can improve substantially.

In a general DPP system, the power of each load changes

with time as a random process. In this situation, the perfor-

mance of a DPP converter is closely related to power variance

among voltage domains. Previous work has been done to

analyze how the performance of DPP converters changes as

load power distribution changes, mainly based on numerical

simulations [2], [3]. Also, a DPP system usually comprises

more switches and magnetic components than in a conven-

tional dc-dc converter system. A rigorous analytical method

that evaluates DPP performance and cost when supporting

stochastic loads and systematically compares various DPP

topologies with conventional N :1 dc-dc converters is needed.

Based on a stochastic modeling approach, this paper ex-

plores performance limits of DPP. A performance scaling

factor, S(•), is introduced to describe the change in power

Fig. 1. An N×M differential power processing system with N series-stacked
voltage domains, each comprising M modular loads. The modular load units
can be battery cells, PV panels, hard disk drives (HDD), etc.

loss in a DPP system as the system size or the load power

variance increases. A stochastic loss model that describes the

average power loss of a DPP converter when supporting a large

array of stochastic loads is developed. The model employs a

minimum set of assumptions and offers rich design insights.

Several representative DPP topologies are analyzed and com-

pared with an N :1 dual-active-bridge (DAB) dc-dc converter

given the same total switch die area and magnetic core size.

The performance limits and stochastic loss model of various

DPP topologies are verified with Monte-Carlo simulations in

SPICE. In this work, the ac-coupled DPP converter stands out

from others in terms of the lowest average power loss.

This paper provides an analytical framework for perfor-

mance limit evaluation of DPP systems, offering useful design

guidelines to select a DPP topology for a given applica-

tion with a probabilistic load profile. Section II introduces

a stochastic modeling approach for two typical DPP archi-

tectures. Based on the stochastic loss model, Section III

compares several example circuit implementations of the two

DPP architectures against an N :1 DAB converter. Simplified
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(a) (b)

Fig. 2. Typical DPP architectures: (a) fully-coupled DPP; (b) ladder DPP.

(a) (b)

Fig. 3. Example load conditions which require the maximum instantaneous
differential power at the 3rd port/submodule of the DPP stack from the top:
(a) fully-coupled DPP; (b) ladder DPP. Power injected from the series voltage
domains are labeled in blue, and the differential power are labeled in red.

Fig. 4. Maximum differential power rating of the ith port or submodule in
a fully-coupled DPP converter and a ladder DPP converter with N series-
stacked voltage domains.

circuit models are developed to quantify the loss analysis. The

performance limits of different DPP topologies are derived and

verified by Monte Carlo simulations in Section IV. Finally,

Section V concludes this paper.

II. STOCHASTIC LOSS MODEL FOR DPP

Fig. 1 shows an overview of a typical DPP system. An N×
M modular array of stochastic loads is configured in N series-

stacked voltage domains. Each voltage domain comprises M
modular loads connected in parallel. For a case with matched

domain voltages, let the voltage of each domain be V0. The

instantaneous power of the jth load in the ith voltage domain

is Pij(t). All Pij(t)’s (i = 1, ..., N ; j = 1, ...,M ) are taken

as statistically independent and identically distributed (i.i.d.)

random variables, so the load power mean value μ(Pij(t)) and

variance σ2(Pij(t)) are identical for all load units (denoted

as μ and σ2 for short). The total power consumed by the ith

voltage domain is the sum of M random load powers: Pi(t) =
Pi1(t) + Pi2(t) + ... + PiM (t), so the power levels Pi(t) of

the N voltage domains are also independent. A DPP converter

is utilized to process differential power among the N series

voltage domains, in this case seeking to balance the voltage of

each domain. A more general case allows various voltages (as

when each domain has its own power droop characteristics),

but matched voltages are explored here for clarity.

A. Fully Coupled DPP and Ladder DPP

Various DPP topologies have been explored, with design

tradeoffs in efficiency, size, cost, and control complexity [1]–

[10]. They can be generally classified into two typical cate-

gories as shown in Fig. 2. Fig. 2a depicts the architecture of

a fully-coupled DPP converter system, in which all voltage

domains are coupled by the DPP converter circuitry. A typical

fully-coupled DPP converter functions as a multiport dc-dc

converter, and there is a direct power flow path between any

two voltage domains. Due to the series architecture, the same

current Is(t) =
∑N

k=1 Pk(t)/NV0 flows through each voltage

domain. The instantaneous differential power processed by a

fully-coupled DPP system for the ith voltage domain is

ΔPi(t) = Is(t)V0 − Pi(t) = P (t)− Pi(t). (1)

Here P (t) is the average power consumption of all voltage

domains. Equation (1) indicates that in a fully-coupled DPP

converter, the differential power processed at each port is

symmetric, so the differential power rating and the average

power loss of each DPP port are the same.

Fig. 2b shows the architecture of a domain-to-domain

or ladder DPP system, in which multiple standalone dc-dc

converters (termed DPP submodules) are used to connect

neighboring voltage domains. The differential power processed

in one voltage domain is related to multiple DPP submodules,

Pi(t) + ΔPi↔i+1(t)−ΔPi−1↔i(t) = Is(t)V0 = P (t), (2)

where ΔPi↔i+1(t) is the differential power that the ith DPP

submodule delivers from the ith domain to the (i+1)th domain

(ΔPi↔i+1(t) = 0, if i = 0 or N ). Reorganizing (2),

ΔPi↔i+1(t) =

i∑
k=1

(P (t)−Pk(t)) = i×P (t)−
i∑

k=1

Pk(t). (3)

In a ladder DPP converter, there is no direct power flow

between two non-neighboring voltage domains. Differential

power must go through multiple DPP submodules from a

domain to non-neighboring domains, resulting in differential
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power accumulation — each DPP submodule needs to process

both the power difference between Pi(t) and P (t) and the

accumulated differential power from other DPP submodules as

indicated in (2). This causes additional power to be processed

in a ladder DPP converter compared to that of a fully-coupled

DPP converter. Eq. (3) also reflects that the differential power

processed by each DPP submodule is unsymmetric. Thus, both

the power ratings and the average power loss vary among DPP

submodules in a ladder configuration.

Assume that the power consumption of each voltage domain

Pi(t) is within a range [0, Pmax]. Fig. 3 shows example

load conditions and detailed power flow when the maximum

instantaneous differential power is reached at a specific port

or submodule in a fully-coupled DPP and a ladder DPP

converter. In the fully-coupled DPP converter, the maximum

instantaneous differential power processed by the ith port is

reached when the ith domain consumes full load power and

the other domains have no load or when the ith domain has no

load and the others consume full load power. The maximum

is N−1
N Pmax, which is identical for all the ports in the

fully-coupled DPP converter. For a ladder DPP converter, the

maximum differential power processed by the ith submodule

is reached when top i domains (i.e., domain 1 ∼ i) consume

full load power and all the other domains have no load or top

i domains have no load and all the other domains consume

full power. The maximum is
i(N−i)

N Pmax, which is varied

with different DPP submodules. Fig. 4 shows the maximum

differential power rating of each port or submodule in a

fully-coupled DPP converter and in a ladder DPP converter.

The maximum power rating requirement for a ladder DPP

submodule increases if it is closer to the middle of the series-

stacked voltage domains. In most cases, the power rating of

a ladder DPP submodule is larger than that of each port in a

fully-coupled DPP system.

B. Stochastic Loss Model and Scaling Factor

In a DPP system with a modular load array, the dimensions

of the load array and the load power variation impact the dif-

ferential power to be processed. To quantify the performance

of a DPP system as the size of load array or variance of load

power scales up, a stochastic loss model can be developed. The

power losses of fully-coupled and ladder DPP architectures

are derived as a function of the processed differential power,

i.e., ΔPi(t) or ΔPi↔i+1(t). Since the power loss is a time-

dependent random variable, its expected value E[•] is used

to evaluate the long-term average power loss of the DPP

system. For comparison, a stochastic loss model is derived for

a conventional N :1 dc-dc converter based on the total load

power
∑N

i=1 Pi(t).
Fig. 5 shows equivalent circuit models of various DPP

architectures and of the N :1 dc-dc converter. In the developed

stochastic loss model, only conduction loss is considered

and is captured by an effective output resistance in Fig. 5.

Switching loss, core loss, and other non-ideal effects can be

added to enhance accuracy, but the model procedure follows

from that presented below.

(a) (b)

(c)

Fig. 5. Equivalent circuit model for loss estimation of: (a) fully-coupled DPP;
(b) ladder DPP; (c) conventional N :1 dc-dc converter.

• Fully-Coupled DPP Converter: As illustrated in Fig. 5a,

a fully-coupled DPP topology can be modeled as an N -

port network with all ports connected to an N -winding ideal

transformer with uniform turns ratios. The conduction loss

in each port is captured by an equivalent output resistance

Rout located at each port as labeled in Fig. 5a. Considering

linear scalability of this DPP architecture, each port is

assumed to be identical with the same Rout. In a fully-

coupled DPP converter, the ith port is processing ΔPi(t).
The instantaneous conduction loss and average conduction

loss at the ith port are

Ploss.i(t) = ΔIi(t)
2Rout =

(
ΔPi(t)

V0

)2

Rout

= Rout

(
P (t)− Pi(t)

V0

)2

,

(4)

E[Ploss.i(t)] =
M(N − 1)Rout

NV 2
0

σ2(Pij(t)). (5)

Here σ2(Pij(t)) is the variance of Pij . Eqs. (4) and (5)

indicate that the average processed differential power and

the conduction loss are identical at each port in a fully-

coupled DPP converter. The expected value of the total

conduction loss for the entire fully-coupled DPP system is

E[Ploss(t)] =

N∑
i=1

E[Ploss.i(t)]

= M(N − 1)σ2(Pij(t))× Rout

V 2
0

⇒ S(MNσ2)︸ ︷︷ ︸
scaling factor

.
(6)

We use symbol S(•) to represent the performance scaling

factor of a DPP system, which illustrates the growth rate of
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the loss as the dimension of the DPP system or variance of

load power increases. Eq. (6) indicates that the performance

scaling factor of an N × M fully-coupled DPP system is

S(MNσ2). The expected conduction loss of a fully-coupled

DPP converter is determined by the variance σ2 of the

stochastic loads, and scales linearly with N and M . It is

independent of the average load power μ.

• Ladder DPP Converter: In a ladder DPP topology, each

DPP submodule is a bidirectional dc-dc converter. Each

can be modeled as an 1:1 ideal transformer with an output

resistance Rout to capture its conduction loss, as illustrated

in Fig. 5b. The ith DPP submodule is processing a differen-

tial power of ΔPi↔i+1(t). The instantaneous and average

conduction loss of the ith submodule are

Ploss.i(t) = RoutΔIi↔i+1(t)
2 = Rout

(
ΔPi↔i+1(t)

V0

)2

= Rout

(
i× P (t)−∑i

k=1 Pk(t)

V0

)2

,

(7)

E[Ploss.i(t)] =

(
i− i2

N

)
Mσ2(Pij(t)). (8)

Eqs. (7) and (8) indicate that the average processed differ-

ential power and power loss differ among the DPP submod-

ules. The submodules located closer to the middle of the

series-stacked voltage domains tend to process more power

and generate more loss, similar to the maximum differential

power rating in Fig. 4. The total average conduction loss of

the entire ladder DPP system is

E[Ploss(t)] =

N−1∑
i=1

E[Ploss.i(t)]

=
M(N − 1)(N + 1)

6
σ2 × Rout

V 2
0

⇒ S(MN2σ2)︸ ︷︷ ︸
scaling factor

.

(9)

As shown in Eq. (9), the conduction loss of a ladder DPP

increases linearly with M , and quadratically with N , so the

performance scaling factor of a ladder DPP system with

an N ×M stochastic load array is S(MN2σ2). Compared

to a fully-coupled DPP converter, the conduction loss of

a ladder DPP converter has a higher loss scaling factor as

N increases because differential power accumulates along

the series-stacked voltage domains. The expected loss of

a ladder DPP topology is linked to the variance (σ2) of

the individual loads. Loss scales linearly with M , scales

quadratically with N , and is independent of the average load

power μ.

• Conventional N :1 Dc-Dc Converter: To compare the per-

formance of DPP solutions against conventional step-down

converter, a stochastic loss model for a conventional N :1 dc-

dc converter can be derived. This converter can be modeled

as an N :1 ideal transformer with an output resistance

Rout [11], as shown in Fig. 5c. All loads are connected

in parallel at the output, and the full power of the N ×M

Fig. 6. Magnetic core window area distribution and winding conductance.
Total core window area is proportional to

∑
Gmn2. n is the effective number

of turns in each winding; ρ is the winding resistivity; MLT is the mean length
per turn and is assumed to be identical for all the windings.

load array must be processed. The conduction loss of this

converter when processing power for N ×M loads is

E[Ploss(t)] = E[RoutI
2
out(t)] =

Rout

V 2
0

· E
⎡
⎣( n∑

i=1

Pi(t)

)2
⎤
⎦

=
(
MNσ2(Pij(t)) +M2N2μ2(Pij(t))

)× Rout

V 2
0

⇒ S(M2N2μ2)︸ ︷︷ ︸
scaling factor

,

(10)

where μ(Pij(t)) is the average power of each load. The

expected conduction loss of a conventional N :1 dc-dc

converter is mainly determined by the total average load

power (MNμ), and it scales quadratically with N and M .

Eq. (6) and (9) reveal that the average conduction loss of

DPP architectures is independent of the average power μ, and

determined by the load variance σ2. This is consistent with

the fundamental benefit of DPP solutions: the loss of a DPP

system is only determined by differential power, and this is

only a fraction of the total load power. If the module load

power values are uniform with σ = 0, a DPP system imposes

no conduction loss.

III. SIMPLIFIED CIRCUIT MODEL FOR LOSS ANALYSIS

In a DPP architecture, total switch count and magnetic com-

ponent volume increase as the number of voltage domains (N )

increases. A reasonable comparison between DPP converters

and a conventional N :1 dc-dc converter would be to compare

their performance given the same size and volume. In this

section, several DPP topologies are analyzed and compared

with an N :1 dual-active-bridge (DAB) converter with the

following assumptions:

1) Identical Total Semiconductor Die Area: For both discrete

and integrated switches, semiconductor die area scales

linearly with the GswV
X
sw product [12]. Gsw is the switch

conductance; Vsw is the switch blocking voltage; the coeffi-

cient X , typically 2, depends on material and process. We

represent the total semiconductor die area as the sum of

GswV
2
sw for all switches:

∑
GswV

2
sw, which is required

to be identical for all topologies compared here and is

normalized to GSWV 2
0 .
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(a) (b) (c)

Fig. 7. Fully-coupled DPP topologies: (a) ac fully-coupled DPP [8]; (b) dc fully-coupled DPP [9]; (c) switched-capacitor (SC) based DPP [4], [10].

(a) (b)

Fig. 8. Example topologies of the ladder DPP architecture: (a) ladder DPP with DAB cells; (b) ladder DPP with buck-boost cells [5], [6].

2) Identical Total Winding Area: The magnetic component

size depends on the winding area and cross-sectional area

of the core. In this paper, the total volume of magnetic

components is evaluated using the total winding area,

which can be estimated by the magnetic core window

area (assuming a fixed filling factor for each winding). As

illustrated in Fig. 6, the distributed window area of each

winding is proportional to Gmn2. Gm is the conductance

of each winding; n is the effective number of series turns

(parallel turns can be equivalent to one turn in terms

of dc resistance), and each winding is assumed to have

the same volt-second-per-turn value. The total magnetic

core window area is represented as the sum of Gmn2

over all the windings.
∑

Gmn2 is required to be identical

for all topologies compared here that contain magnetic

components and is normalized to GM .

Based on these two assumptions, output resistance Rout and

performance limits of various DPP topologies were derived

and verified by Monte Carlo simulations in SPICE.

Figs. 7 and 8 exhibit several typical circuit implementations

of a fully-coupled DPP architecture and a ladder DPP archi-

tecture, respectively. To model the output resistance Rout as

defined in Fig. 5, the Rds(on) of each switch and winding dc

resistance are included in a unified equivalent.

Fig. 7a shows an ac fully-coupled DPP converter in which

all voltage domains are ac-coupled to a multiwinding trans-

former through half-bridge circuits. In applications with N
series-stacked voltage domains, an ac fully-coupled DPP com-

prises 2N switches with identical voltage rating V0 and N
windings with identical turns ratio (the effective number of

turns of each winding can be set to one). Therefore, the

resistance of each switch and each winding are 2N
GSW

and N
GM

.

Port-to-port power is transferred in the same way as in a DAB

converter [8]. The conduction loss generated at the ith port is

Ploss.i = (2ΔIi)
2 ×

(
2N

GSW
+

N

GM

)
= ΔI2i Rout (11)

Based on (11), the output resistance of each port in an

ac fully-coupled DPP is 8N
GSW

+ 4N
GM

. Similarly, the output

resistance of a dc fully-coupled DPP as in Fig. 7b can be

obtained as 32N
GSW

+ 16N
GM

, which is four times of that in

the ac fully-coupled DPP due to doubling of switch and

winding counts and doubling of “dc-ac-dc” differential power

conversion stages [8]. A switched-capacitor DPP system (in

Fig. 7c) has the same switch count and switch voltage rating as

an ac fully-coupled DPP. If it is working in the fast switching

limit without capacitor charge sharing loss [12], each switch
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TABLE I
COMPARISON BETWEEN DIFFERENT DPP TOPOLOGIES AND AN N :1 DAB CONVERTER (M ≥ 1, N ≥ 2)

Topology Output Resistance Expected Loss Scaling Factor

Fully-Coupled DPP

Ac-Coupled
8N

GSW
+

4N

GM

M(N − 1)σ2(Pij(t))× Rout

V 2
0

S(MNσ2)Dc-Coupled
32N

GSW
+

16N

GM

SC-based
8N

GSW

Ladder DPP
DAB-cell 32N − 32

GSW
+

16N − 16

GM

M(N − 1)(N + 1)

6
σ2(Pij(t))× Rout

V 2
0

S(MN2σ2)
Buck-Boost-cell

N :1 Converter DAB
32

GSW
+

16

GM

(
MNσ2(Pij(t)) +M2N2μ2(Pij(t))

)× Rout

V 2
0

S(M2N2μ2)

at the ith port conducts 2ΔIi for half a switching cycle and

the output resistance is 8N
GSW

.
Fig. 8a shows an example of the ladder DPP converter

in which each DPP submodule is implemented as a DAB

converter. It contains 4N−4 switches (rated at V0) and 2N−2
windings with one effective turn per winding. The output resis-

tance in the ac fully-coupled DPP converter was 8N
GSW

+ 4N
GM

,

but now the currents will be higher. The conduction loss in

the ith DPP submodule is

Ploss.i = (2ΔIi↔i+1)
2 ×

(
4N − 4

GSW
+

2N − 2

GM

)
× 2

= ΔI2i↔i+1 ·Rout.

(12)

Thus the effective output resistance of each submodule in

a ladder DPP with DAB cells is 32N−32
GSW

+ 16N−16
GM

. For a

ladder DPP with buck-boost cells (Fig. 8b), assume that the

inductor of each buck-boost cell has the same volt-second-

per-turn value as that of each DAB cell in Fig. 8a, and that

the inductor current is approximately constant. The effective

output resistance of each buck-boost cell is 32N−32
GSW

+ 16N−16
GM

,

the same as that of the DAB cell.
For an N :1 DAB converter, the optimal configuration is

to equally allocate semiconductor die area (GSWV 2
0 ) and

winding window area (GM ) between the primary side and

secondary side. On the primary side, each switch is rated at

NV0 and the effective number of turns is N ; on the secondary

side, each switch is rated at V0 and effective number of turns

is one. Therefore, the resistances of each switch and winding

are 4N2

GSW
and 2N2

GM
on the primary side, and 4

GSW
and 2

GM

on the secondary side. Denote the output current as Iout. The

conduction loss of a DAB converter becomes

Ploss =

(
2

N
Iout

)2

×
(

4N2

GSW
+

2N2

GM

)
︸ ︷︷ ︸

primary side

+ (2Iout)
2 ×

(
4

GSW
+

2

GM

)
︸ ︷︷ ︸

secondary side

= I2out ·Rout.

(13)

The effective output resistance of this N :1 DAB converter is
32

GSW
+ 16

GM
. Table I summarizes the output resistance, expected

conduction loss and scaling factors for various DPP topologies

as well as for the N :1 DAB converter.

IV. PERFORMANCE LIMITS AND LOSS ANALYSIS

Since only part of the power is processed, a DPP system

processes much less power than a conventional N :1 dc-dc

converter. A DPP system offers advantages in energy efficiency

as N and M scale up, but its advantages in terms of output

resistance gradually diminish (as shown in Table I), given a

system-level constraint on total device area and magnetic core

volume. To evaluate performance limits of DPP topologies,

the expected loss of a DPP converter was compared to that

of an N :1 DAB at the same total semiconductor die area

and core volume (which should reflect converter cost). The

normalized loss β (β =
Ploss,DPP

Ploss,DAB
) is used as a performance

metric to show the limitations. A lower β indicates lower loss

and better performance. The coefficient of variance CV =
σ(Pij(t))
μ(Pij(t))

was used to normalize the variance of Pij(t). A

Monte Carlo simulation in SPICE was performed to validate

the analytical model. Ideal switches and transformers, with

series resistors to model Rds(on) and winding resistance, are

included. Transformer loss was not included in the analysis of

the SC-based DPP topology. Parasitic components and other

nonlinear effects are neglected.

In the simulation, the power of each load is set to follow a

binary distribution: Pij = X ·Pwork+(1−X)·Pidle. Pwork and

Pidle are the power consumption in the working state and

idling state, respectively. Parameter X follows a Bernoulli

distribution, Bernoulli(p), in which p is the probability of

being in the working state. Load analysis with other probability

distributions, such as Gaussian or Poisson, leads to similar

results. In each case, predefined M , N , and CV (CV is in the

range of [0,1]) are set, and the simulation is executed 10,000

times to obtain an estimate of average conduction loss of each

topology. The simulated β for each DPP topology is obtained

through dividing the simulated average loss by the calculated

loss in the N :1 DAB converter.

Figs. 9 – 11 illustrate the calculated and simulated β for

various DPP topologies as the dimensions of the load array

(N and M ) and the coefficient of variance of load power (CV )
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(a)

(b)

Fig. 9. Calculated and simulated normalized loss β as a function of the
number of the series-stacked voltage domains N in: (a) fully-coupled DPP
converters; (b) ladder DPP converters.

scale up. The calculated β matches the simulated results well,

supporting the effectiveness of the stochastic model. A small

mismatch is caused by the trapezoidal current waveform in the

active bridges (Fig. 7a-7b, Fig. 8a), capacitor charge sharing

loss in the SC-based DPP (Fig. 7c), and inductor current ripple

in the buck-boost cells (Fig. 8b). If M becomes larger or CV

becomes smaller, the average differential power of each buck-

boost cell is reduced. In this case, the ripple current of the

inductor becomes comparable to the dc average current, and

increases the mismatch (Fig. 10b and Fig. 11b).

Figs. 9 and 10 illustrate the scaling of β for various

DPP topologies as the load array dimensions (N and M )

scale up. Under the fixed constraint of total device area and

magnetic core volume, the modeled Rout in a DPP topology

increases linearly with N , but the modeled Rout of an N :1
DAB converter remains unchanged theoretically, as shown in

Table I. Considering the scaling of Rout, when N increases,

the expected loss of fully-coupled DPP topologies increases at

the rate of N2, the same growth rate as that of the N :1 DAB

converter, while the expected conduction loss of the ladder

DPP topologies grows at the rate of N3. Therefore, as N
scales up, β of the fully-coupled DPP topologies converges

to an upper limit, but β of the ladder DPP topologies keeps

increasing, as labeled in Fig. 9.

(a)

(b)

Fig. 10. Calculated and simulated normalized loss β as a function of the
number of the parallel loads M in: (a) fully-coupled DPP converters; (b)
ladder DPP converters.

If the number of parallel load units M increases, the ex-

pected loss in both fully-coupled DPP and ladder DPP circuits

increases at the rate of M , while the expected loss in the DAB

grows at the rate of M2. Thus, β decreases with increasing

M for both fully-coupled DPP and ladder DPP circuits, as

shown in Fig. 10. This indicates that power variation among

different voltage domains reduces if more random loads with

the same probability distribution are parallelled in each voltage

domain. Figs. 9 and 10 reveal performance limits of these DPP

topologies as the DPP system size (N or M ) increases. The

asymptotic limits are β: β → C2
V

4M for an ac-coupled or SC-

based DPP; β → C2
V

M for a dc-coupled DPP; and β → NC2
V

6M
for a ladder DPP with DAB or buck-boost cells.

Fig. 11 plots β for various DPP topologies as a function

of CV . When CV increases, power variation among voltage

domains increases, so the DPP converters need to process

more differential power. Thus, β increases with CV for all

DPP topologies, but it converges to an upper limit. This is

because the conduction loss of an N :1 converter is dominated

by the term MNσ2 as CV increases, increasing at the same

rate as that of DPP topologies. The asymptotic upper limits

of β for ac-coupled or SC-based DPP, dc-coupled DPP, and

ladder DPP with DAB or buck-boost cells are N−1
4 , N − 1,

and
(N+1)(N−1)2

6N , respectively.
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(a)

(b)

Fig. 11. Calculated and simulated normalized loss β as a function of the
coefficient of variance CV in: (a) fully-coupled DPP converters; (b) ladder
DPP converters.

Figs. 9 – 11 and Table I provide quantitative design insights

for DPP architectures. For example, the upper asymptotic limit

of β in an ac-coupled DPP topology is
C2

V

4M as N increases.

Therefore, when M = 4, N ≥ 2, and CV = 1, the normalized

loss of an ac-coupled DPP converter is always lower than 1/16,
indicating at least 16x loss reduction compared to an N :1
dc-dc converter. Similarly, a dc-coupled DPP converter can

offer at least 4x reduction in loss compared to an N :1 dc-dc

converter under the same conditions. If M > C2
V , β of fully-

coupled DPP converters will be always less than 1, indicating

that a fully-coupled DPP solution is guaranteed to be more

efficient than an N :1 dc-dc converter with an arbitrary number

of voltage domains. For a ladder DPP converter, β will be

larger than 1 if N goes beyond 6M
C2

V
, indicating that a ladder

DPP converter will lose advantages compared to an N :1 dc-dc

converter if the number of voltage domains is very large. It

should be pointed out, however, that ladder DPP circuits still

have high value if load variance is limited. A CV value of 0.1,

for example, still supports a large value of N before β becomes

too large. Figs. 9 – 11 and Table I also reveal that ac-coupled

DPP stands out from other DPP architectures explored here,

although SC-based DPP is equally good if capacitor charge

sharing loss is low. The SC-based DPP can be considered as a

fully-coupled DPP only if they are operating in fast switching

limit (FSL) [12] with very large capacitors.

V. CONCLUSION

This paper revealed performance limits of differential power

processing (DPP) systems. A stochastic loss model was devel-

oped to evaluate performance limits of general DPP topologies

as dimensions (N , M ), average load power (μ), and load

power variance (σ) of a modular load array scale up. The

performance limits of many DPP topologies were analyzed and

compared, providing useful design guidelines for selecting a

DPP topology for applications with probabilistic load profiles.

The analytical framework was verified by Monte Carlo simu-

lations in SPICE, and the results indicate that the ac-coupled

DPP stands out from all other DPP architectures explored in

this paper in terms of the lowest average power loss.
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